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COURANT-SHARP PROPERTY FOR EIGENFUNCTIONS OF
THE KLEIN BOTTLE

PIERRE BÉRARD, BERNARD HELFFER, AND ROLA KIWAN

Abstract. The question of determining for which eigenvalues there exists an
eigenfunction which has the same number of nodal domains as the label of the
associated eigenvalue (Courant-sharp property) was motivated by the analysis of
minimal spectral partitions. In previous works, many examples have been analyzed
corresponding to Möbius strips, squares, rectangles, disks, triangles, tori, . . . . A
natural toy model for further investigations is the Klein bottle, a non-orientable
surface with Euler characteristic 0, and particularly the Klein bottle associated
with the square torus, whose eigenvalues have higher multiplicities. In this note,
we prove that the only Courant-sharp eigenvalues of the Klein bottle associated
with the square torus (resp. of the Klein bottle with square fundamental domain)
are the first and second eigenvalues.

1. Introduction

Given a closed Riemannian surface (M, g), we write the eigenvalues of the Laplace-
Beltrami operator −∆g,
(1.1) 0 = λ1 < λ2 ≤ λ3 ≤ . . . ,

in nondecreasing order, with multiplicities accounted for, and starting from the label
1.
Courant’s nodal domain theorem (1923) states that any eigenfunction associated
with the eigenvalue λk has at most k nodal domains (connected components of the
complement of the zero set of u). The eigenvalue λk is called Courant-sharp if
there exists an associated eigenfunction with precisely k nodal domains. It follows
from Courant’s theorem that the eigenvalues λ1 and λ2 are Courant-sharp, and
that λk−1 < λk whenever λk is Courant-sharp. Courant-sharp eigenvalues appear
naturally in the context of partitions, [13].
Back in 1956, Pleijel1 proved that there are only finitely many Courant-sharp eigen-
values. The purpose of this note is to prove the following theorem.
Theorem 1.1. Let K denote the flat Klein bottle associated with the square torus
T. Then the only Courant-sharp eigenvalues of K are λ1 and λ2.
Courant-sharp eigenvalues have previously been determined for several compact sur-
faces. We refer to the following papers and their bibliographies.

� Closed surfaces: round 2-sphere and projective plane, [21]; flat tori, [12, 3,
19].
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1Pleijel’s original proof applied to Dirichlet eigenvalues of bounded domains in R2, and was later

extended to more general domains, [22], and to closed Riemannian manifolds, [6].
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� Compact surfaces with boundary (different boundary conditions might be
considered): square, [23, 2, 15, 9, 10]; equilateral triangle, [3]; 2-rep-tiles, [1];
cylinders, [11]; Möbius strip, [5].

There are also a few results in higher dimensions, see for example [16, 20, 14].
Most of the papers mentioned above adapt the method introduced by Pleijel in [23]
to the example at hand.
The note is organized as follows. In Section 2, we recall some basic facts concerning
Klein bottles. In Section 3, we adapt Pleijel’s method [23] to the flat Klein bottle K
associated with the square torus. More precisely, we establish a lower bound on the
counting function of the eigenvalues of K, and we prove a Faber-Krahn inequality
for the first Dirichlet eigenvalue of domains ω ⊂ K whose volume is small enough.
As a consequence, we obtain that the only possible Courant-sharp eigenvalues of
K are λ1, λ2, λ3, λ5. In Section 4, we show that the eigenvalues λ3 and λ5 of K
are not Courant-sharp, by analyzing the nodal sets of associated eigenfunctions. In
Appendix A, we consider the case of the flat Klein bottle whose fundamental domain
is a square (Theorem A.1).

