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Jared Miller∗‡, Didier Henrion †, Mario Sznaier∗‡
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Abstract

Peak Estimation aims to find the maximum value of a state function achieved by a
dynamical system. This problem is non-convex when considering standard Barrier and
Density methods for invariant sets, and has been treated heuristically by using auxiliary
functions. A convex formulation based on occupation measures is proposed in this
paper to solve peak estimation. This method is dual to the auxiliary function approach.
Our method will converge to the optimal solution and can recover trajectories even from
approximate solutions. This framework is extended to safety analysis by maximizing
the minimum of a set of costs along trajectories.

1 Introduction

The behavior of dynamic systems may be analyzed by bounding state functions along tra-
jectories. If the height of an aircraft along a trajectory falls below a threshold, then the
craft will crash into the ground. Other such questions include the amplitude of a rogue wave
[17] and the infection rate in an epidemic [21]. These questions may be posed as a peak
estimation task. For a system with dynamics f , find the maximum value of a function p(x)
for trajectories starting from X0 running until some maximum time T ∈ [0,∞):

p∗ = max
t, x(t)

p(x(t))

ẋ(t) = f(t, x), t ∈ [0, T ]

x(0) ∈ X0.

(1)

The goal of peak estimation is to find the tight upper bound p∗. It is also desired to
recover the optimal trajectories that achieve p(x(t)) = p∗ for some time t ∈ [0, T ]. Arbitrary
lower bounds to p∗ are trivial to find: choose an initial point x0 ∈ X0 and find the maximum
value of p(x) along x(t | x0). Upper bounds of p∗ are universal properties and are more
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difficult to compute. This paper focuses on generating a convergent sequence of upper
bounds to p∗ by translating Problem (1) into a hierarchy of Linear Matrix Inequalities
(LMI) in moments of occupation measures [12, 7].

Use of Barrier [18] and Density [19] functions for peak estimation results in non-convex
programs. Previous convex work in this area includes [5], which offers sum-of-squares (SOS)
criteria for producing upper bounds. Results for safety analysis are presented in [3]. Spe-
cialized results for analyzing impulse responses of linear systems are in [4]. This paper
introduces a convex program to solve peak estimation with the following advantages over
competing approaches:

• The sequence of upper bounds will converge to the global optimum p∗ as the relaxation
degree tends towards infinity.

• Optimal trajectories (and their estimates) can be recovered from solutions of the LMI
relaxations without requiring postprocessing.

• Safety of trajectories can be verified by a numerically robust maximin program of
multiple cost functions.

A motivating example of a unit pendulum with friction is provided in Figure 1. Pendulum
dynamics with angle θ and angular velocity θ̇ = ω are ω̇ = − sin θ − 0.1ω. The initial set is
X0 : θ ∈ [−π2 ,

π
2 ], ω = [−1, 1]. The d = 4 LMI relaxation in Section 3 produces an upper

bound on pendulum height of h∗4 = 1 − cos θ∗ ≈ 1.4682 over t ∈ [0,∞). The initial points
generating the optimal trajectory are x0 = [θ0, ω0] = ±[π2 , 1], and the peak is achieved at
xp = ±[2.058, 0] (swing angle of θ∗ ≈ 117.92◦). Figure 1 displays the upper bound as a red
plane. The two optimal trajectories are marked by thick blue curves, originating from x∗0
(circles) and reaching the maximum height x∗p (stars). The black contour is an invariant set
of trajectories starting X0 from the dual LMI.

Figure 1: Maximize h = 1− cos θ along pendulum with friction
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This paper is organized as follows: Section 2 defines notation and reviews preliminaries.
Section 3 introduces the convergent and recoverable peak estimation framework based on
occupation measures. Section 4 maximizes the minimum of multiple costs. Section 5 poses
safety evaluation as a maximin problem. Section 6 concludes the paper. Appendix A
provides proofs of convex duality.

