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This paper deals with stabilization, H2 and H∞ static feedback synthesis, under information structure constraints. The proposed approach relies on a prominent property of Hurwitz-stable matrices set and a Douglas-Rachford (DR) reflection method type for finding a point in the intersection of two closed sets. The method proposed in this paper emulates the genericity of the Linear Matrix Inequalities framework while keeping the feedback gain separated from any matrix with direct or indirect connection to the Lyapunov function. The link between the sequence of iterates generated by the proposed algorithm and a continuous dynamical system results in the use of Lyapunov stability theory for guaranteeing the convergence. Several examples are given to prove the validity of the proposed method.

Introduction

Several control problems can be recast as an optimization of a linear criteria under one or several LMI constraints [START_REF] Boyd | Linear matrix inequalities in systems and control theory[END_REF][START_REF] Vanantwerp | A tutorial on linear and bilinear matrix inequalities[END_REF]. The solution of the control problem is then derived efficiently using Semi-Definite Programming (SDP). However, not all control problems can be cast as convex optimization ones, especially when it comes to a control problem under information structure constraints [START_REF] Rubio-Massegu | Static output-feedback control under information structure constraints[END_REF] or a control problem involving various specifications such as the mixed H 2 /H ∞ control case [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF]. The rise of LMIs since later 1990s have led to different strategies relaxing these problems. Unfortunately they were not suited for medium or large size problems. Due to the presence of Lyapunov variables, whose number grows quadratically with the system size, LMI programs (and hence BMI ones) [START_REF] Vanantwerp | A tutorial on linear and bilinear matrix inequalities[END_REF] quickly lead to problem sizes where existing numerical algorithms (interior-point algorithm for convex cases, for instance, or cutting-plane algorithm for bilinear programs) fail [START_REF] Lewis | Nonsmooth optimization and robust control[END_REF]. These considerations are true in the case of state feedback and are even more exacerbated in the case of static (with or without information constraints) output feedback design (see the survey paper [START_REF] Sadabadi | From static output feedback to structured robust static output feedback: A survey[END_REF] and references therein).

In that context, it is still of interest to pave the way for an alternative solution that can be numerically competitive to existing methods and takes into account different control objectives as simply as for the Lyapunov/LMI paradigm. It must also keep a separation between the output (or state) feedback gain and any matrix with direct or indirect connection to the Lyapunov function.

The original approach, proposed in this paper, relies among others on Douglas-Rachford method which is a splitting method frequently employed for finding zeros of sums of maximally monotone operators. The success of the DR method (see the survey paper [START_REF] Lindstrom | Survey: Sixty years of Douglas-Rachford[END_REF] and references therein) in the context of closed, convex, non-empty sets is well-known and understood from a theoretical view [START_REF] Bauschke | On the Douglas-Rachford algorithm[END_REF][START_REF] Bauschke | The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle[END_REF][START_REF] Bauschke | Finding best approximation pairs relative to two closed convex sets in Hilbert spaces[END_REF]. When one of the sets is non-convex the performance of such algorithm is still impressive [START_REF] Borwein | The Douglas-Rachford algorithm in the absence of convexity, Fixed-Point Algorithms for Inverse Problems in Science and Engineering[END_REF]. In particular, the proposed approach brings together wisely a prominent property of Hurwitz-stable matrices set and the DR iterates to propose a method for stabilization, H 2 and H ∞ control synthesis, under information structure constraints. Besides, the proposed iterative method has a guaranteed convergence. The connection between the continuous limit sequence of the iterates and the trajectory of a continuous dynamical system results in the use of the direct method of Lyapunov stability theory to guarantee the local convergence.

The paper is organized as follows. Section 2 recalls some exiting and also introduces some new nearest matrix problems that are intensively used in the sequel. Section 3 proposes a new Douglas Rachford's like algorithm for stabilization, H 2 and H ∞ control synthesis, under information structure constraints. Section 4 exhibits the convergence analysis and rate of the proposed iterative scheme. Section 5 illustrates the validity and efficiency of the proposed method through several numerical examples before concluding in section 6.

