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ABSTRACT

This paper deals with stabilization, H2 and H. static feedback synthesis, under
information structure constraints. The proposed approach relies on a prominent
property of Hurwitz-stable matrices set and a Douglas-Rachford (DR) reflection
method type for finding a point in the intersection of two closed sets. The method
proposed in this paper emulates the genericity of the Linear Matrix Inequalities
framework while keeping the feedback gain separated from any matrix with direct
or indirect connection to the Lyapunov function. The link between the sequence of
iterates generated by the proposed algorithm and a continuous dynamical system
results in the use of Lyapunov stability theory for guaranteeing the convergence.
Several examples are given to prove the validity of the proposed method.

KEYWORDS
Nearest matrix problems, Hurwitz-stable matrices set, Douglas-Rachford reflection
method, output feedback control, information structure constraints.

1. Introduction

Several control problems can be recast as an optimization of a linear criteria un-
der one or several LMI constraints (Boyd, El-Ghaoui, Feron & Balakrishnan, 1994;
VanAntwerp & Braatz, 2000). The solution of the control problem is then derived ef-
ficiently using Semi-Definite Programming (SDP). However, not all control problems
can be cast as convex optimization ones, especially when it comes to a control problem
under information structure constraints (Rubio-Massegu, Rossell, Karimi & Palacios-
Quinonero, 2013) or a control problem involving various specifications such as the
mixed Hy/Hs, control case (Scherer, Gahinet & Chilali, 1997). The rise of LMIs since
later 1990s have led to different strategies relaxing these problems. Unfortunately they
were not suited for medium or large size problems. Due to the presence of Lyapunov
variables, whose number grows quadratically with the system size, LMI programs (and
hence BMI ones) (VanAntwerp & Braatz, 2000) quickly lead to problem sizes where
existing numerical algorithms (interior-point algorithm for convex cases, for instance,
or cutting-plane algorithm for bilinear programs) fail (Lewis, 2007). These considera-
tions are true in the case of state feedback and are even more exacerbated in the case
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of static (with or without information constraints) output feedback design (see the
survey paper (Sadabadi & Peaucelle, 2016) and references therein).

In that context, it is still of interest to pave the way for an alternative solution that
can be numerically competitive to existing methods and takes into account different
control objectives as simply as for the Lyapunov/LMI paradigm. It must also keep a
separation between the output (or state) feedback gain and any matrix with direct or
indirect connection to the Lyapunov function.

The original approach, proposed in this paper, relies among others on Douglas-
Rachford method which is a splitting method frequently employed for finding zeros of
sums of maximally monotone operators. The success of the DR method (see the survey
paper (Lindstrom & Sims, 2018) and references therein) in the context of closed, con-
vex, non-empty sets is well-known and understood from a theoretical view (Bauschke
& Moursi, 2017; Bauschke, Cruz, Nghia, Phan & Wang, 2014; Bauschke, Combettes
& Luke, 2004). When one of the sets is non-convex the performance of such algo-
rithm is still impressive (Borwein & Sims, 2011). In particular, the proposed approach
brings together wisely a prominent property of Hurwitz-stable matrices set and the
DR iterates to propose a method for stabilization, Hy and H., control synthesis, un-
der information structure constraints. Besides, the proposed iterative method has a
guaranteed convergence. The connection between the continuous limit sequence of the
iterates and the trajectory of a continuous dynamical system results in the use of the
direct method of Lyapunov stability theory to guarantee the local convergence.

The paper is organized as follows. Section 2 recalls some exiting and also introduces
some new nearest matrix problems that are intensively used in the sequel. Section 3
proposes a new Douglas Rachford’s like algorithm for stabilization, Hs and H., control
synthesis, under information structure constraints. Section 4 exhibits the convergence
analysis and rate of the proposed iterative scheme. Section 5 illustrates the validity
and efficiency of the proposed method through several numerical examples before
concluding in section 6.