2 Preliminaries

2.1 Notation

R is the space of real numbers, and Rn is an n-dimensional real vector space. Let x =
(x1 . . . xn) be a set of n indeterminate variables. For a set of nonnegative integers α ∈ Nn+,
the monomial

∏n
i=1 x

αi
i = xα with degree |α| =

∑n
i αi. A polynomial p(x) =

∑
α∈A pαx

α

for a finite index set A, and the degree of p is the maximum |α| in A. R[x] is the ring of
polynomials in x, and R[x]≤d is the subset of polynomials with total degree at most d. A
basic semialgebraic set K = {x | gi(x) ≥ 0 i = 1 . . . Nc} for Nc inequality constraints gi of
bounded degree.

Assume for this paper that X ⊂ Rd for some dimension d. Let C(X) be the set of
continuous functions defined over X, and C1(X) has continuous first derivatives. The space
of finite signed Borel measures over X is M(X), which is the topological dual of C(X)
with inner product 〈f, µ〉 =

∫
X
f(x)dµ for f ∈ C(X) and µ ∈ M(X) if X is compact. The

nonnegative subcones of each set C+(X) andM+(X) are dual cones with an induced inner
product. If B ⊆ X and IB(x) is the indicator function on B, then the ‘size’ of B with
respect to µ is µ(B) =

∫
X
IB(x)dµ =

∫
B
dx. The support supp(µ) is the smallest closed

subset S ⊆ X such that µ(X \ S) = 0. µ1 ⊗ µ2 denotes the product measure formed by
µ1 and µ2. µ is a probability measure on X if µ(X) = 1. The Dirac delta is a probability
measure δx ∈M+(X) with supp(δx) = x.

2.2 Moment-SOS Hierarchy

Convex optimization problems with polynomial objectives may be defined with respect to
a nonnegative measure µ:

p∗ = max
µ∈M+(X)

〈c, µ〉, A(µ) = b (2)

where c ∈ R[x] ⊂ C(X) is a cost, and A, b define a set of affine constraints. A measure µ
may be parameterized by an infinite sequence of moments yα = 〈xα, µ〉 such that 〈p, µ〉 =∑
α pαyα for all polynomials p. Problem (2) may therefore be expressed as a semi-infinite

linear program in terms of the moments yα, which must be truncated into a problem with a
finite number of variables. The moment-sum-of-squares (SOS) hierarchy uses the moment
sequence yα with degree α ≤ d for some bound d as variables. Refer to [13] for more details
on all material in this subsection.

If X = {x | gk(x) ≥ 0} is a basic semialgebraic set, define Md(y) as the Moment Matrix
of degree d and Md−dX (gXy) as the set of localizing matrices for each inequality constraint
gk(x) with degree dk. Precise definitions of M(y) and M(gXy) are in [13]. The degree-d
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relaxation of problem (2) is:

p∗d = max
y

∑
α

cαyα, A(y) = b (3a)

Md(y), Md−dX (gXy) � 0 (3b)

The sequence p∗d ≥ p∗d+1 ≥ p∗d+2 . . . is a sequence of upper bounds to the true optimum
p∗. For a polynomial optimization problem, the sequence of upper bounds will converge to
p∗ at a finite degree d if there exists a sufficiently large R such that X ⊂ {x | R−‖x‖22 ≥ 0}
(Archimedean condition). This is verified by a ‘flat extension’ of moment matrices, which is
a condition that ensures the rank Mδ(y) does not increase as the degree δ ≤ d increases [13].
A moment sequence y has a representing measure µ supported at r points in X if Md(y) has
rank r and the flat extension holds. Each of the r support points are called ‘atoms’, and
µ is therefore an rank-r atomic measure. The r atoms may be recovered by an Cholesky
decomposition [9]. A rank-1 moment matrix always has a flat extension.

2.3 Occupation Measures

Occupation measures are a valuable tool in solving optimal control and reachable set prob-
lems. Resources on this topic include [12, 11]. This section follows the exposition of [10].
For a single initial point x0 ∈ X0, the occupation measure µ(A × B | x0) is the amount of
time the trajectory x(t | x0) spends in the region A×B ⊆ [0, T ]×X:

µ(A×B | x0) =

∫ T

0

IA×B(t, x(t))dt. (4)

The average occupation measure µ yields the µ0-weighted time trajectories spend in
A×B for some µ0 ∈M+(X0):

µ(A×B) =

∫
X

µ(A×B | x0)dµ0(x0). (5)