Notations : Hereafter, I n designates the identity matrix of dimensions n × n and vec(Z) denotes the vec-operator that stacks the columns of Z into a vector. Z denotes the transpose of a given real matrix Z and Z † denotes its Moore-Penrose pseudoinverse matrix. Z = ( i,j Z 2 ij )

1 2 designate the Frobenius norm associated to the inner product < Z 1 , Z 2 >= trace(Z 1 Z 2 ). Z > 0 (Z ≥) means that Z is a positivedefinite (positive semi-definite) matrix. In the same vein, Z < 0 (Z ≤) means that Z is a negative-definite (negative semi-definite) matrix. The set of positive semi-definite (definite) matrices is denoted by S + (S + * ). In the same way, S - g (S - * g ) denotes the set of matrices with a negative semi-definite (definite) symmetric part. For a symmetric matrix represented block-wise, off-diagonal blocks are abbreviated with •. Finally, without special stated, all matrices used in this paper are supposed to have appropriate dimensions.

On some nearest matrix problems

In this section, some preliminary definitions and results that will be used intensively in the sequel are presented. Hereafter, the Frobenius norm is chosen as a metric for its sub-multiplicative and invariance under rotations properties.

Definition 2.1 (Nearest matrix problem). A nearest matrix problem is defined as finding the nearest matrix X F ∈ D m×n to a given matrix Z ∈ R m×n under Frobenius 2 norm :

X F = arg min X∈D Z -X (1)
The solution of such problem depends entirely on the set D since Z -X is a smooth function of X.

Nearest matrix problem under LME constraint

Let us consider the matrix set defined by : 

D L {X ∈ R n×n /∃ X ∈ R m×p : X = U 0 + U 1 XU 2 } with U i , i ∈ {0,
X F = arg min X∈DL Z -X (2)
Or equivalently,

X F = arg min X∈R m×p Z -(U 0 + U 1 XU 2 ) .
This problem is convex, since it can be recast as a linear constrained Quadratic Program (QP), hence it can be solved efficiently. In fact, using the vec operator notations:

x v vec(X), z v vec(Z)
one can easily establish the equality given below :

Z -X 2 = z v z v -2z v x v + x v x v
which is quadratic in x v . Moreover, according to [START_REF] Jovovic | A note on solutions of the matrix equation AXB = C[END_REF], the LME :

X = U 0 + U 1 XU 2 is consistent if and only if, for some pseudo-inverses U 1 † , U 2 † verifying U 1 U 1 † U 1 = U 1 † and U 2 U 2 † U 2 = U 2 †
, the following equality holds :

U 1 U 1 † (X -U 0 )U 2 † U 2 = (X -U 0 )
Hence, using vec operator properties we obtain :

(U 2 U 2 † ⊗ U 1 U 1 † )(x v -vec(U 0 )) = (x v -vec(U 0 ))
which is a linear constraint in x v .

Remark 1. A zero-non zero structure on the matrix X can be added to the nearest matrix problem under LME (2) using a linear matrix equality of the form : X ∆ = X (where denotes the element wise Hadamard product) with ∆ ∈ R m×p a matrix of either zero or one elements.

On another note, the projections on the set of positive definite matrices S + * and generalized negative definite matrices S - * g are presented hereinafter.

Nearest positive matrix problem

Projection onto the cone of positive semi-definite matrices denoted S + , is equivalent to finding the positive semi-definite approximant using the Frobenius norm metric. Since S + is convex the approximant is unique and is equivalent to the problem, first introduced by Higham in [START_REF] Higham | Computing a nearest symmetric positive semi-definite matrix[END_REF], given below :

X + = arg min X=X ≥0 Z -X (3) 
The solution of (3), for real matrices, is given by the following Theorem [START_REF] Higham | Computing a nearest symmetric positive semi-definite matrix[END_REF]:

Theorem 2.3. Let Z ∈ R n×n be a given matrix and Z s = (Z + Z )/2, Z ss = (Z -Z )/2 be the symmetric and skew-symmetric parts of Z respectively. Let Z s = U H be a polar decomposition of Z s with (U

U = I n , H = H ≥ 0), then X + = (Z s + H)/2
is the unique positive semi-definite approximant of Z in the Frobenius norm.