Notations : Hereafter, I,, designates the identity matrix of dimensions n x n and
vec(Z) denotes the vec-operator that stacks the columns of Z into a vector. Z ' denotes
the transpose of a given real matrix Z and Z' denotes its Moore-Penrose pseudo-
inverse matrix. [|Z] = (32, ; Z?j)% designate the Frobenius norm associated to the
inner product < Zy, Zy >= trace(Z{ Z3). Z > 0 (Z >) means that Z is a positive-
definite (positive semi-definite) matrix. In the same vein, Z < 0 (Z <) means that Z
is a negative-definite (negative semi-definite) matrix. The set of positive semi-definite
(definite) matrices is denoted by St (S7*). In the same way, S, (S, *) denotes the set
of matrices with a negative semi-definite (definite) symmetric part. For a symmetric
matrix represented block-wise, off-diagonal blocks are abbreviated with e. Finally,
without special stated, all matrices used in this paper are supposed to have appropriate
dimensions.

2. On some nearest matrix problems

In this section, some preliminary definitions and results that will be used intensively
in the sequel are presented. Hereafter, the Frobenius norm is chosen as a metric for
its sub-multiplicative and invariance under rotations properties.

Definition 2.1 (Nearest matrix problem). A nearest matrix problem is defined as
finding the nearest matrix Xp € D" to a given matrix Z € R"™*" under Frobenius



norm :

Xp=argmin|Z — X|| (1)
Xeb

The solution of such problem depends entirely on the set D since ||Z — X|| is a
smooth function of X.

2.1. Nearest matriz problem under LME constraint

Let us consider the matrix set defined by :
Dy £ {X e R™"/3IX e R™*P . X = Uy + U1 XU}

with U;, ¢ € {0,1,2} are some given matrices of appropriate dimensions. Let us now
define the nearest matrix problem under a Linear Matrix Equality (LME) constraint
of the type X = Uy + U1 X Us.

Definition 2.2 (Nearest matrix problem under LME). The nearest matrix problem
under a Linear Matrix Equality (LME) is defined as :

Xp=argmin|Z — X|| (2)
XeDby

Or equivalently,

Xp = argmin
XERmxp

Z — Uy + UlXUQ)H.

This problem is convex, since it can be recast as a linear constrained Quadratic
Program (QP), hence it can be solved efficiently. In fact, using the vec operator nota-
tions:

z, 2 vec(X), z, £ vec(Z)
one can easily establish the equality given below :

1Z — X||2 = 2y 2y — 220 | Tp + To | Ty

which is quadratic in x,. Moreover, according to (Jovovic & Malesevic, 2014), the
LME :

X = U0+U1XU2

is consistent if and only if, for some pseudo-inverses UlT, Uyt verifying Uy U,fu, = Uyt
and UsUy Uy = UQT, the following equality holds :

UL UL (X — Up)Us Uy = (X — )



Hence, using vec operator properties we obtain :
Al f —
(U ' Uy @ U UL (2 — vee(Up)) = (x4 — vee(Uy))

which is a linear constraint in x,.

Remark 1. A zero-non zero structure on the matrix X can be added to the nearest
matrix problem under LME (2) using a linear matrix equality of the form : X ©A = X
(where ® denotes the element wise Hadamard product) with A € R™*P a matrix of
either zero or one elements.

On another note, the projections on the set of positive definite matrices ST™ and
generalized negative definite matrices S are presented hereinafter.

2.2. Nearest positive matrixz problem

Projection onto the cone of positive semi-definite matrices denoted ST, is equivalent
to finding the positive semi-definite approximant using the Frobenius norm metric.
Since ST is convex the approximant is unique and is equivalent to the problem, first
introduced by Higham in (Higham, 1988), given below :

Xt = argmin | Z — X|| (3)
X=XT>0

The solution of (3), for real matrices, is given by the following Theorem (Higham,
1988):

Theorem 2.3. Let Z € R™™ be a given matriz and Zs = (Z + Z1)/2, Zss = (Z —
Z")/2 be the symmetric and skew-symmetric parts of Z respectively. Let Z, = UH be
a polar decomposition of Zs with (U'U = I,,H=H' >0), then XT = (Z, + H)/2
s the unique positive semi-definite approximant of Z in the Frobenius norm.