2. Preliminaries

2.1. Klein bottles. In this note, we are interested in the flat Klein bottles2. More
precisely, given a, b > 0, we consider the isometries of R2 given by

(2.1)


τ1 : (x, y) 7→ (x, y + b) ,
τ2 : (x, y) 7→ (x+ a, y) ,
τ : (x, y) 7→ (x+ a

2 , b− y) .
We denote by G2 (resp. G) the group generated by τ1 and τ2 (resp. by τ1 and τ).
These groups act properly and freely by isometries on R2 equipped with the usual
scalar product. Since τ 2 = τ2, the group G2 is a subgroup of index 2 of the group
G. We denote by Ta,b (resp. Ka,b) the torus R2/G2 (resp. the Klein bottle R2/G).
We equip Ta,b and Ka,b with the induced flat Riemannian metrics.
A fundamental domain for the action of G2 (resp. G) on R2 is the rectangle Ta,b =
(0, a) × (0, b) (resp. the rectangle Ka,b = (0, a2) × (0, b), see Figure 2.1 (A)). The
horizontal sides of Ka,b are identified with the same orientation, the vertical sides
are identified with the opposite orientations.
The geodesics of the Klein bottle are the images of the lines in R2 under the Rie-
mannian covering map R2 → Ka,b. They can be looked at in the fundamental domain
Ka,b, taking into account the identifications (x, 0) ∼ (x, b) and (0, y) ∼ (a2 , b − y).
Among them, we have some special geodesics, see Figure 2.1 (B)-(C),

� t 7→ (t, 0) and t 7→ (t, b2), for 0 ≤ t ≤ a
2 , which are periodic geodesics of

length a
2 ;

� for 0 < y0 <
b
2 , γy0 : t 7→

{ (t, y0), 0 ≤ t ≤ a
2 ,

(t− a
2 , b− y0), a

2 ≤ t ≤ a,
which is a periodic geodesic of length a; the two lines in blue in Figure 2.1 (C)
yield a periodic geodesic of the Klein bottle;

2For the classification of complete, flat surfaces, we refer to [18, p. 222-223], or [24, Chap. 2.5].
A summary is given in Appendix B.
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� for 0 ≤ x0 ≤ a
2 , t 7→ (x0, t), with 0 ≤ t ≤ b, is a periodic geodesic of length b.

Remark 2.1. The description of geodesics of the Klein bottles as projected lines
implies that the shortest, nontrivial, periodic geodesic of Ka,b has length min

{
a
2 , b

}
.

Remark 2.2. Scissoring the Klein bottle along the blue geodesic t 7→ γy0(t), with
0 < y0 <

b
2 and 0 ≤ t ≤ a, divides the surface into two Möbius strips whose souls

are the geodesics t 7→ (t, 0) and t 7→ (t, b2), see Figure 2.1 (D).

The isometry τ of R2 induces an isometry on the torus Ta,b so that we can identify
Ka,b with the quotient Ta,b/ {Id, τ}. It follows that the eigenfunctions of the Klein
bottleKa,b are precisely the eigenfunctions of the torus Ta,b which are invariant under
the map τ . Because τ is orientation reversing, the surface Ka,b is non-orientable with
orientation double cover Ta,b.

(a) (b)

(c) (d)

Figure 2.1. Fundamental domain, geodesics, partition into Möbius strips

2.2. The spectrum of Klein bottles. A complete family of (complex) eigenfunc-
tions of the flat torus Ta,b is

(2.2) fm,n(x, y) = exp
(
i
2πmx
a

)
exp

(
i
2πny
b

)
, m, n ∈ Z ,

with associated eigenvalues λ̂(m,n) = 4π2
(
m2

a2 + n2

b2

)
. Given some eigenvalue λ of

Ta,b, we introduce the set,

(2.3) Lλ =
{

(m,n) ∈ Z2 | λ̂(m,n) = λ
}
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A general (complex) eigenfunction of Ta,b, with eigenvalue λ, is of the form

(2.4) φ =
∑

(m,n)∈Lλ

αm,n fm,n ,

with αm,n ∈ C.
The function φ in invariant under τ , φ = φ ◦ τ , if and only if∑

(m,n)∈Lλ

αm,n fm,n(x, y) =
∑

(m,n)∈Lλ

αm,n(−1)m fm,−n(x, y) ,

or, equivalently, if and only if
(2.5) αm,−n = (−1)mαm,n , ∀(m,n) ∈ Lλ .
We can rewrite a τ -invariant eigenfunction φ,
(2.6) φ =

∑
(m,0)∈Lλ,m even

αm,0 fm,0 +
∑

(m,n)∈Lλ,n>0
αm,n (fm,n + (−1)mfm,−n) .

