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Abstract

Modern GPUs equipped with mixed precision tensor core units present great potential
to accelerate dense linear algebra operations such as LU factorization. However, state-
of-the-art mixed half/single precision LU factorization algorithms all require the matrix
to be stored in single precision, leading to expensive data movement and storage costs.
This is explained by the fact that simply switching the storage precision from single
to half leads to significant loss of accuracy, forfeiting all accuracy benefits from using
tensor core technology. In this article, we propose a new factorization algorithm that
is able to store the matrix in half precision without incurring any significant loss of
accuracy. Our approach is based on a left-looking scheme employing single precision
buffers of controlled size and a mixed precision doubly partitioned algorithm exploiting
tensor cores in the panel factorizations. Our numerical results show that compared
with the state of the art, the proposed approach is of similar accuracy but with only
half the data movement and memory footprint, and hence potentially much faster: it
achieves up to 2x and 3.5x speedups on V100 and A100 GPUs, respectively.
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1 Introduction

Until recently, the majority of scientific codes used to carry out floating-point
computations in either IEEE fp64 or fp32 arithmetic, commonly known as double
and single precisions. The emergence in hardware of lower precisions, such as
the half precision fp16 and bfloat16 formats, creates new opportunities as these
lower precisions provide significant performance benefits, such as higher FLOPS
rates and reduced data movement costs. This has generated a growing interest
in mixed precision algorithms, which combine different precisions to achieve both
high performance and high accuracy. Indeed, the use of mixed precision arithmetic
is becoming increasingly common in scientific computing, both in algorithms
and in hardware, with the emergence of specialized units that exploit multiple
precisions internally. Examples of such units include the NVIDIA GPUs equipped
with tensor cores, the Google TPUs, and the ARMv8.6-A and Intel Cooper Lake
CPUs.

This article focuses on the direct solution of dense linear systems Ax = b by LU
factorization, a key computational task at the heart of numerical linear algebra.
The high potential of mixed precision arithmetic for solving linear systems is well
established. For example, with the most recent variants of iterative refinement
proposed by Carson and Higham [1], [2], an fp16 LU factorization of A may be
enough to obtain a solution z at fp64 accuracy, even for relatively ill-conditioned
matrices. Another approach to exploit multiple precisions in the solution of Az = b
is to use a mixed precision algorithm for the LU factorization itself. This is
most natural when targeting hardware equipped with mixed precision computing
units, such as those previously mentioned. In particular, Haidar et al. [3], [4] and
Blanchard et al. [5] have investigated mixed precision LU factorization algorithms
exploiting GPU tensor cores that employ fpl6 and fp32 precisions. Moreover, a
mixed precision LU factorization can be combined with iterative refinement to
accelerate the convergence of the latter [3].

In this article, we propose new mixed precision LU factorization algorithms
that extend and improve previous algorithms in several ways, in terms of speed,
accuracy, data movement, and memory footprint. Indeed, previously proposed
algorithms require the matrix A to be entirely stored in fp32, thereby forfeiting
any potential gains in memory consumption associated with the use of the lower
fp16 precision, and requiring expensive data movements in fp32. We propose, to
our knowledge, the first mixed precision algorithm based on GPU tensor cores
that is able to accurately factorize a matrix stored in fp16. We explain why this is
not immediate: simply switching the storage precision from fp32 to fp16 leads to a
significant loss of accuracy. Our algorithm overcomes this issue with a left-looking
update scheme that makes use of temporary fp32 buffers of modest and controlled
size. We also investigate in what precision the panel factorizations should be
carried out; we show that the approach achieving the best performance—accuracy
tradeoff is to use two levels of partitioning so as to exploit tensor cores both in
the updates and in the outer panel factorizations.
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Throughout the article, we explore several variants of mixed precision LU
factorization, and investigate their performance and accuracy, both via rounding
error analysis (generalizing that of [5]) and via numerical experiments on random
dense matrices using NVIDIA V100 GPUs. Overall, the best variant of our new
algorithm achieves a better performance—accuracy tradeoff than previous state-
of-the-art algorithms by achieving similar accuracy, half the memory footprint,
and up to 3.5x higher performance thanks to reduced data movement. We have
made our code publicly available*.

The rest of this article is organized as follows. We begin by providing technical
background and by describing our experimental setting in section 2. We also
review previous work and explain how we aim to improve it in section 3. Our
core algorithmic contributions are found in sections 4 and 5. In section 4 we
describe a left-looking mixed precision algorithm that factorizes a matrix stored
in fpl6 without losing all the accuracy benefits of tensor cores. In section 5
we investigate the choice of precision for the panel factorization. We provide
additional experiments on a range of matrices coming from various applications
in section 6. We also assess the performance of our algorithms on the latest A100
GPUs in section 7. Our conclusions are reported in section 8.

Throughout the article, we will denote by fl;g and flgy the operations of
rounding to the fpl16 and fp32 formats, and by w1 = 27 and uzy = 2724 their
respective unit roundoffs. We also define v,, = nu/(1 — nu) and use the superscript
of v to indicate that the unit roundoff u has the corresponding subscript. Hence,

’7(32) = ”U32/(1 - nu32)a 7(16) = nulﬁ/(l - nu16)7 vy = nﬂ/(l - nﬁ)-

2 Technical background and experimental setting

We provide some technical background on partitioned LU factorization and GPU
tensor cores, and describe our experimental setting used throughout the article.

2.1 Partitioned LU factorization

High performance LU factorization algorithms are based on partitioning the
matrix in 7 X r blocks so as to recast most of the operations as matrix—matrix
(BLAS-3) operations. Given such a partitioning, the LU factorization amounts
to performing a sequence of panel factorizations and updates. At each step k,
the panel factorization computes the part of the LU factors associated with the
current panel, while the update overwrites the trailing submatrix via matrix—
matrix products.

We can distinguish two types of algorithms, right- and left-looking versions,
depending on the order in which the operations are performed. In a right-looking
factorization (Algorithm 2.1), at step k, the entire trailing submatrix (to the right)

*https://github.com/flipflapflop/remifa/
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is updated with respect to the current panel after factorizing it. In a left-looking
factorization (Algorithm 2.2), at step k, the current panel is updated with respect
to the already computed LU factors (to the left) before being factorized.

Algorithm 2.1 Standard (uniform precision) LU factorization (right-looking
version).

1: Input: a matrix A € R"*" in precision u, partitioned into 7 x 7 blocks Aj;,
where ¢ = n/r is assumed to be an integer.

2: Output: the LU factors of A in precision u (with L and U partitioned into
r x 1 blocks).

3: fork=1:¢qdo

4: Factorize Ly Ugr = Akk-

5: fori=k—+1:qdo

6: Solve L;,Upr = Az for Ly
T Solve LU = Ay, for Uy;.
8: end for

9: fori=k+1:qgdo

10: for j=k+1:qdo

11: Update Aij — Aij — LikUkj~
12: end for

13: end for

14: end for

To achieve maximal performance, the matrix can be recursively partitioned so as
to also exploit BLAS-3 operations within the panel factorization [6]. For example,
LAPACK’s dgetrf [7] uses two levels of partitioning. Algorithm 5.2, proposed in
section 5 is based on LAPACK’s algorithm and also uses two levels.

