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Selection of proximity measures for a
Topological Correspondence Analysis

R. Abdesselam

Abstract In this work, we propose a new topological approach to analyze
the associations between two qualitative variables in the context of corre-
spondence analysis. It compares and classifies proximity measures to select
the best one according to the data under consideration. Similarity measures
play an important role in many domains of data analysis. The results of any
investigation into whether association exists between variables or any oper-
ation of clustering or classification of objects are strongly dependent on the
proximity measure chosen. The user has to select one measure among many
existing ones. Yet, according to the notion of topological equivalence chosen,
some measures are more or less equivalent. The concept of topological equiv-
alence uses the basic notion of local neighborhood. We define the topological
equivalence between two proximity measures, in the context of association
between two qualitative variables, through the topological structure induced
by each measure. We compare proximity measures and propose a topological
criterion for choosing the best association measure, adapted to the data con-
sidered, from among some of the most widely used proximity measures for
qualitative data. The principle of the proposed approach is illustrated using a
real data set with conventional proximity measures for qualitative variables.

1 Introduction

In order to understand and act on situations that are represented by a set
of objects, very often we are required to compare them. Humans perform
this comparison subconsciously using the brain. In the context of artificial
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intelligence, however, we should be able to describe how the machine might
perform this comparison. In this context, one of the basic elements that must
be specified is the proximity measure between objects.

Certainly, application context, prior knowledge, data type and many other
factors can help in identifying the appropriate measure. For instance, if the
objects to be compared are described by Boolean vectors, we can restrict our
comparisons to a class of measures specifically devoted to this type of data.
However, the number of candidate measures may still remain quite large. Can
we consider that all those remaining measures are equivalent and just pick
one of them at random? Or are there some that are equivalent and, if so, to
what extent? This information might interest a user when seeking a specific
measure. For instance, in information retrieval, choosing a given proximity
measure is an important issue. We effectively know that the result of a query
depends on the measure used. For this reason, users may wonder which one
is more useful? Very often, users try many of them, randomly or sequentially,
seeking a ”suitable” measure. If we could provide a framework that allows
the user to compare proximity measures in order to identify those that are
similar, they would no longer need to try out all measures.

The present study proposes a new framework for comparing proximity
measures in order to choose the best one in a context of association between
two qualitative variables.

We deliberately ignore the issue of the appropriateness of the proximity
measure as it is still an open and challenging question currently being studied.
The comparison of proximity measures can be analyzed from various angles.

The comparison of objects, situations or ideas is an essential task to assess
a situation, to rank preferences, to structure a set of tangible or abstract
elements, and so on. In a word, to understand and act, we have to compare.
These comparisons that the brain naturally performs, however, must be clar-
ified if we want them to be done by a machine. For this purpose, we use
proximity measures. A proximity measure is a function which measures the
similarity or dissimilarity between two objects within a set. These proximity
measures have mathematical properties and specific axioms. But are such
measures equivalent? Can they be used in practice in an undifferentiated
way? Do they produce the same learning database that will serve to find the
membership class of a new object? If we know that the answer is negative,
then, how do we decide which one to use? Of course, the context of the study
and the type of data being considered can help in selecting a few possible
proximity measures but which one should we choose from this selection as
the best measure for summarizing the association?

We find this problematic in the context of correspondence analysis. The
eventual links or associations between modalities of two qualitative variables
partly depends on the learning database being used. The results of corre-
spondence analysis can change according to the selected proximity measure.
Here we are interested in characterizing a topological equivalence index of
independence between two qualitative variables. The greater this topological
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index is, the more independent the variables are, according to the proximity
measure ui chosen.

Several studies on the topological equivalence of proximity measures have
been proposed, [2] [11] [3] [8] [18], but none of these propositions has an
association objective.

Therefore, this chapter focuses on how to construct the best adjacency
matrix [1] induced by a proximity measure, taking into account the indepen-
dence between two qualitative variables. A criterion for statistically selecting
the best correspondence proximity measure is defined below.