The following lemma follows readily.

Lemma 2.3. A complete family of real eigenfunctions of the flat Klein bottle Ka,b

is given by the following functions.

(2.7)


For m = 0, n ∈ N : cos

(
2πny
b

)
;

for m ∈ N• even, n ∈ N : cos
(

2πmx
a

)
cos

(
2πny
b

)
; sin

(
2πmx
a

)
cos

(
2πny
b

)
;

for m ∈ N• odd, n ∈ N• : cos
(

2πmx
a

)
sin

(
2πny
b

)
; sin

(
2πmx
a

)
sin

(
2πny
b

)
.

Here, N denotes the set of non-negative integers, and N• the set of positive integers.

Remark 2.4. If Lλ∩({0}×Z) 6= ∅, the multiplicity of λ is odd; if Lλ∩({0}×Z) = ∅,
the multiplicity of λ is even.

2.3. Choices for a and b. In this paper, we mainly restrict our attention to the
case, a = b = 2π, i.e. to the flat Klein bottle associated with the square flat torus
(Theorem 1.1, Sections 3 and 4). In Appendix A, we consider the flat Klein bottle
K2π,π whose fundamental domain is the square K2π,π = (0, π)× (0, π). As in [12] for
flat tori, we could consider other values of the pair (a, b).
We denote the associated square flat torus and flat Klein bottle by T and K re-
spectively, with corresponding fundamental domains T = (0, 2π) × (0, 2π) and
K = (0, π)× (0, 2π).
As points of the spectrum, the eigenvalues of the flat Klein bottle K are the numbers
of the form λ̂(p, q) = p2 + q2, with p, q ∈ N, and the extra condition that p is even
when q = 0. As usual, the eigenvalues of K are listed in nondecreasing order,
multiplicities accounted for, starting from the label 1,
(2.8) 0 = λ1 < λ2 ≤ λ3 ≤ · · · .
For λ ≥ 0, we introduce the Weyl counting function,
(2.9) W (λ) = # {j | λj < λ} .
Weyl’s asymptotic law tells us that

(2.10) W (λ) = |K|4π λ+O(
√
λ),
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where |K| denotes the area of the Klein bottle, namely |K| = 2π2.
For later purposes, we also introduce the lattice counting function,

(2.11) L(λ) = #
{

(m,n) ∈ N2 | m2 + n2 < λ
}
.

3. A priori inequalities on the Courant-sharp eigenvalues

The purpose of this section, following an original idea of Pleijel [23], is to establish
a priori inequalities satisfied by the Courant-sharp eigenvalues of the Klein bottle
K = K2π,2π. To do so we will need the following lower bound on the Weyl counting
function.

Lemma 3.1. The Weyl counting function W of the Klein bottle K (see Section 2),
satisfies,

(3.1) W (λ) ≥ π

2λ− 2
√
λ− 3, for all λ ≥ 0 .

Proof. From the description of the spectrum of K, a pair (m,n) ∈ N2, withm2+n2 <
λ, contributes to W (λ) by

a) 2 if m,n ≥ 1;
b) 1 if m = 0, and n ≥ 0;
c) 2 if m ≥ 2 is even, and n = 0;
d) 0 otherwise.

Multiplicities also arise from the number of solutions of the equation m2 + n2 =
m2

0 + n2
0. It follows that,

W (λ) = 2
(
L(λ)− 2b

√
λc − 1

)
+
(
b
√
λc+ 1

)
+ 2b

√
λ

2 c ,

where bxc denotes the integer part of x ≥ 0. On the other hand, we have L(λ) ≥ π
4λ.

