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One can’t hear orientability of surfaces

Pierre Bérard and David L. Webb

September 13, 2020

Abstract

The main result of this paper is that one cannot hear orientability of a surface with
boundary. More precisely, we construct two isospectral flat surfaces with boundary with
the same Neumann spectrum, one orientable, the other non-orientable. For this purpose, we
apply Sunada’s and Buser’s methods in the framework of orbifolds. Choosing a symmetric
tile in our construction, and adapting a folklore argument of Fefferman, we also show that
the surfaces have different Dirichlet spectra. These results were announced in the C. R.
Acad. Sci. Paris Sér. I Math., volume 320 in 1995, but the full proofs so far have only
circulated in preprint form.

Keywords: Spectrum, Laplacian, Isospectral surfaces, Orientability

MSC 2010: 58J50, 58J32

Contents
1 Introduction 1

2 Isospectral manifolds 2

3 Construction 6

4 Transplantation of eigenfunctions 9

5 A folklore argument of Fefferman 14

6 Neumann isospectral but not Dirichlet isospectral surfaces with boundary 17

7 Inaudible singularities; concluding remarks 21

1 Introduction
Let M be a compact Riemannian manifold with boundary. The spectrum of M is the sequence
of eigenvalues of the Laplace-Beltrami operator ∆f = − div(grad f) acting on smooth func-
tions on M ; when ∂M 6= ∅, one can impose either Dirichlet boundary conditions on the
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function f (i.e., f |∂M = 0) or Neumann boundary conditions (the normal derivative ∂f/∂n
vanishes on ∂M ). Mark Kac’s classic paper [27] has stimulated a great deal of interest in the
question of what geometric or topological properties of M are determined by its spectrum. In
[23], it was shown that, in Kac’s terminology, one cannot hear the shape of a drum, or of a bell:
that is, there exist pairs of nonisometric planar domains that have the same spectra, for either
Dirichlet (in the case of a drum) or Neumann (in the case of a bell) boundary conditions. The
construction uses an adaptation to orbifolds of Sunada’s technique for constructing isospectral
manifolds. For many other examples, see [12].
This paper uses orbifold techniques to exhibit examples of pairs of Neumann isospectral flat
surfaces with boundary, one of which is orientable and the other nonorientable. Performing the
same construction using a tile with an additional symmetry, we exhibit Neumann isospectral
bordered surfaces that are not Dirichlet isospectral by adapting an argument of C. Fefferman.
To our knowledge, these are the first confirmed examples in which Neumann isospectrality
holds but Dirichlet isospectrality fails, although examples of Neumann isospectral surfaces that
are not believed to be Dirichlet isospectral were constructed in [12]; we are grateful to Peter
Doyle for drawing these examples to our attention.
This paper is organized as follows. Section 2 briefly reviews the Sunada construction of
isospectral manifolds; this is used to construct the Neumann isospectral surfaces M1 and M2

in section 3. Section 4 summarizes some representation-theoretic calculations that furnish a
computation of the most general “transplantation” map, which transplants a Neumann eigen-
function on M1 to a Neumann eigenfunction on M2 with the same eigenvalue; as in [12] and
[4], transplantation of eigenfunctions affords an elementary visual proof of the isospectrality. In
section 5, we give an unpublished argument of C. Fefferman; while in section 6, by modifying
our construction slightly, we show that there are Neumann isospectral flat surfaces with bound-
ary M1 and M2 that are not Dirichlet isospectral by adapting Fefferman’s argument. Section 7
contains some concluding observations.
Since the constructions and proofs are quite elementary, the exposition is aimed at a general
reader and is essentially self-contained, although reference to [23] may be helpful. These results
were announced in [6] and circulated in an MSRI preprint [7]; this paper is a revision of [7]
and contains the details of the results announced in [6] (along with some improvements), after
a long delay.

Acknowledgments. We wish to thank Carolyn Gordon for helpful discussions, Dorothee Schüth
for carefully reading a preliminary version, and Peter Doyle for discussing aspects of this work.
We are grateful to Bob Brooks for communicating Fefferman’s argument. The first author
acknowledges the hospitality of IMPA, where some of this research was conducted. The second
author is grateful to MSRI for its support and for its congenial atmosphere. Both [6] and
[7] acknowledged support from NSF grants DMS-9216650 and DMS 9022140, from CNRS
(France), and from CNPq (Brazil).

2 Isospectral manifolds
Let G be a finite group, and let Γ be a subgroup of G. Then the left action of G on the coset
space G/Γ determines a linear representation C[G/Γ] of G, where C[G/Γ] denotes a com-
plex vector space with basis G/Γ; the G-module C[G/Γ] can be viewed as the representation
(1Γ)↑GΓ = C[G]⊗C[Γ] C of G induced from the one-dimensional trivial representation 1Γ of the
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subgroup Γ.
Now let Γ1 and Γ2 be subgroups of G. Then (G,Γ1,Γ2) is called a Gassmann-Sunada triple if
C[G/Γ1] and C[G/Γ2] are isomorphic representations of G. The formula for the character of
an induced representation (see, e.g., [34], section 7.2 or [26], 21.19) shows that isomorphism
of the induced representations (1Γ1)↑GΓ1

and (1Γ2)↑GΓ2
is equivalent to the assertion that Γ1

and Γ2 are elementwise conjugate or almost conjugate subgroups of G — that is, there exists a
bijection Γ1 → Γ2 carrying each element γ ∈ Γ1 to a conjugate element gγg−1 ∈ Γ2, where the
conjugating element g ∈ Gmay depend upon γ. See R. Perlis [31] or the papers of R. Guralnick
(e.g., [22]) for many examples.
Elementwise conjugate subgroups that are not conjugate as subgroups were used by Gassmann
[19] to exhibit pairs of nonisomorphic number fields having the same zeta function and hence
the same arithmetic. The analogy of Galois theory with covering space theory led T. Sunada to
apply Gassmann-Sunada triples to develop a very powerful technique for constructing isospec-
tral Riemannian manifolds that are not isometric, as follows. (Conjugate subgroups are trivially
almost conjugate; however, in that case the two Riemannian manifolds arising from Sunada’s
Theorem are isometric. Thus we seek nonconjugate pairs of almost-conjugate subgroups.)

Theorem 2.1 (Sunada [35]). Let M be a compact Riemannian manifold with boundary, and
let G be a finite group acting on M by isometries. Suppose that (G,Γ1,Γ2) is a Gassmann-
Sunada triple, with Γ1 and Γ2 acting freely on M . Then the quotient manifolds M1 = Γ1\M
and M2 = Γ2\M are isospectral. (If ∂M 6= ∅, then either Dirichlet or Neumann boundary
conditions can be imposed.)