This chapter is organized as follows. In paragraph 2, after recalling the
basic notions of structure, graph and topological equivalence, we present the
proposed approach. How to build an adjacency matrix for no association
between two qualitative variables, the choice of a measure of the degree of
topological equivalence between two proximity measures, and the selection
criterion for picking the best association measure are discussed in this para-
graph. Paragraph 3 presents an illustrative example using qualitative eco-
nomic data. The conclusion and some perspectives of this work are given in
paragraph 4.

Table 1 shows some classic proximity measures used for binary data [17],
we give on {0, 1}n the definition of 22 of them.
{xj ; j = 1, .., p} and {yk; k = 1, .., q} are sets of two qualitative vari-

ables, partition of n =
∑p
j=1 nj =

∑q
k=1 nk individuals-objects into p and

q modalities-subgroups. The interest lies in whether there is a topological
association between these two variables. Let us denote:
- X(n,p) the data matrix associated to the p dummy variables {xj ; j = 1, p},
of a qualitative variable x with n rows-objects and p columns-variables,
- Y(n,q) the data matrix associated to the q dummy variables {yk; k = 1, q}
of a qualitative variable y with n rows-objects and q columns-variables,
- Z(n,r) = [X |Y ] = [ z1 = x1, · · · , zj = xj , · · · , zp = xp | zp+1 =

y1, · · · , zk = yk, · · · , zr = yq ] the full binary table, juxtaposition of X and
Y binary tables, with n rows-objects and r = p+ q columns-modalities,
- K(p,q) = tX Y the contingency table,

- MB(r,r)
= tZ Z =

(
tX X tX Y
tY X tY Y

)
=

(
tX X K
tK tY Y

)
the symmetric

Burt matrix of the two-way cross-tabulations of the two variables. The diag-
onal are the cross-tabulations of each variable with itself,

- W(r,r) = Diag[MB ] =

(
tX X 0

0 tY Y

)
=

(
Wp 0

0 Wq

)
the diagonal ma-

trix of r = p + q frequencies. The diagonal terms are the frequencies of the
modalities of x and y, totals rows and columns of contingency table K.
- U = 1r

t1r is the r × r matrix of 1s, Ir the r × r identity matrix where 1r
denotes the r vector of 1s and 1n the n vector of 1s.

The dissimilarity matrices associated with proximity measures are com-
puted from data given by the contingency table K. The attributes of any
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Measures Similarity Dissimilarity

Jaccard s1 = a
a+b+c

u1 = 1− s1
Dice, Czekanowski s2 = 2a

2a+b+c
u2 = 1− s2

Kulczynski s3 = 1
2

( a
a+b

+ a
a+c

) u3 = 1− s3
Driver, Kroeber and Ochiai s4 = a√

(a+b)(a+c)
u4 = 1− s4

Sokal and Sneath 2 s5 = a
a+2(b+c)

u5 = 1− s5
Braun-Blanquet s6 = a

max(a+b,a+c)
u6 = 1− s6

Simpson s7 = a
min(a+b,a+c)

u7 = 1− s7
Kendall, Sokal-Michener s8 = a+d

a+b+c+d
u8 = 1− s8

Russel and Rao s9 = a
a+b+c+d

u9 = 1− s9
Rogers and Tanimoto s10 = a+d

a+2(b+c)+d
u10 = 1− s10

Pearson φ s11 = ad−bc√
(a+b)(a+c)(d+b)(d+c)

u11 = 1−s11
2

Hamann s12 = a+d−b−c
a+b+c+d

u12 = 1−s12
2

bc u13 = 4bc
(a+b+c+d)2

Sokal and Sneath 5 s14 = ad√
(a+b)(a+c)(d+b)(d+c)

u14 = 1− s14

Michael s15 =
4(ad−bc)

