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Introduction

Given a compact Riemannian surface (M, g), we write the eigenvalues of the Laplace-Beltrami operator -∆ g , (1.1) λ 1 (M ) < λ 2 (M ) ≤ λ 3 (M ) ≤ . . . , in nondecreasing order, starting from the label 1, with multiplicities accounted for.

If the boundary ∂M of M is non-empty, we consider Dirichlet eigenvalues.

Courant's nodal domain theorem (1923) states that any eigenfunction associated with the eigenvalue λ k has at most k nodal domains (connected components of the complement of the zero set of u). The eigenvalue λ k is called Courant-sharp if there exists an associated eigenfunction with precisely k nodal domains. It follows from Courant's theorem that the eigenvalues λ 1 and λ 2 are Courant-sharp, and that λ k-1 < λ k whenever λ k is Courant-sharp. Courant-sharp eigenvalues appear naturally in the context of partitions, [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF].

Back in 1956, Pleijel proved that there are only finitely many Courant-sharp eigenvalues. More precisely, Pleijel's original proof [START_REF] Bérard | Courant-sharp eigenvalues for the equilateral torus, and for the equilateral triangle[END_REF] applied to Dirichlet eigenvalues of bounded domains in R 2 . It was later adapted to more general domains ([23]) and to general closed Riemannian manifolds ( [START_REF] Bérard | Inégalités isopérimétriques et applications[END_REF]).

Courant-sharp eigenvalues of flat tori and Möbius strips were studied in [START_REF] Helffer | Minimal partitions for anisotropic tori[END_REF][START_REF] Léna | Courant-sharp eigenvalues of a two-dimensional torus[END_REF]4] and [START_REF] Bérard | Courant-sharp property for Dirichlet eigenfunctions on the Möbius strip[END_REF] respectively. In view of the classification of complete, flat surfaces (see [18, p. 222-223], or [26, Chap. 2.5]) it is natural to investigate the Courant-sharp property for the other compact flat surfaces, Klein bottles and cylinders. The purpose of the present paper is to prove the following theorems. Courant-sharp eigenvalues have previously been determined for several compact surfaces. We refer to the following papers and their bibliographies.

Closed surfaces: round 2-sphere and projective plane, [START_REF] Bérard | Nodal sets of eigenfunctions, Antonie Stern's results revisited[END_REF]; flat tori, [START_REF] Helffer | Minimal partitions for anisotropic tori[END_REF][START_REF] Léna | Courant-sharp eigenvalues of a two-dimensional torus[END_REF]4]. Plane domains and compact surfaces with boundary (different boundary conditions might be considered): square, [START_REF] Bérard | Courant-sharp eigenvalues for the equilateral torus, and for the equilateral triangle[END_REF][START_REF] Bérard | Dirichlet eigenfunctions of the square membrane: Courant's property, and A. Stern's and Å. Pleijel's analyses[END_REF]16,[START_REF] Gittins | Courant-sharp Robin eigenvalues for the square and other planar domains[END_REF]9]; equilateral triangle, [4]; 2-rep-tiles, [START_REF] Band | Courant-sharp eigenvalues of Neumann 2-rep-tiles[END_REF]; thin cylinders, [12]; Möbius strips, [START_REF] Bérard | Courant-sharp property for Dirichlet eigenfunctions on the Möbius strip[END_REF]. There are also a few results in higher dimensions, see for example [START_REF] Helffer | On nodal domains in Euclidean balls[END_REF][START_REF] Léna | Courant-sharp eigenvalues of the three-dimensional square torus[END_REF][START_REF] Helffer | Dirichlet eigenfunctions in the cube, sharpening the Courant nodal inequality[END_REF].

Most of the papers mentioned above adapt the method introduced by Pleijel in [START_REF] Bérard | Courant-sharp eigenvalues for the equilateral torus, and for the equilateral triangle[END_REF] to the example at hand. The paper is organized as follows. In Section 2, we recall the main lines of Pleijel's method. More precisely, we show how a lower bound on the ratio λ k (M ) k and a lower bound on the Weyl counting function can be used to restrict the search for Courantsharp eigenvalues to a finite set of eigenvalues. To actually determine the Courantsharp eigenvalues one then needs to analyze the nodal patterns of eigenfunctions in a finite set of eigenspaces. In Section 3, we recall some basic facts concerning Klein bottles. In Sections 4 and 5, we adapt Pleijel's method (Section 2) to the flat Klein bottles K 1 and K 2 . In Section 6, we adapt Pleijel's method (Section 2) to the flat cylinders C r , with r ∈ 1 2 , 1 .

