
HAL Id: hal-02937325
https://hal.science/hal-02937325v1

Preprint submitted on 13 Sep 2020 (v1), last revised 28 Sep 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed Precision LU Factorization on GPU Tensor
Cores: Reducing Data Movement and Memory Footprint

Florent Lopez, Théo Mary

To cite this version:
Florent Lopez, Théo Mary. Mixed Precision LU Factorization on GPU Tensor Cores: Reducing Data
Movement and Memory Footprint. 2020. �hal-02937325v1�

https://hal.science/hal-02937325v1
https://hal.archives-ouvertes.fr


MIXED PRECISION LU FACTORIZATION ON GPU TENSOR CORES:
REDUCING DATA MOVEMENT AND MEMORY FOOTPRINT∗

FLORENT LOPEZ† AND THEO MARY‡

Abstract. Modern GPUs equipped with mixed precision tensor core units present great poten-
tial to accelerate dense linear algebra operations such as LU factorization. However, previous works
have focused solely on improving speed, neglecting memory consumption. Indeed, state-of-the-art
mixed half/single precision LU factorization algorithms all require the matrix to be stored in single
precision. This is explained by the fact that simply switching the storage precision from single to half
leads to significant loss of accuracy, forfeiting all accuracy benefits from using tensor core technology.
In this article, we propose a new factorization algorithm that is able to store the matrix in half
precision without incurring any significant loss of accuracy. Our approach is based on a left-looking
scheme employing single precision buffers of controlled size and a mixed precision doubly partitioned
algorithm exploiting tensor cores in the panel factorizations. Our numerical results show that com-
pared with the state of the art, the proposed approach is of similar accuracy, up to twice faster, and
with only half the data movement and memory footprint.

Key words. numerical linear algebra, mixed precision algorithms, high performance computing,
LU factorization, tensor cores, NVIDIA GPU, rounding error analysis

AMS subject classifications. 65F05, 65G50

1. Introduction. Until recently, the majority of scientific codes used to carry
out floating-point computations in either double (fp64) or single (fp32) precision,
as defined by the 1985 IEEE standard. The emergence of low precisions, such as
the half precision fp16 and bfloat16 formats, have generated a growing interest in
mixed precision algorithms, which combine different precisions to achieve both high
performance and high accuracy. Indeed, the use of mixed precision arithmetic is
becoming increasingly common in scientific computing, both in algorithms and in
hardware, with the emergence of specialized units that exploit multiple precisions
internally. Examples of such units include the NVIDIA GPUs equipped with tensor
cores, the Google TPUs and the forthcoming Intel Cooper Lake processors.

This article focuses on the direct solution of dense linear systems Ax = b by LU
factorization, a key computational task at the heart of numerical linear algebra. The
high potential of mixed precision arithmetic for solving linear systems is well estab-
lished. For example, with the most recent variants of iterative refinement proposed by
Carson and Higham [4], [5], an fp16 LU factorization of A may be enough to obtain
a solution x at fp64 accuracy, even for relatively ill-conditioned matrices. Another
approach to exploit multiple precisions in the solution of Ax = b is to use a mixed pre-
cision algorithm for the LU factorization itself. This is most natural when targeting
hardware equipped with mixed precision computing units, such as those previously
mentioned. In particular, Haidar et al. [10], [9] and Blanchard et al. [3] have investi-
gated mixed precision LU factorization algorithms exploiting GPU tensor cores that
employ fp16 and fp32 precisions. Moreover, a mixed precision LU factorization can
be combined with iterative refinement to accelerate the convergence of the latter [10].

In this article, we propose new mixed precision LU factorization algorithms that
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extend and improve previous algorithms in several ways, in terms of speed, accuracy,
and, perhaps most importantly, data movement and memory footprint. Indeed, previ-
ously proposed algorithms require the matrix A to be entirely stored in fp32, thereby
forfeiting any potential gains in memory consumption associated with the use of the
lower fp16 precision, and requiring expensive data movements in fp32. We propose,
to our knowledge, the first mixed precision algorithm based on GPU tensor cores that
is able to accurately factorize a matrix stored in fp16. Our algorithm only requires
fp32 buffers of modest and controlled size. We explain why this is not immediate:
simply switching the storage precision from fp32 to fp16 leads to a significant loss of
accuracy. Our algorithm uses a left-looking update scheme to overcome this issue.
We also investigate in what precision the panel factorizations should be carried out;
we show that the approach achieving the best performance–accuracy tradeoff is to use
two levels of partitioning so as to exploit tensor cores both in the updates and in the
outer panel factorizations.

Throughout the article, we explore several variants of mixed precision LU fac-
torization, and investigate their performance and accuracy, both via rounding error
analysis (generalizing that of [3]) and via numerical experiments on random dense
matrices using NVIDIA V100 GPUs. Overall, the best variant of our new algo-
rithm achieves a better performance–accuracy tradeoff than previous state-of-the-art
algorithms by being of similar accuracy, up to twice faster thanks to reduced data
movement, and by having only half the memory footprint. We have made our code
publicly available1.

The rest of this article is organized as follows. We begin by providing technical
background and by describing our experimental setting in section 2. We also review
previous work and explain how we aim to improve it in section 3. Our core algorithmic
contributions are found in sections 4 and 5. In section 4 we describe a left-looking
mixed precision algorithm that factorizes a matrix stored in fp16 without losing all the
accuracy benefits of tensor cores. In section 5 we investigate the choice of precision
for the panel factorization. We provide additional experiments on a range of real-life
matrices coming from various applications in section 6. Our conclusions are reported
in section 7.

Throughout the article, we will denote by fl16 and fl32 the operations of rounding
to the fp16 and fp32 formats, and by u16 = 2−11 and u32 = 2−24 their respective unit
roundoffs.

2. Technical background and experimental setting. We provide some tech-
nical background on partitioned LU factorization and GPU tensor cores, and describe
our experimental setting used throughout the article.

2.1. Partitioned LU factorization. High performance LU factorization algo-
rithms are based on partitioning the matrix in r × r blocks so as to recast most of
the operations as matrix–matrix (BLAS-3) operations. Given such a partitioning,
the LU factorization amounts to performing a sequence of panel factorizations and
updates. At each step k, the panel factorization computes the part of the LU factors
associated with the current panel, while the update overwrites the trailing submatrix
via matrix–matrix products.