Proof. Let X be a symmetric positive semi-definite matrix.

Z -X 2 = Z s -X 2 + Z ss 2 + 2 < Z s -X, Z ss > (4) 
This equality reduces to Z -X 2 = Z s -X 2 + Z ss 2 since Z ss is a skew-symmetric matrix. Hence, the problem consists in approximating Z s . Let Z s = T ΛT be a spectral decomposition with T T = I n , Λ = diag(λ i ), let Y = T XT . Since the Frobenius norm is invariant by rotations we obtain :

Z s -X 2 = Λ -Y 2 = i =j y 2 ij + i (λ i -y ii ) 2 ≥ λi<0 (λ i -y ii ) 2 > λi<0 λ 2 i
Since Y is positive semi-definite, the lower bound λi<0 λ 2 i is reached uniquely for the matrix Y = diag(d i ) where :

d i = λ i , λ i ≥ 0 0, λ i < 0 (5)
that is : [START_REF] Higham | Computing a nearest symmetric positive semi-definite matrix[END_REF].

X F = T diag(d i )T . Finally, since H = T diag(|λ i |)T , we get X + = (Z s + H)/2 ∈ S +
Remark 2. Projection on S + * can be obtained in the same manner as in the last Theorem by substituting the equation ( 5) by the following equation

d i = λ i , λ i > 0 , λ i ≤ 0, > 0 (6)
with a sufficiently small positive real scalar (compared to the condition number associated to Z s ). This projection can be numerically obtained based on the Schur decomposition, for instance, using the spectral decomposition Z s = T ΛT where T is an orthogonal matrix and Λ = diag(λ i ), i = 1, 2, . . . , n. Then,

Z + s = T ΛT T where Λ = diag( λ+ i ) = max{ ; λ i } for i = 1, 2, . . . , n.

Nearest generalized negative matrix problem

Unlike the nearest positive matrix problem solved by Higham, the following generalization is original and introduced for the first time in this paper. Let us consider the following set S - g = {Z ∈ R n×n / Z s = (Z + Z )/2 ≤ 0} including matrices with a negative semi-definite symmetric part. Then we have S -⊂ S - g and projecting onto S - g can be seen as a generalization of the problem given in (3) and is given by :

X g = arg min X∈S - g Z -X (7)
if one consider X s = (X + X )/2, X ss = (X -X )/2 and Z s = (Z + Z )/2, Z ss = (Z -Z )/2 the symmetric and skew-symmetric parts of X and Z respectively, then the function to be minimized in (7) becomes :

Z -X 2 = Z s + Z ss -X s -X ss 2 which leads to Z -X 2 = Z ss -X ss 2 + Z s -X s 2 + 2 < Z ss -X ss , Z s -X s > .
This reduces to : Z -X 2 = Z ss -X ss 2 + Z s -X s 2 since Z ss -X ss is skewsymmetric. Hence (7) can be obtained by solving the following minimization problem:

min Xss=-Xss ,Xs∈S - Z ss -X ss 2 + Z s -X s
Since both Z ss and X ss are skew-symmetric matrices, the solution of ( 7) can be obtained by solving the following minimization problem:

X g = arg min Xs=X T s ≤0 Z s -X s (8)
which is similar to problem (3). Finally, the solution of the nearest generalized negative matrix problem ( 7) is given by X g = Z ss + X s -with X s -is the projection of Z s onto S - * .