For surveys of some of the extensions and applications of Sunada’s technique, see [21], [8],
[9], and [5].
P. Bérard [3] gave a representation-theoretic proof of Sunada’s theorem, relaxing the require-
ment that the subgroups Γ1 and Γ2 act freely; the conclusion is then that the orbit spaces
O1 = Γ1\M and O2 = Γ2\M are isospectral as orbifolds. Recall that an n-dimensional
orbifold is a space whose local models are orbit spaces of Rn under action by finite groups G;
an orbifold with boundary is similarly modeled locally on quotients of a half-space by finite
group actions. See [36], [33], or [1] for more details. The singular set of the orbifold consists
of all points where the isotropy is nontrivial.
For our purposes, an understanding of one of the simplest examples of an orbifold with bound-
ary will suffice. Consider the rectangle R = [−1, 1] × [0, 1] in R2. The group Γ = Z/2Z acts
via the reflection (x, y) 7→ (−x, y) about the vertical axis, and the quotient orbifold O = Γ\R
is, as a point set, the square [0, 1] × [0, 1]. However, O has a singular set consisting of a dis-
tinguished “mirror edge”M = {0} × [0, 1], the image of the fixed-point set of Γ. At points
not inM, the local structure is that of R2 or of the half-plane, and the projection R π→ O is
locally a double cover; however, at points of the mirror edgeM, the local structure is that of
R2 modulo a reflection, and the orbit map π is a covering map only in the sense of orbifolds. To
distinguish [0, 1]× [0, 1] as a point set fromO = Γ\R viewed as an orbifold with boundary, we
write |O| for the underlying space [0, 1]× [0, 1] ofO when the orbifold structure is disregarded.
It is important to note that ∂O (the orbifold boundary) differs from ∂|O| in that ∂O does not
contain the mirror edgeM. In the orbifold sense, the fundamental group of O is Z/2Z, and R
is its universal cover. Indeed, the loop in O consisting of the straight-line path from (1/2, 1/2)
to (0, 1/2) and back again lifts to a non-closed path, as shown below.
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Mirror edges will be denoted in our drawings by doubled lines.
The smooth functions on O = Γ\R are precisely the smooth functions on R that are Γ-
invariant, and the spectrum of O is the spectrum of the Laplacian acting on Γ-invariant func-
tions onR. Note that a Γ-invariant smooth function onR restricts to a function on |O|with zero
normal derivative on the mirror edge {0}× [0, 1]; thus the Dirichlet spectrum of the orbifoldO
is the spectrum of the domain |O| with mixed boundary conditions: Dirichlet conditions on the
three edges [0, 1] × {0}, [0, 1] × {1}, and {1} × [0, 1] forming the orbifold boundary ∂O, but
Neumann conditions on the mirror edgeM.

Remark 2.2. In general, for a 2-orbifold O with boundary whose singular set consists of dis-
joint mirror arcs, the Dirichlet spectrum of O is simply the spectrum of the underlying space
|O| with mixed boundary conditions: Neumann conditions on the mirror arcs, but Dirichlet
conditions on the remainder of the boundary. Similarly, the Neumann spectrum of O is simply
the Neumann spectrum of |O|, since the reflection-invariance forces Neumann conditions on
the part of the boundary of |O| corresponding to mirror arcs ofO. This simple observation will
be used repeatedly in what follows.

Given a Gassmann-Sunada triple (G,Γ1,Γ2), in order to apply Sunada’s Theorem one needs
a manifold M on which G acts by isometries. Perhaps the easiest way to obtain such an M
is to begin with a manifold M0 whose fundamental group Ĝ = π1(M0) admits a surjective
homomorphism ϕ : Ĝ → G. Setting Γ̂i = ϕ−1(Γi) for i = 1, 2 defines two subgroups of
π1(M0); by covering space theory, there are covering spaces M1 and M2 corresponding to Γ̂1

and Γ̂2. Also, there is a common regular covering M of M1 and M2 associated to the subgroup
K̂ = kerϕ, so that Mi = Γi\M , i = 1, 2, and M0 = G\M .
P. Buser [10] exploited the observation that if π1(M0) is free, then Schreier graphs furnish a
concrete means of constructingM ,M1 andM2 without explicit reference to the universal cover;
when M0 is a surface with nonempty boundary, he used this construction to exhibit isospectral
flat bordered surfaces.
Given a group G, a G-set X , and a generating set S for G, recall that the Schreier graph of X
relative to the generating set S has vertex set X , with a directed edge labeled by s ∈ S joining
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the vertex x to the vertex sx, for each x ∈ X , s ∈ S. Concretely, one chooses the bordered
surface M0 to be a thickened one-point union of circles, with one circle for each generator; the
case of a three-element generating set S = {a, b, c} is depicted below.

a

b

c

M0

aa

b

b

c

c

T

.
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.
.

.
.
.
.
.
.
.

it i

The construction of Mi for i = 1, 2 now goes as follows. Begin with [G : Γi] copies of the
fundamental domain T depicted above, labeled by the cosets G/Γi. For each generator s ∈ S,
glue the edge of the outgoing leg of the tile labeled xΓi to the edge of the incoming s-leg of the
tile labeled sxΓi. The surface so constructed is a thickened Schreier graph of G/Γi ∼= Ĝ/Γ̂i,
so it has fundamental group Γ̂i and covers M0, and hence must be precisely the manifold Mi

defined above.
Suppose now that the group G is generated by a set S of involutions. Then one can construct
analogously a pair of isospectral orbifolds with boundary as follows. Let O0 be a disk with
[G : Γi] nonintersecting mirror arcs (the case of S = {a, b, c} is depicted in Figure 1).

a

b

c a a

b b

c c

1ax x 1

a

b

c a a

b b

c c

1ax x 1

I
O0

Figure 1 Figure 2

Then the orbifold fundamental group Ĝ = π1(O0) is the free product of |S| copies of Z/2Z.
Define a surjective homomorphism ϕ : Ĝ → G by sending the obvious “mirror reflection”
generators of Z/2Z ∗ Z/2Z ∗ · · · ∗ Z/2Z to the elements of S. As before, let Γ̂i = ϕ−1(Γi),
i = 1, 2. Then by covering space theory, there is an orbifold cover Oi of O0 corresponding to
the subgroup Γ̂i ⊆ Ĝ = π1(O0), which can be constructed explicitly as follows: begin with
[G : Γi] copies of the fundamental domain |O0|, labeled by the elements of G/Γi. For each
s ∈ S, glue the mirror edge labeled s of the tile labeled xΓi to the mirror edge labeled s of
the tile labeled sxΓi so that reflection in the common edge interchanges the two tiles, as in
Figure 2; if s fixes a coset, then no identification is performed on that edge. Then the orbifold
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so constructed has fundamental group Γ̂i, so it must be Oi. By Bérard’s version of Sunada’s
Theorem, O1 and O2 are isospectral orbifolds.

