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Abstract — In this paper, we present and evaluate a novel method 

for feature selection for multiclass support vector machines 

(MSVM). It consists in determining the relevant features using an 

upper bound of generalization error proper to multiclass case 

called the multiclass radius margin bound. 

A score derived from this bound will rank the variables in order 

of relevance, then, forward method will be used to select the 

optimal subset. The experiments are firstly conducted on 

simulated data to test the ability of the proposed method to find 

the relevant variables in the case where some variables are 

relevant for all classes, when they are relevant only for some 

classes and when the dimensions of data are very high. 

Afterward, two real cancer datasets publicly available will be 

used and some results will be compared with those of other 

methods of variable selection by MSVM. 

Keywords- Classification; multiclass support vectors machines 

(MSVM); feature selection; multiclass radius-margin bound. 

I. INTRODUCTION  

In the problems related to genes expression profiles or text 

classification, the number of variables is usually very high 

compared to the number of observations, the importance of 

variables selection is justified by the possibility of existence of 

correlated, noise and / or redundant variables which give 

significant error rates. In this case, the variables selection 

essentially allows to improve the performances of forecasting 

or classification models by using only the variables that are 

important for the studied problem, reduce time and cost 

calculation and facilitate the understanding of the process 

generating information. 

In the context of SVM, binary or multiclass, the developed 

models do not allow an automatic selection of variables and 

use all available ones. 

In binary case, several approaches were been proposed to 

show the possibility of variable selection with SVM, these 

approaches can be grouped into two categories. The first 

consists in modifying the optimization program of SVM, so as 

to integrate the selection in the classification process. The 

second derives criteria from SVM to do selection.  

Within the first category, several new forms of SVM were 

been proposed, the L0SVM [1], L1SVM [2,3], combination of 

L0 and L1 SVMs [4] and the infinite norm SVM [5] are 

examples of these forms. Similarly, by deriving criteria from 

SVM, various approaches were presented, including the 

recursive feature elimination algorithm SVM-RFE of Guyon 

et al. [6] using the margin as selection criterion and 

Rakotomamonjy’s approach [7], considered as extension of 

SVM-RFE, using the upper bounds of generalization error 

specifics to SVM. 

In multi-class case, as extension of the approaches of the first 

category, Wang and Shen [8,9] replaced the L2-penalty in 

MSVM model of Lee et al. (MSVMLLW) [10] by L1-penalty 

(L1MSVM). Similarly, Zhang et al. [11] proposed a sup norm 

penalty which is more efficient and easier to implement than 

that given by the L1MSVM solution. Other methods were also 

been proposed in this context [12,13]. 

Moreover, and as extension of SVM-RFE, several techniques 

were presented, based either on a decomposition method, 

selecting variables for each pair of classes and then extend the 

results to multiclass case [14,15,16] or on a direct approach, 

considering all classes simultaneously [17,18]. 

However, in spite of the significant number of proposed 

extensions to multiclass case and their good performances 

compared to some existing techniques, no method is best or 

optimal [18,19] and the issue is still relevant. For this reason, 

and in order to contribute in this framework, we propose this 

article. 

Indeed, studying the various extensions, we note that although 

the theoretical bases and good performances of 

Rakotomamonjy’s approach [7] in selecting variables in 

binary case, no study, to our knowledge, has used an upper 

bound of generalization error proper to multiclass case to 

select the optimal subset of variables. 

In this article, we propose a new method for ranking and 

selecting relevant variables in multiclass case, based on the 

upper bound of generalization error called radius margin 

bound (RM) [20]. This bound is specific to multiclass case and 

only applicable to hard margin MSVMLLW model [10] i.e. 

without training error and to MSVM² model of Guermeur et 

al. [20]. In this work we will use the first model. 

The multiclass RM bound is presented as extension of the 

binary radius margin bound [21] while taking into account the 

characteristics of multiclass case. It was proposed by 

Guermeur et al. [20] for model selection. The contribution of 

this paper is to use it for model and variables selection. 

The proposed method consists of three steps: firstly, and since 

we work with MSVMLLW model, we choose it’s optimal 

parameters minimizing the multiclass RM bound in presence 

of all variables (model selection), then, we classify variables 

in order of relevance, and finally, proceeding by forward 

method, we choose the optimal subset minimizing the testing 

error, calculated on a test sample or by cross-validation. 