(a+d)2+(b+c)2
u15 = 1−s15

2

Baroni, Urbani and Buser s16 = a+
√
ad

a+b+c+
√
ad

u16 = 1− s16
Yule Q s17 = ad−bc

ad+bc
u17 = 1−s17

2

Yule Y s18 =
√
ad−
√
bc√

ad+
√
bc

u18 = 1−s18
2

Sokal and Sneath 4 s19 = 1
4

( a
a+b

+ a
a+c

+ d
d+b

+ d
d+c

) u19 = 1− s19
Sokal and Sneath 3 u20 = b+c

a+d

Gower and Legendre s21 = a+d

a+
(b+c)

2
+d

u21 = 1− s21

Sokal and Sneath 1 s22 =
2(a+d)

2(a+d)+b+c
uSS1 = 1− s22

Table 1 Some proximity measures.

two points’ modalities’ zj and zk in {0, 1}n of the proximity measures can
be easily written and calculated from the following matrices. Computational
complexity is thus considerably reduced.
• A(r,r) = (ajk) = MB

whose element, ajk = |Zj ∩ Zk| =
∑n
i=1 z

j
i z
k
i is the number of attributes

common to both points zj and zk,
• B(r,r) = (bjk) = tZ (1n

t1r − Z) = tZ 1n
t1r − tZ Z

= W 1r
t1r −A = W U −A

whose element, bjk = |Zj − Zk| = |Zj ∩ Zk| =
∑n
i=1 z

j
i (1 − zki ) is the

number of attributes present in zj but not in zk,
• C(r,r) = (cjk) = t(1n

t1r − Z) Z = t(1n
t1r) Z − tZ Z

= 1r
t1n Z − tZ Z = UW −A

whose element, cjk = |Zk − Zj | = |Zk ∩ Zj | =
∑n
i=1 z

k
i (1 − zji ) is the

number of attributes present in zk but not in zj .
• D(r,r) = (djk) = t(1n

t1r − Z) (1n
t1r − Z)

= 1r
t1n 1n

t1r − 1r
t1n Z − tZ 1n

t1r + tZ Z
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= n1r
t1r − UW −WU +A = nU − UW −WU +A

= nU − (A+B + C)

whose element, djk = |Zj ∩ Zk| =
∑n
i=1(1− zji )(1− zki ) is the number of

attributes in neither zj or zk.

Zj = {i/zji = 1} and Zk = {i/zki = 1} are the sets of attributes present in
data point-modality zj and zk respectively, and |.| the cardinality of a set.

The attributes are linked by the relation:
∀j = 1, p ; ∀k = 1, q ajk + bjk + cjk + djk = n.

Together, the four dependent quantities ajk, bjk, cjk and djk can be pre-
sented in the following table 2, where the information can be summarized by
an index of similarity (affinity, resemblance, association, coexistence).

zk = 1 zk = 0 Total

zj = 1 ajk bjk ajk + bjk
zj = 0 cjk djk cjk + djk
Total ajk + cjk bjk + djk n

Table 2 The 2× 2 contingency table between modalities zj and zk

2 Topological Correspondence

Topological equivalence is based on the concept of the topological graph also
referred to as the neighborhood graph. The basic idea is actually quite simple:
two proximity measures are equivalent if the corresponding topological graphs
induced on the set of objects remain identical. Measuring the similarity be-
tween proximity measures involves comparing the neighborhood graphs and
measuring their similarity. We will first define more precisely what a topolog-
ical graph is and how to build it. Then, we propose a measure of proximity
between topological graphs that will subsequently be used to compare the
proximity measures.

Consider a set E = {z1 = x1, . . . , zp = xp, zp+1 = y1, . . . , zr = yq} of
r = |E| modalities in {0, 1}n, associated with the variables x and y. We can,
by means of a proximity measure u, define a neighborhood relationship Vu to
be a binary relationship on E ×E. There are many possibilities for building
this neighborhood binary relationship.