It holds that µ([0, T ] × X) = T . The final occupation measure is the distribution of
x ∈ X that results after following trajectories in µ0 for time T :

µT (B) =

∫
X

IB(x(T | x0))dµ0(x0). (6)

For a test first-order-differentiable function v(t, x) ∈ C1([0, T ] × X), the Lie derivative
operator Lf is defined:

Lfv(t, x) = ∂tv(t, x) +∇xv(t, x)T f(t, x). (7)

The three measures µ0, µT , µ are linked together by Liouville’s Equation which tracks
trajectories evolving from µ0 to µT along dynamics f . Liouville’s Equation can be written
as a linear equation on measures with the help of test functions v(t, x) ∈ C1([0, T ]×X):

δT ⊗ µT = δ0 ⊗ µ0 + L†fµ (8a)

〈v(T, x), µT 〉 = 〈v(0, x), µ0〉+ 〈Lfv(t, x), µ〉 (8b)

where L†f is the adjoint of Lf such that 〈Lfv, µ〉 = 〈v,L†fµ〉 for any measurable function
v : [0, T ]×X → R. Moments of each measure can be computed by substituting in v(t, x) =
[t, x]α and evaluating the inner product.
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2.4 Previous Approaches

A set S is forward invariant for t ∈ [0, T ] if x(t) ∈ S implies that x(t′) ∈ S for ∀(t, t′) : 0 ≤
t ≤ t′ ≤ T . A value c is an upper bound on the peak p∗ of a family of trajectories if the set
Xc = X ∩ {x | p(x) ≤ c} is forward invariant for trajectories with x(0) ∈ X0. Barrier [18]
and Density [19] functions may be used to prove invariance through SOS methods in case
of polynomial dynamics. Computing p∗ by infimizing c with Barrier and Density functions
are non-convex programs, since the algebraic certificate and value c are multiplied together
in constraints.

A bisection approach on c is convex for each fixed c. Infeasibility of an LMI with
fixed c has two explanations. Either c is an invalid upper bound (p∗ > c), or insufficient
polynomial degree was used to generate the relaxation. Because the cause of infeasibility
cannot be distinguished, bisection of Barrier and Density methods are not a reliable method
for peak estimation.

Auxiliary functions have been recently used for convex peak estimation [5]. Sublevel sets
of these functions are forward-invariant sets, and bounds to p∗ may be computed through
SOS methods. The auxiliary function approach is equivalent to the dual program in Section
3.2. The trajectories that achieve p∗ cannot be exactly located or recovered from the solution
of an auxiliary function program. Instead, the range of initial conditions that may contain
the optimal trajectory is localized in a sublevel set of the solved auxiliary functions. Adjoint
optimization is used in order to find the initial condition inside the sublevel set [6].

3 Peak Estimation with Occupation Measures

Peak estimation can be formalized as a measure program by defining a new peak measure
µp ∈ M+([0, T ] × X), which is a generalization of δT ⊗ µT with free terminal time. This
section proposes four programs to solve Peak Estimation. The Measure program is a convex
infinite-dimensional linear program in measures. The Function program is the convex dual
of the Measure program in terms of continuous functions. The LMI program is a finite-
degree relaxation of the Measure program that can be solved by semidefinite programming,
in contrast to the infinite Measure Program. The SOS program is a finite-degree relaxation
of the Function program, and is dual to the LMI program.

3.1 Measure Program

Peak estimation may be posed as a Measure program:

Theorem 3.1. The following convex program posed over measures has the same optimal
value and mutually recoverable solutions as Problem (1):

p∗ = max 〈p(x), µp〉 (9a)

µp = δ0 ⊗ µ0 + L†fµ (9b)

µ0(X0) = 1 (9c)

µ, µp ∈M+([0, T ]×X) (9d)

µ0 ∈M+(X0) (9e)

Proof. Let the solution of Problem (1) be p∗(1) and (9) be p∗(9). Theorem 3.1 is proven

if p∗(1) = p∗(9) and solutions are mutually recoverable. Each solution trajectory xr(t) to
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Problem (1) that achieves p∗(1) may be encoded by a triple (xr0, t
r
p, x

r
p) such that p∗(1) =

p(xrp) = p(x(trp | xr0)). A trajectory x(t) in which p(x) is reached multiple times is separated
into triples for each attainment.