The rest of the paper is organized as follow: section 2 presents 

the MSVMLLW model and the multiclass RM upper bound of 

generalization error. The proposed procedure for variable 

ranking and optimal subset’ selection is given in section 3. 
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The data used, results of experiments and comparisons are 

presented in Section 4, followed by a general conclusion.  

            II.          MSVMLLW MODEL AND RM BOUND 
 

      In the framework of multiclass SVM (MSVM), we are 

interested in q categories classification problems (2 < q < ∞). 

The goal is to estimate q decision function fk(x) and classify 

observations according to the classification rule:  
 

Φf (x) = arg max fk(x);       k=1, 2,…,q. 
 

The estimation of the decision functions is done using a set of 

pairs of independent and identically distributed observations 

{(xi,yi), i=1,…,n} called training set, where x is the 

description of an object belonging to the descriptions space X 

described by 'p' variables and Y the set of categories 'y' 

identified by their indices [1, q]. 

In this work, we will test the performances of the multiclass 

RM bound to perform variables selection for a hard margin 

MSVMLLW model. This section will briefly present the 

properties of this model and describes the RM bound. 
 

A. The MSVMLLW Model 

     As all direct approaches [20, 22, 23], the MSVMLLW model 

solves the multiclass problem directly without decomposition, 

estimating 'q' decision functions simultaneously by solving 

one optimization program. It is considered as the most 

theoretically based of MSVM models as is the only one that 

implements asymptotically the Bayes decision rule [10].  

The optimization problem is to solve, subject to the constraint 
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Problem solving is done using the Lagrangian, and the 

nonlinear transformation of data will be replaced by a kernel 

function. 

 

B. Multiclass Radius Margin Bound  

The multiclass RM upper bound of the generalization error 

that we will use is a direct extension of the two-class radius 

margin bound [21]. Used for model selection, it is considered 

as the easiest and the most popular of generalization error’s 

upper bounds. 

Guermeur et al. [20] demonstrate that the number of errors 

denoted Lm, resulting from the application of leave-one-out 

cross-validation procedure (LOOCV) for a hard margin q-

category MSVMLLW trained on dm, is upper bounded as 

follows: 
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- m  : the size of training sample, 

- q   : the number of categories, 

- Dm : the diameter of the smallest sphere containing the 

dataset in original or feature space.   

- *
ik : the Lagrange parameters resulting from the 

resolution of the optimization program (1). 
  

Since the value given by LOOCV is an almost unbiased 

estimator of the generalization error, a variable is considered 

as relevant according to its influence on this error by 

measuring its contribution to minimize the second term of (2) 

which is the RM bound. 

 

III. THE PROPOSED PROCEDURE FOR VARIABLE 

RANKING AND OPTIMAL SUBSET’ SELECTION  
 

     The multiclass RM bound is generally used for model 

selection; it means to choose the optimal parameters of 

MSVM model. These parameters to optimize are: C, 

representing the weight of the training errors ξi, and σ the 

parameter of the kernel function if we decide to change the 

data space. 

Note that a large value of C means a big weight of errors and 

thus get closer to a hard margin learning, and, conversely, a 

small value reflect acceptance of errors and therefore a soft 

margin learning. 

The idea in this article is to use the multiclass RM bound to 

model and variables selection by combining the procedure of 

model selection for MSVM proposed by Guermeur et al. and 

an extension of the Rakotomamonjy's method of variable 

selection to the multiclass case. 

     The proposed procedure is based on a score called zero-

order score proposed for two class problems [7], whose value 

will rank variables in order of relevance. 

The zero-order score of a variable is the value of a criterion 

(the RM bound in our case) when this variable is removed.  

We will consider a variable as most relevant when its 

suppression greatly increases the value of the bound and 



therefore, contributes to the minimization of the generalization 

error. 

 The RM bound (2) depends on three factors: the number of 

categories q, the diameter Dm of the smallest sphere containing 

data and Lagrange parameters 
*
ik . 

The first element 'q' is constant and independent of the number 

of variables, in contrast to the two other parameters Dm and 
*
ik . Indeed, an object is represented by its coordinates in 

space, so its position changes necessarily by removing a 

variable and thus the diameter of the sphere. Similarly, when 

removing a variable, data which are inputs to estimate the 

model change, and therefore 
*
ik , model’s outputs, change 

too. Thus, the research of relevant variables will be based on 

the product:  
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Once the order of relevance of variables established, and given 

that an exhaustive research of optimal subset is very 

complicated even impossible for high dimensional data, we 

proceed by forward method incorporating a variable at a time 

in decreasing order of relevance and we choose the subset 

giving the minimum error rate calculated on a test sample or 

by cross-validation. 