Proof. Let X be a symmetric positive semi-definite matrix.
1Z = XI* = 11Zs = X + | Zssl* + 2 < Zs = X, Zos> (4)

This equality reduces to || Z — X||> = || Zs — X ||*+|| Zss||? since Z, is a skew-symmetric
matrix. Hence, the problem consists in approximating Zs. Let Z, = TAT T be a spectral
decomposition with T'T = I,,,A = diag(\;), let Y = TTXT. Since the Frobenius
norm is invariant by rotations we obtain :

12, = X1 = A =¥ = 3+ 3000 -

i#]

> Z()\i_yz’z’ > ZA?

Ai<0 Ai<0

Since Y is positive semi-definite, the lower bound ) A, <0 )\% is reached uniquely for the



matrix Y = diag(d;) where :

) >
b e nizo -
0, \; <0

that is : Xp = Tdiag(d;)T". Finally, since H = T'diag(|\:)T ", we get X+ = (Z, +
H)/2 € St (Higham, 1988). O

Remark 2. Projection on ST* can be obtained in the same manner as in the last
Theorem by substituting the equation (5) by the following equation

A, A >0
d; = ~ (6)
€, N <0,e>0

with € a sufficiently small positive real scalar (compared to the condition number
associated to Zs). This projection can be numerically obtained based on the Schur
decomposition, for instance, using the spectral decomposition Zs = TAT " where T
is an orthogonal matrix and A = diag(\;),i = 1,2,...,n. Then, Z7 = TATT where
A = diag(\}) = max{e; \;} for i =1,2,...,n.

2.3. Nearest generalized negative matrixz problem

Unlike the nearest positive matrix problem solved by Higham, the following general-
ization is original and introduced for the first time in this paper. Let us consider the
following set S; = {Z € R™"/ Z; = (Z + ZT)/2 < 0} including matrices with a
negative semi-definite symmetric part. Then we have S C S and projecting onto S,
can be seen as a generalization of the problem given in (3) and is given by :

Xy =argmin||Z — X|| (7)
Xesy

if one consider X, = (X + X1)/2, Xgs = (X —X")/2and Z, = (Z + Z")/2, Zss =
(Z — ZT7)/2 the symmetric and skew-symmetric parts of X and Z respectively, then
the function to be minimized in (7) becomes :

1Z - X”2 = |Zs + Zss — X5 — X85”2
which leads to

1Z = X||? = || Zss — Xes||> 4 |1 Zs — Xo||? +2 < Zgs — Xesy Zs — X > .

This reduces to : |Z — X||* = || Zss — Xssl|? + || Zs — Xs||” since Zgs — X5 is skew-
symmetric. Hence (7) can be obtained by solving the following minimization problem:

min | Zss —X55H2+ 1Zs _XSH2
Xeo=—X,. |, X, €8



Since both Zgs and X, are skew-symmetric matrices, the solution of (7) can be ob-
tained by solving the following minimization problem:

X, = argmin || Z, — X, (8)
X, =XT<0

which is similar to problem (3). Finally, the solution of the nearest generalized negative
matrix problem (7) is given by X, = Z,s + X~ with X, is the projection of Z, onto
ST*.

3. Reflection based techniques for constrained control synthesis

3.1. Hurwitz-stable matrices set

The set of Hurwitz-stable matrices, henceforth denoted by Hg, is a simply connected
open cone (Duan & Patton, 1998) since it is the product of two convex open cones. It
follows from that, as shown in (Duan & Patton, 1998), any Hurwitz-stable matrix Z
can be expressed as a product of a generalized negative definite matrix X € S;* and
a positive definite matrix Y € ST as stated by the following Theorem.

Theorem 3.1. (Duan & Patton, 1998) A matriz Z € R"*" is Hurwitz-stable if and
only if there exist a generalized negative definite matriz X and positive definite matrix
Y such that : Z = XY

3.2. Nearest Hurwitz-stable matrixz problem

The projection of a given matrix Zy € R™*™ onto H; is yet another nearest matrix
problem given by the following expression :

Zp = argmin || Zy — Z|| 9)
ZeHs

Using the result of Theorem 3.1, one can recast this nearest matrix problem as the
following original optimization problem :

min || Zo — XY (10)
XeSy ", Yest

To solve this problem a gradient-projection scheme is proposed and presented by
iterations of the form :

(11)

X1 = (Xg — 0x0x),
Vi1 = (Ve — 6y 0y)*

where (-);, (-)* designate the projections on S;* and S** respectively. dx and dy
denote the sub-gradients given by :

{ Ox = (Zo — XpYa)Y, 12)

Oy = X (Zy — X3V



dx and 0y designate the adaptive step-sizes given by :

{5X = [|ox]* / |9x Yil? (13)

oy = oy I* / IIXudy|I”

Moreover, the initial starting points Xy and Yy are computed using polar decomposi-
tion of Zg = UH that is : Xo = (U),, Yo = H.