Reflection based techniques for constrained control synthesis

Hurwitz-stable matrices set

The set of Hurwitz-stable matrices, henceforth denoted by H s , is a simply connected open cone [START_REF] Duan | A note on Hurwitz stability of matrices[END_REF] since it is the product of two convex open cones. It follows from that, as shown in [START_REF] Duan | A note on Hurwitz stability of matrices[END_REF], any Hurwitz-stable matrix Z can be expressed as a product of a generalized negative definite matrix X ∈ S - * g and a positive definite matrix Y ∈ S + * as stated by the following Theorem.

Theorem 3.1. [START_REF] Duan | A note on Hurwitz stability of matrices[END_REF] A matrix Z ∈ R n×n is Hurwitz-stable if and only if there exist a generalized negative definite matrix X and positive definite matrix Y such that : Z = XY .

Nearest Hurwitz-stable matrix problem

The projection of a given matrix Z 0 ∈ R n×n onto H s is yet another nearest matrix problem given by the following expression :

Z F = arg min Z∈Hs Z 0 -Z (9)
Using the result of Theorem 3.1, one can recast this nearest matrix problem as the following original optimization problem : min

X∈S - * g ,Y ∈S + * Z 0 -XY (10) 
To solve this problem a gradient-projection scheme is proposed and presented by iterations of the form :

X k+1 = (X k -δ X ∂ X ) - g Y k+1 = (Y k -δ Y ∂ Y ) + (11) 
where (•) - g , (•) + designate the projections on S - * g and S + * respectively. ∂ X and ∂ Y denote the sub-gradients given by :

∂ X = (Z 0 -X k Y k )Y k ∂ Y = X k (Z 0 -X k Y k ) (12)
δ X and δ Y designate the adaptive step-sizes given by :

δ X = ∂ X 2 / ∂ X Y k 2 δ Y = ∂ Y 2 / X k ∂ Y 2 (13)
Moreover, the initial starting points X 0 and Y 0 are computed using polar decomposition of Z 0 = U H that is :

X 0 = (U ) - g , Y 0 = H.

Douglas-Rachford like technique for constrained control synthesis

Douglas-Rachford methods (DR) are frequently used to find a feasible point (i.e. a point in the intersection) of two closed constraint sets in a Hilbert space. In our case, let us consider the following closed subsets1 DL ⊂ D L and Hs ⊂ H s . The stabilization problem under information structure constraint for the linear time-invariant (LTI) system described by :

ẋ = Ax + Bu, x ∈ R nx , u ∈ R nu y = Cx, y ∈ R ny (14) 
can be recast as the following original feasibility problem :

Find K ∈ R nu×ny / Z (A + BKC) ∈ DL ∩ Hs (15) 
In order to simplify both notation and implementation the projections on each subset, which are no other than the nearest matrix problem under LME associated to DL and the nearest Hurwitz-stable matrix problem associated to Hs , will be noted PD L and P Hs respectively, in the sequel. Hence, the corresponding reflection mappings noted RD L , R Hs are defined by :

RD L µ d PD L + (1 -µ d )I, R Hs µ h P Hs + (1 -µ h )I, (16) 
with µ d ∈ (0, 2], µ h ∈ (0, 2]. In [START_REF] Fält | Optimal convergence rates for generalized alternating projections[END_REF], an optimal value of the adaptation parameters µ d , µ h is found in the case of finding a point in the intersection of two (convex) affine subspaces. Let us just remind that the problem tackled with involves a convex and a potentially non-convex set. The (local) convergence, the smoothing effect of the proposed optimization scheme are discussed in the next section. Moreover, DR method is often referred to as reflect-reflect-average algorithm. See survey papers [START_REF] Lindstrom | Survey: Sixty years of Douglas-Rachford[END_REF][START_REF] Ryu | A primer on monotone operator methods survey[END_REF] and references therein) that trace back its origin to the mid-1950s. It admits many variations and has proven its superiority on alternating projections algorithms. In this paper, an original DR-like scheme is proposed and is defined hereafter.