We can distinguish two types of algorithms, right- and left-looking versions, de-
pending on the order in which the operations are performed. In a right-looking fac-
torization (Algorithm 2.1), at step k, the entire trailing submatrix (to the right) is

1https://github.com/flipflapflop/remifa/
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updated with respect to the current panel after factorizing it. In a left-looking fac-
torization (Algorithm 2.2), at step k, the current panel is updated with respect to the
already computed LU factors (to the left) before being factorized.

Algorithm 2.1 Standard (uniform precision) LU factorization (right-looking ver-
sion).

1: Input: a matrix A ∈ Rn×n in precision u, partitioned into r×r blocks Aij , where
q = n/r is assumed to be an integer.

2: Output: the LU factors of A in precision u (with L and U partitioned into r× r
blocks).

3: for k = 1: q do
4: Factorize LkkUkk = Akk.
5: for i = k + 1: q do
6: Solve LikUkk = Aik for Lik.
7: Solve LkkUki = Aki for Uki.
8: end for
9: for i = k + 1: q do

10: for j = k + 1: q do
11: Update Aij ← Aij − LikUkj .
12: end for
13: end for
14: end for

Algorithm 2.2 Standard (uniform precision) LU factorization (left-looking version).

1: Input: a matrix A ∈ Rn×n in precision u, partitioned into r×r blocks Aij , where
q = n/r is assumed to be an integer.

2: Output: the LU factors of A in precision u (with L and U partitioned into r× r
blocks).

3: for k = 1: q do
4: for i = k : q do
5: for j = 1: k − 1 do
6: Update Aik ← Aik − LijUjk.
7: if i 6= k then Update Aki ← Aki − LkjUji.
8: end for
9: end for

10: Factorize LkkUkk = Akk.
11: for i = k + 1: q do
12: Solve LikUkk = Aik for Lik.
13: Solve LkkUki = Aki for Uki.
14: end for
15: end for

To achieve maximal performance, the matrix can be recursively partitioned so
as to also exploit BLAS-3 operations within the panel factorization [8]. For example,
LAPACK’s dgetrf [1] uses two levels of partitioning. Algorithms 5.1 and 5.2, proposed
in section 5 are based on LAPACK’s algorithm and also use two levels.

2.2. GPU tensor cores. The tensor cores in the NVIDIA Volta and Turing
architectures are a special type of unit that carry out the operation D = C + AB,
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where all matrices are 4×4 [2]. The tensor cores are inherently mixed precision units:
while the matrices A and B must be stored in fp16, C and D can be in fp16 or fp32.
Pictorially, we have

D = C + A B.
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16 or fp32

=


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16 or fp32

+


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16

Tensor cores are an instance of what has been called a t× t block fused multiply-
add (with t = 4) by Blanchard et al. [3]. In the context of both matrix multiplication
and LU factorization, Blanchard et al. [3] show that storing C and D in fp32 (the
so-called TC32 variant) yields much more accurate results than storing them in fp16
(the so-called TC16 variant). This is because with C and D in fp32, rounding error
accumulation only affects the error term proportional to the fp32 unit roundoff u32.
For example, consider the matrix product C = AB where A ∈ Rm×n and B ∈ Rn×p.
Blanchard et al. [3, Alg. 3.1] propose a blocked matrix–matrix product algorithm
that can compute C using tensor cores, and [3, Thm. 3.2] shows that the computed

Ĉ satisfies:

|Ĉ − C| . cn|A||B|, cn =

{
nu16 (TC16),

2u16 + nu32 (TC32).
(2.1)

Furthermore, Blanchard et al. [3] also report that the TC16 and TC32 variants achieve
similar performance.

2.3. Experimental setting. We use a range of different test matrices in our
experiments. In sections 3 through 5, we use n×n dense matrices with off-diagonal en-
tries randomly sampled from the uniform [0, 1] distribution and with diagonal entries
set to n (to make them diagonally dominant, similarly to what is done in the HPL-
AI benchmark2). In section 6, we provide additional experiments on some real-life
matrices from the SuiteSparse collection [7].

Our code (which is publicly available3) implements the various LU factorization
algorithms presented in this article for the NVIDIA Volta GPU architecture. In the
same spirit as the HPL-AI benchmark, we do not perform any numerical pivoting. We
use a single V100 GPU unit equipped with 16 GB of memory and with a peak per-
formance of 7.8 and 15.7 TeraFLOPS using double (fp64) and single (fp32) precision
arithmetic. With the tensor cores, the peak performance increases to 125 TeraFLOPS.
We use the cuBLAS v10.1 library for the matrix–matrix product operations in the
updates, and hand-coded CUDA kernel for the panel factorizations.

We assess the stability of the different LU factorization algorithms by using them
to solve a linear system Ax = b by the substitutions L̂y = b and Ûx = y, where L̂
and Û are the computed LU factors of A. The substitutions are performed in fp32.
We generate the solution x as the vector of ones [1 . . . 1]T , and thus the right-hand
side is computed as b = Ax. Denoting the computed solution as x̂, we measure the

2https://icl.bitbucket.io/hpl-ai/
3https://github.com/flipflapflop/remifa/
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componentwise backward error

εbwd = min
{
ε > 0 : (A+ ∆A)x̂ = b, |∆A| ≤ ε(|A|+ |L̂||Û |)

}
= max

i

|Ax̂− b|i
((|A|+ |L̂||Û |)|x̂|)i

, (2.2)

where (2.2) follows from the Oettli–Prager theorem [11, Thm. 7.3], [16].

3. Contributions with respect to previous work. To our knowledge, the
first LU factorization algorithm exploiting GPU tensor cores is that of Haidar et
al. [10], that is shown to accelerate the solution of dense linear systems in the context of
GMRES-based iterative refinement [4]. Their algorithm is a right-looking factorization
where the tensor cores are exploited to accelerate the update operations. To do so, it
suffices to convert to fp16 the LU factors computed by the panel factorization on the
fly. This is described in Algorithm 3.1, where the highlighted lines correspond to the
changes that need to be made to the standard LU factorization (Algorithm 2.1).

Algorithm 3.1 State-of-the-art mixed precision LU factorization from [10, 3].

1: Input: a matrix A ∈ Rn×n in precision u = u32 or u = u16, partitioned into r× r
blocks Aij , where q = n/r is assumed to be an integer.

2: Output: the LU factors of A in precision u (with L and U partitioned into r× r
blocks).

3: for k = 1: q do
4: Factorize LkkUkk = Akk (in precision u).
5: for i = k + 1: q do
6: Solve LikUkk = Aik for Lik (in precision u).
7: Solve LkkUki = Aki for Uki (in precision u).
8: end for
9: for i = k + 1: q do

10: for j = k + 1: q do

11: Convert to fp16: L̃ik ← f l16(Lik).