3.3. Douglas-Rachford like technique for constrained control synthesis

Douglas-Rachford methods (DR) are frequently used to find a feasible point (i.e. a
point in the intersection) of two closed constraint sets in a Hilbert space. In our case,
let us consider the following closed subsets! Dy, C Dy, and Hy C H,. The stabilization
problem under information structure constraint for the linear time-invariant (LTT)
system described by :

i=Ar+ Bu, z€R"™, ueR™ (14)
y=Cz, y € R
can be recast as the following original feasibility problem :
Find K e R™*™/ Z 2 (A+ BKC) € Dy NH,s (15)

In order to simplify both notation and implementation the projections on each subset,
which are no other than the nearest matrix problem under LME associated to D;, and
the nearest Hurwitz-stable matrix problem associated to Hs, will be noted Pp, and
Py, respectively, in the sequel. Hence, the corresponding reflection mappings noted
Rp,, Ry, are defined by :

Rp, = 1taPp, + (1 — pa)l, Ry = Py, + (1 — pn)1, (16)

with pg € (0,2], pn € (0,2]. In (Félt & Giselsson, 2017), an optimal value of the
adaptation parameters pg, pp, is found in the case of finding a point in the intersec-
tion of two (convex) affine subspaces. Let us just remind that the problem tackled
with involves a convex and a potentially non-convex set. The (local) convergence, the
smoothing effect of the proposed optimization scheme are discussed in the next sec-
tion. Moreover, DR method is often referred to as reflect-reflect-average algorithm. See
survey papers (Lindstrom & Sims, 2018; Ryu & Boyd, 2016) and references therein)
that trace back its origin to the mid-1950s. It admits many variations and has proven
its superiority on alternating projections algorithms. In this paper, an original DR-like
scheme is proposed and is defined hereafter.

Definition 3.2 (Modified DR method (MDR)). Given an initial matrix Ky € R™*"v,
the MDR method generates a sequence (K})52; as follows :

Kit1 € Tp, 5. (Kk),

A (17)
Tp, 51, = (1= + pRp, Ry,

1An element wise linear constraint can be added, without loss of generality, to ensure the closedness of the
considered subsets.



p € (0,1] is some adaptation parameter.

3.4. Hoo and Hy characterizations

In light of the stability characterization, original characterizations of H,, and Hs
performances are proposed hereafter. For this aim, let us consider the LTI system
described by :

i =Ar+ Byw+ Bu, x€R™, weR"™, vweR™
2= C,z + D,u, z € R™ (18)
y=Cux, y € R,

The following result presents the new H,, performance characterization of the closed-

loop given by :

&= A.x + Byw, A.2 A+ BKC
(19)

z=C.x, C.2C,+ D,KC

Theorem 3.3. The closed-loop system given by (19) has an He norm less than v > 0
if and only if there exist matrices X € R"*"= Y € R"*" gnd G € R"*" such

that:
a]-la]+ o xe=[a ]y (20)

with [ )Cg } Vi+ Ve € S§;* is a generalized definite negative matriz and Y € St a

definite positive matriz. V1 and Vo are some constant matrices given by :

1 T
BB 0
Vim [ O, ] Vo= 3| 75050 0|,

0 - In y

Proof. According to the bounded real-lemma, system (19) has an H, norm less than
v > 0 if and only if there exist a matrix @ = Q" > 0 such that :

AlQ+QA+C/Ce o T
B Q -1

Since A. is Hurwitz-stable :
3XeS,*Y=QeS™/ Ac=XY (21)
Moreover, Y = @ is non singular means that :