3 Construction
In this section, we turn to the proof of the following.

Theorem 3.1. There exists a pair M1, M2 of flat surfaces with boundary which are Neumann
isospectral, yet M1 is nonorientable while M2 is orientable.

Proof. The surfaces M1 and M2 will be constructed as the underlying spaces of Neumann
isospectral orbifolds O1 and O2 with boundary whose singular sets consist of disjoint unions
of mirror arcs. As noted above in Remark 2.2, this means that Neumann boundary conditions
hold on the mirror edges of the underlying surfaces M1 = |O1| and M2 = |O2| as well as on
the edges forming the orbifold boundary; since ∂Mi consists of the boundary of Oi together
with the mirror edges, it follows that Neumann conditions hold on the entire boundary of Mi.
The Gassmann-Sunada triple we use was first considered by Gerst [20]; it was also used by
Buser [11] to construct isospectral Riemann surfaces, and in [23]. LetG be the semidirect prod-
uct of a multiplicatively-written cyclic group 〈s〉 of order 8 by its full automorphism group; the
latter is a Klein 4-group, generated by the automorphism t sending s 7→ s7 and the automor-
phism u sending s 7→ s3. ThusG is the semidirect product Z8oZ×8 , with s generating the cyclic
subgroup Z8; a presentation is G =

〈
s, t, u | s8 = t2 = u2 = [t, u] = 1, tst = s7, usu = s3

〉
.

Let Γ1 = {1, t, u, tu}, Γ2 = {1, t, s4u, s4tu}. Then (G,Γ1,Γ2) is a Gassmann-Sunada triple
(with Γ1 and Γ2 nonconjugate).
Now let O0 be the orbifold with boundary depicted below, in Figure 3:

T

UIt
Figure 3

Its fundamental group Ĝ is then given by Ĝ = π1(O0) =
〈
Σ, T, U | Σ2 = T 2 = U2 = 1

〉 ∼=
Z/2Z ∗ Z/2Z ∗ Z/2Z. Let σ = st ∈ G. Then σ, t and u are involutions, so we can define
ϕ : π1(O0) → G by Σ 7→ σ, T 7→ t, U 7→ u. Since G is generated by the set {σ, t, u}, it
follows that ϕ is surjective.
As in section 2, let Γ̂i = ϕ−1(Γi). The elements 1, s, s2, . . . , s7 form a set of coset representa-
tives for G/Γi and hence for Ĝ/Γ̂i for i = 1, 2; we will denote the coset siΓ1 or siΓ2 simply
by i in the depiction of the Schreier graphs below. The action on G/Γ1 and G/Γ2 of the three
generators σ, t and u is most easily recorded by the Schreier graphs below; when dealing with
generating sets consisting of involutions, we adopt the convention that a single undirected edge
labeled by a generator r ∈ S replaces the two oppositely-directed edges labeled r and r−1 join-
ing a pair of vertices; if an edge labeled r leaves a vertex labeled x and does not terminate at
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another vertex, this indicates that the generator r fixes the coset x. Thus when dealing with in-
volutive generators, we are replacing a pair of oppositely-directed edges by a single undirected
edge, and replacing a loop based at a vertex by a “half-edge” emanating from that vertex.

(3.1)

2 7 1 0 2 7 1 0
◦ σ ◦ t ◦ σ ◦

t

◦
u

σ ◦
t

u
◦ σ ◦

t

u

◦

t u

σ ◦
t

u

◦ σ

u

◦
u

◦

t

σ ◦
u

t

◦ σ ◦

u

6 3 5 4 6 3 5 4
t u t

G/Γ1 G/Γ2

Let Oi be the orbifold covering of O0 corresponding to the subgroup Γ̂i of Ĝ. The bordered
surfaces M1 = |O1| and M2 = |O2| are shown below: the first model of M1 is embedded in
R3, while the second model shows it immersed with an arc of self-intersection; the immersed
version enables one to see easily an involutive symmetry that will be exploited in section 6.
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Figure 4

Clearly, M1 is nonorientable while M2 is orientable. Indeed, an embedded Möbius strip in M1

can be seen in the following picture:
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If one colors one side of the fundamental tile yellow and the other side green, then beginning
with the yellow side of tile 1, the succession of the U -gluing of tile 1 to tile 3, the Σ-gluing of
tile 3 to tile 6, the T -gluing of tile 6 to tile 2, and the Σ-gluing of tile 2 to tile 7 shows that the
T -gluing of tile 7 back to tile 1 forces the gluing of the green side of tile 7 to the yellow side
of tile 1, exhibiting the union of tiles 1, 3, 6, 2, and 7 as a one-sided surface. Thus one cannot
“hear” orientability of surfaces with boundary.

An immediate consequence of the above result is the following.

Theorem 3.2. One cannot hear whether a surface with boundary admits a complex structure.

Proof. Perform the same construction as above, but using a different fundamental tile: rather
than the tile in Figure 3, use a right-angled hyperbolic hexagon, three pairwise nonadjacent
sides of which are mirror loci, as in Figure 5:

T

U

÷
Figure 5

The resulting manifolds M1 and M2 are homeomorphic to the manifolds of Figure 4 above.
Both are hyperbolic surfaces with piecewise-smooth boundary. An orientable hyperbolic sur-
face has a Riemann surface structure, by the uniformization theorem (see [18], §11.1.1 or [25],
Chapter 1). Thus M2 has a complex structure. However, M1, being nonorientable, cannot have
a complex structure, since any complex manifold is canonically orientable.

Remarks 3.3. We list a few immediate remarks:

1. The nonorientability of M1 can be seen algebraically from the presence of cycles of odd
length in the Schreier graph of G/Γ1 in (3.1).

2. A slight modification of the construction in Theorem 3.2 yields a pair of isospectral
compact hyperbolic surfaces with smooth boundary whose boundary components are

8



closed geodesics; the first of these surfaces is nonorientable but the second is orientable.
For i = 1, 2, perform the same construction, but using as basic tile the pair of pants
(in the terminology of [13], section 3.1, a Y -piece) obtained by gluing together two
copies of the right-angled hyperbolic hexagon along the alternating non-mirror edges
of the tile of Figure 5. Since each Y -piece is constructed by “doubling” a right-angled
hyperbolic hexagon by gluing along the mirror edges, this amounts to beginning with two
copies of the manifold Mi of Theorem 3.2 and gluing the two copies together along the
non-mirror edges of their boundaries, thereby effectively doubling the manifold Mi of
Theorem 3.2 to obtain a hyperbolic surface Ni with geodesic boundary components (the
boundary components correspond to half-edges in the Schreier graphs in (3.1)). For more
information on pants decompositions of nonorientable hyperbolic surfaces, see [30].