2.2 GPU tensor cores

The tensor cores in the NVIDIA Volta and Turing architectures are a special type
of unit that carry out the operation D = C + AB, where all matrices are 4 x 4 [8].
The tensor cores are inherently mixed precision units: while the matrices A and
B must be stored in fp16, C and D can be in fp16 or fp32. Pictorially, we have

D = C + A B.
X X X X X X X X X X X X X X X X
XX XX [ XX X X XX XX X X X X
X X x x| | x x x x X X X X X X X X
X X X X X X X X X X X X X X X X
fpl6 or fp32 fp16 or fp32 fpl6 fpl6

Tensor cores are an instance of what has been called a ¢ x ¢ block fused
multiply-add (with ¢t = 4) by Blanchard et al. [5]. In the context of both matrix
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Algorithm 2.2 Standard (uniform precision) LU factorization (left-looking
version).

1: Input: a matrix A € R™*" in precision u, partitioned into 7 x 7 blocks Aj;,
where ¢ = n/r is assumed to be an integer.

2: Output: the LU factors of A in precision u (with L and U partitioned into
7 X r blocks).

3: for k=1:¢gdo

4 fori=Fk: qdo

5 for j=1:k—1do

6: Update Aik — Am — LijUjk.
7: if ¢ # k then Update Ay; + Ag; — Li;Uj;.
8: end for

9: end for

10: Factorize Ly Ugr = Akk-

11: fori=k—+1:qdo

12: Solve L;, Uy = Az for Ly

13: Solve LppUy; = Ay; for Ug;.

14: end for

15: end for

multiplication and LU factorization, Blanchard et al. [5] show that storing C' and
D in fp32 (the so-called TC32 variant) yields much more accurate results than
storing them in fp16 (the so-called TC16 variant). This is because with C' and
D in p32, rounding error accumulation only affects the error term proportional
to the fp32 unit roundoff uzo. For example, consider the matrix product C = AB
where A € R™*™ and B € R™*P. Blanchard et al. [5, Alg. 3.1] propose a blocked
matrix-matrix product algorithm that can compute C' using tensor cores, and [5,
Thm. 3.2] shows that the computed C satisfies:

Nnuie (’].-‘C].G)7

2.1
2u16 + nusgs (TC32> ( )

IC —C| S calAllB|, cn = {

Furthermore, Blanchard et al. [5] also report that the TC16 and TC32 variants
achieve similar performance.

2.3 Experimental setting

We use a range of different test matrices in our experiments. In sections 3
through 5, we use the same test matrices as the HPL-AI benchmark’. These
are n X n dense matrices with off-diagonal entries randomly sampled from the

Thttps://icl.bitbucket.io/hpl-ai/
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uniform [0, 1] distribution and with diagonal entries set to m to make them
diagonally dominant. Then, in section 6, we provide additional experiments with
other matrices, including real-life ones from the SuiteSparse collection [9].

Our code implements the various LU factorization algorithms presented in this
article for the NVIDIA GPU architecture. Following the guidelines of the HPL-AI
benchmark, we do not perform any numerical pivoting. We however note that all
the algorithms presented in this article are compatible with numerical pivoting.
In all our experiments except those of section 7, we use a single V100 GPU
unit equipped with 16 GB of memory and with a peak performance of 7.8 and
15.7 TFLOPS using double (fp64) and single (fp32) precision arithmetic. With
the tensor cores, the peak performance increases to 125 TFLOPS. We use the
cuBLAS v10.1 library for the matrix—matrix product operations in the updates,
and hand-coded CUDA kernel for the panel factorizations.

We assess the stability of the different LU factorization algorithms by using
them to solve a linear system Az =b by the substitutions Ly =band Ux =y,
where L and U are the computed LU factors of A. The substitutions are performed
in fp32. We generate the solution x as the vector of ones [1...1]7, and thus the
right-hand side is computed as b = Ax. Denoting the computed solution as Z, we
measure the componentwise backward error

ebwd:min{5>0 C (A+AA)Z=b, |AA| §s(|A|+|f||l.’7|)}
—max— AT (2.2)
v ((JA+ [LIUD )

where (2.2) follows from the Oettli-Prager theorem [10, Thm. 7.3], [11].

3 Contributions with respect to previous work

To our knowledge, the first LU factorization algorithm exploiting GPU tensor
cores is that of Haidar et al. [3], that is shown to accelerate the solution of dense
linear systems in the context of iterative refinement [2]. Their algorithm is a right-
looking factorization where the tensor cores are exploited to accelerate the update
operations. To do so, it suffices to convert to fpl6 the LU factors computed by
the panel factorization on the fly. This is described in Algorithm 3.1, where the
highlighted lines correspond to the changes that need to be made to the standard
LU factorization (Algorithm 2.1).

Blanchard et al. [5] give the rounding error analysis of Algorithm 3.1 (which is
the equivalent of their Algorithm 4.1), and show that it can be significantly more
accurate than a standard LU factorization in fp16 arithmetic (Algorithm 2.1 with
u = u16). Note that Blanchard et al. [5] assume the panel size r to match the
dimension ¢ of the block FMA (that is, r =t =4 in the case of GPU tensor
cores), but the extension to an arbitrary size r is straightforward.

Both previously cited works, as well as subsequent works following them [4],
share the common weakness that the matrix A is assumed to be stored in fp32
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Algorithm 3.1 State-of-the-art mixed precision LU factorization from [3, 5].

1: Input: a matrix A € R™*™ in precision u = ugs or u = uig, partitioned into
r x r blocks A;;, where ¢ = n/r is assumed to be an integer.

2: Output: the LU factors of A in precision u (with L and U partitioned into
r X r blocks).

3: for k=1:¢qdo

4: Factorize LgxUkr = Agr (in precision ).

5: fori=k+1:qgdo

6: Solve LUk = Ay, for L (in precision ).
7 Solve LyUy; = Ag; for Uy, (in precision ).
8: end for

9: fori=k+1:qgdo

10: for j=k+1:qdo

11: Convert to fpl6: L flig(Lik)-

12: Convert to fpl6: fjki = fllﬁ(Uki).

13: Update A;; < A;j — Zikﬁkj using tensor cores.
14: end for

15: end for

16: end for

(that is, Algorithm 3.1 uses w = ugz). Therefore, the use of half precision in
current state-of-the-art mixed precision LU algorithms does not reduce neither
the memory consumption nor the volume of data movement. This represents
a significant shortcoming since memory consumption can be the most critical
resource in some applications, especially on GPUs, which have very limited
memory. Moreover, since the FLOPS rate on GPU tensor cores is very high,
data movements can be very expensive and can significantly hinder the overall
performance of the factorization.