Indeed, to each (m,n) we can attach the square [m,m+ 1]× [n, n+ 1], and we have{
(x, y) | 0 ≤ x, y, x2 + y2 < λ

}
⊂

⋃
0≤m,n, m2+n2<λ

[m,m+ 1]× [n, n+ 1] .

The lemma follows. �

Lemma 3.2. Let λk be a Courant-sharp eigenvalue. Then, W (λk) = k − 1.

Proof. Indeed, if λk is a Courant-sharp eigenvalue, we have λk−1 < λk by applying
Courant’s theorem. �

Lemma 3.3. Let λk be a Courant-sharp eigenvalue, and assume that k ≥ 7. Then,

(3.2) λk ≥
j2

0,1

2π k > 0.92042 k ,

where j0,1 ≈ 2.404825 is the first positive zero of the Bessel function J0.

Proof. As pointed out in Remark 2.1, the shortest nontrivial closed geodesic of K has
length π. It follows from [17, § 7], that any domain ω ⊂ K, with area |ω| less than π
satisfies the Euclidean isoperimetric inequality |∂ω|2 ≥ 4π |ω| (here |∂ω| denotes the
length of the boundary of ω). The usual symmetrization procedure implies that the
least Dirichlet eigenvalue δ1(ω) of the domain ω satisfies the Faber-Krahn inequality,

δ1(ω) |ω| ≥ πj2
0,1 .
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Let u be an eigenfunction associated with the Courant-sharp eigenvalue λk, k ≥ 7,
with precisely k nodal domains. Then there exists at least one nodal domain, call
it ω, whose area satisfies

|ω| ≤ |K|
k

= 2π2

k
≤ 2π2

7 < π .

We can then apply the above Faber-Krahn inequality to the nodal domain ω, and
conclude that,

λk = δ1(ω) ≥
πj2

0,1

|ω|
≥
j2

0,1

2π k .

The lemma is proved. �

Lemma 3.4. Let λk be a Courant-sharp eigenvalue, and assume that k ≥ 7. Then,
λk < 25.

Proof. From Lemma 3.2 and Lemma 3.3, we have

W (λk) + 1 = k ≤ 2π
j2

0,1
λk .

Using Lemma 3.1, we obtain the inequality,
π

2 λk − 2
√
λk − 2 ≤ 2π

j2
0,1
λk ,

so that λk satisfies the inequality

(3.3) π

2

(
1− 4

j2
0,1

)
λk − 2

√
λk − 2 ≤ 0 .

This inequality implies that λk is less than or equal to the square of the positive
root of the corresponding equation of degree 2,

λk ≤

2 + 2
√

1 + π(1− 4
j2

0,1
)

π(1− 4
j2

0,1
)


2

< 25.

�
The following table displays the eigenvalues of K less than or equal to 25, the
corresponding labeled eigenvalues, and the ratio λkmin

kmin
which should be larger than

or equal to j2
0,1
2π ≈ 0.92042 if λkmin is Courant-sharp.

Lemma 3.4 tells us that for λk ≥ 25, the eigenvalue λk is not Courant-sharp. Mul-
tiplicities, see also Lemma 3.3, imply that the eigenvalues λkmin+1, . . . , λkmax are not
Courant-sharp. Since the eigenvalues λ1, λ2 are Courant-sharp, in order to prove
Theorem 1.1, it remains to investigate λ3 and λ5. This is done in the next section.
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Value λkmin λkmax

λkmin

kmin
2 λ3 λ4 —
4 λ5 λ7 —
5 λ8 λ11 0.625
8 λ12 λ13 0.6666
9 λ14 λ14 0.6428
10 λ15 λ18 0.6666
13 λ19 λ22 0.6842
16 λ23 λ25 0.6956
17 λ26 λ29 0.6538
18 λ30 λ31 0.6
20 λ32 λ35 0.625
25 λ36 λ40 0.6944

Table 3.1. Eigenvalues of the Klein bottle K

4. The first eigenvalues of K

Recall that we work with the Klein bottleK = K2π,2π. In order to prove Theorem 1.1,
we investigate the eigenvalues λ3 = λ̂(1, 1) and λ5 = λ̂(2, 0) = λ̂(0, 2).