Pleijel's method summarized

In order to prove that the number of Courant-sharp (Dirichlet) eigenvalues of a compact Riemannian surface (M, g) is finite, one only needs two ingredients, (2) an inequality à la Faber-Krahn for domains ω ⊂ M with small enough area, (2.1)

δ 1 (ω) ≥ (1 -ε) 2 πj 2 0,1 |ω| provided that |ω| ≤ C(M, ε) |M | ,
for some ε ∈ [0, 1), and for some constant C(M, ε). Here, δ 1 (ω) denotes the least Dirichlet eigenvalue of ω, and j 0,1 is the first positive zero of the Bessel function J 0 (j 0,1 ≈ 2.404825).

Note that the right-hand side of (2.1) is equal to (1 -ε) 2 δ 1 (ω * ), where ω * denotes a disk in R 2 with area equal to |ω|. The existence of such an inequality (for a given ε ∈ (0, 1)) follows from the asymptotic isoperimetric inequality proved in [6, Appendice C], and from the usual symmetrization argument to translate the isoperimetric inequality into a Faber-Krahn type inequality for the first Dirichlet eigenvalue, [6, Lemme 15].

In order to give more quantitative information on the Courant-sharp eigenvalues, one needs a lower bound on the Weyl function, in the form,

(2.2) W M (λ) ≥ |M | 4π λ -A(M ) √ λ -B(M )
, for all λ ≥ 0 for some constants A(M ) and B(M ) depending on the geometry of (M, g).

Lemma 2.1. Assume that (M, g) satisfies (2.1), with ε < 1 -2 j 0,1 , and (2.2). Let λ k (M ) be a Courant-sharp eigenvalue with k ≥ 1 C(M,ε) . Then,

λ k (M ) k ≥ (1 -ε) 2 πj 2 0,1 |M | , (2.3) |M | (1 -ε) 2 πj 2 0,1 λ k (M ) ≥ k ≥ |M | 4π λ k (M ) -A(M ) λ k (M ) -B(M ) + 1 , (2.4) In particular, F M,ε (λ k (M )) ≤ 0, where (2.5) F M,ε (λ) = |M | 4π 1 - 4 (1 -ε) 2 j 2 0,1 λ -A(M ) √ λ -B(M ) + 1 , so that λ k (M ) ≤ D(M, ε), where D(M, ε) is the largest root of the equation F M,ε (λ) = 0.
Proof. 

(M ) = δ 1 (ω).
To prove (2.4), use the fact that k -1 = W M (λ k (M )) (this is because the eigenvalue is Courant-sharp), and apply inequalities (2.2) and (2.3).

Since j 0,1 > 2, choosing ε < 1 -2 j 0,1 , the coefficient of the leading term in F M,ε is positive, and the function tends to infinity when λ tends to infinity.

Corollary 2.2. For ε < 1-2 j 0,1 , in order to be Courant-sharp, the eigenvalue λ k (M ) must satisfy λ k-1 (M ) < λ k (M ), and

(2.6)    either k < 1 C(M,ε) , or k ≥ 1 C(M,ε) , λ k (M ) ≤ D(M, ε), and λ k (M ) k ≥ (1 -ε) 2 πj 2 0,1
|M | . To conclude whether the eigenvalue λ k (M ) is actually Courant-sharp, it remains to determine the maximum number of nodal domains of an eigenfunction in the eigenspace E (λ k (M )).

Remarks 2.3.