Let the triple (x0, tp, xp) be a solution to Problem (1). Probability measures µ0 ∈
M+(X0) and µp ∈M+([0, T ]×X) can be set to µ0 = δx0 and µp = δ(tp,xp) (rank-1 atomic
measures). The occupation measure µ starting from x0 is defined as in Equation (4) with
an endpoint tp instead of T . The measures (µ0, µ, µp) satisfy constraints (9b)-(9e). The
objective 〈p(x), µp〉 = p(xp) = p∗(1). As p∗(1) is reached with valid constraints, p∗(9) ≥ p

∗
(1).

To prove the other side p∗(9) ≤ p
∗
(1), select any measures (µ0, µ, µp) that obey constraints

(9b)-(9e). The peak measure µp is a probability measure given that µ0(X0) = 1:

〈1, µp〉 = 〈1, δ0 ⊗ µ0〉+ 〈Lf (1), µ〉 = 1 + 0 = 1. (10)

For any probability measure ν ∈M+(K) for a set K [13]:

Eν [p(x)] = 〈p(x), ν〉 ≤ max
x∈K

p(x) (11)

Solving problem (9) will therefore find a bound p∗(9) ≤ p∗(1). The measures reaching p∗(9)
are µ0 = δx0 , µp = δ(tp,xp), and µ in Equation (5) w.r.t. µ0. As both cost inequalities

are satisfied, p∗(9) = p∗(1). The optimal measures in case of {(xj0, tjp, xjp)}rj=1 are convex

combinations of the admissible single atoms for each triple. For all weights α ∈ RR+ with
1Tα = 1, µ0 =

∑r
j=1 αjδx0

j
and µp =

∑r
j=1 αjδ(tjp,xj

p)
.

Remark 1. The mass of the occupation measure µ([0, T ] × X) = 〈1, µ〉 is equal to the
expected time at which the optimal solution is reached:

〈t, µp〉 = 〈t, δ0 ⊗ µ0〉+ 〈Lf (t), µ〉 = 0 + 〈1, µ〉+ 0T f. (12)

This is distinct from Relation (8a) in which 〈1, µ〉 = T . The terminal measure µT can
be reconstructed by propagating µ0 along f by Equation (6).

Remark 2. Two instances in which Problem (1) is solved by an uncountable number of
trajectories are if (p, f) admits a continuous symmetry, and if p is a potential function of f
(∃λ 6= 0 | ∇xp = λf). Problem (9) then may be solved by non-atomic measures µ0, µp.

3.2 Function Program

Peak estimation may be dualized into a function program:

Theorem 3.2. The following program is the dual of Problem (9) (proof of duality in Ap-
pendix A.1):

d∗ = min
γ∈R

γ (13a)

v(0, x) + γ ≥ 0 ∀x ∈ X0 (13b)

Lfv(t, x) ≥ 0 ∀(t, x) ∈ [0, T ]×X (13c)

v(t, x) + p(x) ≤ 0 ∀(t, x) ∈ [0, T ]×X (13d)

v ∈ C1([0, T ]×X) (13e)
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The function v(t, x) is the dual variable of constraint (9b), and the scalar γ is the dual
variable of constraint (9c). p∗ = d∗ as there is no duality gap between Problems (9) and (13)
[16]. The region v(t, x) ≥ −γ is an invariant set for all trajectories starting in X0: v(t, x)
starts at a value ≥ −γ at time t = 0 (13b) and increases monotonically along trajectories
(13c). Constraint (13d) is an equality at (t∗p, x

∗
p).