Thus, for a given proximity measure u, we can build a neighborhood graph
on a set of objects-modalities, where the vertices are the modalities and the
edges are defined by a property of the neighborhood relationship.
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Many definitions are possible to build this binary neighborhood relation-
ship. One can choose the Minimal Spanning Tree (MST) [7], the Gabriel
Graph (GG) [10] or, as is the case here, the Relative Neighborhood Graph
(RNG) [14] [6].

For any given proximity measure u, we construct the associated adjacency
binary symmetric matrix Vu of order r = p+q, where, all pairs of neighboring
modalities (zj , zk) satisfy the following RNG property.

Property 1. Relative Neighborhood Graph (RNG){
Vu(zj , zk) = 1 if u(zj , zk) ≤ max[u(zj , zl), u(zl, zk)] ; ∀zj , zk, zl ∈ E, zl 6= zj and zk

Vu(zj , zk) = 0 otherwise

Fig. 1 RNG example with seven groups-modalities - Associated adjacency matrix

This means that if two modalities zj and zk which verify the RNG property
are connected by an edge, the vertices zj and zk are neighbors.

Thus, for any proximity measure given, u, we can associate an adjacency
matrix Vu, of binary and symmetrical order r = p + q. Figure 1 illustrates
a set of n object-individuals around seven modalities associated with two
qualitative variables x and y with three and four modalities respectively.

For example, if Vu(z2 = x2, z4 = y1) = 1 it means that on the geometrical
plane, the hyper-Lunula (intersection between the two hyperspheres centered
on the two modalities x2 and y1) is empty.

For a given neighborhood property (MST, GG or RNG), each measure
u generates a topological structure on the objects in E which are totally
described by the adjacency binary matrix Vu. In this chapter, we chose to
use the Relative Neighbors Graph (GNR) [14].

2.1 Comparison and selection of proximity measures

First we compare different proximity measures according to their topolog-
ical similarity in order to regroup them and to better visualize their resem-
blances.
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To measure the topological equivalence between two proximity measures
ui and uj , we propose to test if the associated adjacency matrices Vui and
Vuj are different or not. The degree of topological equivalence between two
proximity measures is measured by the following property of concordance.

Property 2. Topological equivalence index between two adjacency matrices

S(Vui , Vuj ) =
∑r
k=1

∑r
l=1 δkl(z

k,zl)

r2
with δkl(z

k, zl) =
{

1 if Vui (z
k, zl) = Vuj (zk, zl)

0 otherwise.

Then, in our case, we want to compare these different proximity measures
according to their topological equivalence in a context of association. So we
define a criterion for measuring the spacing from the independence or no
association position.

The contingency table is one of the most common ways to summarize
categorical data. Generally, interest lies in whether there is an association
between the row variable and the column variable that produce the table;
sometimes there is further interest in describing the strength of that associa-
tion. The data can arise from several different sampling frameworks, and the
interpretation of the hypothesis of no association depends on the framework.
The question of interest is whether there is an association between the two
variables.

We note Vu∗ = Ir, the r = p+ q identity matrix. It is a perfect adjacency
matrix, which corresponds to the null hypothesis H0 of independence: no
association between the two variables.

Vu∗ =


Ip 0

0 Iq

 = Ir

The binary and symmetric adjacency diagonal matrix Vu∗ is associated
with an unknown proximity measure denoted u∗ and called a reference mea-
sure.

Thus, with this reference proximity measure we can establish the Topo-
logical Independence Index TIIi = S(Vui , Vu∗) - the degree of topological
equivalence of no association between the two variables - by measuring the
percentage of similarity between the adjacency matrix Vui and the reference
adjacency matrix Vu∗ . The greater this topological index is and tends to 1,
the more independent the variables are, according to the proximity measure
ui chosen.

In order to visualize the similarities between all the 22 proximity measures
considered, a Principal Component Analysis (PCA) followed by a Hierarchi-
cal Ascendant Classification (HAC) were performed upon the 22 component
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dissimilarity matrix defined by [D]ij = D(Vui , Vuj ) = 1−S(Vui , Vuj ) to par-
tition them into homogeneous groups and to view their similarities in order
to see which measures are close to one another.