3. Peter Doyle and Juan Pablo Rossetti have shown [17] that if two closed hyperbolic sur-
faces have the same spectrum, then for every possible length, the two surfaces have the
same number of orientation-preserving geodesics and the same number of orientation-
reversing geodesics. Thus one can hear orientability of closed hyperbolic surfaces.

4. The reader is encouraged to build paper and tape models; this will make it easy to follow
the arguments in sections 4 and 6.

4 Transplantation of eigenfunctions
In this section, we present an elementary visual proof of the Neumann isospectrality using
the idea of “transplantation” of eigenfunctions from Bérard’s proof of Sunada’s Theorem. We
give an explicit combinatorial recipe for transplanting a Neumann eigenfunction on M1 to a
Neumann eigenfunction for the same eigenvalue on M2. To do this we first determine the irre-
ducible representations of G, then express the induced representations C[G/Γi] = (1Γi

)↑GΓi
in

terms of the irreducible representations. The reader who is only interested in the isospectrality
proof can skip to Remarks 4.4.
Recall that G is a semidirect product K o H , where the normal subgroup K = 〈s〉 is cyclic
of order 8, and H = 〈t, u | t2 = u2 = [t, u] = 1

〉
is a Klein 4-group, with t acting as the

automorphism s 7→ s7 and u acting as the automorphism s 7→ s3. The rational group algebra
Q[KoH] of a semidirect product has the structure of a trivial crossed-product or twisted group
algebra (QK)]H (see [15] for general information on crossed products). The group algebra
QCn of a cyclic group Cn of order n decomposes as a product of cyclotomic fields: QCn ∼=∏

d|nQ[ζd], where ζd is a primitive dth root of unity (see [28]), so QK ∼= Q×Q×Q[i]×Q[ζ],
where ζ is a primitive eighth root of unity. The H-action on QK stabilizes this decomposition,
so QG ∼= (Q × Q × Q[i] × Q[ζ])]H ∼= QH × QH × (Q[i]]H) × (Q[ζ]]H). Tensoring with
C, we obtain

(4.1) CG ∼= CH × CH × (C⊗Q Q[i])]H × (C⊗Q Q[ζ])]H.

The first two factors of (4.1) yield eight one-dimensional representations, denoted 1abc, where
each of a, b, c can be +1 or−1; each 1abc is a one-dimensional vector space, where s acts as the
scalar a, t acts as b, and u acts as c. We will denote the trivial one-dimensional representation
1

+++ simply as 1, and the “parity” representation 1
−++ simply as 1−. In the third factor of

(4.1), H acts on C ⊗ Q[i] ∼= C × C as follows: t and u both act by the involution (x, y) 7→
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(y, x), so v = tu acts trivially; thus (C ⊗ Q[i])]H ∼= (C ⊗ Q[i])〈v〉]cH , a crossed product
algebra in which the quotient group H = H/〈v〉 acts faithfully on the ordinary group ring
(C ⊗ Q[i])〈v〉 of the cyclic group 〈v〉 over the coefficient ring C ⊗ Q[i], and c is a 2-cocycle
defining the extension 1 → 〈v〉 → H → H/〈v〉 → 1; but this extension is split, so the
cocycle c can be taken to be trivial, and hence (C ⊗ Q[i])]H is an ordinary twisted group
ring (C ⊗ Q[i])〈v〉]H . Moreover, H acts trivially on 〈v〉, as the extension is central, so the
above reduces to C〈v〉 ⊗Q (Q[i]]H). Now H acts faithfully on Q[i], so by Galois theory (e.g.,
[16], Chapter III, Proposition 1.2), Q[i] ]H ∼= EndQ(Q[i]) ∼= M2(Q), while C〈v〉 ∼= C × C;
thus the third factor of (4.1) decomposes as M2(C) ×M2(C) and contributes two irreducible
representations W+ and W−. Tracing through the isomorphisms, one sees that the actions of
the generators of G in these representations are as follows:

• On W+, s acts as
[
i 0
0 −i

]
, while t and u act as

[
0 1
1 0

]
;

• On W−, s acts as
[
i 0
0 −i

]
, t acts as

[
0 1
1 0

]
, and u acts as

[
0 −1
−1 0

]
.

Finally, consider the fourth factor (C ⊗Q Q[ζ])]H ∼= C ⊗Q (Q[ζ]]H) in (4.1). By Galois
theory, Q[ζ]]H ∼= EndQ(Q[ζ]) ∼= M4(Q), since H = Gal(Q[ζ]/Q). Thus the fourth factor of
the decomposition (4.1) is M4(C), and it contributes a 4-dimensional irreducible representation
X . Using the basis {1, ζ, ζ2, ζ3} for Q[ζ], one sees that:

s acts by


0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0

, t by


1 0 0 0
0 0 0 −1
0 0 −1 0
0 −1 0 0

, and u by


1 0 0 0
0 0 0 1
0 0 −1 0
0 1 0 0

.
This completes the determination of all the irreducible representations of G; the character table
is given in Table 1. As usual, the rows are indexed by the irreducible representations (up to
isomorphism) of G and the columns are indexed by (representatives of) the conjugacy classes
of G. The additional row at the bottom of the table records the character values of the induced
representations (1Γi

)↑GΓi
, which are easily computed via the formula for the character of an

induced representation, or directly from the Schreier graphs (3.1).

1 s4 s2 v s2v s t u st su sv

1 1 1 1 1 1 1 1 1 1 1 1
1

+−+ 1 1 1 −1 −1 1 −1 1 −1 1 −1
1

++− 1 1 1 −1 −1 1 1 −1 1 −1 −1
1

+−− 1 1 1 1 1 1 −1 −1 −1 −1 1
1
− 1 1 1 1 1 −1 1 1 −1 −1 −1

1
−−+ 1 1 1 −1 −1 −1 −1 1 1 −1 1
1
−+− 1 1 1 −1 −1 −1 1 −1 −1 1 1
1
−−− 1 1 1 1 1 −1 −1 −1 1 1 −1
W+ 2 2 −2 2 −2 0 0 0 0 0 0
W− 2 2 −2 −2 2 0 0 0 0 0 0
X 4 −4 0 0 0 0 0 0 0 0 0

(1Γi
)↑GΓi

8 0 0 4 0 0 2 2 0 0 0

Table 1
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It is easy to compute the character of the induced representation (1Γi
)↑GΓi

in terms of the irre-
ducible characters by orthonormal expansion, since the latter form an orthonormal basis for the
space of class functions relative to the inner product 〈·, ·〉 given by

〈χ, ψ〉 =
1

|G|
∑
g∈G

χ(g)ψ(g).