3.3 LMI Program

Assume that the regions X and X0 are compact basic semialgebraic sets. The measures
µ0, µ, µp have moment sequences of y0, y, yp up to degree d. µ is supported over entire
trajectories and is non-atomic at optimality, so Md(y) will have full rank. If Md(y

0) has a
flat extension, then the atoms of µ0 are a discrete set of a initial points {xj0}rj=1. Likewise, a

flat extension of Md(y
p) yields atoms {xjp}

rp
j=1 such that p(xjp) = p∗d. Numerically evaluating

pj = maxt=[0,T ] p(x(t | xj0)) yields a lower bound of p∗ for each atom j. If the LMI solution
at degree d returns an upper bound p∗d and |p∗d − maxj p

j | ≤ ε for a sufficiently small
ε > 0, then p∗d is approximately global optimal up to the tolerance of the ODE solver.
If Liou(y0, y, yp) = b are affine constraints in moments such that Liouville’s equation is
satisfied, then the degree-d LMI relaxation of Problem (9) is:

p∗d =max
∑
α

pαy
p
α. (14a)

Liou(y0, y, yp) = b (14b)

y00 = 1 (14c)

Md(y
0), Md(y), Md(y

p) ≥ 0 (14d)

Md−dX0
(gX0

y0) ≥ 0 (14e)

Md−dX (gXy), Md−dX (gXy
p) ≥ 0 (14f)

Md−2(t(T − t)y), Md−2(t(T − t)yp) ≥ 0. (14g)

By relation (10) and (14d), yp0 = 1. When Md(y
0) and Md(y

p) have a flat extension up
to numerical accuracy, estimates for x∗0, x∗p and t∗p can be extracted by methods in [9]. If
Md(y

0) and Md(y
p) are nearly rank-1 (second largest eigenvalue of Md is small compared to

largest eigenvalue), then x∗0, x∗p and t∗p can be read from the moment sequences y0 and yp.
Constraints (14b) are of the form Liouα(y0, y, yp) for each monomial α with dual variables
vα. At SDP optimality, the degree d SOS problem (13) is solved by v(t, x) =

∑
α vα[t, x]α

and γ = p∗d.

Remark 3. A flat extension of Md(y
0) and Md(y

p) is insufficient to determine global
optimality of (14). It is additionally required that there exists a measure µ supported on
the trajectories between {xj0 → xjp}rj=1 where the first 2d moments of µ agree with the
truncated moment sequence y. Attempting to prove a ‘flat extension on curves’ to verify
global optimality at finite degree is out of scope for this paper, and instead a numerical test
is used.

Remark 4. Problem (9) solves (1) even with T = ∞. Convergence of (14) to (9) is not
guaranteed, as [0,∞)×X is non-Archimedean. If f(t, x) = f(x), excluding t from (9) yields
an infinite-horizon problem with convergence for compact X. An atomic solution will return
x∗0 and x∗p, but not the time t∗p for which x(t∗p | x∗0) = x∗p.
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3.4 SOS Program

Problem (13) is infinite dimensional, as it optimizes over a continuous function v(t, x).
Problem (13) may be truncated into a finite dimensional semidefinite program by restrict-
ing v(t, x) to polynomials of bounded degree R[t, x]≤d, and replacing all nonnegativity
constraints with Sum of Squares (SOS) constraints. A polynomial q(x) ∈ R[x] is SOS

(q(x) ∈ Σ[x]) if there exists a finite set of polynomials {qi(x)}Nq

i=1 with bounded degree

such that q(x) =
∑Nq

i=1 qi(x)2. The SOS reformulation of Problem (13) by the Putinar
Positivstellensatz [12] is:

d∗d = min
γ∈R

γ (15a)

σ0(x) = v(0, x) + γ −
NX0∑
i=1

giX0
(x)σiX0

(x) (15b)

σ(t, x) = Lfv(t, x)− t(T − t)σt,f (t, x)−
NX∑
i′=1

gi
′

X(x)σi
′

X,f (t, x) (15c)

σp(t, x) = −v(t, x)− p(x)− t(T − t)σt,p(t, x)−
NX∑
i=1

giX(x)σiX,p(t, x) (15d)

v(t, x) ∈ R[t, x]≤d (15e)

σ0, σ
i′

X0
∈ Σ[x] (15f)

σ, σp, σt,f , σ
i
X,f , σt,p, σ

i
X,p ∈ Σ[t, x] (15g)

The SOS multipliers σ0, σ, σp are dual to the measures µ0, µ, µp. The polynomials

σi
′

X0
, σit,·, σ

i
X,· ensure that the nonnegativity in constraints (13b)-(13d) hold over their re-

gions of validity. The degrees of the multipliers in (15f)-(15g) must be compatible with
degrees of v(t, x), f, gX , and gX0

Remark 5. Function program (13) is equivalent to the approach in [5], and SOS program
(15) is likewise equivalent for continuous bounded degree polynomials v(t, x). The YALMIP
[14] SOS preprocessing used in [5] reformulates the SDP into a different set of variables,
and the new SDP is no longer dual to the LMI in (14). Approximate moments therefore
cannot be recovered by [5].

