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Nucleation of Crystallization in Titanium and Vitreous State in Glass-forming Melt

The Gibbs free energy change associated with a crystal formation has been completed to reflect the energy saving due to Fermi energy equalization resulting from free-electron transfer from nascent crystal to the melt. This new equation is applied to a titanium-based glass-forming melt and crystallization of liquid titanium. The glass transition Tg depends on cooling and heating rates and has a thermodynamic origin because it corresponds to crystal homogeneous nucleation out-of-equilibrium temperatures and to a preliminary formation, during the relaxation time of a homogeneously-nucleated cluster distribution preceding the other steps leading to crystallization in unattainable times. A thermodynamic transition T*g exists at equilibrium when the energy saving is minimum as a function of Tg. The fully-relaxed enthalpy disappears at T*g where the undercooled liquid state reappears. Two types of glasses described as strong and fragile are predicted. Out-of-equilibrium spherical crystals having a radius smaller than a critical value R*2ls(Tm) survive above the melting temperature Tm and act as growth nuclei in undercooled melts. Undercooling temperature dwells are predicted only knowing the overheating temperature. A conduction gap is open in such crystals having diameters smaller than 1 nm in agreement with properties of clusters in vacuum.

Introduction

Transformations liquid-solid always induce changes of the conduction electron number per volume unit, and sometimes per atom. The equalization of Fermi energies of a spherical particle containing n atoms having a radius R smaller than a critical value R* 2ls () and of its melt produces an unknown energy saving  v per volume unit ; the  v value is equal to a fraction  ls of the molar fusion heat H m per molar volume V m . This energy has been included in the Gibbs free energy change G 2ls () associated with a crystal formation in metallic melts, being equal to  = (T-T m )/T m and T m the melting temperature [1][2];
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N A is Avogadro's number, k B Boltzmann's constant, S m the fusion entropy, J the nucleation rate, G* 2ls the critical energy barrier of crystal growth, v the sample volume, t sn the steady-state nucleation time, T 0g the disappearance temperature of the free-volume in glass-forming melts having a viscosity following a Vogel-Fulcher-Tammann law [3]; lnA is equal to 90 in liquid elements and to about 100 at the vitreous transition T g when K ls is defined in m -3 .s -1 ; B*(T g -T 0g ) is equal to 38 [5,4]. The contribution of unmelted crystal (clusters) of radius R nm to the reduction of the critical energy barrier is given by ( 1) with R = R nm . The classical equation G 1ls () and  ls are obtained with  ls = 0. The experimental values of  ls and of the lowest undercooling temperatures have been used to determine  ls and  ls [1,5]. The thermal variation of  ls is an even function of  given by (2) where  0g = (T 0g T m )/T m [1][2]; then, the fusion heat of unmelted crystals remains equal to H m regardless of their radius.
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The derivative dJ/d is proportional to (3 ls +2) when G nm = 0; the homogeneous nucleation temperature T 2ls is given by (3) when (3 ls +2) = 0; at T = T 2ls , we have J = 1 m 3 s 1 , v.t sn = 1, ln(J.v.t sn ) = 0 and lnK ls = G* 2ls /k B T 2ls :
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We apply these equations to liquid titanium and to a glass-forming melt assuming that the glass transitions occurs at T g = T 2ls (or  g =  2ls ).

2. The Vitreous Transition Temperature of Fragile and

Strong Glass-forming Melts Equations ( 2) and (3) are applied together at T = T 2ls (or  =  2ls ); the quadratic equation ( 4) is obtained: R. F. Tournier, "Nucleation of crystallization in titanium and vitreous state in glass-forming melt," in Ti-2011, Proceedings of the 12th world conference on titanium, Beijing (China), 2012. H. Chang, Y. Lu, D. Xu, L. Zhou, (eds), 2 (2012) pp1527-1531. ISBN: 978-7-03-033895-2.
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There are two values  2ls which are solutions of (4) for each value of  0g and  ls0 respectively larger than 2/3 and 1 [2]; they correspond to fragile glass-forming melts and are outof-equilibrium values because the minimum value of  ls0 is obtained when (5) and (6) 
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The minimum value of  ls0 given by ( 5) determines the thermodynamic vitreous transition  g =  2ls . The energy saving coefficient  ls0 of strong glass-forming melts can be also calculated using (4) when  2ls =  g and  0g < 2/3 are known. This description defines a strict boundary  0g = 2/3 (or T 0g = T m /3) which separates strong and fragile undercooled liquids in Angell's classification [6]. The equation ( 5) is a scaling law which determines  ls0 when  g is known; equation ( 6) has been used to predict the free-volume disappearance temperature  0g from  ls0 in perfect agreement with the Vogel-Fulcher-Tammann temperatures deduced from the viscosity and relaxation time measurements [7].

The alloy Ti 41.5 Cu 37.5 Ni 7.5 Zr 2.5 Hf 5 Sn 5 Si 1 has a melting temperature T m  1176 K. Its thermodynamic vitreous transition which is equal to the disappearance temperature of the fully-relaxed enthalpy is 713.5 K instead of an outof-equilibrium transition temperature equal to 693 K [8]; then,  g =  2ls = 0.393,  0g = 0.608 (or T 0g 461K) and  ls0 = 1.607 are calculated using ( 5) and (6).