(1) In Sections 4 and 6, we will use the fact that we can choose ε = 0 in the isoperimetric inequality (2.1) for the flat Klein bottles and for the flat cylinders. This follows from [START_REF] Howards | The isoperimetric problem on surfaces[END_REF], and was already used in [START_REF] Léna | Courant-sharp eigenvalues of a two-dimensional torus[END_REF]4,[START_REF] Bérard | Courant-sharp property for Dirichlet eigenfunctions on the Möbius strip[END_REF] for the flat torus and for the Möbius band. (2) When ∂M = ∅, and for Neumann or Robin eigenfunctions of (M, g), the inequality (2.1) can only be applied to a nodal domain which does not touch the boundary ∂M . To prove a result à la Pleijel for Neumann or Robin eigenfunctions, as in [START_REF] Polterovich | Pleijel's nodal domain theorem for free membranes[END_REF]21,16,[START_REF] Gittins | Courant-sharp Robin eigenvalues for the square and other planar domains[END_REF]9], it is necessary to take care of this difficulty.

(3) The proof of Lemma 2.1 also yields the following inequality. Let κ(k) denote the maximal number of nodal domains of an eigenfunction associated with λ k . Then,

lim sup k κ(k) k ≤ γ(2) := 2 j 0,1 2 < 1.
This inequality, which generalizes Pleijel's inequality [START_REF] Bérard | Courant-sharp eigenvalues for the equilateral torus, and for the equilateral triangle[END_REF] valid for plane domains, is actually a particular case of a general result valid for any closed Riemannian manifold, [START_REF] Bérard | Inégalités isopérimétriques et applications[END_REF]. The interesting feature is that the upper bound γ(n) < 1 only depends on the dimension.

Preliminaries on Klein bottles

3.1. Klein bottles. In this note, we are interested in the flat Klein bottles. More precisely, given a, b > 0, we consider the isometries of R 2 given by (3.1)

       τ 1 : (x, y) → (x, y + b) , τ 2 : (x, y) → (x + a, y) , τ : (x, y) → (x + a 2 , b -y) .
We denote by G 2 (resp. G) the group generated by τ 1 and τ 2 (resp. by τ 1 and τ ). These groups act properly and freely by isometries on R 2 equipped with the usual scalar product. Since τ 2 = τ 2 , the group G 2 is a subgroup of index 2 of the group G. We denote by T a,b (resp. K a,b ) the torus R 2 /G 2 (resp. the Klein bottle R 2 /G). We equip T a,b and K a,b with the induced flat Riemannian metrics.

A fundamental domain for the action of G

2 (resp. G) on R 2 is the rectangle T a,b = (0, a) × (0, b) (resp. the rectangle K a,b = (0, a 2 ) × (0, b), see Figure 3.1 (A))
. The horizontal sides of K a,b are identified with the same orientation, the vertical sides are identified with the opposite orientations.

The geodesics of the Klein bottle are the images of the lines in R 2 under the Riemannian covering map R 2 → K a,b (see [8]). They can be looked at in the fundamental domain K a,b , taking into account the identifications (x, 0) ∼ (x, b) and (0, y) ∼ ( a 2 , b -y). Among them, we have some special geodesics, see Figure 3.

1 (B)- (C), t → (t, 0) and t → (t, b
2 ), for 0 ≤ t ≤ a 2 , which are periodic geodesics of length a 2 ; for 0

< y 0 < b 2 , γ y 0 : t → (t, y 0 ), 0 ≤ t ≤ a 2 , (t -a 2 , b -y 0 ), a 2 ≤ t ≤ a,
which is a periodic geodesic of length a; the two horizontal lines in blue in Figure 3.1 (C) yield a periodic geodesic of the Klein bottle; for 0 ≤ x 0 ≤ a 2 , t → (x 0 , t), with 0 ≤ t ≤ b, is a periodic geodesic of length b. 