Before describing the contributions of this article, let us first explain why it is
so challenging to store the matrix in fp16. To do so, we recall the main result of
the error analysis of [5], which analyzes a version of Algorithm 3.1 with general
t x ¢t block FMA units in precisions uiow and unigh. We specialize that result to
the case of GPU tensor cores where matrices C' and D in the block FMA are
stored in fp32 (TC32 variant).

Theorem 1. Specialization of [5, Thm. 4.3] to tensor cores. Let A € R"*™ be
partitioned in v x r_blocks. If Algorithm 3.1 runs to completion then the computed
LU factors L and U satisfy A+ AA = LU, where

|AA| < f(n,7,u16, uze, w) (|A] + |L||U|) + O(uszuse), (3.1)
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107t
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(a) Componentwise backward error (2.2). (b) Performance (GFLOPS).

Figure 1. Accuracy and performance of Algorithm 3.1 with u = w16 or u = usz for
diagonally dominant matrices. The panel size is r = 256.

with
32 -
f(n, 7,16, uze, u) = 2ur6 + uig + max (v, %(L_7)=+1 + Yn—r)/a) (1 + ug)?

and with w = u if u > uze and u = 0 otherwise.

Note how Algorithm 3.1 and Theorem 1 allow the matrix to be stored in a
precision u that can be either uss or wujg. In their experiments, Blanchard et
al. [5] however only investigate the case u = uga, for which bound (3.1) becomes

|AA| S (2u6 + nugs) (|A] + L] 0)). (3.2)

Crucially, the term proportional to uj¢ in (3.2) does not grow with n. Storing the
matrix in fpl6 gives a very different result. Indeed, setting u = uq6 in (3.1) yields

|AA| S 0.25nui6(|A| + |L||U]). (3.3)

The term proportional to u1g now grows linearly with n. Hence, bound (3.3) is
roughly min(n/8, u16/4us2) = min(n/8,2048) larger than bound (3.2). Hence, for
large n, bound (3.3) is about three orders of magnitude larger than bound (3.2).

This increase is confirmed experimentally. Figure 1a shows that switching from
u = usy to u = uyg leads indeed to an error increase of about two orders of
magnitude. This is less than could be expected from the theoretical bounds,
but still represents a significant loss of accuracy. Moreover, for reference,
we also compare Algorithm 3.1 with a standard LU factorization in fpl6
arithmetic (Algorithm 2.1 with u = u16). Figure la shows that, with u = us,
both Algorithms 2.1 and 3.1 achieve the same error: any accuracy gain associated
with the use of tensor cores is therefore lost by storing the matrix in fp16.
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This behavior is explained by the term %(,,_,)/4 in Theorem 1, which accounts
for the need to round the output D of the block FMA to the working precision «
after each call. With the TC32 variant, the output D is in fp32 and therefore, if
u = uge no extra rounding is necessary and this term is equal to zero. However,
with u = uyg, it becomes equal to nui6/4 + o(nuie) due to the need to round to
fpl6 every t = 4 additions.

In this article, we introduce new algorithms that overcome this issue and are
able to use an fpl6 matrix (therefore halving the memory footprint and, as we
will show, the volume of data movement) with no significant loss of accuracy. We
begin, in the next section, by introducing a left-looking factorization with fp32
buffers.

4 A left-looking factorization using fpl6 LU factors with fp32
buffers

As explained in the previous section, using Algorithm 3.1 with the matrix stored in
fp16 (u = uqg) leads to a significant loss of accuracy due to the need to repeatedly
round to fpl6 every ¢ = 4 additions. To be precise, the update operation (line 13)

Aij — Aij — szﬁk] (41)

takes the form of several block FMAs D < C' — AB chained one after the other.
Here, A and B are 4 x 4 subblocks of Lm are U;.C]7 stored in fpl16, and C' and D
are 4 x 4 subblocks of A;;, stored in precision u. In the case u = u;¢, the block
FMA is therefore being used with fpl6 output (the so-called TC16 variant by
Blanchard et al. [5]), which has indeed been shown to be much less accurate than
with an fp32 output (TC32 variant), as explained in section 2.2.

It is important to realize that this issue is therefore not intrinsic to the tensor
cores themselves, which are naturally able to handle matrix—matrix products of
large dimensions without rounding to fpl6 every 4 additions (by using the TC32
variant). The core issue lies instead with Algorithm 3.1, which forces the use of
the much less accurate TC16 variant.

In this section, we present a reformulation of the algorithm that is able to
exploit the TC32 variant instead of the TC16 one, while still storing the matrix
in fp16. The key idea is to introduce temporary fp32 buffers that we use to chain
several block FMAs by accumulating their output in fp32. That is, we replace the
updates

Ajj — Ajj — ZkUk], for k =1: min(i,j) — 1, (4.2)
by

Bij = fl32(Aq5), (4.3a)

Bij < Bij — zikﬁkj, for k=1: HllIl(’L,_]) — 1, (43b)

Aij + flig(Bij). (4.3c)
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Whereas (4.2) forces the use of the TC16 variant, (4.3) allows for the use of the
TC32 variant.

However, simply replacing (4.2) by (4.3) is not satisfactory: while this is likely
to recover a good accuracy, it requires an fp32 buffer of the same dimensions as the
trailing submatrix, which contains (n — kr)? entries at step k. Therefore, at the
early steps, this buffer consists of almost the entire matrix, and so this approach
does not achieve a significant reduction of the memory footprint or the volume
of data movement compared with Algorithm 3.1 with u = u3y (which requires n?
fp32 entries).

The key to overcome this issue is to switch from a right-looking algorithm to a
left-looking one. Indeed, as explained in section 2.1, in a left-looking factorization,
all the updates associated with a given block A;; are performed together one
after the other. Therefore, we only need the fp32 buffer B;; for a short period of
time, and so we can reuse the same buffer to update different blocks. We present
in Algorithm 4.1 a new mixed precision left-looking LU factorization algorithm,
where the highlighted lines correspond to the changes that need to be made to
the standard left-looking LU factorization (Algorithm 2.2).

Algorithm 4.1 A new left-looking mixed precision LU factorization.

1: Input: a matrix A € R™*" in precision uy¢, partitioned into r x r blocks A
where ¢ = n/r is assumed to be an integer.

2: Output: the LU factors of A in precision u1¢ (with L and U partitioned into
r X r blocks).

3: for k=1:¢qdo

K

4: for i = k: g do

5: Convert to fp32: By, = flsa(Air).

6 if ¢ # k then Convert to fp32: By, < flsa(Ag;).

7 for j=1:k—1do

8: Update B;; < B, — L;;U;, using tensor cores.

9: if ¢ # k then Update By, < By; — Li;U;; using tensor cores.
10: end for

11: Convert back to fpl6: A < fli6(Bik).

12: if i # k then Convert back to fpl6: Ag; < flig(By;)-
13: end for

14: Factorize LipUgr = Akk (in precision U16).

15: fori=k+1:qgdo

16: Solve LUk = Ay, for Ly (in precision uqg).

17: Solve LUy = Ag; for Uy; (in precision uyg).