One finds:

Proposition 4.1. C[G/Γi] ∼= 1⊕ 1
− ⊕W+ ⊕X .

Using the Fourier inversion formula [34]

εV =
dim(V )

|G|
∑
g∈G

χV (g−1)g

for the primitive central idempotent εV associated to an irreducible representation V of G one
can easily determine bases for the irreducible constituents of the representation C[G/Γi] in
terms of the bases of cosets. Consider first C[G/Γ1]. Let ui denote the coset siΓ1, 0 ≤ i ≤
7. Let e1 = (ε1+)·u0 = 1

8

∑7
i=0 ui, e2 = (ε1−)·u0 = 1

8

∑7
i=0(−1)iui, e3 = (εW+)·u0 =

1
4
(u0 − u2 + u4 − u6), e4 = (εW+)·u1 = 1

4
(u1 − u3 + u5 − u7), e5 = εX ·u0 = 1

2
(u0 − u4),

e6 = εX ·u1 = 1
2
(u1 − u5), e7 = εX ·u2 = 1

2
(u2 − u6), and e8 = εX ·u3 = 1

2
(u3 − u7). Then

the following is immediate:

Proposition 4.2. Let e1, . . . , e8 be as defined above. Then:

• {e1} is a basis of the 1+ summand of C[G/Γ1].

• {e2} is a basis of the 1− summand of C[G/Γ1].

• {e3, e4} is a basis of the W+ summand of C[G/Γ1].

• {e5, e6, e7, e8} is a basis of the X summand of C[G/Γ1].

Similarly, turning to G/Γ2, let vi denote the coset siΓ2, 0 ≤ i ≤ 7.

Proposition 4.3. Let f1, f2 . . . f7 be defined by the same formulas defining the ei, but with each
ui replaced by vi. Then:

• {f1} is a basis of the 1+ summand of C[G/Γ2].

• {f2} is a basis of the 1− summand of C[G/Γ2].

• {f3, f4} is a basis of the W+ summand of C[G/Γ2].

• {f5, f6, f7, f8} is a basis of the X summand of C[G/Γ2].

We now make explicit the most general equivalence of the permutation representations C[G/Γ1]
and C[G/Γ2]; since these representations are both equivalent to 1⊕1−⊕W+⊕X , this reduces
to determining all the intertwining isomorphisms of the latter.

Remarks 4.4. From the above, the following assertions are immediate:

11



1. For any nonzero scalar a, the map sending e1 7→ af1 is a G-isomorphism of the 1
+

summand of C[G/Γ1] onto the 1+ summand of C[G/Γ2].

2. For any nonzero scalar b, the map sending e2 7→ bf2 is a G-isomorphism of the 1
−

summand of C[G/Γ1] onto the 1− summand of C[G/Γ2].

3. The actions of s, t and u on e3 and e4 coincide with their actions on f3 and f4; thus
for any nonzero c, the map sending e3 7→ cf3 and e4 7→ cf4 is a G-isomorphism of the
W+ summand of C[G/Γ1] onto the W+ summand of C[G/Γ2]. Moreover, by Schur’s
Lemma, this is the most general such isomorphism.

4. One easily computes that the most general G-isomorphism of span{e5, e6, e7, e8} onto
span{f5, f6, f7, f8} is given by 

0 d 0 −d
d 0 d 0
0 d 0 d
−d 0 d 0

 ,
where d 6= 0. Thus, letting h5 = f6 − f8, h6 = f5 + f7, h7 = f6 + f8, h8 = −f5 + f7,
we see that, relative to the bases {e5, e6, e7, e8} and {h5, h6, h7, h8}, the most general
isomorphism of the X summand of C[G/Γ1] onto the X summand of C[G/Γ2] is given
by ei 7→ dhi, i = 5, 6, 7, 8.

5. Finally, let hi = fi for 1 ≤ i ≤ 4. Then the most generalG-isomorphism Φ : C[G/Γ1]→
C[G/Γ2] is given, relative to the bases {e1, e2, . . . , e8} and {h1, h2, . . . , h8}, by the ma-
trix diag(a, b, c, c, d, d, d, d), where abcd 6= 0. Changing bases, we see that relative to the
natural coset bases {u0, u1 . . . u7} and {v0, v1 . . . v7}, the general intertwining isomor-
phism Φ is given by the matrix

(4.2) A =



α β γ δ α δ γ β
β α β γ δ α δ γ
γ β α β γ δ α δ
δ γ β α β γ δ α
α δ γ β α β γ δ
δ α δ γ β α β γ
γ δ α δ γ β α β
β γ δ α δ γ β α


,

where α = 1
8
(a+ b+ 2c), β = 1

8
(a− b+ 4d), γ = 1

8
(a+ b− 2c), δ = 1

8
(a− b− 4d) and

α, β, δ are chosen so that abcd 6= 0.

Remarks 4.5. The above conclusions can also be reached by more elementary computations:

1. The transplantation matrix A relative to the bases given by the cosets can be computed
in a naı̈ve way simply by determining the conditions on the entries of A that are forced
by the requirement that A intertwine the two permutation representations.

12



2. The decomposition of the representations C[G/Γi] into irreducible representations can
also be determined by considering the equation s8 − 1 = 0 and looking at the possi-
ble degrees of irreducible constituents. From these irreducible decompositions, one can
recover Buser’s transplantation of eigenfunctions on the isospectral Riemann surfaces
described in [11].

3. For a systematic study of transplantation with many interesting examples, see [24].

A simple choice of A for our purposes is given by setting c = d = 2, a = 6, b = −2, so α = 1,
β = 2, γ = δ = 0. We can now describe explicitly how to transplant a Neumann eigenfunction
from M1 to M2. Recall that Mi is constructed by gluing together copies of a fundamental tile
T , the copies labeled by the cosets G/Γi. Let F be a λ-eigenfunction on M1; let Fi denote
its restriction to the tile labeled by the coset siΓ1. Then F can be represented by the vector
of functions on T given by [F0 F1 F2 · · ·F7]. (Note that there is no ambiguity about what it
means to regard an Fi as a function on T ; there is a unique isometry of T with each tile of
M1 or M2 that preserves the labeling of the boundary edges.) Now let H denote the function
on M2 whose restriction Hi to the tile of M2 labeled siΓ2 is given by the matrix product[

H0 H1 H2 . . . H7

]
=
[
F0 F1 F2 . . . F7

]
A,

where A is the intertwining matrix defined above. If H is smooth, then it is certainly an
eigenfunction, since this is a local condition; thus checking Neumann isospectrality reduces
to checking that:

1. The functions Hi fit together smoothly across the interfaces between tiles;

2. The function H satisfies Neumann boundary conditions.

These assertions are easily checked by inspection of the paper models or by looking at the
graphs (3.1); we illustrate briefly. Consider the interface between tiles 0 and 4 of M2; it is
depicted in the figure below.