12: Convert to fp16: Ũki ← f l16(Uki).

13: Update Aij ← Aij − L̃ikŨkj using tensor cores.
14: end for
15: end for
16: end for

Blanchard et al. [3] give the rounding error analysis of Algorithm 3.1 (which is the
equivalent of their Algorithm 4.1), and show that it can be significantly more accurate
than a standard LU factorization in fp16 arithmetic (Algorithm 2.1 with u = u16).
Note that Blanchard et al. [3] assume the panel size r to match the dimension t of the
block FMA (that is, r = t = 4 in the case of GPU tensor cores), but the extension to
an arbitrary size r is straightforward.

All previously cited works share the common weakness that the matrix A is as-
sumed to be stored in fp32 (that is, Algorithm 3.1 uses u = u32). Therefore, current
state-of-the-art mixed precision LU algorithms do not achieve any memory consump-
tion gains associated with the use of half precision. This represents a significant
shortcoming since memory consumption, rather than speed, may be the most criti-
cal resource in some applications. This is especially relevant on GPUs, which have
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very limited memory. Moreover, storing the matrix in fp32 requires expensive data
movements to perform the update operations, which can significantly hinder their
performance.

Before describing the contributions of this article, let us first explain why it is so
challenging to store the matrix in fp16. To do so, we recall the main result of the
error analysis of [3], which analyses a version of Algorithm 3.1 with general t× t block
FMA units in precisions ulow and uhigh. We specialize that result to the case of GPU
tensor cores where matrices C and D in the block FMA are stored in fp32 (TC32
variant).

Theorem 3.1 (Specialization of [3, Thm. 4.3] to tensor cores). Let A ∈ Rn×n

be partitioned in r × r blocks. If Algorithm 3.1 runs to completion then the computed
LU factors L̂ and Û satisfy A+ ∆A = L̂Û , where

|∆A| ≤ f(n, r, u16, u32, u)
(
|A|+ |L̂||Û |

)
+O(u32u16), (3.1)

with

f(n, r, u16, u32, u) = 2u16 + u216 + max(γr, γ
(32)
n−r+1 + γ̃(n−r)/4)(1 + u16)2

and with ũ = u if u > u32 and ũ = 0 otherwise.

Note how Algorithm 3.1 and Theorem 3.1 allow the matrix to be stored in a
precision u that can be either u32 or u16. In their experiments, Blanchard et al. [3]
however only investigate the case u = u32, for which bound (3.1) becomes

|∆A| . (2u16 + nu32)(|A|+ |L̂||Û |). (3.2)

Crucially, the term proportional to u16 in (3.2) does not grow with n. Storing the
matrix in fp16 gives a very different result. Indeed, setting u = u16 in (3.1) yields

|∆A| . 0.25nu16(|A|+ |L̂||Û |). (3.3)

The term proportional to u16 now grows linearly with n. Hence, bound (3.3) is
roughly min(n/8, u16/4u32) = min(n/8, 2048) larger than bound (3.2). Hence, for
large n, bound (3.3) is about three orders of magnitude larger than bound (3.2).

This increase is confirmed experimentally. Figure 3.1a shows that switching from
u = u32 to u = u16 leads indeed to an error increase of about two orders of magnitude.
This is less than could be expected from the theoretical bounds, but still represents
a significant loss of accuracy. Moreover, for reference, we also compare Algorithm 3.1
with a standard LU factorization in fp16 arithmetic (Algorithm 2.1 with u = u16).
Figure 3.1a shows that, with u = u16, both Algorithms 2.1 and 3.1 achieve the same
error: any accuracy gain associated with the use of tensor cores is therefore lost by
storing the matrix in fp16.

This behavior is explained by the term γ̃(n−r)/4 in Theorem 3.1, which accounts
for the need to round the output D of the block FMA to the working precision u after
each call. With the TC32 variant, the output D is in fp32 and therefore, if u = u32
no extra rounding is necessary and this term is equal to zero. However, with u = u16,
it becomes equal to nu16/4 + o(nu16) due to the need to round to fp16 every t = 4
additions.

In this article, we introduce new algorithms that overcome this issue and are able
to use an fp16 matrix (therefore halving the memory footprint) with no significant loss
of accuracy. We begin, in the next section, by introducing a left-looking factorization
with fp32 buffers.
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(a) Componentwise backward error (2.2).
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Fig. 3.1: Accuracy and performance of Algorithm 3.1 with u = u16 or u = u32. The
panel size is r = 256.

4. A left-looking factorization using fp16 LU factors with fp32 buffers.
As explained in the previous section, using Algorithm 3.1 with the matrix stored in
fp16 (u = u16) leads to a significant loss of accuracy due to the need to repeatedly
round to fp16 every t = 4 additions. To be precise, the update operation (line 13)

Aij ← Aij − L̃ikŨkj (4.1)

takes the form of several block FMAs D ← C − AB chained one after the other.
Here, A and B are 4 × 4 subblocks of L̃ik are Ũkj , stored in fp16, and C and D are
4 × 4 subblocks of Aij , stored in precision u. In the case u = u16, the block FMA
is therefore being used with fp16 output (the so-called TC16 variant by Blanchard
et al. [3]), which has indeed been shown to be much less accurate than with an fp32
output (TC32 variant), as explained in section 2.2.

It is important to realize that this issue is therefore not intrinsic to the tensor
cores themselves, which are naturally able to handle matrix–matrix products of large
dimensions without rounding to fp16 every 4 additions (by using the TC32 variant).
The core issue lies instead with Algorithm 3.1, which forces the use of the much less
accurate TC16 variant.

In this section, we present a reformulation of the algorithm that is able to exploit
the TC32 variant instead of the TC16 one, while still storing the matrix in fp16. The
key idea is to introduce temporary fp32 buffers that we use to chain several block
FMAs by accumulate their output in fp32. That is, we replace the updates

Aij ← Aij − L̃ikŨkj , for k = 1: min(i, j)− 1, (4.2)

by

Bij = fl32(Aij), (4.3a)

Bij ← Bij − L̃ikŨkj , for k = 1: min(i, j)− 1, (4.3b)

Aij ← f l16(Bij). (4.3c)

Whereas (4.2) forces the use of the TC16 variant, (4.3) allows for the use of the TC32
variant.
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Unfortunately, simply replacing (4.2) by (4.3) is not satisfying: while this is likely
to recover a good accuracy, it requires an fp32 buffer of the same dimensions as the
trailing submatrix, which contains (n− kr)2 entries at step k. Therefore, at the early
steps, this buffer consists of almost the entire matrix, and so this approach does not
achieve a significant memory gain compared with Algorithm 3.1 with u = u32 (which
requires n2 fp32 entries).