18: end for

19: end for
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There is some freedom in the choice of the fp32 buffer size. The absolute
minimum buffer size we need is only of t? = 16 entries, because we technically
could update each r x r block A;; one 4 x 4 subblock at a time. However, it is
desirable to update multiple » x r blocks at the same time to achieve increased
parallelism and performance. In our GPU implementation of Algorithm 4.1, we
use a buffer of the same dimension as either the L or U part of the current panel
at step k (that is, a buffer formed of either all blocks A;x for i = k: ¢ or all blocks
Ay, for i = k+1: ¢). The algorithm therefore requires an fp32 buffer of at most
nr entries.

We note that, at step k of Algorithm 4.1, we update both the L part of the panel
(Aj for i = k: q) and the U part (Ay; for i =k + 1: ¢). This is sometimes referred
to as a Crout factorization, as opposed to a “pure” left-looking factorization
which only updates the L part and delays the update of Ay; to step i. In our
context, there is no significant difference between a Crout or a pure left-looking
factorization, neither in terms of accuracy, memory footprint, or volume of data
movement.

Algorithm 4.1 possesses two key properties. First, we show in section 4.1 that,
compared with Algorithm 3.1 with u = uzo, Algorithm 4.1 not only halves the
memory footprint, but also the volume of data movement: as a result, we can
expect it to be up to twice faster. Second, we prove in section 4.2 that, compared
with Algorithm 3.1 with u = uy6, Algorithm 4.1 achieves a significantly smaller
error bound. We show experimentally in section 4.3 that these two key properties
allow for a significantly better performance-accuracy tradeoff.

4.1 Data movement analysis of Algorithm 4.1

Here we carry out a data movement analysis to show that Algorithm 4.1 reduces
the volume of data movement compared with Algorithm 3.1 with u = uzy. We use
a simplified model of memory architecture with two levels: a limited, fast memory
and an unlimited, slower memory. We assume that the fast memory is large enough
to accomodate an r X r block of the matrix and its associated buffer B;; and LU
factors. Hence, for example, we assume that the operation B; < B — L;;Uj,
can directly be performed within the fast memory after all the required data has
been loaded.

Under this model, at each step k, line 13 of Algorithm 3.1 requires to load all the
blocks A;; of the trailing submatrix, of which there are (¢ — k). With u = uso,
these blocks are stored in fp32 and so the volume, in bytes, of data moved is

q
4

Z(q — k)?*r? x 4 bytes = gan + O(n?) bytes. (4.4)

k=1

The other steps of the algorithm require data movement at most in O(n?) bytes.
In comparison, at step k, lines 8 of Algorithm 4.1 requires to load all L;j;, Uji,
for i > k and j < k, which amounts to (¢ — k)(k — 1) blocks at step k. Similarly,
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line 9 also requires the same volume of data movement. They key difference with
the previous case is that these entries are now stored in fp16, and so require 2
bytes per entry instead of 4. Summing over k, the volume of data moved by the
update steps of Algorithm 4.1 is

2qn2 + O(n?) bytes. (4.5)

q
22(]— kE—1) ><2bytes—3

k=1

Algorithm 4.1 does require some fp32 data movement, but in much lower volume:
at step k, only one panel (all blocks B;; and By; for i > k) needs to be loaded,
which amounts to O(n?) bytes moved. For large matrices, ¢ = n/r is also large,
and so Algorithm 4.1 requires about half the data movement of Algorithm 3.1
with u = Uus2.

4.2 Rounding error analysis of Algorithm 4.1

Since Algorithm 4.1 carries out all updates by chaining block FMAs with fp32
output, we can expect it to be significantly more accurate than Algorithm 3.1
with u = uy6. To formally prove this result, we now perform the rounding error
analysis of Algorithm 4.1.

Lemma 1. Let B=A— E 1 X;Y;, where A, B € R™" are given in precision

usz and X;,Y; € R"™" are given in precision uis, be computed with GPU tensor
cores using the TC82 variant. The computed B satisfies

q
B-B|< vff%(m 'y Xj|Yj|). (4.6)
j=

Proof. This is a both a specialization and an extension of [5, Corollary 4.1]. The

result is specialized to tensor cores with the TC32 variant, for which 7 = v(32) and
FFMA — (. Tt is also trivially extended to general block size r possibly different
from ¢t = 4.

Theorem 2. Backward error bound for Algorithm 4.1. Let A € R™*"™ be
partitioned in v x v blocks. If Algorithm 4.1 runs to completion, the computed
LU factors L and U satisfy A+ AA = LU where

|AA| < uiglAl + f(n, 7, ure, use) (1 + uie)| Al + |L]|U]), (4.7)

with
f(n,r uie, use) = max(uig + 7723le+1 + ury 2+1’ (19,

Proof. Algorithm 4.1 requires the input matrix A to be in precision uig so we
must first account for this conversion: let A = fl;4(A4) = A+ E, with |E| < ui6|A|.

We now apply the algorithm to A. The (i, k) block of the L factor is computed
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on line 16 by solving

k—1
Likﬁkk = Rik, Rik = Bik — Ziijl/jjk- 7> k,
j=1

where B;, = flgg(gik) = /L-k. By Lemma 1, the computed ﬁzk satisfies, since
k <g,

k—1
R — Rl <2 m(mzu +Z|L2J||Uﬂc) (4.8)

Jj=1

We then convert Eik back to fp16 (lines 11 and 12), obtaining Elk = fllﬁ(éik) =
R + F, with

k—1
Ful < sl Rus] < uns(1 +752,) (|Azk s L”W) (4.9)
j=1

By [10, Thm. 8.5] we have
\LiwUri, — Ri| < 79| L] | U - (4.10)
Combining the three inequalities (4.8)—(4.10), we conclude that for i > k,

k
‘/Lk ey
j=1

Ujr| < |Rir, — Rik| + | Fir| + |Rire — Lr.Upa,

k
< f(nmum,uSz)(AiH +> Lilejkl)» (4.11)

Jj=1

where f(n,r, uie, usz) = max(uig + fny ZH + u167£322+1’77g16)) For i = k, Ly, is
determined with Ukk on line 14 of Algorithm 4.1, and by [10, Thm. 9.3] we have

|kaUkk — Rkk\ < 'y |ka||Ukk| Therefore (4.10) holds for ¢ = k, too, and hence
so does (4.11). In a similar way, the inequality (4.11) can be shown to hold for

i < k. We have thus proved A+ AA = LU with
|AA| < f(n, 7, w6, use) (JA| + | L||UY).
Replacing A by A + E yields the bound on |AA| and concludes the proof.
Theorem 2 proves that Algorithm 4.1 is indeed potentially much more accurate

than Algorithm 3.1 with v = u16. We summarize the dominant term in the error
bounds of each algorithm in Table 1.
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Table 1. Dominant term in the expression of f in the error bound A + AA = LU,
|AA] < f(n,r,uie, us2)(JA| + |L||U|) and number of fp32 entries that need to be stored
for various algorithms.

fp32 storage

(# of entries) fn, 7, w16, uz2)

Alg 3.1 (u = U32) n2 27,L16 + nus2
Alg. 3.1 (u=wu1g) O nue/4
Alg. 4.1 nr u16 + max(nuss, rue)

107!
—— Alg. 3.1 (u=usp)
102 = Alg. 3.1 (u=ue) 40000
—— Alg. 4.1

103 30000

1074 @ 20000
10—5 10000
) "//»_'/»——-’———’ 0

—— Alg. 3.1 (u=usy)
—— Alg. 3.1 (u=uss)

—— Alg. 4.1
16 0 10000 20000 30000 460000 50000 0 10000 20000 30000 40000 50000
matrix size: n matrix size: n

(a) Componentwise backward error (2.2). (b) Performance (GFLOPS).