The proposed procedure for ranking and selecting relevant 

variables, for a hard margin MSVMLLW model, follows the 

three following steps:  
 

Step 1: Choice of the model’s parameters 
 

     In this step, we choose the parameters of the hard margin 

MSVMLLW model which minimize the RM bound, and 

therefore the generalization error, in presence of all variables. 

These parameters that will be used in the next step to rank 

variables. 

The SVM method is based on the idea of finding a linear 

separator in a specific space, so if data are not linearly 

separable, i.e. a linear separator doesn’t exist in original space, 

we move to a called feature space by projecting data in 

another space of higher dimension so as to find a linear 

separator. This transformation of data is done using kernel 

functions. Thus, to choose the optimal parameters of the hard 

margin MSVMLLW model, we first work in original space 

using a linear kernel. In this case, there will be only the 

parameter C to determine. 

If we are unable to work without training error or if the 

required time is very important, we proceed to change the data 

space and work with a Gaussian kernel. In this case, we have 

to set the values of the two parameters C and σ (the parameter 

of the Gaussian kernel). 
 

Step 2: Variables ranking 
 

     In this step, we rank variables in order of relevance 

according to the values of their zero-order scores. For this, we 

re-estimate, removing each time a variable, the MSVMLLW 

model and we compute the value of the product   
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The variables with the highest scores are the most relevant 

given that their suppression increases the value of the 

multiclass RM bound and thus the value of the generalization 

error. 
 

Step 3: Choice of the optimal subset of variables 
 

After obtaining the order of relevance of variables, the last 

step is to choose the optimal subset. For this, we construct, by 

forward method, a sequence of models. The first one contains 

the first relevant variable, the second one contains the first two 

relevant variables and so on until all variables are integrated in 

decreasing order of relevance. Then we calculate the testing 

error rates. The model giving the minimum error rate is chosen 

as the best model with the optimal number of variables. 
 

Note that for the first two stages, model selection and 

variables ranking, we must work without training error, as 

these two steps are based on the RM bound which is 

applicable to a hard margin MSVMLLW model. By contrast, it 

is not mandatory to do so in step 3, because we no longer use 

the RM bound, so we do simulations with combinations of 

values of C and σ until we find the values that minimize the 

testing error. Also, we insist on the idea that the biggest 

contribution of this article is in giving the order of relevance 

of variables which was not been done on multiclass case with 

direct approaches of MSVM before, this means that we can 

change the third step and use another method to select the 

optimal subset from the order given in the second step, here 

we use forward method but backward method or other 

procedures can also be used. 

     

IV. RESULTS OF EXPERIMENTS AND COMPARISONS 

     In this section, we present the tests showing the ability of 

the score based on the RM bound to rank the variables and, 

therefore, to select the optimal subset. Seven datasets are 

considered, including five simulated databases and two real 

sets. 

For all data sets, several simulations are conducted to find the 

parameters of the MSVMLLW model minimizing the RM 

bound (step 1) and to select the optimal subset (step 3). 

Simulations and results have been obtained using the 

MSVMpack of Lauer et al. [24] allowing to train the 

MSVMLLW model and giving the parameters 
*
ik  as output. 

The diameter Dm of the smallest sphere containing data has 

been calculated using the hard margin SVDD algorithm [25]. 
   

A. Simulated Data 

     The used data are linearly separable in original or features 

space. For each case, n1 observations are generated as training 

set and n2 observations as testing set (if needed). Each 

observation is described by p variables (x
1
, x

2
, ..., x

p
) with 2 

are relevant and the others are noise variables. 



The 2 relevant variables are generated from a mixture 

Gaussian. The remaining variables are independent and 

identically distributed generated from N(0 , ). 
 

1) Example 1 : Relevance for all classes 
  

      The data of this first example are those described by 

Zhang et al. [11], with n1= 250 observations, n2= 50000, q= 5 

equally weighted classes and p=10 variables with (x
3
, x

4
,…, 

x
10

) are 8 noise variables and (x
1
, x

2
) are relevant for all 

classes generated independently from N(µk , σ²I2), with σ =  

as follows:  
  

    µk= 2(cos ([2k-1] ), sin ([2k-1] )),   (3) 
 

 for each class k (k=1,2,..q).                        