0 4

F +2F +F +2F F +2F +F +2F0 1 4 7 0 3 4 5

U

T

U

T

¥
i: ii

i

i

We will show that H0 and H4 fit together smoothly across this U -edge. It suffices to show that
the following condition is satisfied:

H0 and H4 coincide along their common U -edge, and their
inner normal derivatives there are negatives of each other.

(4.3)
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Indeed, if (4.3) holds, then by Green’s formula the function H (which equals H0 on tile 0 and
H4 on tile 4) is a local weak solution of ∆u = λu, so by regularity of local weak solutions,
H is smooth along the U -edge. We now verify that (4.3) holds. The functions H0 and H4 are
given by H0 = F0 + 2F1 + F4 + 2F7, H4 = F0 + 2F3 + F4 + 2F5. Inspection of Figure 4 or
of the graphs (3.1) shows that in M1, tiles 1 and 3 meet along a U -edge, so 2F1 and 2F3 and
their derivatives fit together smoothly along their common U -edge; similarly, 2F7 and 2F5 fit
together. As for F0 and F4, they have vanishing normal derivatives on the edge. Thus H0 and
H4 fit together smoothly across the U -interface. To see that H satisfies Neumann boundary
conditions on M2, consider for example the tile 0; we will show that H0 satisfies the Neumann
condition on the T -edge. First, the T -edges of tiles 0 and 4 of M1 are boundary edges, so F0

and F4 have vanishing normal derivative on the T -edge. Figure 4 and the graphs (3.1) also
show that tiles 1 and 7 of M1 share a T -edge; since the (unique) isometry used to identify tiles
1 and 7 of M1 is a reflection in their common T -edge, it is clear that on the T -edge of tile 0 in
M2, the normal derivatives of F1 and F7 are negatives of each other. Thus the normal derivative
of H0 = F0 + 2F1 + F4 + 2F7 vanishes on the T -edge, as desired. One performs a similar
verification on each tile of M2.
Thus any Neumann eigenfunction on M1 can be transplanted to a Neumann eigenfunction on
M2; using the inverse of the matrix A, one can transplant eigenfunctions from M2 to M1. Thus
M1 and M2 are Neumann isospectral.

5 A folklore argument of Fefferman
In [23], planar domains that are isospectral for either Neumann or Dirichlet boundary condi-
tions were exhibited. The domains are underlying spaces of orbifolds (with boundary) O1 and
O2 whose singular sets consist of disjoint mirror arcs, and the Neumann isospectrality was es-
tablished by showing that O1 and O2 are isospectral as orbifolds. The Dirichlet isospectrality
follows because there are surfaces (with boundary) S1 and S2 that can be viewed as the orienta-
tion double covers of the orbifolds O1 and O2 (obtained by “doubling” the orbifolds along the
mirror edges); the surfaces S1 and S2 are themselves isospectral by Sunada’s Theorem; these
examples were discovered by Buser [10]. In fact, for each of S1 and S2, the reflection symmetry
decomposes the space of smooth functions on Si as the direct sum of a (+1)-eigenspace (the
reflection-invariant functions) and a (−1)-eigenspace (the reflection-anti-invariant functions);
the latter are the functions satisfying the Dirichlet boundary condition, and using this decom-
position, one easily deduces Dirichlet isospectrality from the isospectrality of S1 and S2 and of
O1 and O2. Thus |O1| and |O2| are Dirichlet isospectral domains. One can also make explicit
a Dirichlet transplantation matrix (see [4]).
As was observed by Peter Doyle in connection with some of the examples in [12], if the orien-
tation double covers are not isospectral, then the above argument fails, so there is no reason to
expect M1 and M2 to be Dirichlet isospectral. We will show in fact that our M1 and M2 have
a different lowest Dirichlet eigenvalue, at least when M1 and M2 are constructed using a more
symmetrical fundamental tile than that used in section 3. The extra symmetry will permit an
adaptation of an argument due to C. Fefferman showing that the two planar domains S and C
shown below are not Dirichlet isospectral.
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The tile L on the right above is the upper half of both the domains S and C.
Fefferman’s argument exploits the fact that the domain C has a reflection symmetry (reflection
through the dotted line E), while the domain S has an involutive rotation symmetry (rotation
by π around the barycenter b). We sketch Fefferman’s argument below.
For any Riemannian manifold (with boundary) M and p-forms α, β on M , write (·, ·)M for
the L2 inner product: (α, β)M =

∫
M
〈α, β〉 dvol, where 〈·, ·〉 is the pointwise inner product

on p-covectors and dvol is the Riemannian measure. We recall (see [2] or [14]) that, for a
Riemannian manifoldM with boundary, the lowest nonzero Neumann eigenvalue µ is given by
the infimum of the Rayleigh quotients:

(5.1) µ = inf
f∈H1, f⊥1

RM(f) = inf
f∈H1, f⊥1

(df, df)M
(f, f)M

,

where f ranges over the space C∞(M) of smooth functions on M (or equivalently, over its
H1-completion, the Sobolev space H1 of functions having one distributional derivative in L2)
that are L2-orthogonal to the constant functions. The lowest Dirichlet eigenvalue λ is given by

λ = inf
f∈H1

0

RM(f) = inf
f∈H1

0

(df, df)M
(f, f)M

,

the infimum of the Rayleigh quotients with f ranging over the space of smooth functions with
compact support in the interior of M (or equivalently, over its H1-completion H1

0 ). Finally, for
mixed boundary conditions (i.e., Neumann boundary conditions on an open submanifold N of
∂M , but Dirichlet conditions on an open submanifold D ⊆ ∂M such that ∂M = N ∪D), one
allows f to range over the space of smooth functions on M supported away from D (or over
its Sobolev completion H1

mixed). In each case, a function f in the pertinent Sobolev comple-
tion whose Rayleigh quotient realizes the infimum is an eigenfunction for the lowest nonzero
eigenvalue.