Figure 2. Accuracy and performance of Algorithms 3.1 and 4.1 for diagonally dominant
matrices. The panel size is 7 = 256.

4.3 Numerical experiments with Algorithm 4.1

Figure 2a shows that our new Algorithm 4.1 is indeed more accurate than
Algorithm 3.1 with u = 3¢, reducing the error by about an order of magnitude
for large n. Moreover, Figure 2b shows that this accuracy improvement is
accompanied by a significant performance boost. Indeed Algorithm 4.1 achieves a
peak performance of 46 TFLOPS, instead of 26 TFLOPS for Algorithm 3.1 with
u = ugzo. This improved performance is explained by two reasons. First, storing
the matrix in fp16 instead of fp32 not only halves the memory footprint, but also
significantly reduces data movement, which in turn improves performance. In fact,
Algorithm 3.1 with u = uyg is itself faster than with w = uzs (achieving a peak
performance of 40 TFLOPS). Second, a left-looking factorization involves matrix—
matrix products with different shapes than those of a right-looking factorization,
that lead to a higher FLOPS rate for large matrices.

Despite these positive results, Figure 2a also shows that Algorithm 4.1 is not
able to fully recover the same accuracy as Algorithm 3.1 (which stores the matrix
in fp32), with an error about an order of magnitude larger. This is explained by
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the term max(ruig, nuge) in the error bound of Algorithm 4.1. For matrix sizes
n such that ru;g dominates over nuss, the ratio between the dominant terms
in the error bounds of Algorithm 4.1 and Algorithm 3.1 with u = ugs is thus
ruie/(2u16 + nus2), which can be as large as r/2. In the experiments of Figure 2,
we have used a panel size r = 256, so that nugs > ruig for n 2 2.1 x 105. The
available memory on a single GPU device limits the size n that we can test to
n~5 x 10%, so we are clearly in the regime where the rui term dominates.

We also note that, due to statistical effects in the rounding errors, probabilistic
analyses [12], [13], [14] have shown that constants depending on the problem
dimensions can usually be replaced by their square root to obtain more realistic
bounds. The smallest n such that the term +/nuss dominates over the term
V/Tugg is even larger and equal to about 1.7 x 10'%, which is about three orders
of magnitude larger than the largest linear system ever solved by the TOP500
ranking as of June 2022.

It is therefore clear that the term limiting the accuracy of Algorithm 4.1 for
practical values of n is the term ru14, which comes from the panel factorization
(lines 14 to 18). In the next section we turn our attention to this step and
investigate how to perform it more accurately.

5 Mixed precision algorithms for the panel factorization

We first present in section 5.1 a simple modification of Algorithm 4.1 which
performs the panel factorization entirely in fp32 arithmetic (Algorithm 5.1). We
show that this is enough to recover almost the same accuracy as Algorithm 3.1
with fp32 LU factors, but at the price of lesser performance. Therefore, we then
propose in section 5.2 a doubly partitioned factorization algorithm that exploits
GPU tensor cores in the panel factorization in order to achieve both high accuracy
and high performance (Algorithm 5.2).

5.1 Mixed precision LU factorization with fp32 panel factorization

Algorithm 4.1 can be easily modified to perform the panel factorizations in fp32:
it suffices to convert the panels back to fp16 after the panel factorization, instead
of before. The fp32 buffer in which we accumulate the updates is thus also used
for the panel factorization. The resulting algorithm is described in Algorithm 5.1,
where the conversion that has been moved is highlighted.

Theorem 3. Backward error bound for Algorithm 5.1. Let A € R™*"™ be
partitioned in r x r blocks. If Algorithm 5.1 runs to completion, the computed

LU factors LandU satisfy A+ AA = ff], where
|AA| < usg|Al + f(n, 7,16, us2) (1 + we)|A| + [L]|U]), (5.1)

with

f(n,r, e, use) = maX(szs—zlﬂa 2u16 + uig + 772 (1 + ue)?).
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Algorithm 5.1 A modified version of Algorithm 4.1 that computes the panel
factorization in fp32 instead of fp16.

1: Input: a matrix A € R™*™ in precision w6, partitioned into r x r blocks A;;,
where ¢ = n/r is assumed to be an integer.
2: Output: the LU factors of A in precision u1s (with L and U partitioned into
r X r blocks).
3: for k=1:¢qdo
fori=Fk: qdo
Convert By  fl3a(Aig)-
if ¢ 7é k then Convert By + ﬂ32 (Akz)
for j=1:k—1do o
Update B;, < B, — L;;Uji using tensor cores.
if ¢ # k then Update By; < By — Ekjﬁj,» using tensor cores.
10: end for

© ® N>R

11: end for

12: Factorize LUy = Byk (in precision uss).

13: fori=k-+1:qdo

14: Solve L;; Ui = By for Ly (in precision ugs).
15: Solve LyxUy; = By; for Uy; (in precision ugs).
16: end for

17: fori=Fk: qdo

18: Convert flk — fllG(Lik)-

19: Convert ﬁki — fllG(Um)

20: end for

21: end for

Proof. Algorithm 5.1 requires the input matrix A to be in precision u;s so we
must first account for this conversion: let A = fl;5(A) = A+ E, with |E| < uyg]A|.
We now apply the algorithm to A. The (i, k) block of the L factor is computed
on line 14 by solving

k-1
LixUsk = Rir,  Rip = Ag — Zzijﬁjka i >k,
=1

where ﬁkk is the computed Uy in precision fp32, and EU ﬁjk are the computed

LU factors converted to fpl6. By Lemma 1, the computed }A%ik satisfies, since
k<q,

k—1
I o
R — Rl <282, (|Aik| s |Lij||Ujk). (5.2)

j=1

Prepared using sagej.cls



17

Unlike in Algorithm 4.1, Ry, is now in fp32, and so by [10, Thm. 8.5], the computed
L;;. satisfies
\LiwUri, — Ri| < 7P| L] | U |- (5.3)

We then convert E,-k back to fp16 (line 18), obtaining Lik =Tflig (Eik) = Ezk + Fig,
with |Fix| < uig|Lix| (using the alternative form [10, Eq. (2.5)] of the model
of floating-point arithmetic to have |L;;| rather than |sz| on the right-hand
side). Slmllarly the conversion of Ukk (line 19) yields Ukk = Ukk + Fyp, with
|Fkk| < Ulﬁ‘Ukk| Replacing sz by L;r — F; and Ukk by Ukk — Fyp in (5 3) yields

|f/ik[7kk - zk\ < (2U16 + ulg + 7(32)(1 + U16)2)|Ezk||ﬁkk| (5.4)

Combining (5.4) with (5.2), we conclude that for ¢ > k,
~ k ~ ~ o~ o~ ~ ~
Air = > LijUjk| < |Rix — Rix| + | Rix — Lix Ui,
j=1

k
< s vaa) (17l + 3 EalOnl). 65
j=1
where f(n,r, uig, usz) = max(%(i 2+1, 2ui6 + ulg + 7(3 )(1 +u16)?). In a similar
way, the inequality (5.5) can be shown to hold for ¢ < k and i = k. We have thus
proved A+ AA = LU with

|AAV| < f(?’l, T, U16, u32)(|"’4v| + ‘EHﬁ')
Replacing A by A 4 E yields the bound on |AA| and concludes the proof.