Definition 3.2 (Modified DR method (MDR)). Given an initial matrix K 0 ∈ R nu×ny , the MDR method generates a sequence (K k ) ∞ k=1 as follows :

K k+1 ∈ TD L, Hs (K k ), TD L, Hs (1 -µ)I + µRD L R Hs (17) 
µ ∈ (0, 1] is some adaptation parameter.

H ∞ and H 2 characterizations

In light of the stability characterization, original characterizations of H ∞ and H 2 performances are proposed hereafter. For this aim, let us consider the LTI system described by :

     ẋ = Ax + B w w + Bu, x ∈ R nx , w ∈ R nw , u ∈ R nu z = C z x + D z u, z ∈ R nz y = Cx, y ∈ R ny . ( 18 
)
The following result presents the new H ∞ performance characterization of the closedloop given by :

ẋ = A c x + B w w, A c A + BKC z = C c x, C c C z + D z KC (19) 
Theorem 3.3. The closed-loop system given by ( 19) has an H ∞ norm less than γ > 0 if and only if there exist matrices X ∈ R nx×nx , Y ∈ R nx×nx and G ∈ R nz×nx such that:

A c C c = A C z + B D z KC = X G Y (20) with X G V 1 + V 2 ∈ S - *
g is a generalized definite negative matrix and Y ∈ S + * a definite positive matrix. V 1 and V 2 are some constant matrices given by :

V 1 = I nx 0 nx×ny , V 2 = 1 2 1 γ 2 B w B w 0 0 -I ny .
Proof. According to the bounded real-lemma, system (19) has an H ∞ norm less than γ > 0 if and only if there exist a matrix Q = Q > 0 such that :

A c Q + QA c + C c C c • B 1 Q -γ 2 I < 0 Since A c is Hurwitz-stable : ∃ X ∈ S - * g , Y = Q ∈ S + * / Ac = XY (21) 
Moreover, Y = Q is non singular means that :

∃ G ∈ R ny×nx / C c = GY (22)
Hence, the bounded real-lemma writes :

Y (X + X + N N + 1 γ 2 B 1 B 1 )Y < 0
which, by Schur's lemma, leads to

X + X + 1 γ 2 B 1 B 1 • G -I < 0
or equivalently,

X G V 1 + V 2 ∈ S - * g . ( 23 
)
Hence, the H ∞ synthesis problem under information structure constraint for the LTI system given by ( 18) can be recast as the following feasibility problem :

Find K ∈ R nu×ny / A c C c ∈ DL ∩ H∞ ( 24 
)
with H∞ is the closed subset of matrices Z that can be written as

A c C c = A C z + B D z KC = X G Y with X G V 1 + V 2 ∈ S - *
g is a generalized definite negative matrix and Y ∈ S + * a definite positive matrix.

Remark 3. This problem can be solved by the MDR like method (T m DL, H∞ ) as presented in Definition 3.2. The projections and reflections can be derived by gradientprojection algorithms as for the stability case.

In the same vain, the H 2 performance is presented hereafter.

Theorem 3.4. The closed-loop system given by (19) has an H 2 norm less than γ 2 > 0 if and only if there exist matrices X ∈ R nx×nx , Y ∈ R nx×nx and N ∈ R nz×nx such that :

A c C c = A C z + B D z KC = X G Y (25) with X G V 1 + V 3 ∈ S - *
g is a generalized definite negative matrix and Y ∈ S + * a definite positive matrix verifying in addition the LME constraint trace(B 1 Y B 1 ) < γ 2 2 . V 1 and V 3 are some constant matrices given by :

V 1 = I nx 0 nx×ny , V 3 = 1 2 0 0 0 -I ny .