The key to overcome this issue is to switch from a right-looking algorithm to a
left-looking one. Indeed, as explained in section 2.1, in a left-looking factorization, all
the updates associated with a given block Aij are performed together one after the
other. Therefore, we only need the fp32 buffer Bij for a short period of time, and so
we can reuse the same buffer to update different blocks. We present in Algorithm 4.1
a new mixed precision left-looking LU factorization algorithm, where the highlighted
lines correspond to the changes that need to be made to the standard left-looking LU
factorization (Algorithm 2.2).

Algorithm 4.1 A new left-looking mixed precision LU factorization.

1: Input: a matrix A ∈ Rn×n in precision u16, partitioned into r × r blocks Aij ,
where q = n/r is assumed to be an integer.

2: Output: the LU factors of A in precision u16 (with L and U partitioned into
r × r blocks).

3: for k = 1: q do
4: for i = k : q do

5: Convert to fp32: Bik = fl32(Aik).

6: if i 6= k then Convert to fp32: Bki ← f l32(Aki).

7: for j = 1: k − 1 do
8: Update Bik ← Bik − LijUjk using tensor cores.

9: if i 6= k then Update Bki ← Bki − LkjUji using tensor cores.
10: end for
11: Convert back to fp16: Aik ← f l16(Bik).

12: if i 6= k then Convert back to fp16: Aki ← f l16(Bki).

13: end for
14: Factorize LkkUkk = Akk (in precision u16).
15: for i = k + 1: q do
16: Solve LikUkk = Aik for Lik (in precision u16).
17: Solve LkkUki = Aki for Uki (in precision u16).
18: end for
19: end for

There is some freedom in the choice of the fp32 buffer size. The absolute minimum
buffer size we need is only of t2 = 16 entries, because we technically could update each
r×r block Aij one 4×4 subblock at a time. However, it is desirable to update multiple
r × r blocks at the same time to achieve increased parallelism and performance. In
our GPU implementation of Algorithm 4.1, we use a buffer of the same dimension as
either the L or U part of the current panel at step k (that is, a buffer formed of either
all blocks Aik for i = k : q or all blocks Aki for i = k+ 1: q). The algorithm therefore
requires an fp32 buffer of at most nr entries.

We note that, at step k of Algorithm 4.1, we update both the L part of the panel
(Aik for i = k : q) and the U part (Aki for i = k+ 1: q). This is sometimes referred to
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as a Crout factorization, as opposed to a “pure” left-looking factorization which only
updates the L part and delays the update of Aki to step i. In our context, there is no
significant difference between a Crout or a pure left-looking factorization, neither in
terms of accuracy nor memory footprint.

Since all updates are carried out by chaining block FMAs with fp32 output, we
can expect Algorithm 4.1 to be significantly more accurate than Algorithm 3.1 with
u = u16. To formally prove this result, we now perform the rounding error analysis
of Algorithm 4.1.

4.1. Rounding error analysis of Algorithm 4.1.

Lemma 4.1. Let B = A−
∑q

j=1XjYj, where A,B ∈ Rr×r are given in precision

u32 and Xj , Yj ∈ Rr×r are given in precision u16, be computed with GPU tensor cores

using the TC32 variant. The computed B̂ satisfies

|B̂ −B| ≤ γ(32)n+1

(
|A|+

q∑
j=1

|Xj ||Yj |
)
. (4.4)

Proof. This is a both a specialization and an extension of [3, Corollary 4.1]. The
result is specialized to tensor cores with the TC32 variant, for which γ = γ(32) and
γ̃FMA = 0. It is also trivially extended to general block size r possibly different from
t = 4.

Theorem 4.2 (Backward error bound for Algorithm 4.1). Let A ∈ Rn×n be
partitioned in r × r blocks. If Algorithm 4.1 runs to completion, the computed LU
factors L̂ and Û satisfy A+ ∆A = L̂Û , where

|∆A| ≤ u16|A|+ f(n, r, u16, u32)
(
(1 + u16)|A|+ |L̂||Û |

)
, (4.5)

with

f(n, r, u16, u32) = max(u16 + γ
(32)
n−r+1 + u16γ

(32)
n−r+1, γ

(16)
r ).

Proof. Algorithm 4.1 requires the input matrix A to be in precision u16 so we
must first account for this conversion: let Ã = fl16(A) = A + E, with |E| ≤ u16|A|.
We now apply the algorithm to Ã. The (i, k) block of the L factor is computed on
line 16 by solving

LikÛkk = Rik, Rik = Bik −
k−1∑
j=1

L̂ijÛjk. i > k,

where Bik = fl32(Ãik) = Ãik. By Lemma 4.1, the computed R̂ik satisfies, since k ≤ q,

|Rik − R̂ik| ≤ γ(32)n−r+1

(
|Ãik|+

k−1∑
j=1

|L̂ij ||Ûjk|
)
. (4.6)

We then convert R̂ik back to fp16 (lines 11 and 12), obtaining R̃ik = fl16(R̂ik) =

R̂ik + Fik, with

|Fik| ≤ u16|R̂ik| ≤ u16(1 + γ
(32)
n−r+1)

(
|Ãik|+

k−1∑
j=1

|L̂ij ||Ûjk|
)
. (4.7)
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Table 4.1: Dominant term in the expression of f in the error bound A + ∆A = L̂Û ,
|∆A| ≤ f(n, r, u16, u32)(|A|+|L̂||Û |) and number of fp32 entries that need to be stored
for various algorithms.

fp32 storage
f(n, r, u16, u32)

(# of entries)

Alg. 3.1 (u = u32) n2 2u16 + nu32
Alg. 3.1 (u = u16) 0 nu16/4
Alg. 4.1 nr u16 + max(nu32, ru16)

By [11, Thm. 8.5] we have

|L̂ikÛkk − R̃ik| ≤ γ(16)r |L̂ik||Ûkk|. (4.8)

Combining the three inequalities (4.6)–(4.8), we conclude that for i > k,∣∣∣∣Ãik −
k∑

j=1

L̂ijÛjk

∣∣∣∣ ≤ |Rik − R̂ik|+ |Fik|+ |R̃ik − L̂ikÛkk|,

≤ f(n, r, u16, u32)

(
|Ãik|+

k∑
j=1

|L̂ij ||Ûjk|
)
, (4.9)

where f(n, r, u16, u32) = max(u16 + γ
(32)
n−r+1 + u16γ

(32)
n−r+1, γ

(16)
r ). For i = k, Lkk is

determined with Ukk on line 14 of Algorithm 4.1, and by [11, Thm. 9.3] we have

|L̂kkÛkk − R̂kk| ≤ γ
(16)
r |L̂kk||Ûkk|. Therefore (4.8) holds for i = k, too, and hence so

does (4.9). In a similar way, the inequality (4.9) can be shown to hold for i < k. We

have thus proved Ã+ ∆Ã = L̂Û with

|∆Ã| ≤ f(n, r, u16, u32)
(
|Ã|+ |L̂||Û |

)
.