3.5 Numerical example

Code in this paper is publicly available at https://github.com/jarmill/peak/ and was
written in MATLAB 2020a. SDPs were formulated in YALMIP [14] and Gloptipoly 3 [8],
and solved with Mosek 9.2 [1].

Example 4.1 from [5] is the following system:[
ẋ1
ẋ2

]
=

[
0.2x1 + x2 − x2(x21 + x22)
−0.4x1 + x1(x21 + x22)

]
(16)

System (16) features a symmetry f(−x) = −f(x) and has a saddle point at (0, 0) spiral-
ing off into two attractors at ±[0.362, 0.971]. For the infinite-horizon problem of maximizing

8
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‖x‖22 while starting at X0 with X0 : ‖x‖22 = 0.5, X = [−2, 2]2, the first six upper bounds
are:

p∗1:6 = [8.000, 2.184, 1.930, 1.922, 1.909, 1.093]

Figure 2a plots the optimal trajectories for the d = 7 problem with the bound p∗7 =
1.90318. Moment matrices obtained by solving Problem (14) are block diagonal due to
the central symmetry of the set X0 and equivariance of f : f(−x) = −f(x) [20]. The
optimal M7(y0),M7(yp) are nearly rank-2, but the approximate orbits of ±x∗0 and ±x∗p can
be extracted from the nearly rank-1 (second singular value ≤ 1e−4) matrix of second-order
moments . The black dotted curve wrapping around trajectories is the contour v(x)+γ = 0.
Figure 2b compares the extracted x∗0 and x∗p against a sublevel-set approximation to locations
of optimal trajectories and their initial conditions ([5] Sec. 3: {x | 0 ≤ v(x)+p∗7 ≤ 0.002, 0 ≤
Lfv(x) ≤ 0.004}). [5] requires a postprocessing step to locate x∗0 inside the sublevel set.
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(a) Trajectories and Bounds
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(b) Approx. Initial Set

Figure 2: Maximize ‖x‖22 along (16)

Care must be taken to ensure that the numerical solution to Problem (14) is strictly
feasible [15]. Constraint (13c) must be an equality for trajectories along a limit cycle of an
autonomous system. Results of these LMIs are typically ‘marginally feasible’ and invalid as
polynomials cannot generally match limit cycle trajectories. Examples of this degeneracy
are shown in [5] with the Van der Pol oscillator.

4 Maximin Objective

The peak estimation framework presented in section 3 may be used to maximize the mini-
mum (Maximin) of costs for use in safety analysis of trajectories.
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4.1 Maximin Formulation

Let {pi(x)} be a finite number of polynomial objectives for i = 1 . . . Np. The new objective
aims to maximize the minimum value of all pi(x) along trajectories. The peak estimation
of trajectories (1) can be extended to maximin penalties by adding a new variable q:

p∗ = max
x(t),t,q

q

q ≤ pi(x(t)) ∀i = 1 . . . Np

x(0) ∈ X0

ẋ(t) = f(x, t)

t ∈ [0, T ]

q ∈ R

(17)

Theorem 4.1. The maximin peak estimation problem may be expressed by the measure
program:

p∗ = max
q∈R

q (18a)

µp = δ0 ⊗ µ0 + L†fµ (18b)

µ0(X0) = 1 (18c)

q ≤ 〈pi(x), µp〉 ∀i = 1 . . . Np (18d)

µ, µp ∈M+([0, T ]×X) (18e)

µ0 ∈M+(X0) (18f)

At optimality, q∗ is the maximal value of the minimum of all pi(x) along trajectories.
Degree-d LMI relaxations provide a decreasing sequence of upper bounds to p∗. The dual
problem may be considered by treating p(x) as the vectorization of pi(x), and introducing
new dual variables β.