Local Convergence Analysis

Let us first recall that the proximal mapping (or prox-operator) of a convex function f : R n → R is defined as :

prox f (v) = arg min x (f (x) + 1 2 x -v 2 ) (26) For instance, if f (x) = 0, prox f (v) = v.
Moreover, if f is the indicator function a of closed convex set F, then prox f is non other than the projection on F given by :

prox f (v) = arg min z∈F z -v 2 = P F (v). ( 27 
)
Recall also that if f is convex, the prox f (v) exists and is unique for all v. Another important point that should be recalled is that the Moreau-Yosida regularization (known as Moreau envelope) of a function f , [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF], is defined as :

f m (v) = inf z (f (z) + 1 2λ z -v 2 ), λ > 0 (28)
Or equivalently,

f m (v) = f (prox λf (v)) + 1 2λ prox λf (v) -v 2 . ( 29 
)
The Moreau envelope is usually used as an approximation of f , although regularization was not the purpose of the seminal paper [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF]. Recall that in the nonsmooth case, it consists on a smooth regularization since it is always convex and its gradient ∇f m exists and is given by :

∇f m (v) = 1 λ (v -prox λf (v)) (30) 
Moreover, ∇f m is Lipschitz continuous with constant 1 λ . In the MDR based technique context, we suppose that DL admits a quadratic indicator function :z = vec(Z) → d(z) and H, which represents henceforth either Hs , Hm ∞ or Hm 2 , admits a non-smooth indicator function : z = vec(Z) → h(z). Given an initial point z 0 (derived from a randomly chosen tri-diagonal matrix Z 0 ∈ R n×n for instance representing the initial closed-loop matrix A c ), the MDR method generates a sequence (z k ) ∞ k=1 as follows :

z k+1 = (1 -µ)I + µR HRD L (z k ), µ ∈ (0, 1] (31) 
where the mappings noted RD L , R H are defined by :

RD L µ d PD L + (1 -µ d )I, µ d ∈ (0, 2] (32) R H µ h P H + (1 -µ h )I, µ h ∈ (0, 2] (33) 
Hence, the problem tackled with, in this section, consists in analysing the convergence and the convergence rate of the MDR search scheme given by equations ( 31), ( 32) and ( 33) by means of a Lyapunov based stability analysis of a dynamical system whose trajectory goes through the discrete iterates (z k ). It is shown, hereafter, that the MDR iterates can be interpreted as a gradient-descent method for minimizing a differentiable function, subsequently constructed, namely f mdr . In that case, given an initial point z 0 ∈ R n 2 , the MDR method generates a sequence (z k ) ∞ k=1 that is a discretization of the trajectory of the continuous dynamical system given by

ż(t) = µ R HRD L -I z(t), z(t 0 ) = z 0 (34) 
using the forward discretization ż(t) ≈ z k+1 -z k and z(t) ≈ z k approximation (for simplicity of presentation, the sample time is fixed to 1 without loss of generality). Therefore, we aim here to recast (34) as

ż(t) = -∇f mdr (z), z(t 0 ) = z 0 (35) 
According to (30) one can rewrite the reflections RD L , R H as follows :

RD L (z) = (I -µ d ∇d m )(z), R H(z) = (I -µ h ∇h m )(v). ( 36 
)
This leads to :

µ I -R HRD L (z) = µµ d ∇d m (z) + µµ h ∇h m (z -µ d ∇d m (z)) Since, d is twice continuously differentiable the term (I -µd 2 ∇ 2 d m (z)) exists. Besides, since d is quadratic the term (I -µd 2 ∇ 2 d m (z)) is constant that is (I -µd 2 ∇ 2 d m (z)) Γ.
At this point we are able to construct f mdr as follows :

f mdr (z) µ(Γ -1 (µ d d m (z) + µ h h m (z -µ d ∇d m (z)) - µ d 2 (∇d m (z)) 2 )) (37) 
Hence,

ż(t) = µ R HRD L -I z(t) = -∇f mdr (z). ( 38 
)
The asymptotic stability of a point z * supposed to be a strict local minimizer of f mdr , follows from Lyapunov theorem by choosing the following Lyapunov function :

V L (z) f mdr (z) -f mdr (z * )
Then, one can note that

VL (z) = < ∇f mdr (z), ż > = -∇f mdr (z) 2 ≤ 0. ( 39 
)
Assuming that z * is an isolated local minimizer then ∇f mdr (z) = 0. Therefore, z * is an asymptotically stable equilibrium point of (35) and consequently for the continuoustime dynamical system (34). Furthermore, choosing a Lyapunov function of the form :