Replacing Ã by A+ E yields the bound on |∆A| and concludes the proof.

Theorem 4.2 proves that Algorithm 4.1 is indeed potentially much more accurate
than Algorithm 3.1 with u = u16. We summarize the dominant term in the error
bounds of each algorithm in Table 4.1. To assess the sharpness and validity of these
bounds, we next present an experimental comparison of the two algorithms.

4.2. Numerical experiments with Algorithm 4.1. Figure 4.1a shows that
our new Algorithm 4.1 is indeed more accurate than Algorithm 3.1 with u = u16,
reducing the error by about an order of magnitude for large n. Moreover, Figure 4.1b
shows that this accuracy improvement is accompanied by a significant performance
boost. Indeed Algorithm 4.1 achieves a peak performance of 46 TeraFLOPS, instead
of 26 TeraFLOPS for Algorithm 3.1 with u = u32. This improved performance is
explained by two reasons. First, storing the matrix in fp16 instead of fp32 not only
halves the memory footprint, but also significantly reduces data movement, which in
turn improves performance. In fact, Algorithm 3.1 with u = u16 is itself faster than
with u = u32 (achieving a peak performance of 40 TeraFLOPS). Second, a left-looking
factorization involves matrix–matrix products with different shapes than those of a
right-looking factorization, that lead to a higher FLOPS rate for large matrices.
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(a) Componentwise backward error (2.2).
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Fig. 4.1: Accuracy and performance of Algorithms 3.1 and 4.1. The panel size is
r = 256.

Despite these positive results, Figure 4.1a also shows that Algorithm 4.1 is not
able to fully recover the same accuracy as Algorithm 3.1 (which stores the matrix in
fp32), with an error about an order of magnitude larger. This is explained by the
term max(ru16, nu32) in the error bound of Algorithm 4.1. For matrix sizes n such
that ru16 dominates over nu32, the ratio between the dominant terms in the error
bounds of Algorithm 4.1 and Algorithm 3.1 with u = u32 is thus ru16/(2u16 + nu32),
which can be as large as r/2. In the experiments of Figure 4.1, we have used a panel
size r = 256, so that nu32 ≥ ru16 for n & 2.1×106. The available memory on a single
GPU device limits the size n that we can test to n ≈ 5× 104, so we are clearly in the
regime where the ru16 term dominates.

We also note that, due to statistical effects in the rounding errors, probabilistic
analyses [12], [13], [6] have shown that constants depending on the problem dimensions
can usually be replaced by their square root to obtain more realistic bounds. The
smallest n such that the term

√
nu32 dominates over the term

√
ru16 is even larger

and equal to about 1.7× 1010, which is about three orders of magnitude larger than
the largest linear system ever solved by the TOP500 ranking as of June 2020.

It is therefore clear that the term limiting the accuracy of Algorithm 4.1 for
practical values of n is the term ru16, which comes from the panel factorization
(lines 14 to 18). In the next section we turn our attention to this step and investigate
how to perform it more accurately.

5. Mixed precision algorithms for the panel factorization. We first pres-
ent in section 5.1 a simple modification of Algorithm 4.1 which performs the panel
factorization entirely in fp32 arithmetic (Algorithm 5.1). We show that this is enough
to recover almost the same accuracy as Algorithm 3.1 with fp32 LU factors, but at
the price of lesser performance. Therefore, we then propose in section 5.2 a doubly
partitioned factorization algorithm that exploits GPU tensor cores in the panel factor-
ization in order to achieve both high accuracy and high performance (Algorithm 5.2).

5.1. Mixed precision LU factorization with fp32 panel factorization.
Algorithm 4.1 can be easily modified to perform the panel factorizations in fp32: it
suffices to convert the panels back to fp16 after the panel factorization, instead of
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before. The fp32 buffer in which we accumulate the updates is thus also used for the
panel factorization. The resulting algorithm is described in Algorithm 5.1, where the
conversion that has been moved is highlighted.

Algorithm 5.1 A modified version of Algorithm 4.1 that computes the panel factor-
ization in fp32 instead of fp16.

1: Input: a matrix A ∈ Rn×n in precision u16, partitioned into r × r blocks Aij ,
where q = n/r is assumed to be an integer.

2: Output: the LU factors of A in precision u16 (with L and U partitioned into
r × r blocks).

3: for k = 1: q do
4: for i = k : q do
5: Convert Bik ← f l32(Aik).
6: if i 6= k then Convert Bki ← f l32(Aki).
7: for j = 1: k − 1 do
8: Update Bik ← Bik − L̃ijŨjk using tensor cores.

9: if i 6= k then Update Bki ← Bki − L̃kjŨji using tensor cores.
10: end for
11: end for
12: Factorize LkkUkk = Bkk (in precision u32).
13: for i = k + 1: q do
14: Solve LikUkk = Bik for Lik (in precision u32).
15: Solve LkkUki = Bki for Uki (in precision u32).
16: end for
17: for i = k : q do

18: Convert L̃ik ← f l16(Lik).

19: Convert Ũki ← f l16(Uki).

20: end for
21: end for

Theorem 5.1 (Backward error bound for Algorithm 5.1). Let A ∈ Rn×n be
partitioned in r × r blocks. If Algorithm 5.1 runs to completion, the computed LU
factors L̃ and Ũ satisfy A+ ∆A = L̃Ũ , where

|∆A| ≤ u16|A|+ f(n, r, u16, u32)
(
(1 + u16)|A|+ |L̃||Ũ |

)
, (5.1)

with
f(n, r, u16, u32) = max(γ

(32)
n−r+1, 2u16 + u216 + γ(32)r (1 + u16)2).