Theorem 3 shows that carrying out the panel factorization in fp32 arithmetic
drops from the error bound (5.1) any term proportional to the panel size r times
the fp16 unit roundoff u16. For matrix sizes n such that the term ru;4 dominates
over nuzy (which, as discussed in the previous section, covers most practical values
of n), Algorithm 5.1 therefore achieves an error bound roughly r times smaller
than Algorithm 4.1.

We now assess experimentally the accuracy and performance of Algorithm 5.1 in
Figure 3. We see that Algorithm 5.1 is indeed more accurate than Algorithm 4.1,
up to about an order of magnitude in some cases. This confirms that the
precision of the panel factorization is indeed the limiting factor for the accuracy
of Algorithm 4.1. There still remains a small gap of about a factor three between
the errors of Algorithms 5.1 and 3.1 with u = uzy. This small gap is not fully
explained by the theoretical error bounds. A possible explanation may be that
Algorithm 3.1 with v = ugs does not need to convert the initial matrix A nor the
diagonal blocks of its LU factors Lgi and Ugg.
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(a) Componentwise backward error (2.2). (b) Performance (GFLOPS).

Figure 3. Accuracy and performance of Algorithms 3.1, 4.1 and 5.1 for diagonally
dominant matrices. The panel size is 7 = 256.

While the accuracy of Algorithm 5.1 is therefore more or less satisfactory,
the same cannot be said about its performance. Indeed, Figure 3b shows that
switching the panel factorization precision from fp16 to fp32 may have a significant
impact on the performance. For large n, the FLOPS rate may decrease by up to
20%.

This observation motivates the idea of exploiting the tensor cores not only in
the update operations, but also in the panel factorization.

5.2 Doubly partitioned algorithm that exploits GPU tensor cores in the
panel factorization

To our knowledge, all previous works on mixed precision LU factorization
algorithms exploiting GPU tensor cores only used them in the updates, but not
in the panel factorizations.

For example, Haidar et al. [3] explain this design choice with two reasons. First,
the panel factorizations are said to occupy only “a small portion of the total
time” [3, p. 3]; while that is usually true for monoprecision LU factorizations,
the performance experiments shown in Figure 3b show that this is not the case in
mixed precision arithmetic. Indeed, when the update operation is accelerated with
tensor cores, the relative cost of the panel factorization becomes more important
and cannot be neglected any more. The second reason given by [3] not to exploit
tensor cores in the panel factorizations is that these operations are “numerically
sensitive” [3, p. 4]. However, using a doubly partitioned matrix, the panel
factorizations are nothing else than partitioned LU factorizations themselves, so
it stands that we can recursively benefit from tensor cores without endangering
the stability of the algorithm. Our numerical experiments will in fact show that
exploiting the tensor cores within the panel factorizations is numerically harmless.
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As described in section 2.2, tensor cores operate on matrices of dimensions
4 x 4. Therefore, in order to exploit tensor cores within the panel factorizations,
a natural strategy is to partition again these panels, just as LAPACK’s dgetrf
routine [7]. The matrix is thus doubly partitioned into outer panels of size r,
themselves partitioned into inner panels of size s. The panel factorizations then
amount to a sequence of (inner) panel factorizations and updates (of the trailing
outer panel), where the latter can be accelerated with tensor cores, provided that
s >4 (and for practical reasons, s should preferably be a multiple of 4).

The resulting algorithm is described in Algorithm 5.2, which is a modified
version of Algorithm 4.1 where the panel factorization (lines 14 to 18) has been
replaced by a PanelFactor algorithm that exploits tensor cores. Since the role
of PanelFactor is simply to compute a partitioned LU factorization, any of
the previously presented algorithms can be used, such as Algorithms 3.1, 4.1,
or 5.1. (Strictly, these algorithms must be modified since they perform the LU
factorization of a square matrix, whereas the panels are rectangular, but this
modification is trivial: it suffices to stop the main loop on k at r/s instead of

Algorithm 5.2 A doubly partitioned LU factorization algorithm that exploits
tensor cores in both the updates and panel factorizations.

1: Input: a matrix A € R™™" in precision ujg, doubly partitioned into r x r
blocks A;;, themselves partitioned into s x s blocks, where ¢ = n/r and r/s
are assumed to be integers, and a partitioned LU factorization algorithm
PanelFactor (that potentially exploits tensor cores).

2: Output: the LU factors of A in precision u1¢ (with L and U partitioned into
r X r blocks).

3: for k=1:¢qdo

4: for i = k: g do

5: Convert to fp32: By = flza(Aix).

6: if ¢ # k then Convert to fp32: By, < flsa(Ax).

7 for j=1:k—1do

8: Update B;i < B, — L;;Uji using tensor cores.

9: if ¢ # k then Update By; < By — Li;U;; using tensor cores.
10: end for

11: end for

12: If necessary, convert B; and By, ¢ = k: ¢, to fpl6.

13: Compute the LU factors L;; and Uy;, ¢ = k: g, using PanelFactor.
14: If necessary, convert L;; and Uy;, i = k: q, to fpl6.

15: end for

Theorem 4. Backward error bound for Algorithm 5.2. Let A € R™*"™ be doubly
partitioned in r X r blocks themselves partitioned in s X s blocks. If Algorithm 5.2
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Table 2. Dominant term in the expression of g and f in the error bound (5.6) of
Algorithm 5.2, depending on the PanelFactor algorithm.