(3.2) f m,n (x, y) = exp i 2πmx a exp i 2πny b , m, n ∈ Z , with associated eigenvalues λ(m, n) = 4π 2 m 2 a 2 + n 2 b 2 .
Given some eigenvalue λ of T a,b , we introduce the set,

(3.3) L λ = (m, n) ∈ Z 2 | λ(m, n) = λ A general (complex) eigenfunction of T a,b , with eigenvalue λ, is of the form (3.4) φ = (m,n)∈L λ α m,n f m,n , with α m,n ∈ C. The function φ in invariant under τ , φ = φ • τ , if and only if (m,n)∈L λ α m,n f m,n (x, y) = (m,n)∈L λ α m,n (-1) m f m,-n (x, y) ,
or, equivalently, if and only if

(3.5) α m,-n = (-1) m α m,n , ∀(m, n) ∈ L λ .
We can rewrite a τ -invariant eigenfunction φ as,

(3.6) φ = (m,0)∈L λ ,m even α m,0 f m,0 + (m,n)∈L λ ,n>0 α m,n (f m,n + (-1) m f m,-n ) .
The following lemma follows readily.

Lemma 3.3 ([7]

). A complete family of real eigenfunctions of the flat Klein bottle K a,b is given by the following functions.

(3.7) Here, N denotes the set of non-negative integers, and N • the set of positive integers.

             For m = 0,
Remark 3.4. If L λ ∩({0}×Z) = ∅, the multiplicity of λ is odd; if L λ ∩({0}×Z) = ∅,
the multiplicity of λ is even.

3.3.

Choices for a and b. In this paper, we restrict our attention to the case a = b = 2π, i.e. to the flat Klein bottle K 1 := K 2π,2π , whose fundamental domain is the rectangle K 1 = (0, π)×(0, 2π), and to the case a = 2π, b = π, i.e., to the flat Klein bottle K 2 := K 2π,π , whose fundamental domain is the square K 2 = (0, π) × (0, π).

As in [START_REF] Helffer | Minimal partitions for anisotropic tori[END_REF] for flat tori, we could consider other values of the pair (a, b), in particular we could look at what happens when a is fixed, b tends to zero, and vice-versa.

We denote the associated square flat tori by T 1 and T 2 respectively, with corresponding fundamental domains T 1 = (0, 2π) × (0, 2π) and T 2 = (0, 2π) × (0, π).

As points of the spectrum, the eigenvalues of the flat Klein bottle K c , c ∈ {1, 2} are the numbers of the form λ(p, q) = p 2 + c 2 q 2 , with p, q ∈ N, and the extra condition that p is even when q = 0. As usual, the eigenvalues of K c are listed in nondecreasing order, multiplicities accounted for, starting from the label 1,

(3.8) 0 = λ 1 (K c ) < λ 2 (K c ) ≤ λ 3 (K c ) ≤ • • • .
For λ ≥ 0, we introduce the Weyl counting function,

(3.9) W Kc (λ) = # {j | λ j (K c ) < λ} .
Weyl's asymptotic law tells us that (3.10)

W (λ) = |K c | 4π λ + O( √ λ) = π 2c λ + O( √ λ),
where |K c | denotes the area of the Klein bottle, namely |K c | = 2π 2 c . For later purposes, we also introduce the set

(3.11) L c (λ) := (m, n) ∈ N 2 | m 2 + c 2 n 2 < λ
and the counting function,

(3.12) L c (λ) = # (m, n) ∈ N 2 | m 2 + c 2 n 2 < λ . 4. Courant-sharp eigenvalues of the Klein bottles K c , c ∈ {1, 2}
The purpose of this section is to determine the Courant-sharp eigenvalues of the Klein bottles K c , following Pleijel's method, Section 2. 

λ k (K 1 ) k ≥ j 2 0,1 2π ≥ 0.920422 , (4.1) 2π j 2 0,1 λ k (K 1 ) ≥ k ≥ π 2 λ k (K 1 ) -2 λ k (K 1 ) -2 . (4.2) When c = 2, λ k (K 2 ) k ≥ j 2 0,1 π ≥ 1.840844 , (4.3) π j 2 0,1 λ k (K 2 ) ≥ k ≥ π 4 λ k (K 1 ) - 3 2 λ k (K 2 ) -1 . (4.4)
In particular, λ k (K 1 ) < 25 and λ k (K 2 ) ≤ 47.