Proof. Algorithm 5.1 requires the input matrix A to be in precision u16 so we
must first account for this conversion: let Ã = fl16(A) = A + E, with |E| ≤ u16|A|.
We now apply the algorithm to Ã. The (i, k) block of the L factor is computed on
line 14 by solving

LikÛkk = Rik, Rik = Ãik −
k−1∑
j=1

L̃ijŨjk, i > k,

where Ûkk is the computed Ukk in precision fp32, and L̃ijŨjk are the computed LU
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factors converted to fp16. By Lemma 4.1, the computed R̂ik satisfies, since k ≤ q,

|Rik − R̂ik| ≤ γ(32)n−r+1

(
|Ãik|+

k−1∑
j=1

|L̃ij ||Ũjk|
)
. (5.2)

Unlike in Algorithm 4.1, R̂ik is now in fp32, and so by [11, Thm. 8.5], the computed

L̂ik satisfies
|L̂ikÛkk − R̂ik| ≤ γ(32)r |L̂ik||Ûkk|. (5.3)

We then convert L̂ik back to fp16 (line 18), obtaining L̃ik = fl16(L̂ik) = L̂ik+Fik, with

|Fik| ≤ u16|L̃ik| (using the alternative form [11, Eq. (2.5)] of the model of floating-

point arithmetic to have |L̃ik| rather than |L̂ik| on the right-hand side). Similarly the

conversion of Ûkk (line 19) yields Ũkk = Ûkk + Fkk, with |Fkk| ≤ u16|Ũkk|. Replacing

L̂ik by L̃ik − Fik and Ûkk by Ũkk − Fkk in (5.3) yields

|L̃ikŨkk − R̂ik| ≤
(
2u16 + u216 + γ(32)r (1 + u16)2

)
|L̃ik||Ũkk|. (5.4)

Combining (5.4) with (5.2), we conclude that for i > k,∣∣∣∣Ãik −
k∑

j=1

L̃ijŨjk

∣∣∣∣ ≤ |Rik − R̂ik|+ |R̂ik − L̃ikŨkk|,

≤ f(n, r, u16, u32)

(
|Ãik|+

k∑
j=1

|L̃ij ||Ũjk|
)
. (5.5)

where f(n, r, u16, u32) = max(γ
(32)
n−r+1, 2u16 + u216 + γ

(32)
r (1 + u16)2). In a similar way,

the inequality (5.5) can be shown to hold for i < k and i = k. We have thus proved

Ã+ ∆Ã = L̃Ũ with

|∆Ã| ≤ f(n, r, u16, u32)
(
|Ã|+ |L̃||Ũ |

)
.

Replacing Ã by A+ E yields the bound on |∆A| and concludes the proof.

Theorem 5.1 shows that carrying out the panel factorization in fp32 arithmetic
drops from the error bound (5.1) any term proportional to the panel size r times
the fp16 unit roundoff u16. For matrix sizes n such that the term ru16 dominates
over nu32 (which, as discussed in the previous section, covers most practical values
of n), Algorithm 5.1 therefore achieves an error bound roughly r times smaller than
Algorithm 4.1.

We now assess experimentally the accuracy and performance of Algorithm 5.1 in
Figure 5.1. We see that Algorithm 5.1 is indeed more accurate than Algorithm 4.1,
up to about an order of magnitude in some cases. This confirms that the precision of
the panel factorization is indeed the limiting factor for the accuracy of Algorithm 4.1.
There still remains a small gap of about a factor three between the errors of Al-
gorithms 5.1 and 3.1 with u = u32. This small gap is not fully explained by the
theoretical error bounds. A possible explanation may be that Algorithm 3.1 with
u = u32 does not need to convert the initial matrix A nor the diagonal blocks of its
LU factors Lkk and Ukk.

While the accuracy of Algorithm 5.1 is therefore more or less satisfactory, the
same cannot be said about its performance. Indeed, Figure 5.1b shows that switching
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Fig. 5.1: Accuracy and performance of Algorithms 3.1, 4.1 and 5.1. The panel size
is r = 256.

the panel factorization precision from fp16 to fp32 may have a significant impact on
the performance. For large n, the FLOPS rate may decrease by up to 20%.

This observation motivates the idea of exploiting the tensor cores not only in the
update operations, but also in the panel factorization.

5.2. Doubly partitioned algorithm that exploits GPU tensor cores in
the panel factorization. To our knowledge, all previous works on mixed preci-
sion LU factorization algorithms exploiting GPU tensor cores only used them in the
updates, but not in the panel factorizations.

For example, Haidar et al. [10] explain this design choice with two reasons. First,
the panel factorizations are said to occupy only “a small portion of the total time” [10,
p. 3]; while that is usually true for monoprecision LU factorizations, the performance
experiments shown in Figure 5.1b show that this is not the case in mixed precision
arithmetic. Indeed, when the update operation is accelerated with tensor cores, the
relative cost of the panel factorization becomes more important and cannot be ne-
glected any more. The second reason given by [10] not to exploit tensor cores in
the panel factorizations is that these operations are “numerically sensitive” [10, p. 4].
However, using a doubly partitioned matrix, the panel factorizations are nothing else
than partitioned LU factorizations themselves, so it stands that we can recursively
benefit from tensor cores without endangering the stability of the algorithm. Our
numerical experiments will in fact show that exploiting the tensor cores within the
panel factorizations is numerically harmless.

As described in section 2.2, tensor cores operate on matrices of dimensions 4× 4.
Therefore, in order to exploit tensor cores within the panel factorizations, a natural
strategy is to partition again these panels, just as LAPACK’s dgetrf routine [1]. The
matrix is thus doubly partitioned into outer panels of size r, themselves partitioned
into inner panels of size s. The panel factorizations then amount to a sequence of
(inner) panel factorizations and updates (of the trailing outer panel), where the latter
can be accelerated with tensor cores, provided that s ≥ 4 (and for practical reasons,
s should preferably be a multiple of 4).

The resulting algorithm is described in Algorithm 5.2, which is a modified version
of Algorithm 4.1 where the panel factorization (lines 14 to 18) has been replaced by
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a PanelFactor algorithm that exploits tensor cores. Since the role of PanelFactor

is simply to compute a partitioned LU factorization, any of the previously presented
algorithms can be used, such as Algorithms 3.1, 4.1, or 5.1. (Strictly, these algorithms
must be modified since they perform a full LU factorization, whereas a panel factor-
ization is a partial factorization, but this modification is trivial: it suffices to stop the
main loop on k at r/s instead of n/s).

Algorithm 5.2 A doubly partitioned LU factorization algorithm that exploits tensor
cores in both the updates and panel factorizations.