3G eRW* ™=/ C,=GY (22)



Hence, the bounded real-lemma, writes :
1
Y(X"+X+N'N+ BB )Y <0
Y

which, by Schur’s lemma, leads to

T 1 T
[X + X + BB, .} —0

or equivalently,
X —x
[G]%—FVQGSQ. (23)

O

Hence, the H., synthesis problem under information structure constraint for the
LTI system given by (18) can be recast as the following feasibility problem :

Find K € R™*"/ { ‘éc ] €D NHeo (24)

with H is the closed subset of matrices Z that can be written as [ él,c } = [ 6,4 ] +
C z
B X . X
[DZ}KC— a Yw1th[G
matrix and Y € ST a definite positive matrix.

} Vi + Vo € S, is a generalized definite negative

Remark 3. This problem can be solved by the MDR like method (Tﬂg‘L 4 ) as pre-

sented in Definition 3.2. The projections and reflections can be derived by gradient-
projection algorithms as for the stability case.

In the same vain, the Hy performance is presented hereafter.

Theorem 3.4. The closed-loop system given by (19) has an Ha norm less than vyo > 0
if and only if there exist matrices X € R *"= Y € R"™ X" gnd N € R"*" such

that :
&]-[a ][5 ]ne-[E]¥ .

with [ )Cg } Vi+ Vs € S;* is a generalized definite negative matriz and Y € St a

definite positive matriz verifying in addition the LME constraint trace(BIYBl) <93,
V1 and V3 are some constant matrices given by :

VlZ[InT OnxXny}7‘/é:%|:8 —? :|
Ny



4. Local Convergence Analysis

Let us first recall that the proximal mapping (or prox-operator) of a convex function
f:R™ — R is defined as :

proxy(v) = arg;nin(f(x) + % |z —v|?) (26)

For instance, if f(x) = 0, proxs(v) = v. Moreover, if f is the indicator function a of
closed convex set I, then proxy is non other than the projection on F given by :

proz;(v) = argmin ||z — v||*> = Pg(v). (27)
z€lF

Recall also that if f is convex, the proz¢(v) exists and is unique for all v. Another im-
portant point that should be recalled is that the Moreau-Yosida regularization (known
as Moreau envelope) of a function f, (Moreau, 1965), is defined as :

fnle) = E(F2) + o5 N1z = o), A >0 (28)

Or equivalently,

fn(0) = F(prowas(v) + oy lprozas(v) = ol (29)

The Moreau envelope is usually used as an approximation of f, although regularization
was not the purpose of the seminal paper (Moreau, 1965). Recall that in the non-
smooth case, it consists on a smooth regularization since it is always convex and its
gradient V f,, exists and is given by :

Vin(0) = 5 (v = prozas(v) (30)

Moreover, V f,, is Lipschitz continuous with constant % B

In the MDR based technique context, we suppose that D; admits a quadratic in-
dicator function :z = vec(Z) — d(z) and H, which represents henceforth either Hj,
H™ or HY', admits a non-smooth indicator function : z = vec(Z) — h(z). Given an
initial point zo (derived from a randomly chosen tri-diagonal matrix Z, € R"*" for
instance representing the initial closed-loop matrix A.), the MDR method generates
a sequence (zj)7> as follows :

shit = (1= T+ pRyRp,) (), g€ (0,1] (31)

where the mappings noted Ry, , Ry are defined by :

Rp, £ 1dPs, + (1 — pa)l, pa € (0,2] (32)
Ry & Py + (L= )1, i € (0, 2] (33)

Hence, the problem tackled with, in this section, consists in analysing the conver-
gence and the convergence rate of the MDR search scheme given by equations (31),

10



(32) and (33) by means of a Lyapunov based stability analysis of a dynamical system
whose trajectory goes through the discrete iterates (zx). It is shown, hereafter, that
the MDR iterates can be interpreted as a gradient-descent method for minimizing
a differentiable function, subsequently constructed, namely f,,q-. In that case, given
an initial point zy € ]R"2, the MDR method generates a sequence (z;);2, that is a
discretization of the trajectory of the continuous dynamical system given by