d∗ = min
γ∈R

γ (19a)

v(0, x) + γ ≥ 0 ∀x ∈ X0 (19b)

Lfv(t, x) ≥ 0 ∀(t, x) ∈ [0, T ]×X (19c)

v(t, x) + βT p(x) ≤ 0 ∀(t, x) ∈ [0, T ]×X (19d)

v ∈ C1([0, T ]×X) (19e)

β ∈ RNp

≥0 1Tβ = 1 (19f)

(19g)

A proof of this duality is in Appendix A.2. At optimality, nonzero βi indicates that the
cost pi(x) is minimal among all pi(x

∗). An example is the following non-autonomous ODE
(Example 2.1 from [5]): [

ẋ1
ẋ2

]
=

[
x2t− 0.1x1 − x1x2
x1t− x2 + x21

]
(20)

Figure 3 plots trajectories from equation (20) on the initial set X0 : (x1+0.75)2+x22 = 1
and total set X = [−3, 2]× [−2, 2]. Fig. 3a maximizes p(x) = x1 over the time range [0, 5]
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by a d = 3 relaxation, which certifies the bound p∗ ≤ pa∗3 = 0.4931373. The second-largest
eigenvalue of M1(y) = 2.943×10−6, so the moment matrix is nearly rank-1 and approximate
optimal trajectories can be recovered. The nearly optimal trajectory is plotted in blue, and
the points x∗0 = [−1.674,−0.383] and x∗p = [0.493, 0.029] are displayed. The first five bounds
are:

p∗a1:5 = [1.5473, 0.4981, 0.4931, 0.4931, 0.4931]

Fig. 3b solves the maximin program with p(x) = [x1, x2] on system (20). The d = 3
bound for times [0, T ] is p∗b3 = 0.389115, which is the value of each coordinate of x∗p.
Optimality is reached at t∗p = 1.801. The optimal β = [0.647, 0.353] has both elements

nonzero, as p1(x∗p) = p2(x∗p) = p∗b3 . The first five maximin bounds are:

p∗b1:5 = [1.0765, 0.3905, 0.3891, 0.3891, 0.3891]

Fig. 4 displays the maximin objective min(x1, x2) along trajectories in Fig. 3. Fig. 5
plots the nonnegative (SOS) functions in the dual Program (19) along sampled and optimal
trajectories. x∗p is reached at time t∗p = 2.19, which is indicated by the blue stars on Figs. 4
and 5.
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Figure 3: Peak analysis of system (20) at d = 3

5 Safety Margins

Assume that X0 and the unsafe set Xu are basic semialgebraic sets where Xu = {x | gi(x) ≥
0 ∀i = 1 . . . Nu}. If the maximum value of mini gi(x) is negative for all trajectories starting
from X0, then Xu is never entered.

Let p∗d be the optimal value of the degree-d relaxation to Problem (18). A value of p∗d < 0
for any degree d certifies that no trajectory enters Xu, and the magnitude of p∗d serves as a
safety margin. At least one trajectory touches or passes through Xu if the global optimum
p∗ ≥ 0.
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Figure 5: Nonnegativity of Program (19)

Figure 6 demonstrates safety margins on the following system f(x) = [x2, −x1 − x2 +
x31/3] from [18] with an infinite-horizon. Trajectories originate from X0 : (x1− 1.5)2 + x22 ≤
0.42. The unsafe set is a half-circle formed by a circle with radius Ru = 0.5 centered at
Cu = [0,−0.5] cut by a half-space [cos θ, sin θ]′[x−Cu] ≥ 0 for some angle θ. With θ = 5π/4
in Fig. 6a, p∗3:5 = [0.1178,−0.1326,−0.1417]. All trajectories are safe because p∗4 < 0.
The flow in Fig. 6b with θ = 3π/4 is unsafe, as some trajectory (the approximate optimal
trajectory with d = 5) passes through Xu. [18] offers a binary determination of safety, and
does not indicate how close trajectories approach Xu (measured by p∗). As mentioned in
Sec. 2.4, [18] cannot distinguish between unsafety and insufficient degree for θ = 3π/4.