4.1. The eigenvalue λ3 is not Courant-sharp. A general eigenfunction asso-
ciated with λ3 has the form (a cos(x) + b sin(x)) sin(y). It is sufficient to look at
eigenfunctions of the form sin(x−α) sin(y). These eigenfunctions have exactly two
nodal domains in K. It follows that λ3 is not Courant-sharp, see Figure 4.1.

Figure 4.1. Nodal domains of sin(x− α) sin(y)
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4.2. The eigenvalue λ5 is not Courant-sharp. A general eigenfunction associ-
ated with λ5 has the form a cos(2x) + b sin(2x) + c cos(2y). Up to multiplication
by a scalar, it suffices to consider the family cos θ cos(2x − α) + sin θ cos(2y), with
θ ∈ [0, π) and α ∈ [0, π). Choosing the fundamental domain appropriately, we can
assume that α = 0. Changing y to y+ π

2 , we see that it suffices to consider θ ∈ [0, π2 ].
The nodal sets are known explicitly when θ = 0 or π

2 . We now consider the family

(4.1) φθ(x, y) = cos θ cos(2x) + sin θ cos(2y), θ ∈ (0, π2 ).

The critical zeros (points at which both the function and its differential vanish)
satisfy the system,

(4.2)


cos θ cos(2x) + sin θ cos(2y) = 0 ,
sin(2x) = 0 ,
sin(2y) = 0 .

It follows that critical zeros only occur for θ = π
4 , so that the nodal set of φθ is a

regular curve when θ 6= π
4 . The nodal set of the eigenfunction

(4.3) φθ(x, y) = cos(2x) + cos(2y) = 2 cos(x+ y) cos(x− y)

is explicit, see Figure 4.2 (B). An analysis à la Stern, see [5, Section 5] or [4], shows
that the nodal sets of φθ for 0 < θ < π

4 and π
4 < θ < π

2 are given by Figures 4.2 (A)
and (C) respectively. More precisely, we first note that the common zeros to φ0
and φπ

2
are common zeros to all φθ. Since θ ∈ (0, π2 ), and hence sin θ cos θ > 0, it

follows that, except for the common zeros, the nodal set of φθ is contained in the
set cos(2x) cos(2y) < 0. Finally, depending on the sign of π

4 − θ, we can use the
nodal set of cos(2x) or the nodal set of cos(2y) as barriers to obtain the behaviour
described in the figures.

It follows that an eigenfunction associated with λ5 has at most 4 nodal domains in
K, and hence that λ5 is not Courant-sharp.

(a) (b) (c)

Figure 4.2. Nodal sets for cos θ cos(2x) + sin θ cos(2y)

This completes the proof of Theorem 1.1.
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Appendix A. The Klein bottle K2π,π

In this appendix, we consider the case a = 2π, b = π. We denote the associated
rectangular flat torus by T′, and the associated flat Klein bottle by K′, with corre-
sponding fundamental domains T ′ = (0, 2π) × (0, π) and K′ = (0, π) × (0, π). We
prove,

Theorem A.1. The only Courant-sharp eigenvalues of the flat Klein bottle K′, with
square fundamental domain, are the first and second eigenvalues.

Since the proof is similar to the proof of Theorem 1.1, Sections 3 and 4, we only
sketch it.
As points of the spectrum, the eigenvalues of the flat Klein bottle K′ are the numbers
λ̂′(p, q) = p2 + 4q2, with p, q ∈ N, and the extra condition that p is even when
q = 0. As usual, the eigenvalues of K′ are listed in nondecreasing order, multiplicities
accounted for, starting with the label 1,
(A.1) 0 = λ′1 < λ′2 ≤ λ′3 ≤ · · · .
For λ ≥ 0, we introduce the Weyl counting function
(A.2) W ′(λ) = #

{
j | λ′j < λ

}
.