£(t) = n(RyRp, — I) 2(t), 2(to) = 20 (34)
using the forward discretization 2(t) = zp4+1 — 2 and z(t) ~ z; approximation (for

simplicity of presentation, the sample time is fixed to 1 without loss of generality).
Therefore, we aim here to recast (34) as

2(t) = =V fmar(2), z(to) = 20 (35)
According to (30) one can rewrite the reflections Ry, , Ry as follows :
Rs, () = (I = 1a¥n) ), Ro(=) = (I = i Vi) (0). (36)
This leads to :
(I =RgRp,) (2) = pptaVdm(2) + punVhm(z — paVdn(2))
Since, d is twice continuously differentiable the term (I— £ V?d,,(2)) exists. Besides,

since d is quadratic the term (I — 4V?d,,(z)) is constant that is (I — 4 V?d,,(z)) £ T.
At this point we are able to construct f,q4, as follows :

Frndr(2) & 10 (padim (2) + pnhin (2 = paVdm(2)) - %(Vdm(Z))Q)) (37)
Hence,

4(6) = (RgRp, — 1) 2(0) =~V e (2). (38)

The asymptotic stability of a point z* supposed to be a strict local minimizer of f,q4,
follows from Lyapunov theorem by choosing the following Lyapunov function :

Vi(2) £ finar(2) = frmar(2)
Then, one can note that
Vi(2) = < Vimar(2),2> = |V mar(2)]* <0. (39)
Assuming that z* is an isolated local minimizer then V f,,4-(2) # 0. Therefore, z* is an
asymptotically stable equilibrium point of (35) and consequently for the continuous-

time dynamical system (34).
Furthermore, choosing a Lyapunov function of the form :

Vi(st) 2 t(Fmar(2) — Fonan (7)) + % 2= 2%, vt > 0. (40)

11



leads to
Fnar(2) = Fnar () < Vi (20, o). (a1)

which means that the convergence rate is of O( %) The last inequality writes also :

fmdr(z) - fmdr(Z*) < C(:Uv Mdaﬂh) (42)

~+ | =

where ¢ depends only on parameters pu, pg, 1, since zg is fixed.

Remark 4. Inequality (42) means that the adaptation parameters have a direct effect,
as expected, on the convergence rate.

5. Numerical Examples

5.1. Stabilization

An academic example borrowed from (Rubio-Massegu et al., 2013) consisting in a LTI
system given by (14) with the following state-space matrices data :

-4 0 -2 0 O 1 00

0O -2 0 2 0 1 00 10 000
A=|0 0 -2 0 -1|,B=|(0 0 0, C=1]0 1 0 0 0},

0O -2 0 -1 0 010 00001

3 0 -2 0 -1 0 01

is considered to test the MDR method (with p = %, pq = pp, = 2) for static output feed-
back stabilization. Starting from Ky = 03x3 with 0(A) = {—1.5000+1.93657, —3.7004+
1.12867,0.4009}, only 2 iterations? and a computation-time less than 1 second to ob-
tain the stabilizing static output feedback K* given by :

—0.0526 0.0167 —0.2446

K*=|0.0725 —0.0465 0.1227 (43)
—0.3732  0.0956 —0.7068

with o(A 4+ BK*C) = {-3.8230 + 1.27027, —1.4944 + 1.96617, —0.1079}. When an
additional structure constraint, of the type K ® A = K, with

A =

—_ =
O O O
T

20n Matlab@Mathworks, Processor Intel Core i7-4500U CPU @ 1.8GHz

12



Table 1.