1: Input: a matrix A ∈ Rn×n in precision u16, doubly partitioned into r × r blocks
Aij , themselves partitioned into s× s blocks, where q = n/r and r/s are assumed
to be integers, and a partitioned LU factorization algorithm PanelFactor (that
potentially exploits tensor cores).

2: Output: the LU factors of A in precision u16 (with L and U partitioned into
r × r blocks).

3: for k = 1: q do
4: for i = k : q do
5: Convert to fp32: Bik = fl32(Aik).
6: if i 6= k then Convert to fp32: Bki ← f l32(Aki).
7: for j = 1: k − 1 do
8: Update Bik ← Bik − LijUjk using tensor cores.
9: if i 6= k then Update Bki ← Bki − LkjUji using tensor cores.

10: end for
11: end for
12: If necessary, convert Bik and Bki, i = k : q, to fp16.

13: Compute the LU factors Lik and Uki, i = k : q, using PanelFactor.

14: If necessary, convert Lik and Uki, i = k : q, to fp16.
15: end for

Theorem 5.2 (Backward error bound for Algorithm 5.2). Let A ∈ Rn×n be
doubly partitioned in r×r blocks themselves partitioned in s×s blocks. If Algorithm 5.2
runs to completion, the computed LU factors L̂ and Û satisfy A+ ∆A = L̂Û , where

|∆A| ≤ u16|A|+ f(n, r, s, u16, u32)
(
(1 + u16)|A|+ |L̂||Û |

)
, (5.6)

with

f(n, r, s, u16, u32) = max
(
ũin+γ

(32)
n−r+1+ũinγ

(32)
n−r+1, g(r, s, u16, u32)(1+ũout)

2+2ũout+ũ
2
out

)
,

where g(r, s, u16, u32) depends on the panel factorization algorithm PanelFactor (see
Table 5.1), where ũin = u16 or ũin = 0 depending on whether PanelFactor takes
fp32 or fp16 input, respectively, and ũout = u16 or ũout = 0 depending on whether it
returns fp32 or fp16 output, respectively.

Proof. The proof is derived by generalizing the proofs of Theorems 4.2 and 5.1
to a general panel factorization algorithm PanelFactor. In the proof of Theo-
rem 4.2, (4.7) holds with u16 replaced by ũin, since the conversion of Rik is not

needed if PanelFactor takes fp32 input, and (4.8) holds with γ
(16)
r replaced by

g(r, s, u16, u32), whose value depends on PanelFactor and is given in Table 5.1. Fi-
nally, if PanelFactor returns fp32 output, the conversion of its output to fp16 must
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Table 5.1: Dominant term in the expression of g and f in the error bound (5.6) of
Algorithm 5.2, depending on the PanelFactor algorithm.

PanelFactor ũin ũout g(r, s, u16, u32) f(n, r, s, u16, u32)

Alg. 2.1 (u = u16) u16 0 ru16 ru16 + nu32
Alg. 2.1 (u = u32) 0 u16 ru32 2u16 + nu32
Alg. 3.1 (u = u16) u16 0 ru16/4 ru16/4 + nu32
Alg. 3.1 (u = u32) 0 0 2u16 + ru32 2u16 + nu32
Alg. 4.1 u16 0 max(u16 + ru32, su16) su16 + nu32
Alg. 5.1 u16 0 max(ru32, 2u16 + su32) 2u16 + nu32
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(a) Componentwise backward error (2.2).

0 10000 20000 30000 40000 50000
matrix size: n

0

10000

20000

30000

40000

50000

PanelFactor: Alg 4.1
PanelFactor: Alg 5.1

(b) Performance (GFLOPS).

Fig. 5.2: Accuracy and performance of Algorithms 3.1, 5.2 with PanelFactor 4.1
and 5.2 with PanelFactor 5.1. The panel size is r = 256 and inner panel size s = 8.

be accounted for, as done in the proof of Theorem 5.1, where (5.4) holds with u16
replaced by ũout.

Theorem 5.2 generalizes both Theorems 4.2 and 5.1 to mixed precision LU factor-
ization with an arbitrary panel factorization algorithm PanelFactor. Table 5.1 ana-
lyzes six possibles choices for PanelFactor. For the first two options, Algorithm 2.1
in precision u is used, which does not exploit tensor cores; in this case Algorithm 5.2
reduces to either Algorithm 4.1 (u = u16) or Algorithm 5.1 (u = u32). The third
option, Algorithm 3.1 with u = u16, is not very interesting since the error bound still
exhbits a term proportional to ru16. The last three options are the most attractive
ones, since they all achieve a bound whose term proportional to u16 is independent
of the outer panel size r.

In Figure 5.2, we compare the accuracy and performance of the last two options
of Table 5.1), that is, Algorithms 4.1 or 5.1 as PanelFactor.

• Figure 5.2a shows that Algorithm 5.2 with Algorithm 5.1 as PanelFactor

achieves high accuracy, similar to that of Algorithm 5.1 in Figure 5.1a. More-
over, Figure 5.2b shows that it also achieves high performance, peaking at
around 47 TeraFLOPS, which is better than the 43 TeraFLOPS performance
of Algorithm 5.1 (shown in Figure 5.1b).
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• As for Algorithm 5.2 with Algorithm 4.1 as PanelFactor, Figure 5.2a shows
that it achieves a lesser accuracy than with Algorithm 5.1 as PanelFactor.
Its accuracy is similar to that of Algorithm 4.1 (shown in Figure 5.1a), even
though the theoretical error bounds suggests it should be a factor r/s smaller.
However, Figure 5.2b also shows that this algorithm achieves the highest
performance of all variants considered in this article, peaking at around
56 TeraFLOPS, which is significantly better than the 46 TeraFLOPS of Al-
gorithm 4.1 (shown in Figure 5.1b).

To summarize, comparing Figures 5.1 and 5.2, we have obtained two variants of
Algorithm 5.2 (with different PanelFactor) that achieve similar accuracy than Al-
gorithms 4.1 and 5.1, respectively, but significantly outperform them. This therefore
confirms that exploiting tensor cores in the panel factorizations allows to achieve
the best performance–accuracy tradeoff. Finally, there is no clear winner between the
two choices of PanelFactor algorithm, since they each achieve a different compromise
between performance and accuracy.