We can use any classic visualization techniques to achieve this. For exam-
ple, we can build a dendrogram of hierarchical clustering of the proximity
measures. We can also use multidimensional scaling or any other technique,
such as Laplacian projection, to map the 22 proximity measures into a two
dimensional space.

Finally, in order to evaluate and select the no association proximity mea-
sures, we project the reference measure u∗ as a supplementary element into
the methodological chain of data analysis methods (PCA and HAC), posi-
tioned by the dissimilarity vector with 22 components [D]∗i = 1−S(Vu∗ , Vui).

2.2 Statistical comparisons between two proximity measures

In a metric framework, there are several ways of testing the null hypothesis,
H0, of no association between two variables, and many of the tests are based
on the chi-square statistic.

In this paragraph, we use Cohen’s kappa coefficient to test statistically the
degree of topological equivalence between two proximity measures. This non-
parametric test compares these measures based on their associated adjacency
matrices.

The comparison between indices of proximity measures has also been stud-
ied by [12], [13] and [5] from a statistical perspective. The authors proposed
an approach that compares similarity matrices obtained by each proximity
measure, using Mantel’s test [9], in a pairwise manner.

Cohen’s nonparametric Kappa test [4] is the statistical test best suited to
our problem, as it makes it possible in this context to measure the agreement
or the concordance of the binary values of two adjacency matrices associated
with two measures of proximity, unlike the coefficients of Kendall or Spear-
man, for example, who evaluate the degree of concordance between quanti-
tative values. The Kappa concordance rate between two adjacency matrices
is estimated to evaluate the degree of topological equivalence between their
proximity measures.

Let Vui and Vuj be adjacency matrices associated with two proximity
measures ui and uj . To compare the degree of topological equivalence between
these two measures, we propose to test if the associated adjacency matrices
are statistically different or not, using a non-parametric test of paired data.
These binary and symmetric matrices of order r, are unfolded in two vector-

matched components, consisting of r(r+1)
2 values: the r diagonal values and

the r(r−1)
2 values above or below the diagonal.

The degree of topological equivalence between two proximity measures is
estimated from the Kappa coefficient of concordance, computed on the a 2×2
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contingency table N = (nkl)k,l=0,1 formed by the two binary vectors, using
the following relation :

κ̂ = κ̂(Vui , Vuj ) = Po−Pe
1−Pe

where,
Po = 2

r(r+1)

∑1
k=0 nkk is the observed proportion of concordance,

and
Pe = 4

r2(r+1)2

∑1
k=0 nk.n.k represents the expected proportion of

concordance under the assumption of independence.

The Kappa coefficient is a real number, without dimension, between -1 and
1. The concordance is higher the value of Kappa is to 1 and the maximum
concordance is reached (κ̂ = 1) when Po = 1 and Pe = 0.5. When there is
perfect independence, κ̂ = 0 with Po = Pe, and in the case of total mismatch,
κ̂ = −1 with Po = 0 and Pe = 0.5.

The true value of the Kappa coefficient in the population is a random vari-
able that approximately follows a Gaussian law of mean E(κ) and variance
V ar(κ). The null hypothesis H0 is κ = 0 against the alternative hypothesis
H1 : κ > 0. We formulate the null hypothesis H0 : κ = 0 independence of
agreement or concordance. The concordance becomes higher as κ tends to-
wards 1, and is a perfect maximum if κ = 1. It is equal to −1 in the case of
a perfect discordance.

We also test each proximity measure ui with the perfect measure u∗ by
comparing the adjacency matrices Vui and Vu∗ to estimate the degree of
topological equivalence of independence of each measure.

3 Application to real data and Empirical results

The data displayed in Table 3 are from an INSEE1 study concerning the
554,000 enterprise births in France 2016 [15]. The question was whether there
was any association between the type of enterprise and the sector of activity
of the enterprise’s operation.