PanelFactor Un  Uout 9g(r,s,uis, us2) f(n,r, s, u16, us2)
Alg. 2.1 (U, = u16) ug 0 rU16 rUle + NU32

Alg 2.1 (u = U32) 0 U6 rU32 2u16 + nuss

Alg 3.1 (’LL = u16) U1le 0 TU16/4 T’U16/4 + nuss2
Alg. 3.1 (u = ’LL32) 0 0 2u16 + TU32 2u16 + nuszs

Alg. 4.1 ug O max(uig + Tuge, SU1g) Suig + nuss

Alg. 5.1 ug 0O max(russ, 2u1g + Sugz)  2u1s + Nuse

runs to completion, the computed LU factors L and U satisfy A+ AA = Eﬁ,
where

|AA| < urg Al + f(n,r,s,u16,uz2) (1 + wie)|A] + |L||U]), (5.6)
with

~ 32 ~ 32
f(m r, s, U6, U32) = max (Uin + %(L—r)url + uin')/il_?)u,_l»

Q(Ta S, U16, U32>(1 + aOut)2 + 2aOut + a(2)ut)7 (57)

where g(r, s,u16,us2) depends on the panel factorization algorithm PanelFactor
(see Table 2), where Uiy, = uig or Uy = 0 depending on whether PanelFactor
takes fp32 or fpl6 input, respectively, and Uoyy = U1 OT Uouy = 0 depending on
whether it returns fp32 or fp16 output, respectively.

Proof. The proof is derived by generalizing the proofs of Theorems 2 and 3 to
a general panel factorization algorithm PanelFactor. In the proof of Theorem 2,
(4.9) holds with w16 replaced by uiy,, since the conversion of R;j is not needed
if PanelFactor takes fp32 input, and (4.10) holds with '77(~16) replaced by
g(r, 8,u16, u32), whose value depends on PanelFactor and is given in Table 2.
Finally, if PanelFactor returns fp32 output, the conversion of its output to fp16
must be accounted for, as done in the proof of Theorem 3, where (5.4) holds with
u16 replaced by Uoys.-

Theorem 4 generalizes both Theorems 2 and 3 to mixed precision LU
factorization with an arbitrary panel factorization algorithm PanelFactor.
Table 2 analyzes six possible choices for PanelFactor. For the first two options,
Algorithm 2.1 in precision u is used, which does not exploit tensor cores; in this
case Algorithm 5.2 reduces to either Algorithm 4.1 (u = u¢) or Algorithm 5.1
(u = ugz). The third option, Algorithm 3.1 with u = ujg, is not very interesting
since the error bound still exhibits a term proportional to ruig. The last three
options are the most attractive ones, since they all achieve a bound whose term
proportional to w1 is independent of the outer panel size 7.
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(a) Componentwise backward error (2.2). (b) Performance (GFLOPS).

Figure 4. Accuracy and performance of Algorithm 5.2 with PanelFactor 4.1 or
PanelFactor 5.1, compared with Algorithm 3.1 with u = us2 or u = ui¢, for diagonally
dominant matrices. The panel size is r = 256 and inner panel size s = 8.

In Figure 4, we compare the accuracy and performance of the last two options
of Table 2), that is, Algorithms 4.1 or 5.1 as PanelFactor, with Algorithm 3.1
with © = ugg or u = uys.

e Figure 4a shows that Algorithm 5.2 with Algorithm 5.1 as PanelFactor

achieves high accuracy, similar to that of Algorithm 5.1 in Figure 3a
and almost comparable to Algorithm 3.1 with w = uzy. Moreover,
Figure 4b shows that it also achieves high performance, peaking at around
47 TFLOPS, which is slightly better than the 43 TFLOPS performance
of Algorithm 5.1 (shown in Figure 3b) and almost twice better than the
26 TFLOPS of Algorithm 3.1 with u = uss.

As for Algorithm 5.2 with Algorithm 4.1 as PanelFactor, Figure 4a
shows that it achieves a lesser accuracy than with Algorithm 5.1 as
PanelFactor. Its accuracy is similar to that of Algorithm 4.1 (shown in
Figure 3a), even though the theoretical error bounds suggests it should
be a factor r/s smaller. In any case, it remain significantly more accurate
than Algorithm 3.1 with v = uj6. Figure 4b also shows that this algorithm
achieves the highest performance of all variants considered in this article,
peaking at around 56 TFLOPS, which is significantly better than the
46 TFLOPS of Algorithm 4.1 (shown in Figure 3b) and the 40 TFLOPS
of Algorithm 3.1 with v = uyg.

To summarize, comparing Figures 3 and 4 shows that we have obtained two
variants of Algorithm 5.2 (with different PanelFactor) that achieve similar
accuracy to Algorithms 4.1 and 5.1, respectively, but significantly outperform
them. This confirms that exploiting tensor cores in the panel factorizations allows
to achieve the best performance—accuracy tradeoff. Moreover, Figure 4 also shows
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that Algorithm 5.2 achieves a much better tradeoff than Algorithm 3.1, since it
can be both faster and more accurate. Finally, there is no clear winner between
the two choices of PanelFactor algorithm, since they each achieve a different
compromise between performance and accuracy.

We make one final comment. In general the inner panel size s can be larger than
the size of the block FMA t = 4. Therefore, we could further partition the inner
panel into smaller panels of size t, obtaining a triply partitioned matrix overall.
This could be useful in the cases where PanelFactor factorizes the inner panel in
fp16 arithmetic, such as Algorithm 4.1, because it would reduce the error bound
su16 + nuge (penultimate row of Table 2) to tuig + nuss. In the experiments of
Figure 4, we have set the inner panel size to s = 8 (which we have observed to
be the optimal value in terms of speed), so in our case the improvement of the
error bound does not seem worth seeking, but different environments (much larger
matrix, different block FMA unit) could lead to a different conclusion.

6 Numerical experiments on a range of matrices

In this section we compare four mixed precision LU factorization algorithms on a
range of matrices coming from various applications: two versions of Algorithm 3.1
(with v = uss and u = uy6), and two versions of Algorithm 5.2 (with either
Algorithm 4.1 or Algorithm 5.1 as PanelFactor).

6.1 Matrices from Fasi and Higham [15]

We first test our algorithms with the matrix generator proposed by Fasi and
Higham [15], which was specially designed for the HPL-AT benchmark: it generates
random unsymmetric matrices with no need for pivoting, and both the matrix
dimension n and its condition number x(A) can be freely chosen.

In Figure 5 we plot the backward error for increasing values of n and for
k(A) = 10%. We have observed results with other values of x(A) (not shown)
to be similar. We also do not plot the performance, which does not depend
on the matrix values and is therefore identical to Figure 4b. The behavior of
the four algorithms on these matrices is similar to the one previously analyzed:
Algorithm 5.2 achieves a significantly improved performance—accuracy tradeoff
compared with Algorithm 3.1.

6.2 Matrices from SuiteSparse [9]

We now test our algorithms on some real-life matrices taken from the SuiteSparse
collection? [9]. Although these matrices are sparse, we treat them as dense for the
purpose of our study. Note that most of these matrices are ill conditioned: ten ouf
of the fifteen matrices have a condition number greater than 10°, with one as large
as 10%°. These matrices are therefore at risk of becoming singular when converted

thttps://sparse.tamu.edu/
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Figure 5. Componentwise backward error (2.2) for matrices generated with the Fasi and
Higham [15] generator, with x(A) = 10,

to half precision. In order to reduce the chance of that happening, we preprocess
them using row and column scaling techniques as suggested in [16]. As a result,
we were able to successfully factorize most of the test matrices. Nevertheless, for
some matrices, the LU factorization failed and/or produced singular LU factors
for some of the algorithms considered (indicated by a “—” in the table).