      To estimate the parameters of the hard margin MSVMLLW 

model in the presence of all variables, we first worked with a 

linear kernel. The results show that this kernel did not allow to 

train the model without error. We then tried a Gaussian kernel 

which gave a zero training error. 

The model estimation using a Gaussian kernel requires setting 

the values of the parameters C and σ. For C, high values are 

used in order to penalize errors and therefore obtain a hard 

margin model. Simulations showed that the value C=1000 

allows to work without error for different values of σ. 

To set the value of σ, we conducted several simulations to 

select the value that, keeping zero training error, minimizes 

the generalization error via its upper bound  

                     *
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The term (q-1)
3
/q being constant, we choose the value that 

minimizes the product *

1
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The simulations’ results are described in Table 1. 

Table 1. Values of *

1

1
2 max ik

m

i

QkmD 
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   in terms of the 

values of σ 

 

The minimum of the upper bound is reached for σ = 2. The 

model will therefore be estimated with C=1000 and σ = 2. 

The second step is to test the ability of the zero-order score to 

give the order of relevance of the variables. 

To do this, we calculated, each time removing a variable, the 

*

1

1max ik

m

i

Qk 


  and the diameter Dm of the smallest sphere 

enclosing data in the feature space, using the parameters 

chosen in step 1. The results are reported in table 2. 
 

Table 2. Zero-order score of the 10 variables 
 

Removed 

Variable 
*

1

1max ik

m

i

Qk 



 Dm Zero-order scores  

x
1
 2010.701 4.841 47 116.914 

x
2
 1814.651 4.854 42 759.475 

x
3
 1158.179 5.580 36 063.672 

x
4
 1192.931 5.571 37 026.283 

x
5
 1137.751 5.504 34 470.632 

x
6
 1113.298 5.564 34 468.209 

x
7
 1173.368 5.504 35 543.780 

x
8
 1023.852 5.504 31 013.183 

x
9
 1070.409 5.554 33 023.519 

x
10

 1140.087 5.633 36 181.583 

 

The most relevant variable is the one that maximizes the value 

of the zero-order score which is equal to the value of the 

product *

1

1
2 max ik

m

i

QkmD 


 when the variable is removed. 

The order of relevance of variables obtained according to table 

2 is as follows:  
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The proposed score has successfully classified the first two 

variables which are most relevant in the two first ranges. 

After ranking variables, we have estimated models to select 

the one that minimizes testing error and gives optimal sub-set 

of variables. For this, we built 10 databases (the first contains 

the first relevant variable, the second contains the first two 

relevant variables,… ).  

Training and testing errors obtained according to the used 

variables on a test sample of 50000 observations with C = 10 

and σ = 2 are shown in Table 3. 
 

Table 3. Training and testing errors 
 

Used Variables  Training 

error % 

Testing 

error % 

(x
1
) 56.80 61.18 

(x
1
, x

2
) 34.00 40.10 

(x
1
, x

2
, x

4
) 29.60 41.33 

(x
1
, x

2
, x

4
, x

10
) 24.80 42.88 

(x
1
, x

2
, x

4
, x

10
, x

3
) 17.60 44.78 

(x
1
, x

2
, x

4
, x

10
, x

3
, x

7
) 10.80 46.64 

(x
1
, x

2
, x

4
, x

10
, x

3
, x

7
, x

5
) 4.00 48.26 

(x
1
, x

2
, x

4
, x

10
, x

3
, x

7
, x

5
, x

6
) 1.60 49.75 

(x
1
, x

2
, x

4
, x

10
, x

3
, x

7
, x

5
, x

6
, x

9
) 0.00 51.48 

(x
1
, x

2
, x

4
, x

10
, x

3
, x

7
, x

5
, x

6
, x

9
, x

8
) 0.00 50.39 
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i
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0.5 312.4004 15.805 78 037.995 

1.0 315.7785 14.027 62 131.820 

1.5 413.478 9.180 34 841.310 

2.0 771.132 5.984 27 609.610 

2.5 1862.703 4.214 33 081.605 

3.0 4315.325 3.220 44 741.290 

4.0 19595.13 2.223 96 799.942 

5.0 63546.20 1.780 201 390.617 

6.0 114203.68 1.542 271 576.351 

7.0 144505.89 1.398 282 480.114 



The minimum testing error 40.10% obtained using the subset 

of the first two relevant variables is lower than that obtained 

using all variables (50.39%).  