V L (z, t) t(f mdr (z) -f mdr (z * )) + 1 2 z -z * 2 , ∀t ≥ 0. ( 40 
)
leads to

f mdr (z) -f mdr (z * ) ≤ 1 t V L (z 0 , t 0 ). ( 41 
)
which means that the convergence rate is of O( 1 t ). The last inequality writes also :

f mdr (z) -f mdr (z * ) ≤ 1 t c(µ, µ d , µ h ) ( 42 
)
where c depends only on parameters µ, µ d , µ h since z 0 is fixed.

Remark 4. Inequality (42) means that the adaptation parameters have a direct effect, as expected, on the convergence rate.

Numerical Examples

Stabilization

An academic example borrowed from [START_REF] Rubio-Massegu | Static output-feedback control under information structure constraints[END_REF] consisting in a LTI system given by ( 14) with the following state-space matrices data :

A =       -4 0 -2 0 0 0 0 2 0 0 0 -2 0 -1 0 -2 0 -1 0 3 0 -2 0 -1       , B =       1 0 0 1 0 0 0 0 0 0 1 0 0 0 1       , C =   1 0 0 0 0 0 1 0 0 0 0 0 0 0 1   ,
is considered to test the MDR method (with µ = 1 2 , µ d = µ h = 2) for static output feedback stabilization. Starting from K 0 = 0 3×3 with σ(A) = {-1.5000±1.9365i, -3.7004± 1.1286i, 0.4009}, only 2 iterations2 and a computation-time less than 1 second to obtain the stabilizing static output feedback K * given by : 

K * =   -0.
with σ(A + BK * s C) = {-3.8330 ± 1.0587i, -1.5000 ± 1.9365i, -0.1102}. The MDR method is then tested on the well-known COMPleib library by Friedemann [START_REF] Leibfritz | COMPleib: COnstrained Matrix optimization Problem library a collection of test examples for nonlinear semidefinite programs, control system design and related problems[END_REF]. All the examples are run from a zero gain matrix and no random start is used. In Table I, n x designates the system size, Iter the size of MDR sequence, Dist the distance of Z = A + BK * C to the set of feasible output feedbacks DL , K * the static controller gain solution and t the computation-time in seconds.

H ∞ control

Once more, the same academic example borrowed from [START_REF] Rubio-Massegu | Static output-feedback control under information structure constraints[END_REF] is considered. It consists of a LTI system given by (18) with the following complementary state-space matrices data:

B w = 1 1 1 1 1 , C z = I 5 0 3×5 , D z = 0 5×3 I 3
The aim is to find a stabilizing static output feedback that ensures a closed-loop H ∞ performance less than γ ∞ = 0.78. After 12 iterations and a computation-time of t = 1.2s : is obtained achieving an H ∞ closed-loop performance of T zw (s) ∞ = 0.7712. Moreover, the proposed method was tested intensively on COMPleib systems. For the AC5 system, for instance, 10 iterations and a computation time of t = 0.778s, were required to obtain the following static output feedback gain : -6.5008 -0.1737 -3.6406 1.9473 (46) achieving T zw (s) ∞ = 667.29 which is better than the one found by HIFOO approach (γ ∞ = 669.56) [START_REF] Arzelier | H 2 for Hifoo[END_REF]. For the NN16 system, 3 iterations and a computation time of t = 0.225s, were required to obtain the following static output feedback gain

K ∞ =
K ∞ = 1e6
K ∞ = 1e6    
-0.0453 0.0070 -0.0144 0.0032 0.0069 -0.0313 -0.0032 -0.0011 -0.0144 -0.0032 -0.0453 -0.0070 0.0032 -0.0011 -0.0069 -0.0313

    (47) 
achieving T zw (s) ∞ = 0.9909 which is substantially equal to the one found using a Particle Swarm Optimization based technique (γ ∞ = 0.99) [START_REF] Yagoubi | Particle Swarm Optimization for the static H ∞ static output feedback[END_REF].