In a metric context, the null hypothesis of the chi-square independence
test is clearly rejected with a risk of error α ≤ 5%. So there is a strong
association between the type of enterprise and the activity sector. One can
also perform a factorial Correspondence Analysis to locate and visualize any
significant links between all the modalities of these two variables.

In a topological context, the main results of the proposed approach are
presented in the following tables and graphs, which allow us to visualize prox-
imity measures close to each other in the context of no association between
the type of enterprise and the activity sector.

1 National Institute of Statistics and Economic Studies
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Type of enterprise
Traditional

Activity sector Company Individual Micro Total
Enterprise Entrepreneur

Industry 8,6 7,7 8,3 24,6
Construction 26,5 18,6 16,5 61,6
Trade, Transport, Accommodation and Restoration 64 48,7 48,7 161,5
Information and communication 11,1 2,1 14,5 27,6
Financial and insurance activities 12,6 1,3 2 15,8
Real estate activities 11,3 5,1 2,5 18,9
Specialized, scientific and technical activities 27,6 11,9 51 90,6
Education and Health 6,5 26,4 36,4 69,4
Service activities 20,6 20,6 42,9 84
Total 188,8 142,4 222,8 554

Table 3 Contingency table - Enterprise births in France 2016 (in thousands)

Table 4 summarizes the similarities and Kappa statistic values between the
reference measure u∗ and each of the 22 proximity measures in a topological
framework.

Fig. 2 Hierarchical tree of the proximity measures

The proximity measures are given in ascending order of the topological
independence index S(Vui , Vu∗). So, greater this index is, further we are get-
ting closer the independence position, and more the null hypothesis will be
rejected. All 22 proximity measures considered reject the null hypothesis
H0 : κ = 0 (no concordance, independence), so they all conclude that there
is a link between the type of enterprise and the activity sector.
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The results of similarities and statistical Kappa tests between all pairs of
proximity measures are given in the Appendix, Table 7. The values below the
diagonal correspond to the similarities S(Vui , Vuj ) and the values above the
diagonal are the Kappa coefficients κ̂(Vui , Vuj ). All Kappa statistical tests are
significant with α ≤ 5% level of significance. The similarities in pairs between
the 22 proximity measures differ somewhat: some are closer than others. In
Table 4, proximity measures with the same letter are in perfect topological
equivalence S(Vui , Vuj ) = 1 with a perfect concordance κ̂(Vui , Vuj ) = 1 and
proximity measures with the same number are in the same HAC class.

HAC Class Letter Measure TIIi κ̂(Vui , Vu∗ ) p− value
4 A Jaccard 0.625 0.308 < .0001
4 A Dice, Czekanowski 0.625 0.308 < .0001
4 A Kulczynski 0.625 0.308 < .0001
4 A Driver, Kroeber and Ochiai 0.625 0.308 < .0001
4 A Sokal-Sneath-2 0.625 0.308 < .0001
4 A Braun and Blanquet 0.625 0.308 < .0001
4 A Simpson 0.625 0.308 < .0001
4 A Russel and Rao 0.625 0.308 < .0001
4 A Sokal and Sneath 5 0.625 0.308 < .0001
4 A Y-Yule 0.625 0.308 < .0001
2 A Baroni, Urbani and Buser 0.625 0.308 < .0001
2 A Q-Yule 0.625 0.308 < .0001
3 B Sokal and Sneath 4 0.708 0.397 < .0001
3 C Pearson 0.736 0.432 < .0001
2 D Michael 0.736 0.432 < .0001
1 E Simple Matching 0.847 0.606 < .0001
1 E Rogers and Tanimoto 0.847 0.606 < .0001
1 E Hamann 0.847 0.606 < .0001
1 E BC 0.847 0.606 < .0001
1 E Sokal and Sneath 3 0.847 0.606 < .0001
1 E Gower and Legendre 0.847 0.606 < .0001
1 E Sokal and Sneath 1 0.847 0.606 < .0001