MDR method applied to static output feedback problems from COMPleib

System ng Iter Amaz Dist K* t(s)
03619 —1.5307
ACS5 43 0203 6.19e-15 1e3 | S T aaa0 0.095
ACT 9 4 00114 45e15 0.5879 _ 0.1152] 0.299
ACS 9 3 00164 187615 [0.0036 —0.0005 —0.0085 —0.0001 _0.0009] 0.305
3 2 6 0 1
5 -1 -10 0 1
AC9 10 4 00028  1.07e15 le—4|o To a0 O 0.424
0 3 4 0 0
Z0.0026 0.2386
ACI0 55 4 -0.0232  1.0813 le—5| 0 am oaa0n 6.11
0.0055 0.0615 0.2154 —0.1586
ACI1 5 11 -0.0209  1.6e-14 D00 hon e Tooees 0.14
05 91 —101 —21904
AC12 4 2 -06503e4 28¢5 04 07 -07 -313 0.26
—01 02 —02 —439
NN1 3 16 00454 16c14 [2.8647 43.1201] 1.03
NN5 7 25 -6.0232¢-5  1.58e-15 [11.5909  10.3878] 0.48
NNI3 9 12 00545 12214 [0.1044 22036 755248 6.3375] 123
0.0725
HE1 410 -00022  59e16 s 0.64
0035  —0761 —0.052 —0.010 —1.097 —0.201
—0.043 1663 —0.364 0134 2729  0.180
HE3 8 3 00130 30816 | o536 0204 —0439 0012 —0048 —0462| 1P
0.014  —0.391 —0.785 —0.096 —0.026 —0.82
0 003 456 —0.07
WEC1I 10 5 -0.002 Te-15 1020 0 009 0 0.65
0 0 0 0
~0.0013 —0.0178 0.0025
JE2 21 6 -0.053 214 0.0178  0.0095 0.0133 0.12
~0.0144 —0.0055 0.0636

has been imposed we obtain, after 2 iterations, the structured stabilizing static output
feedback K7 :

~0.0023 0 —0.0023
K*=|-0.0006 0 —0.0006 (44)
—0.7683 0 —0.7739

with o(A + BK*C) = {—3.8330 + 1.05874, —1.5000 £ 1.9365¢, —0.1102}.

The MDR method is then tested on the well-known COMPIleib library by Friede-
mann Leibfritz, F. (2004). All the examples are run from a zero gain matrix and no
random start is used. In Table I, n, designates the system size, Iter the size of MDR
sequence, Dist the distance of Z = A+ BK*C to the set of feasible output feedbacks
Dy, K* the static controller gain solution and ¢ the computation-time in seconds.

5.2. H,, control

Once more, the same academic example borrowed from (Rubio-Massegu et al., 2013) is
considered. It consists of a LTI system given by (18) with the following complementary
state-space matrices data:

T_ T _ | I5 _ |05x3
B,=[11111] ,Cz_[OSXJ,DZ_[Ig]
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The aim is to find a stabilizing static output feedback that ensures a closed-loop
H, performance less than vo, = 0.78. After 12 iterations and a computation-time of
t=172s:

—0.7637 0.0572 —0.6578
Ko = |—0.8107 0.0763 —0.0230 (45)
—1.1551 0.7020 —1.2222

is obtained achieving an Hy, closed-loop performance of || 1%y, (s)|| ., = 0.7712. More-
over, the proposed method was tested intensively on COMPleib systems. For the AC5
system, for instance, 10 iterations and a computation time of t = 0.778s, were required
to obtain the following static output feedback gain :

—6.5008 —0.1737

Koo =1€6 | 36406 1.9473

(46)

achieving || 1% (5)|| o, = 667.29 which is better than the one found by HIFOO approach
(Voo = 669.56) (Arzelier, Georgia, Gumussoy & Henrion, 2011). For the NN16 system,
3 iterations and a computation time of t = 0.225s, were required to obtain the following
static output feedback gain

—0.0453  0.0070 —0.0144  0.0032
0.0069 —0.0313 -0.0032 —0.0011
—0.0144 —-0.0032 —0.0453 —0.0070
0.0032 -0.0011 -0.0069 -—0.0313

Koo = 1¢6 (47)

achieving || T. (s)||oc = 0.9909 which is substantially equal to the one found using a
Particle Swarm Optimization based technique (700 = 0.99) (Yagoubi & Sandou, 2011).

6. Conclusion

A reflection-based method for feedback synthesis under information structure con-
straints is presented. The approach relies on a prominent property of Hurwitz-stable
matrices set and a Douglas-Rachford’s like reflection optimization method. The conver-
gence of the generated iterates continuous limit is connected to a continuous dynamical
system trajectory. Hence, the Lyapunov stability theory is used to prove the local con-
vergence of the proposed scheme. Finally, the efficiency of the proposed approach is
demonstrated through several examples.
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