Proof. By Remark 3.1, the shortest closed geodesic of K c , c ∈ {1, 2}, has length π. According to [17, § 7], any domain ω ⊂ K c , with area |ω| ≤ π, satisfies the Euclidean isoperimetric inequality |∂ω| 2 ≥ 4π|ω| (where |∂ω| denotes the length of the boundary ∂ω). It follows that

δ 1 (ω) ≥ πj 2 0,1 |ω| . If λ k (K c ) is Courant-sharp with k ≥ 2π c
, then, for any associated eigenfunction u with precisely k nodal domains, there exists at least one nodal domain ω with |ω| ≤ Kc k ≤ π, and we have

λ k (K c ) = δ 1 (ω) ≥ πj 2 0,1 |ω| ≥ k cj 2 0,1 2π .
This proves inequalities (4.1) and (4.3).

To prove the other inequalities, consider the set

E c (λ) := (x, y) | 0 ≤ x, y, x 2 + c 2 y 2 < λ .
Then,

E c (λ) ⊂ (m,n)∈Lc(λ) [m, m + 1] × [n, n + 1] ,
and hence

(4.5) L c (λ) = # (L c (λ)) ≥ |E c (λ)| = π 4c λ .
From the description of the spectrum of K c (Lemma 3.3), the contribution of a pair

(m, n) ∈ L c (λ), to W Kc (λ) is a) 2 if m, n ≥ 1; b) 1 if m = 0, and n ≥ 0; c) 2 if m ≥ 2 is
even, and n = 0; d) 0 otherwise. Recall that multiplicities also arise from the number of solutions of the equation

m 2 + c 2 n 2 = m 2 0 + c 2 n 2 0 . It follows that, W Kc (λ) = 2 L c (λ) - √ λ - √ λ c -1 + √ λ c + 1 + 2 √ λ 2 , = 2 L c (λ) -2 √ λ - √ λ c + 2 √ λ 2 -1 ,
where x denotes the integer part of x ≥ 0. It follows that, for all λ ≥ 0,

W Kc (λ) ≥    π 2 λ -2 √ λ -3 when c = 1 , π 4 λ -3 2 √ λ -2 when c = 2 .
Inequalities (4.2) and (4.4) follow from the previous inequalities.

Table 4.1 displays the eigenvalues of K c less than or equal to 25 (c = 1), resp. 47 (c = 2), the corresponding labeled eigenvalues, and the ratio λ k min (K c ) k min which should be larger than or equal to

j 2 0,1 2π ≈ 0.92042 if λ k min (K 1 ) is Courant-sharp, j 2 0,1 π ≈ 1.84084 if λ k min (K 2 ) is Courant-sharp.
Since the eigenvalues λ 1 (K c ), λ 2 (K c ) are Courant-sharp, we conclude from Table 4.1 that Theorem 1.1 is proved in the case c = 2. To finish the proof of the theorem when c = 1, it remains to investigate λ 3 (K 1 ) and λ 5 (K 1 ). This is done in the next section.

K 1 λ k min (K 1 ) λ kmax (K 1 ) λ k min (K 1 ) k min 1 λ 2 λ 2 - 2 λ 3 λ 4 - 4 λ 5 λ 7 - 5 
5. The eigenvalues λ 3 (K 1 ) and λ 5 (K 1 ) are not Courant-sharp

In order to finish the proof of Theorem 1.1 for the Klein bottle K 1 , we investigate the eigenvalues λ 3 (K 1 ) = λ(1, 1) and λ 5 (K 2 ) = λ(2, 0) = λ(0, 2).

5.1. The eigenvalue λ 3 (K 1 ) is not Courant-sharp. A general eigenfunction associated with λ 3 has the form (A cos(x) + B sin(x)) sin(y). It is sufficient to look at eigenfunctions of the form sin(x -α) sin(y). These eigenfunctions have exactly two nodal domains in K 1 . It follows that λ 3 is not Courant-sharp, see Figure 5.1.