Table 4 Topological Index of Independence & Kappa test

Number Class 1 Class 2 Class 3 Class 4
Frequency 7 3 2 10

uSimple−Matching uMichael uPearson uJaccard
uRogers−Tanimoto uBaroni−Urbani−Buser uSokal−Sneath−4 uDice

uHamann uQ−Y ule uKulczynski
Proximity uBC uOchiai
measures uSokal−Sneath−3 uSokal−Sneath−2

uGower−Legendre uBraun−Blanquet
uSokal−Sneath−1 uSimpson

uRussel−Rao
uSokal−Sneath−5

uY−Y ule
Reference u∗

Table 5 Assignment of the reference measure
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An HAC algorithm based on the Ward criterion2 [16] was used in order to
characterize classes of proximity measures relative to their similarities. The
reference measure u∗ is projected as a supplementary element.

The dendrogram of Figure 2 represents the hierarchical tree of the 22
proximity measures considered.

Table 5 summarizes the main results of the chosen partition into four
homogeneous classes of proximity measures, obtained from the cut of the
hierarchical tree of Figure 2. Moreover, in view of the results in Table 5, the
reference measure u∗ is closer to the measures of the first class, measures for
which there is a weak association between the two variables among the 22
proximity measures considered. We will have a stronger association between
the type of enterprise and the activity sector if we choose one proximity
measure among those of class 4.

It was shown in [1] and [18], by means of a series of experiments, that the
choice of proximity measure has an impact on the results of a supervised or
unsupervised classification.

For any proximity measure given in Table 1, we will show how to build
and apply the Kappa test in order to compare two adjacency matrices to
measure and test their topological equivalence κ(Vui , Vuj ) and their degree
of independence κ(Vui , Vu∗).

Let Vu∗ and VJaccard, the reference and Jaccard adjacency matrices, be n×
n binary symmetric matrices with lower similarity S(Vu∗ , VJaccard) = 62.50%.
These matrices are unfolded to two vectors comprising the r(r + 1)/2 = 78
diagonal and upper-diagonal values. These two binary vectors are two dummy
variables represented in the same sample size of 78 pairs of objects. We then
formulated the null hypothesis, H0 : κ = 0 (independence), that there is no
association between the two variables.

Table 6 shows the contingency table observed between the two binary
vectors associated to the reference and Jaccard proximity measures. Thus,
for this example, the calculated Kappa value κ̂ = 0.3077 corresponds to a
p-value of less than 0.01%. Since this probability is lower than a pre-specified
significance level of 5%, the null hypothesis of independence is rejected. We
can therefore conclude that the Jaccard measure and reference measure are
not independent.

VJaccard = 0 VJaccard = 1 Total

Vu∗ = 0 39 27 66
Vu∗ = 1 0 12 12

Total 39 39 78

Table 6 The 2× 2 contingency table - Reference and Jaccard measures

2 Aggregation based on the criterion of the loss of minimal inertia.
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4 Conclusion and perspectives

The choice of a proximity measure is very subjective; it is often based on
habits or on criteria such as the interpretation of the a posteriori results.

This work proposes a new approach to select the best proximity measure
in a context of topological independence between two qualitative variables,
for the purpose of performing a Topological Correspondence Analysis (TCA).
The proposed approach is based on the concept of neighborhood graphs in-
duced by a proximity measure in the case of qualitative data. Results obtained
from a real dataset highlight the effectiveness of selecting the best proximity
measure(s).

Future research will focus on developing TCAs with the best proximity
measure selected and on extending this approach to analyze associations be-
tween more than two categorical variables, called Topological Multiple Cor-
respondence Analysis (TMCA).
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All Kappa statistical tests are significant with α ≤ 5% level of Significance.

Example : S(uSimple matching , uJaccard) = 0.56

κ̂(uJaccard , uSimple matching) = 0.18 ; p − value = 0.0411

Table 7 Similarities S(Vui , Vuj ) & Kappa coefficient κ̂(Vui , Vuj )
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