Weyl’s asymptotic law tells us that

(A.3) W ′(λ) = |K
′|

4π λ+O(
√
λ) = π

4λ+O(
√
λ),

where |K′| denotes the area of K′, namely |K′| = π2.
For later purposes, we also introduce the lattice counting function,
(A.4) L′(λ) = #

{
(m,n) ∈ N2 | m2 + 4n2 < λ

}
.

Taking Lemma 2.3 into account, we can write the Weyl counting function as,

(A.5)


W ′(λ) = 2

[
L′(λ)− b

√
λc − b

√
λ

2 c − 1
]

+
[
b
√
λ

2 c+ 1
]

+2 b
√
λ

2 c ,
so that

(A.6) W ′(λ) = 2L′(λ)− 2b
√
λc+ b

√
λ

2 c − 1.

As in the proof of Lemma 3.1, we see that L′(λ) ≥ π
4λ, and it follows that

(A.7) W ′(λ) ≥ π

4λ−
3
2
√
λ− 2.

The smallest, nontrivial closed geodesic of K′ has length π. It follows that for any
domain ω ⊂ K′, with |ω| < π, we have
(A.8) δ1(ω)|ω| ≥ πj2

0,1.

By the same argument as in Section 3, any Courant-sharp eigenvalue λ′k of K′, with
k ≥ 4, satisfies,

(A.9) λ′k ≥
j2

0,1

π
k > 1.84 k
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For any Courant-sharp eigenvalue λ′k of K′, we have W ′(λ′k) = k − 1. Using the
preceding inequalities, we conclude that any Courant-sharp eigenvalue λ′k of K′,
with k ≥ 4, satisfies the inequality

(A.10) π

4

(
1− 4

j2
0,1

)
λ′k −

3
2
√
λ′k − 1 ≤ 0 ,

which implies that λ′k ≤ 47. For the eigenvalues of K′, we have the following table,
similar to Table 3.1.

Value λ′kmin λ′kmax

λ′kmin

kmin
4 λ′2 λ′4 —
5 λ′5 λ′6 1
8 λ′7 λ′8 1.1429
13 λ′9 λ′10 1.4444
16 λ′11 λ′13 1.4545
17 λ′14 λ′15 1.2143
20 λ′16 λ′19 1.2500
25 λ′20 λ′21 1.2500
29 λ′22 λ′23 1.3182
32 λ′24 λ′25 1.3333
36 λ′26 λ′28 1.3846
37 λ′29 λ′30 1.2759
40 λ′31 λ′34 1.2903
41 λ′35 λ′36 1.1714
45 λ′37 λ′38 1.2162
52 λ′39 λ′42 1.3333

Table A.1. Eigenvalues of the Klein bottle K′

The above table and the preceding inequalities show that the only Courant-sharp
eigenvalues of K′ are λ′1 and λ′2. This proves Theorem A.1.

Appendix B. Classification of complete flat surfaces

Classifying complete, flat, Riemannian 2-manifolds is equivalent to classifying dis-
crete groups of isometries acting freely on R2. According to [18, p. 222-223], see also
[24, Chap. 2.5], there are four types of such surfaces (up to a scaling factor). Each
one is given by its fundamental group, and the way it acts on the universal cover R2

in terms of Cartesian coordinates (x, y).
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(1) The cylinder3 (orientable surface),

(B.1) (x, y) 7→ (x+ n, y), n ∈ Z ;

(2) The torus (orientable surface),

(B.2) (x, y) 7→ (x+ma+ n, y +mb), m, n ∈ Z , a, b ∈ R , b 6= 0 ;

(3) The Möbius band (non-orientable surface),

(B.3) (x, y) 7→ (x+ n, (−1)ny), n ∈ Z ;

(4) The Klein bottle (non-orientable surface),

(B.4) (x, y) 7→ (x+ n, (−1)ny +mb), m, n ∈ Z , b ∈ R, b 6= 0 .

For the flat tori and Klein bottles, we also refer to [8] (see 1.89, 2.25, 2.82, 2.83 and
4.46), and [7].
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