5.2. The eigenvalue λ 5 (K 1 ) is not Courant-sharp. A general eigenfunction associated with λ 5 has the form A cos(2x)+B sin(2x)+C cos(2y). Up to multiplication by a scalar, it suffices to consider the family cos θ cos(2x -α) + sin θ cos(2y), with θ ∈ [0, π) and α ∈ [0, π). Choosing the fundamental domain appropriately, we can assume that α = 0. Changing y to y + π 2 , we see that it suffices to consider θ ∈ [0, π 2 ]. The nodal sets are known explicitly when θ = 0 or π 2 . We now consider the family (5.1) φ θ (x, y) = cos θ cos(2x) + sin θ cos(2y), θ ∈ (0, π 2 ). The critical zeros (points at which both the function and its differential vanish) satisfy the system, (5.2)

       cos θ cos(2x) + sin θ cos(2y) = 0 , sin(2x) = 0 , sin(2y) = 0 .
It follows that critical zeros only occur for θ = π 4 , so that the nodal set of φ θ is a regular curve when θ = π 4 . The nodal set of the eigenfunction (5.3) φ π 4 (x, y) = cos(2x) + cos(2y) = 2 cos(x + y) cos(x -y) is explicit, see Figure 5.2 (B). An analysis à la Stern, see [5, Section 5] or [2], shows that the nodal sets of φ θ for 0 < θ < π 4 and π 4 < θ < π 2 are given by Figures 5.2 (A) and (C) respectively. More precisely, we first note that the common zeros to φ 0 and φ π 2 are common zeros to all φ θ . Since θ ∈ (0, π 2 ), and hence sin θ cos θ > 0, it follows that, except for the common zeros, the nodal set of φ θ is contained in the set cos(2x) cos(2y) < 0. Finally, depending on the sign of π 4 -θ, we can use the nodal set of cos(2x) or the nodal set of cos(2y) as barrier to obtain the behaviour described in the figures.

It follows that an eigenfunction associated with λ 5 has at most 4 nodal domains in K 1 , and hence that λ 5 (K 1 ) is not Courant-sharp. As usual, we arrange the Dirichlet eigenvalues of C r in non-decreasing order, starting from the label 1, multiplicities accounted for,

(6.2) 0 < λ 1 (C r ) < λ 2 (C r ) ≤ λ 3 (C r ) ≤ • • • .
The purpose of this section is to prove Theorem 1.2, i.e. to determine the Courantsharp eigenvalues in two specific cases r ∈ 1 2 , 1 whose eigenvalues have higher multiplicities. The corresponding cylinder are the orientation covers of the Möbius band we studied in [START_REF] Bérard | Courant-sharp property for Dirichlet eigenfunctions on the Möbius strip[END_REF]. As in [12,[START_REF] Helffer | Minimal partitions for anisotropic tori[END_REF], we could also consider other values of r, in particular r close to zero or r very large. According to Weyl's law, (6.4)

W Cr (λ) = |C r | 4π λ + O( √ λ) = rπ 2 λ + O( √ λ) ,
where |C r | denotes the area of the cylinder. 

λ k (C r ) k ≥ j 2 0,1 2πr ≥      j 2 0,1 π ≈ 1.840844 if r = 1 2 , j 2 0,1 2π ≈ 0.920422 if r = 1 , (6.7) k -1 = W Cr (λ k (C r )) ≥ πr 2 λ k (C r ) -(2r + 1) λ k (C r ) -2 . For r = 1 2 , π 4 1 - 4 j 2 0,1 λ k (C 1 2 ) -2 λ k (C 1 2 ) -1 ≤ 0 , (6.8) λ k (C 1 2 ) ≤ 76.25 , (6.9) For r = 1, π 4 1 - 4 j 2 0,1 λ k (C 1 ) - 3 2 λ k (C 1 ) - 1 2 ≤ 0 , (6.10) λ k (C 1 ) ≤ 42.40 (6.11)
Proof. The arguments are similar to those used in the proof of Lemma 4.1. Inequality (6.6) follows from (6.5). The inequality in (6.7) follows from the description of the Dirichlet spectrum of C r . The other inequalities follow from (6.7) and (6.6).