Furthermore, Zhang et al. [11] have compared the results of 5 

MSVM methods with feature selection, on the first data set 

used above, in terms of testing errors rates. The best testing 

error obtained, was 45.3% using the Supnorm method [11]. 

With our procedure, we obtained a better error rate: 40.1% 

using the first two relevant variables. 
 

2) Example 2 : Relevance for some classes 
 

     In the simulation example in section 1), the two first 

variables are relevant for all classes, however, in reality, some 

variables might be important for one class, and not for 

another. In this section, we will study this case and see if our 

score is able to identify the relevant variables.  

For this, we generate a second dataset with the same 

characteristics as the first one (n1= 250 observations, p= 10 

variables and q=5 equally weighted classes) except that the 

relevant variables x
2
 and x

3
 are as follow: x

2
 is relevant only 

for the classes 2 and 4, x
3
 is relevant only for the classes 1, 3, 

5 and x
3
 is more relevant than x

2 
as its important for 3 classes. 

The 8 remaining variables are noise ones. 

The numerous simulations (as done for the first example in 

table 1) have allowed to choose the type of kernel (Gaussian) 

and to set the values of parameters C and σ (C = 1000 and σ = 

2) that allow to work without training error, require a reduced 

calculation time and minimize the value of the RM bound. 

Table 4 presents the order of relevance of variables according 

to the values of zero-order score and reveals that the score has 

successfully classified x
3
 in the first position and x

2
 in second 

position. 
 

Table 4. Ranking of variables according to their zero-order 

scores 

Removed 

Variable  
*

1

1max ik

m

i

Qk 



   Dm Zero-order 

scores  

  Ranking  

x
1
 1132.2971 5.326 32 129.899 8 

x
2
 1672.0327 4.821 38 873.534      2 

x
3
 1991.1498 4.782 45 548.769 1 

x
4
 1097.9851 5.434 32 428.987 7 

x
5
 1195.6819 5.349 34 214.171 3 

x
6
 1165.3138 5.381 33 752.091 5 

x
7
 1147.0951 5.414 33 629.598 6 

x
8
 1181.6572 5.377 34 176.575 4 

x
9
 1166.5453 5.359 30 639.041 10 

x
10

 1090.8932 5.371 31 466.781 9 

 

3) Example 3 : Relevance in high dimensions 
    

     After having successfully ranked the 2 relevant variables in 

presence of 8 noise ones in sections 1 and 2, we proceed, here, 

to measure the effect of increasing the number of irrelevant 

variables on the performances of the score. 

For this, we generate three datasets with 500, 1000 and 5000 

variables, 250 observations, and 2 relevant variables (x
1
, x

2
). 

With x
1 

is relevant only for the classes 1, 3, 5 and x
2
 is 

relevant only for the classes 2 and 4. 

To set the values of C and σ, we conduct several simulations 

using 3 values of C: 10000, 1000 and 100 and several values 

of σ to choose the best combination. 

The results of variables ranking based on the values of their 

zero-order scores are presented in Figure 1.  

According to Figure 1, the maximal values of zero-order score 

are those of the first two variables that we know they are the 

most relevant. Thus, the proposed score was been able to 

classify the first two variables in the first two positions in 

large dimensions. However, we observe that the value of σ the 

parameter of the Gaussian kernel increases while increasing 

the number of variables (σ = 24 for 500 variables, σ = 35 for 

1000 variables and σ = 83 for 5000 variables). As mentioned 

in [26], large values of σ gradually reduce the kernel to a 

constant function, making it impossible to learn any non-

trivial classifier. That means that in very large dimensions, we 

will need very large values of σ and thus the kernel will be no 

more able to learn correctly the MSVM model and thus we 

will no more have the correct ranking in order of relevance of 

variables. 

 

 
 

 

 

 

 

B. Real Data 

1) Example 1 
 

      In this example, we apply our selection procedure to the 

real data set 'lung cancer' which is composed of 56 variables, 

32 observations and 3 classes. These data, available at UCI 

repository, were used in the context of variable selection by 

multiclass SVM by LI et al. [27].  