Conclusion

A reflection-based method for feedback synthesis under information structure constraints is presented. The approach relies on a prominent property of Hurwitz-stable matrices set and a Douglas-Rachford's like reflection optimization method. The convergence of the generated iterates continuous limit is connected to a continuous dynamical system trajectory. Hence, the Lyapunov stability theory is used to prove the local convergence of the proposed scheme. Finally, the efficiency of the proposed approach is demonstrated through several examples.

  0526 0.0167 -0.2446 0.0725 -0.0465 0.1227 -0.3732 0.0956 -0.7068   (43) with σ(A + BK * C) = {-3.8230 ± 1.2702i, -1.4944 ± 1.9661i, -0.1079}. When an additional structure constraint, of the type K ∆ = K

  1, 2} are some given matrices of appropriate dimensions. Let us now define the nearest matrix problem under a Linear Matrix Equality (LME) constraint of the type X = U 0 + U 1 XU 2 .

	Definition 2.2 (Nearest matrix problem under LME). The nearest matrix problem
	under a Linear Matrix Equality (LME) is defined as :

Table 1 .

 1 MDR method applied to static output feedback problems from COMPleib

	System nx	Iter	λmax	Dist								K *	t(s)
	AC5	4	3	-0.203	6.19e-15				1e3		0.3619 -0.5873 -0.0230 -1.5307	0.095
	AC7	9	4	-0.0114	4.5e-15							0.5879 0.1152	0.299
	AC8	9	3	-0.0164	1.876e-15		0.0036 -0.0005 -0.0085 -0.0001 0.0009	0.305
											3	-2	-6	0	1	
	AC9	10	4	-0.0028	1.07e-15			1e -4	  20 -9 -39 -1 6 5 -1 -10 0 1  	0.424
												0	3	4	0	0
	AC10	55	4	-0.0232	1.08e-13				1e -5	-0.0026 0.2386 0.1321 0.2207	6.11
	AC11	5	11	-0.0209	1.6e-14			0.0055 0.0615 0.2154 -0.1586 0.0036 0.0244 0.0961 -0.0628	0.14
									0.5			9.1 -10.1 -2190.4	
	AC12	4	2	-0.6503e-4	2.8e-15				0.4			0.7	-0.7	-313		0.26
								-0.1 0.2	-0.2	-43.9
	NN1	3	16	-0.0454	1.6e-14							2.8647 43.1201	1.03
	NN5	7	25	-6.0232e-5	1.58e-15						11.5909 10.3878	0.48
	NN13	9	12	-0.0545	1.22e-14			0.1044 2.2036 75.5248 6.3875	4.23
	HE1	4	10	-0.0022	5.9e-16								0.0725 0.3695	0.64
							0.035	-0.764 -0.052 -0.010 -1.097 -0.291 
	HE3	8	3	-0.0150	3.18e-16	 	-0.043 0.036	1.663 -0.204 -0.439 -0.364	0.134 0.012	2.729 -0.048 -0.462 0.180  	0.15
							0.014	-0.391 -0.785 -0.096 -0.026	-0.82
											0 0.03 4.56 -0.07 
	WEC1	10	5	-0.002	7e-15			10 -2		0	0	0.09	0		0.65
											0	0	0	0
									-0.0013 -0.0178 0.0025 
	JE2	21	6	-0.053	2e-14				0.0178	0.0095 0.0133 	0.12
									-0.0144 -0.0055 0.0636
	has been imposed we obtain, after 2 iterations, the structured stabilizing static output
	feedback K * s :										
						 -0.0023 0 -0.0023 
					K * s =	 -0.0006 0 -0.0006 
						-0.7683 0 -0.7739

An element wise linear constraint can be added, without loss of generality, to ensure the closedness of the considered subsets.
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