The following tables give the eigenvalues, the corresponding range of labels, and the ratios ). The associated eigenspace is generated by the eigenfunctions sin(x) cos(2y) and sin(x) sin(2y). Functions in this eigenspace have 2 nodal domains. This finishes the proof of Theorem 1.2 in the case r = 1 2 . The table for C 1 (right) shows that it only remains to analyze two eigenvalues 4 and 5. The eigenvalue 4 = λ 4 (C 1 ) is simple, with associated eigenfunction sin(2x) which has two nodal domains. The eigenvalue 5 = λ 5 (C 1 ) = • • • = λ 8 (C 1 ) has multiplicity 4. The corresponding eigenspace is generated by the eigenfunctions sin(2x) cos(x), sin(2x) sin(x) and sin(x) cos(2x), sin(x) sin(2y) which, according to [START_REF] Bérard | Courant-sharp property for Dirichlet eigenfunctions on the Möbius strip[END_REF], turn out to span the second eigenspace E(λ 2 (M 1 )) of the square Möbius strip, whose orientation cover is C 1 . Since the eigenfunctions in E(λ 2 (M 1 )) have two nodal domains, it follows that the eigenfunctions in the eigenspace E (λ 5 (C 1 )) have at most four nodal domains. This finishes the proof of Theorem 1.2 in the case r = 1. Note that one can give a precise analysis of nodal patterns in the eigenspace E (λ 5 (C 1 )) by using the same arguments as in [5, 

Theorem 1 . 1 .

 11 Let K 1 denote the flat Klein bottle associated with the square torus, resp. K 2 the flat Klein bottle whose fundamental domain is a square. Then the only Courant-sharp eigenvalues of K c , c ∈ {1, 2}, are λ 1 and λ 2 . Theorem 1.2. Let C r denote the flat cylinder (0, π) × S 1 r , with the product metric. Here S 1 r denotes the circle with radius r. Then, for r ∈ 1 2 , 1 , the only Courantsharp Dirichlet eigenvalues of C r , are λ 1 and λ 2 .

Figure 1 . 1 .

 11 Figure 1.1. The Klein bottles K c (left) and the cylinders C r (right).

( 1 )

 1 the classical Weyl asymptotic law, W M (λ) = |M | 4π λ + O( √ λ), for the counting function W M (λ) = {j | λ j (M ) < λ}, where |M | denotes the area of M ;

Remark 3 . 1 .

 31 The description of geodesics of the Klein bottles as projected lines implies that the shortest, nontrivial, periodic geodesic of K a,b has length min a 2 , b . Remark 3.2. Scissoring the Klein bottle along the blue geodesic t → γ y 0 (t), with 0 < y 0 < b 2 and 0 ≤ t ≤ a, divides the surface into two Möbius strips whose center lines are the geodesics t → (t, 0) and t → (t, b 2 ), see Figure 3.1 (D). The isometry τ of R 2 induces an isometry on the torus T a,b so that we can identify K a,b with the quotient T a,b / {Id, τ }. It follows that the eigenfunctions of the Klein bottle K a,b are precisely the eigenfunctions of the torus T a,b which are invariant under the map τ . Because τ is orientation reversing, the surface K a,b is non-orientable with orientation double cover T a,b .

Figure 3 . 1 .

 31 Figure 3.1. Fundamental domain, geodesics, partition into Möbius strips

n ∈ N : cos 2πny b ;;

 b for m ∈ N • even, n ∈ N : cos 2πmx a for m ∈ N • odd, n ∈ N • : cos 2πmx a

Lemma 4. 1 .

 1 Let K c , c ∈ {1, 2} be the flat Klein bottles introduced in Section 3. Let λ k (K c ) be a Courant-sharp eigenvalue of K c , with label k ≥ 2π c (i.e. k ≥ 7 when c = 1; k ≥ 4 when c = 2). When c = 1,

Figure 5 . 1 .

 51 Figure 5.1. Nodal domains of sin(x -α) sin(y)

Figure 5 . 2 . 6 .,

 526 Figure 5.2. Nodal sets for cos θ cos(2x) + sin θ cos(2y)

Remark 6 . 1 .

 61 As pointed out in the introduction, λ 1 (C r ) and λ 2 (C r ) are always Courant-sharp, and any Courant-sharp eigenvalue λ k (C r ) satisfies the inequality λ k (C r ) > λ k-1 (C r ). Following Pleijel's method, Section 2, we introduce Weyl's counting function, (6.3) W Cr (λ) = # {j | λ j (C r ) < λ} .