Safety verification by occupation measures has been presented in [3] by solving a measure
program to find the expected amount of time trajectories spend in Xu. Trajectories never
enter Xu if Eu[t] = E[t | x(t) ∈ Xu] = 0 for any LMI relaxation. Due to numerical
inaccuracies, 0 will never be reached even for safe trajectories. The system in Fig. 6a with
θ = 5π/4 has Eu[t] = 2.38 × 10−3 > 0 with d = 10, T = 5 even though it is verifiably
safe with p∗4 < 0. The safety-time criterion is insufficient to prove avoidance, and the safety

12



(a) Safe: p∗5 = −0.1417 < 0 (b) Unsafe: p∗5 = 0.1935 > 0

Figure 6: Safety margins for half-circle sets

margin p∗ is comparatively a robust metric for safety.

6 Conclusion

This paper presented an occupation measure-based technique to perform peak estimation
and obtain a converging and certifiable sequence of upper bounds to the global optimum.
Near-optimal trajectories can be immediately recovered from approximate solutions to LMIs.
Peak estimation is extended to maximin problems with multiple costs for safety analysis.
Future work includes peak estimates for uncertain systems.

A Proofs of Convex Duality

This section proves equivalence between Measure and Function programs, based on methods
in [11, 3]. Let K be a cone with dual cone K∗, where K∗ = {v | 〈v, x〉 ≥ 0, ∀x ∈ K} for
linear functionals v [2]. Further let c ∈ K∗ be an objective, and A : K → R be a linear
operator with domain R, and b ∈ R be constraint values. A generic primal-form convex
program is:

p∗ = sup
x∈K
〈c, x〉, A(x) = b (21)

Let the adjoint of A be A† : R′ → K∗ where R′ is an affine translation of R∗ (in
KKT optimality conditions, 〈y,A(x)− b〉 = 〈y,A(x)〉 − 〈b, y〉 = 〈A†(y), x〉 − 〈b, y〉 [2]). The
corresponding dual-form program is:

d∗ = inf
y∈R′
〈b, y〉, A∗(y)− c ∈ K∗ (22)

13



Strong duality holds if p∗ = d∗. All suprema/infima are attained for peak estimation if
X is compact.

A.1 Duality of Programs in Section 3

Program (9) is a primal-form (21) program with quantities:

K =M+(X0)×M+([0, T ]×X)
2

(23a)

x = [µ0, µ, µp] (23b)

A(x) = [δ0 ⊗ µ0 + L†fµ− µp, µ0(X0)] (23c)

R = C1([0, T ]×X)∗ × R (23d)

The constraints and objective are:

c = [0, 0, p(x)], b = [0, 1] (24)

The dual problem (22) has:

R′ = C1([0, T ]×X)× R (25a)

y = [v(t, x), γ] (25b)

A†(y) = [v(0, x) + γ, Lfv(t, x), −v(t, x)] (25c)

K∗ = C+(X0)× C+([0, T ]×X)2 (25d)

Substituting (24) and (25) into (22) yields Problem (13).

A.2 Duality of Programs in Section 4

This section proves the convex duality of Programs (18) and (19). The costs p(x) are a
vector of length Np. New variables q (cost) and α (slack) are added.

K =M+(X0)×M+([0, T ]×X)
2 × R× RNp

+ (26a)

x = [µ0, µ, µp, q, α] (26b)

A(x) = [δ0 ⊗ µ0 + L†fµ− µp,
µ0(X0), −p(x) + 1q + α] (26c)

R = C1([0, T ]×X)∗ × R× RNp (26d)

The constraints and objective are:

c = [0, 0, 0, 1, 0], b = [0, 1, 0] (27)

The dual problem (22) has:

R′ = C1([0, T ]×X)× R× RNp (28a)

y = [v(t, x), γ, β] (28b)

A†(y) = [v(0, x) + γ, Lfv(t, x),

− v(t, x)− βT p(x), 1Tβ, β] (28c)

K∗ = C+(X0)× C+([0, T ]×X)2 × 0× RNp

+ (28d)

The last entries of A†(y) in (28c) (with c in (25)) are the same as constraint (19d), which
proves program equivalence.
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