Theorem 5.1. (Fefferman) The domains S and C depicted above are not Dirichlet isospectral.
In fact, if λΩ denotes the lowest Dirichlet eigenvalue of a domain Ω ⊆ R2, then λC < λS .

Proof. Fefferman’s argument runs as follows. Let fC be a normalized (i.e., of unit L2-norm)
eigenfunction on C for the lowest Dirichlet eigenvalue λC of C. By Courant’s nodal domain
theorem (see [14]), fC is never zero on the interior C◦ of C, so without loss of generality,
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assume that fC > 0 on C◦. The eigenspace associated with the lowest eigenvalue is one-
dimensional, since no two functions that are strictly positive on C◦ can be L2-orthogonal. Let %
be the obvious reflection symmetry ofC (reflection through the lineE in the illustration above).
Then fC ◦ % is another normalized λC-eigenfunction on C, so fC ◦ % = ±fC . But fC ≥ 0, so
fC ◦ % ≥ 0, and thus fC ◦ % = fC . Thus fC is invariant under the reflection in the segment
E, so restricting fC to the upper half L of C yields a function fL := (fC)|L that is zero on the
three edges of L other than E, but has zero normal derivative on E. Also, fL is strictly positive
on the interior of L. Thus fL is an eigenfunction on L corresponding to the lowest eigenvalue
for the following mixed problem: Neumann boundary conditions on the edge E and Dirichlet
boundary conditions on the other three edges of L. Thus by the variational characterization of
eigenvalues (see [2]), (fC)|L realizes the infimum of the Raleigh quotients

inf
f∈H1

mixed

RL(f) = inf
f∈H1

mixed

(df, df)L
(f, f)L

,

where H1
mixed is the Sobolev space for the mixed problem, the H1-completion of the space

of smooth functions supported away from the three edges of L other than E. Because of the
reflection invariance of fC ,

(dfC , dfC)C
(fC , fC)C

= 2
(dfC , dfC)L
(fC , fC)L

.

Now consider a normalized eigenfunction fS for the lowest Dirichlet eigenvalue λS of S. By
an analogous argument to that above, fS satisfies fS = fS ◦σ, where σ is the involutive rotation
symmetry of S. It follows that

(dfS, dfS)S
(fS, fS)S

= 2
(dfS, dfS)L
(fS, fS)L

.

The restriction (fS)|L to L vanishes on the three edges of L other than E, i.e., (fS)|L ∈ H1
mixed.

Since (fC)|L realizes the infimum and fS ∈ H1
mixed, it follows that

(5.2)
(dfC , dfC)L
(fC , fC)L

≤ (dfS, dfS)L
(fS, fS)L

.

If equality holds, then (fS)|L is also a nonnegative normalized eigenfunction for the mixed
problem, so (fS)|L = (fC)|L. Since eigenfunctions are real analytic, it follows that fC and
fS must agree upon their common domain of definition when the top halves of S and C are
superimposed, i.e., on the domain Γ depicted below:

i
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But fC , as a Dirichlet eigenfunction on C, must vanish on the red edge of Γ, while fS cannot
vanish there, since it is strictly positive on the interior of S. This contradiction implies that the
inequality (5.2) is strict. Thus

λC =
(dfC , dfC)C
(fC , fC)C

=
2(dfC , dfC)L
2(fC , fC)L

<
2(dfS, dfS)L
2(fS, fS)L

=
(dfS, dfS)S
(fS, fS)S

= λS,

so the lowest eigenvalue of C is smaller than the lowest eigenvalue of S.

6 Neumann isospectral but not Dirichlet isospectral surfaces
with boundary

We turn now to an adaptation of Fefferman’s argument to our setting. The bordered surfacesM1

and M2 are the underlying spaces of orbifolds O1 and O2 constructed exactly as in section 3,
but using a Y -shaped fundamental tile: the underlying space Y := |O0| of the orbifold O0

depicted below rather than the tile of Figure 5.

T U

D

D
D

This tile has a symmetry that will be exploited in what follows.
The manifolds M1 and M2 thus obtained are depicted in Figure 6; as before, both an embedded
and an immersed version of M1 are shown.
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Theorem 6.1. The bordered surfaces M1 and M2 depicted in Figure 6 are isospectral with
Neumann boundary conditions, but not with Dirichlet boundary conditions.

Proof. The Neumann isospectrality was established in section 3; it remains only to show that
Dirichlet isospectrality fails. Suppose then that M1 and M2 are Dirichlet isospectral.
Note that M1 has an involutive isometry ρ1 whose effect is to interchange tiles i and i− 4 (mod
8) (this involutive symmetry is best visualized in the immersed picture in Figure 6). The fixed-
point set of ρ1 consists of the common T -edges and U -edges of tiles 2 and 6. (Although the
common T -edge of tiles 1 and 7 and the common T -edge of tiles 3 and 5 coincide in the picture
of M1 immersed, they are of course distinct and are interchanged by ρ1. Thus ρ1 is not quite a
“reflection in a plane perpendicular to the paper” as the picture would suggest.) The quotient
orbifold Q1 = M1/〈ρ1〉 is shown in Figure 7. Also, M2 has a reflection symmetry ρ2 whose
effect is to interchange tiles i and i − 4 (mod 8); the fixed point set consists of the common
T -edge of the tiles 2 and 6 and the common U -edge of tiles 0 and 4. The quotient orbifold
Q2 = M2/〈ρ2〉 is also shown in Figure 7. Note that Q1 and Q2 have the same underlying space
S = |Q1| = |Q2|.
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Consider a Dirichlet eigenfunction ϕ for the lowest Dirichlet eigenvalue λ of M1. By the
Courant nodal domain theorem [14], by replacing ϕ by −ϕ if necessary, we can assume that ϕ
assumes only positive values on the interior of M1. Thus the lowest eigenvalue λ has multiplic-
ity one, since no two everywhere-positive functions could be orthogonal. But ρ1 is an isometry,
so ϕ◦ρ1 is also a λ-eigenfunction; hence ϕ◦ρ1 = ϕ, i.e., ϕ is ρ1-invariant. Thus ϕ is a Dirichlet
eigenfunction on the orbifold Q1, that is, an eigenfunction on the underlying surface S = |Q1|
in Figure 7 for the following mixed boundary conditions:

(6.1)

{
Neumann conditions on the boundary edges 6T and 6U ,
Dirichlet boundary conditions on all other boundary edges.