  λ k min k min for C 1 2 (left) and C 1 (right). For a Courant-sharp eigenvalue, this ratio should be greater than 1.840844 for C 1 2 , and greater than 0.920422 for C 1 . According to Remark 6.1, the eigenvalues λ 1 and λ 2 are always Courant-sharp. The table for C 1 2 (left) shows that it only remains to analyze the eigenvalue 5 = λ 3 (C 1 2 ) = λ 4 (C 1 2

Table 4 .
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					K 2 λ k min (K 2 ) λ kmax (K 2 )	λ k min (K 2 ) k min
					4	λ 2	λ 4	-
					5	λ 5	λ 6	1
					8	λ 7	λ 8	1.1429
					13	λ 9	λ 10	1.4444
	8 9 10 13 16 17 18 20 25	λ 8 λ 12 λ 14 λ 15 λ 19 λ 23 λ 26 λ 30 λ 32 λ 36	λ 11 λ 13 λ 14 λ 18 λ 22 λ 25 λ 29 λ 31 λ 35 λ 40	0.625 0.6666 0.6428 0.6666 0.6842 0.6956 0.6538 0.6 0.625 0.6944	16 17 20 25 29 32 36 37 40 41 45	λ 11 λ 14 λ 16 λ 20 λ 22 λ 24 λ 26 λ 29 λ 31 λ 35 λ 37	λ 13 λ 15 λ 19 λ 21 λ 23 λ 25 λ 28 λ 30 λ 34 λ 36 λ 38	1.4545 1.2143 1.2500 1.2500 1.3182 1.3333 1.3846 1.2759 1.2903 1.1714 1.2162
					52	λ 39	λ 42	1.3333

[START_REF] Band | Courant-sharp eigenvalues of Neumann 2-rep-tiles[END_REF]

. The first eigenvalues of K 1 (left) and K 2 (right)

  According to[17, § 6], a domain ω ⊂ C r , with area |ω| ≤ 4πr 2 satisfies a Euclidean isoperimetric inequality, and hence its least Dirichlet eigenvalue satisfies

	(6.5)	δ 1 (ω) ≥	πj 2 0,1 |ω|	.
	Lemma 6.2. Let r ∈ 1 2 , 1 . Let λ k (C r ) be a Courant-sharp eigenvalue of C r , with k ≥ π 2r . The following inequalities hold.
	(6.6)			

6.2. Courant-sharp eigenvalues of

C r , r ∈ 1 2 , 1 .

Table 6 .

 6 Section 4]. λ(C 1/2 ) k min k max λ k min (C 1/2 ) 1. The first eigenvalues of C 1

				k min	
	1 4 5 8 9 13 16 17 20 25 29 32 36 37 40 41 45 49 52 53 61 64 65 68 72 73	1 2 3 5 7 8 10 11 13 17 20 22 24 25 27 31 33 35 36 40 42 44 45 49 53 55	1 2 4 6 7 9 10 12 16 19 21 23 24 26 30 32 34 35 39 41 43 44 48 52 54 56	---1,60000 1,28571 1,62500 1,60000 1,54545 1,53846 1,47059 1,45000 1,45455 1,50000 1,48000 1,48148 1,32258 1,36364 1,40000 1,44444 1,32500 1,45238 1,45455 1,44444 1,38776 1,35849 1,32727	λ k min (C 1 ) k min -1,00000 1,00000 1,00000 10 0,88889 λ(C 1 ) k min k max 1 1 1 2 2 3 4 4 4 5 5 8 8 9 9 11 11 0,81818 10 12 15 0,83333 13 16 19 0,81250 16 20 20 0,80000 17 21 24 0,80952 18 25 26 0,72000 20 27 30 0,74074 25 31 35 0,80645 26 36 39 0,72222 29 40 43 0,72500 32 44 45 0,72727 34 46 49 0,73913 36 50 50 0,72000 37 51 54 0,72549 40 55 58 0,72727 41 59 62 0,69492 45 63 66 0,71429 49 67 67 0,73134 50 68 73 0,73529
	80	57	60	1,40351	
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(left) and C 1 (right)