We compare the accuracy and performance of the four algorithms in Table 3.
Algorithm 3.1 with w = uzo is the most accurate of all four, but it is also the
only algorithm that requires the matrix to be stored in fp32. Algorithm 3.1 with
u = u1g is the least accurate of all four. For these matrices, the error increase
remains less than about an order of magnitude, but this is a still significant loss of
accuracy. Most importantly, Algorithm 5.2 achieves a much better performance—
accuracy tradeoff than Algorithm 3.1 with v = u;4. Indeed, when Algorithm 5.1 is
used as PanelFactor, Algorithm 5.2 achieves a similar performance but a better
accuracy than Algorithm 3.1 with w = u14. Conversely, when Algorithm 4.1 is
used as PanelFactor, then Algorithm 5.2 achieves an accuracy no worse than
Algorithm 3.1 with u = uy6 (and often noticeably better), while achieving a much
higher performance.

7 Performance experiments with A100 GPUs

All the previous experiments have been performed on the Volta architecture of
the NVIDIA GPUs. In this last section, we provide some additional performance
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Table 3. Accuracy and performance of four variants of mixed precision LU factorization on
a set of SuiteSparse matrices. Algorithm 3.1 (with u = us2 or u = u16) is compared with
Algorithm 5.2 (with two choices of PanelFactor, Algorithm 4.1 or 5.1). The performance
(“perf.”) is measured in TFLOPS. The accuracy is assessed with the componentwise
backward error e,wq given by (2.2), and is scaled by 10%.

Alg. 3.1 Alg. 5.2 with PanelFactor. ..
U = U32 U= Uie Alg. 4.1 Alg. 5.1
Matrix n €bwd perf. | ebwa perf. | ebwa perf. | €bwd perf.
gyro 17,361 0.4 16.4 4.5 22.8 3.9 28.2 2.2 18.7
FEM_3D_thermall 17,880 0.4 16.9 4.0 24.9 3.7 27.4 2.4 18.9
Goodwin_040 17,922 0.8 17.0 3.0 24.6 1.7 28.0 0.9 19.5
nmos3 18,588 2.5 16.9 — — 3.7 29.8 3.3 20.6
crystm03 24,696 0.5 20.3 3.4 29.4 2.9 37.2 2.7 27.3
smt 25,710 0.4 20.2 2.2 30.3 1.1 37.8 0.8 28.3
sme3Db 29,067 | 0.4 21.8 5.4 32.0 2.0 40.4 1.2 30.7
ship_001 29,736 3.2 23.0 — — — — 2.6 35.9
nd12k 36,000 0.9 23.6 5.3 35.9 4.8 46.7 2.8 37.0
pdblHYS 36,417 | 0.3 23.2 5.0 35.3 4.0 46.5 1.4 37.0
wathen120 36,441 0.7 23.7 2.9 35.8 2.7 46.5 1.9 37.0
jnlbrngl 40,000 1.2 24.9 2.8 37.1 2.8 49.5 2.4 39.6
torsionl 40,000 0.3 24.9 2.4 37.0 2.6 49.4 1.6 39.7
sme3Dc 42,930 0.5 27.0 6.4 38.7 1.6 52.6 1.3 43.9
Goodwin_071 56,021 0.7 27.3 — — 2.4 54.8 1.5 46.6

measurements on the (more recent) Ampere A100 architecture, for which the
peak performance of fpl6 arithmetic with tensor cores is 312 TFLOPS, about
2.5x higher than on V100 GPUs.

We have observed the accuracy of the LU factorization on A100 (not shown) to
be similar than on V100, so we focus here on performance only. Figure 6 plots the
performance of the same four algorithms tested in the previous section on square
matrices of order n up to 80,000. The performance of our new Algorithm 5.2
compares again favorably with respect to the state-of-the-art Algorithm 3.1, and
the results are even more positive than on V100. Algorithm 5.2 achieves up to 140
or even 170 TFLOPS (with Algorithm 5.1 or 4.1 as PanelFactor, respectively),
which is much higher than Algorithm 3.1, which peaks at 52 and 92 TFLOPS
with u = uze and u = uyg, respectively.

8 Conclusion

Modern GPUs equipped with mixed precision tensor core units can be exploited
to significantly accelerate LU factorization of dense matrices. Existing approaches
(Algorithm 3.1) however assume the matrix to be stored in {p32 precision (u =
us2), thereby preventing any memory consumption or data movement reductions
associated with the use of fpl6 arithmetic. This is explained by the fact that
naively converting the matrix to fp16 (setting u = u1g in Algorithm 3.1) leads to
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—— Alg. 3.1 (u=usy)
—— Alg. 3.1 (u=ujs)

Alg. 5.2 PanelFactor: Alg 4.1
—&— Alg. 5.2 PanelFactor: Alg 5.1
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Figure 6. Performance (GFLOPS) on NVIDIA A100 GPUs.

a significant loss of accuracy, negating the entire accuracy boost delivered by the
tensor cores (see Figure 1).

We have proposed a new mixed precision LU factorization algorithm that is
able to store the matrix in fpl6 without incurring such a significant loss of
accuracy. The first step is to switch to a left looking scheme employing fp32
buffers of controlled size to accumulate the updates (Algorithm 4.1). This is
however not sufficient, because carrying out the panel factorizations in fpl6
arithmetic introduces an error term that in practice dominates the overall error. A
possible solution is to carry out the panel factorizations in fp32 arithmetic instead
(Algorithm 5.1), but this leads to a significant performance penalty. To overcome
this issue, we propose a doubly partitioned factorization that also exploits the
tensor cores in the panel factorizations (Algorithm 5.2). This is our final algorithm,
and we show that it achieves the best performance—accuracy tradeoff of all the
variants considered.

Throughout the article, we have assessed the performance and accuracy of all
algorithms both theoretically and experimentally, by performig their rounding
error analyses in Theorems 2, 3, and 4, and by providing numerical experiments
on both random dense matrices and real life ones. Overall, we have shown on a
number of different matrices that, compared with the state of the art, our new
Algorithm 5.2 can be of similar accuracy, but requires only half the memory
footprint and volume of data movement. As a result, it is potentially much faster:
for large matrices, it achieves up to 50 TFLOPS on V100 and 170 TFLOPS on
A100, which represents a 2x and 3.5x speedup, respectively.
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We expect our algorithms and analysis to be applicable to other block FMA
units similar to GPU tensor cores. Moreover, while we have focused here on using
a single GPU unit, we expect our conclusions to remain relevant in a distributed
environment with multiple GPUs.

In future work, we would like to investigate how the different algorithms
analyzed in this article impact the convergence of iterative refinement [1, 2] or
other similar iterative methods preconditioned by LU factorization. It would also
be worth investigating the extension of this work to other matrix factorization
algorithms, in particular QR factorization. Indeed, to our knowledge, existing
mixed precision QR algorithms [17], [18] also assume the matrix to be stored in
fp32 precision; the ideas proposed here could be extended so as to store them in
fp16.
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