Using their proposed method, Li et al obtained, an average 

testing error rate of 45.8%, while, the application of Optimal 

Brain Damage method on this dataset gave an average testing 

error rate of 44.15%. 

Our main goals here are: firstly, show the performances of our 

procedure to select the optimal subset and give a better testing 

rate relative to the case where all variables are conserved, and 

Figure 1. Zero order scores of variables  



secondly, compare the obtained testing error rate to those of 

the two methods described above. 

For experiments, we use the 32 observations as a training set 

and we calculate testing error rates by LOOCV. 

The linear kernel was able to give zero error rate, the optimal 

value of the parameter C is C = 1000. 

We rank variables in order of relevance, then, we build 56 

databases to select the optimal model. For each dataset, in 

order to minimize error rates, we try different values of C. 

Figure 2 shows the results of estimation of testing error rates 

by LOOVC according to values of C and the number of used 

variables in decreasing order of relevance.  

The best testing error rate is 12.5% obtained using the first 10 

variables in order of relevance with C=1.5. This rate is much 

better than that obtained in presence of all variables i.e. 

56.25%. So we can confirm the effectiveness of the proposed 

procedure for ranking and selecting the optimal subset. 

Furthermore, comparing this result to those of two variables 

selection methods by MSVM described before, we find that 

the achieved rate of 12.5% is much better. 

 

 
 

 
 

2) Example 2 
 

      The second example on which we test the performances of 

our approach is the children cancer data set classifying the 

small round blue cell tumors (SRBCTs) into four classes, 

namely neuroblastoma (NB), rhabdomyosarcoma (RMS), non-

odgkin lymphoma (NHL), et Ewing (EWS) using cDNA gene 

expression profiles.  

(http://research.nhgri.nih.gov/microarray/Supplement/). 

The data set includes 83 observations and 2308 variables. It 

was presented for the first time by Khan et al. [28] and has 

been used in the context of variable selection by multiclass 

SVM by Zhang et al. [11].  

After model selection, we proceed to rank the 2308 features in 

order of relevance. 

To estimate the testing error rates, we used 10 combinations of 

C and σ (C: 100, 10, 1 and σ: 1, 2, 3, 2.5) to select the best 

combination(s) giving the minimum testing error rate. 

The results of the two best simulations in terms of testing error 

rates obtained by LOOCV according to the values of C, σ and 

the number of used variables in decreasing order of relevance 

are presented in Figure 3.  

From Figure 3, we note that the proposed approach based on 

RM bound gave a zero error rate for the two simulations using 

the first 9 variables. 

Comparing these results with those of previous studies on this 

dataset, we can see that they are far better in terms of the 

number of variables needed. Indeed, selecting variables for 

multiclass SVM using adaptive sup-norm regularization, 

Zhang et al. [11] obtained zero error rate, on a test sample, 

using 47 variables and using the L1 norm, 62 variables were 

required. Furthermore, using neural networks, getting a zero 

error rate was possible but using the first 96 genes [28]. 

 
 

 

 

V.  CONCLUSION AND PERSPECTIVES 
 

     The results of studies on variable selection by multiclass 

SVM show the effectiveness of using this technique to reduce 

dimensions and improve classification’s accuracy.  

In this paper, we proposed a new approach, based on the 

multiclass radius margin upper bound of generalization error, 

to give the order of relevance of variables and the optimal 

subset. As a result, the proposed method gives the correct 

order of relevance of variables for the simulated data, and 

significantly reduces the error rate for all used data sets.  

In fact, one of the advantages of our method is that it uses the 

MSVMLLW model which is the most theoretically based of 

MSVM models and as a wrapper approach, selecting variables 

after the estimation of the model, takes into account the 

influence of each variable on the performances of the 

estimated model. 

A constraint for the application of our procedure in very large 

dimensions consists in required computation time, which is 

important given the need to re-estimate the MSVM model for 

each variable in order to calculate the zero order scores, 

combined with the degradation of its performances given the 

need of high values of σ as explained in section III.3. To deal 

with these two problems, we propose to combine our approach 

with the MRMR filter method (Minimum Redundancy 

Maximum Relevance) which will filter a big number of noise 

variables before applying our approach to the selected 
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Figure 2. Testing error rates of the 56 models 
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Figure  3. Testing error rates of the first 50 models 



features.  The results obtained on three high dimensional 

cancer datasets were very good in terms of the obtained testing 

error rate. It will be the extension of this work. 
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