We make one final comment. In general the inner panel size s can be larger
than the size of the block FMA t = 4. Therefore, we could further partition the
inner panel into smaller panels of size t, obtaining a triply partitioned matrix overall.
This could be useful in the cases where PanelFactor factorizes the inner panel in fp16
arithmetic, such as Algorithm 4.1, because it would reduce the error bound su16+nu32
(penultimate row of Table 5.1) to tu16 + nu32. In the experiments of Figure 5.2, we
have set the inner panel size to s = 8 (which we have observed to be the optimal
value in terms of speed), so in our case the improvement of the error bound does seem
worth seeking, but different environments (much larger matrix, different block FMA
unit) could lead to a different conclusion.

6. Numerical experiments with real-life matrices. In this section we com-
pare four mixed precision LU factorization algorithms on a range of real-life matrices
coming from various applications: two versions of Algorithm 3.1 (with u = u32 and
u = u32), and two versions of Algorithm 5.2 (with either Algorithm 4.1 or Algo-
rithm 5.1 as PanelFactor).

The matrices are taken from the SuiteSparse collection4 [7] and, although they
are sparse, we treat them as dense matrices for the purpose of our study. Note that
most of these matrices are ill conditioned, with condition number generally greater
than 104, and are therefore at risk of becoming singular when converted to half pre-
cision. In order to reduce the chance of that happening, we preprocess them using
row and column scaling techniques as suggested in [14]. As a result, we were able
to successfully factorize most of the test matrices. Nevertheless, for some matrices,
the LU factorization failed and/or produced singular LU factors for some of the al-
gorithms considered. Since the failure rate does not seem to be correlated with the
specific algorithm choice, in the following we only report the results for the matrices
for which all four algorithms succeeded.

We compare the accuracy and performance of the four algorithms in Table 6.1.
Algorithm 3.1 with u = u32 is the most accurate of all four, but it is also the only
algorithm that requires the matrix to be stored in fp32. Algorithm 3.1 with u = u16 is
the least accurate of all four. For these matrices, the error increase remains less than
about an order of magnitude, but this is a still significant loss of accuracy. Most im-
portantly, Algorithm 5.2 achieves a much better performance–accuracy tradeoff than

4https://sparse.tamu.edu/
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Table 6.1: Accuracy and performance of four variants of mixed precision LU fac-
torization on a set of real-life matrices. Algorithm 3.1 (with u = u32 or u = u16)
is compared with Algorithm 5.2 (with two choices of PanelFactor, Algorithm 4.1 or
5.1). The performance (“perf.”) is measured in TeraFLOPS. The accuracy is assessed
with the componentwise backward error εbwd given by (2.2), and is scaled by 104.

Alg. 3.1 Alg. 5.2 with PanelFactor. . .
u = u32 u = u16 Alg. 4.1 Alg. 5.1

Matrix n εbwd perf. εbwd perf. εbwd perf. εbwd perf.

gyro 17,361 0.4 16.4 4.5 22.8 3.9 28.2 2.2 18.7
crystm03 24,696 0.5 20.3 3.4 29.4 2.9 37.2 2.7 27.3
smt 25,710 0.4 20.2 2.2 30.3 1.1 37.8 0.8 28.3
nd12k 36,000 0.9 23.6 5.3 35.9 4.8 46.7 2.8 37.0
pdb1HYS 36,417 0.3 23.2 5.0 35.3 4.0 46.5 1.4 37.0
wathen120 36,441 0.7 23.7 2.9 35.8 2.7 46.5 1.9 37.0
jnlbrng1 40,000 1.2 24.9 2.8 37.1 2.8 49.5 2.4 39.6
torsion1 40,000 0.3 24.9 2.4 37.0 2.6 49.4 1.6 39.7

Algorithm 3.1 with u = u16. Indeed, when Algorithm 5.1 is used as PanelFactor, Al-
gorithm 5.2 achieves a similar performance but a better accuracy than Algorithm 3.1
with u = u16. Conversely, when Algorithm 4.1 is used as PanelFactor, then Algo-
rithm 5.2 achieves an accuracy no worse than Algorithm 3.1 with u = u16 (and often
noticeably better), while achieving a much higher performance.

7. Conclusion. Modern GPUs equipped with mixed precision tensor core units
can be exploited to significantly accelerate LU factorization of dense matrices. Ex-
isting approaches (Algorithm 3.1) however assume the matrix to be stored in fp32
precision (u = u32), thereby preventing any memory consumption gains associated
with the use of fp16 arithmetic. This is explained by the fact that naively convert-
ing the matrix to fp16 (setting u = u16 in Algorithm 3.1) leads to a significant loss
of accuracy, negating the entire accuracy boost delivered by the tensor cores (see
Figure 3.1).

We have proposed a new mixed precision LU factorization algorithm that is able
to store the matrix in fp16 precision without incurring such a significant loss of ac-
curacy. The first step is to switch to a left looking scheme employing fp32 buffers of
controlled size to accumulate the updates (Algorithm 4.1). This is however not suffi-
cient, because carrying out the panel factorizations in fp16 arithmetic introduces an
error that dominates the overall error for practical matrix sizes. A possible solution is
to carry out the panel factorizations in fp32 arithmetic instead (Algorithm 5.1), but
this can significantly hinder the performance. To overcome this issue, we propose a
doubly partitioned factorization that also exploits the tensor cores in the panel fac-
torizations (Algorithm 5.2). This is our final algorithm, and we show that it achieves
the best performance–accuracy tradeoff of all the variants considered.

Throughout the article, we have assessed the performance and accuracy of all
algorithms both theoretically and experimentally, by performig their rounding error
analyses in Theorems 4.2, 5.1, and 5.2, and by providing numerical experiments on
both random dense matrices and real life ones. Overall, we have shown on a number
of different matrices that, compared with the state of the art, our new Algorithm 5.2
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can be of similar accuracy, up to twice faster (exceeding the 50 TeraFLOPS mark
for large matrices) thanks to reduced data movement, and requiring only half the
memory footprint.

We expect our algorithms and analysis to be applicable to other block FMA units
similar to GPU tensor cores, such as Google’s TPUs or Intel’s forthcoming Cooper
Lake CPUs. Moreover, while we have focused here on using a single GPU unit, we
expect our conclusions to remain relevant in a distributed environment with multiple
GPUs.

In future work, we would like to investigate how the different algorithms ana-
lyzed in this article impact the convergence of iterative refinement [4, 5] or other
similar iterative methods preconditioned by LU factorization. It would also be worth
investigating the extension of this work to other matrix factorization algorithms, in
particular QR factorization. Indeed, to our knowledge, existing mixed precision QR
algorithms [15], [17] also assume the matrix to be stored in fp32 precision; the ideas
proposed here could be extended so as to store them in fp16.
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