Moreover, ϕmust be a lowest eigenfunction on S for this mixed boundary value problem, since
it is everywhere positive on the interior. Thus λ is the lowest eigenvalue on S for the mixed
problem (6.1).
Since M1 and M2 are assumed Dirichlet isospectral, λ is also the lowest Dirichlet eigenvalue
of M2. Let ψ be a λ-eigenfunction on M2. By the same argument, ψ is ρ2-invariant, so is a
Dirichlet eigenfunction on the orbifold Q2, i.e., an eigenfunction on the underlying space S for
the following mixed boundary conditions:

(6.2)

{
Neumann conditions on the boundary edges 6T and 4U ,
Dirichlet boundary conditions on all other boundary edges.

Thus λ is also the lowest eigenvalue on S for the problem (6.2). We conclude that the mixed
eigenvalue problems (6.1) and (6.2) on S have the same lowest eigenvalue λ.
Now the orbifoldQ1 itself has an involutive symmetry τ (reflection in the red line in the drawing
of Q1 in Figure 7), and the quotient orbifold Q = Q1/〈τ〉 is shown in Figure 8 together with
its underlying space Ω = |Q|. The surface S can be recovered by doubling the planar domain
Ω along the boundary edges C and E.
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As before, the lowest eigenfunction ϕ on Q1 must be τ -invariant, so it must be a lowest eigen-
function on the quotient orbifold Q, i.e., a lowest eigenfunction on Ω = |Q| for the following
boundary conditions:

(6.3)

{
Neumann boundary conditions on edges A, C and E,
Dirichlet conditions on all other boundary edges.

Thus the lowest eigenvalue of Ω for the boundary condition (6.3) is also λ.
Now the lowest eigenfunction ϕ on Ω for the mixed conditions (6.3) achieves the infimum of
the Rayleigh quotients

inf
f∈H1

mixed

(df, df)Ω

(f, f)Ω

,

where f ranges over theH1-completionH1
mixed of the space of smooth functions on Ω supported

away from all boundary edges except A, C and E.
Now let ψ be a lowest Dirichlet eigenfunction on Q2. Consider its restriction to the unshaded
copy of Ω in Figure 8 which forms the left half of the surface S. Figure 7 shows that ψ
satisfies Dirichlet conditions on all boundary edges except A, C and E, since all other edges
lie in the orbifold boundary ∂Q2; thus ψ ∈ H1

mixed. Now ψ is an eigenfunction on S for the
problem (6.2), so (dψ,dψ)S

(ψ,ψ)S
= λ. Also, note that the orbifold Q2 has an involutive “rotation by

π” symmetry, and ψ must be invariant under this symmetry. Thus

(dψ, dψ)Ω

(ψ, ψ)Ω

=
1
2
(dψ, dψ)S
1
2
(ψ, ψ)S

=
(dψ, dψ)S
(ψ, ψ)S

= λ.

Thus ψ realizes the infimum

λ = inf
f∈H1

mixed

(df, df)Ω

(f, f)Ω

,

so ψ is a lowest eigenfunction on Ω for the boundary conditions (6.3). Since the multiplicity
of the lowest eigenvalue is one, it follows that ψ and ϕ agree on Ω (after multiplying ψ by a
nonzero scalar). Since ψ and ϕ agree on an open set, ψ = ϕ on all of S by the maximum
principle.
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Reference to Figure 7 shows that ϕ satisfies Neumann conditions on edge 6U of S, while ψ
satisfies Dirichlet conditions on that edge. Now consider a small disk of radius ε centered at a
point in the interior of the boundary edge 6U . Since S is flat, this disk is isometric to the open
half-disk H = {(x, y) ∈ R2, so we can view ϕ as an eigenfunction on H . Since ϕ satisfies
Neumann boundary conditions on the x-axis, we can extend ϕ by reflection to an eigenfunction
ϕ1 on the open disk B = {(x, y) ∈ R2 : x2 + y2 < ε} that is invariant under reflection in the
x-axis. But ϕ also satisfies Dirichlet conditions on the x-axis, so we can also continue ϕ to an
eigenfunction ϕ2 on B that is anti-invariant under reflection in the x-axis. But ϕ1 and ϕ2 agree
on an open set, so ϕ1 = ϕ2, a contradiction. Thus M1 and M2 are not Dirichlet isospectral, and
Theorem 6.1 is proved.

7 Inaudible singularities; concluding remarks
We conclude with a few remarks, references to related results, and open questions.

Remarks 7.1. The results and methods above lead to some other interesting phenomena, and
highlight several natural questions.

1. Some of the examples of isospectral surfaces in [12] show that one cannot hear whether
there is a singularity in the interior: some of the isospectral pairs have the property that
M1 has an interior cone singularity, while M2 does not.

If one constructs isospectral bordered surfaces M1 and M2 using the Gerst Gassmann-
Sunada triple (G,Γ1,Γ2) of section 3 with generators st, t, and tu but using the trian-
gular fundamental tile T in Figure 9, then M1 and M2 exhibit this same phenomenon.
The surfaces thus constructed are shown in Figure 9. Both surfaces are flat annuli with
polygonal boundary, but M2 has a cone singularity in the interior while M1 does not
(M1 is a manifold with corners, while M2 is more singular). Similarly, if one constructs
bordered surfaces M1 and M2 using the triangular tile T but the generators σ, t and u
as in section 3, then M1 has a single interior cone singularity, while M2 has two cone
singularities. Thus one cannot hear the nature of singularities.

2. We note that the content of Theorem 3.1 can be expressed as the assertion that one cannot
hear the vanishing of the first Stiefel-Whitney class w1 of a Riemannian manifold with
boundary. It is then natural to ask: for an orientable Riemannian manifold, can one hear
the vanishing of the second Stiefel-Whitney class w2? That is, can one infer from the
Laplace spectrum whether or not the manifold admits a Spin structure? This question
was answered negatively by Roberto Miatello and Ricardo Podestá in [29].

3. Recall that an orbifold chart on a space X (see [1]) is given by a connected open subset
Ũ of Rn, a finite group G of diffeomorphisms of U , and a G-invariant map ϕ : Ũ → X
that induces a homeomorphism of the orbit space G\Ũ with an open subset of X; an
orbifold is then a space equipped with a cover of orbifold charts that satisfy a suitable
compatibility condition. An orbifold is locally orientable if in each such orbifold chart,
the action of the group G on Ũ is by orientation-preserving diffeomorphisms of Ũ . In
contrast with our main result, it was recently shown by Sean Richardson and Elizabeth
Stanhope [32] that one can hear local orientability of a Riemannian orbifold.

21



Finally, we note that our main result and the example depicted in Figure 9 call attention to two
open problems:

• Can a closed orientable Riemannian manifold be isospectral to a closed nonorientable
Riemannian manifold?

• Can a Riemannian orbifold with nonempty singular set be isospectral to a Riemannian
manifold?
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