Titanium Undercooling as a Function of Overheating

The growth critical radius of crystal is given in (7):
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The radius is no longer infinite at the melting temperature T m (or  = 0) and is proportional to (1+ ls0 )/ ls0 . Crystals with a radius R nm < R* 2ls are not melted and survive in an out-equilibrium state up to a temperature which depends on the thermal variation of  ls . In the past, we have extrapolated the equation (2) above T m in order to respect d ls /d = 0 for = 0 [1]. This assumption was wrong because the Fermi energy difference between crystal and melt has to stay nearly constant when the temperature increases above the melting point. We assume now, that the energy saving of a surviving crystal is constant because d ls /d is still equal to zero and  ls equal to  ls0 for > 0.

Fusion of a bulk element produces unmelted crystals of various shapes; the majority of them have steps and angles at the interface with the melt; steps and surface defects at the interface drastically reduce the superheating ability of Pb particles imbedded in a solid Cu-Zn matrix; a superheating ability is only observed when the interface is coherent with the matrix [9]. A lot of crystals having imperfect surfaces are submitted to surface melting down to a crystal size having stable interfaces with the melt and surviving to large superheating. The oldest model for melting, that is the homogeneous melting model, is expected to work in these crystals having surface atom vibration amplitudes identical to core atoms [10]. We assume that surviving crystals are spherical to minimize the surface energy and their fusion heat is equal to the bulk one because (2) is respected in the undercooled state [1,2]. The homogeneous melting model is applied when  > 0. The equation (8), obtained by changing in  and  ls in  nm0 in (1), is used for this purpose:
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R nm being the radius of an unmelted crystal. Critical energy barrier and critical radius given by ( 1) and ( 7) are also modified by changing in  and  ls in  nm0 . The energy saving coefficient  nm0 depends on the crystal radius R nm and has to be quantified as already shown [2] ; the quantification method is developed in part 4. A melt droplet grows inside surviving crystals which have a volume of about v=10 -27 m 3 . The thermally-activated critical energy barrier above T m has to be equal to ln(K sl .v.t sn )  36 with v = 10 -27 m 3 , lnK sl = 90, t sn = 600 s in order to observe the crystal melting after a steady-state nucleation time t sn of 600 s at an overheating temperature T (or ). The melting reduced temperature  > 0 of crystals (clusters) of radius R nm are given in figure 1. The undercooling temperatures are calculated assuming that the sample volume is very large ( t sn = 500s, v = 2 dm 3 ) or very small ( t sn = 1 s and v = 12 mm 3 ). In each case, the undercooling is always the same. It is equal to 369 K when  = 0.19 in perfect agreement with experimental results [5]; this undercooling is constant up to an overheating temperature not larger than 486 K (or = -0.25); beyond this overheating, there will be a small increase of the undercooling from 369 to 485 K. Crystallization around the melting temperature (without undercooling) is always possible in large samples if the overheating is smaller than 214 K. Above this limit, there is no more titanium nucleus able to drive crystallization without undercooling; a progressive increase of undercooling is always possible because a metallic liquid always contains oxide particles acting as growth nuclei.

The critical radius at T m is equal to 2.8 nm. In figure 1, crystals having a radius larger than 2.8 nm and smaller than 4.15 nm are not acting as growth nuclei; all are melted after a maximum overheating of 78 K.

It has been observed that the undercooling can be much larger when small droplets having a diameter of about 10 micrometers are used; the undercooling depends on the overheating. A second dwell of undercooling has been observed as a function of the droplet diameter of liquid gallium [11]. Here, higher the overheating, smaller the undercooling; the smallest nuclei have their radius increasing with the overheating as shown in figure 1. The small nuclei are very numerous compared to the large nuclei; in liquid gallium, the nuclei number increases 500000 times when the sample diameter varies by a factor 80 from 0.8 to 0.01 mm. Then, a new undercooling temperature dwell is still obtained when the droplet radius is reduced after applying a reproducible overheating. An undercooling = 0.5 has been obtained with gallium droplets applying an overheating of 70 K using boiling water. The nucleus radius has been calculated with this overheating; it is equal to 0.43 nm leading to an undercooling temperature  = 0.49.

The model works for many liquid elements and is able to quantitatively predict 2 undercooling temperature dwells of liquid titanium equal to  = -0.19 and -0.35 if an overheating of 291 K (or  = 0.15) is used when the sample size is progressively reduced. All large titanium samples are, in principle, able to crystallize near the melting temperature if the overheating is smaller than 214 K. The ideal undercooling temperature of very pure and small titanium droplets could be equal to 649 K ( = 2/3, or an undercooling of 1294 K) after an overheating of 816 K.

Quantification of the energy saving coefficient  nm0

The energy saving coefficient is given by (2); this equation has been established from experimental observations of the undercooling of liquid elements [1][2]; then, it is a quantified quantity which could result of s electrons virtually bound in the melt to a potential -U 0 given by ( 9)
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where n*z is the number of s electrons which have to be transferred from a spherical crystal containing n atoms to the melt to produce the same potential energy in vacuum;  0 = 8.85*10 -12 C.V 1 m 1 is the vacuum permittivity; e = 1,602*10 -19 C is the electron charge; U 0 depends on the radius through n and R nm and of the temperature through z [2].

We assume that the first-energy levels of a s-state electron moving in vacuum, in a negative spherical potential well -U 0 can describe the quantified values  nm0 when the radius R nm is decreased and approximate the true potential energy in the melt even at low radii. The Schrödinger equation is written with wave functions only depending on the distance r from the potential centre for s states [START_REF] Landau | Mécanique Quantique[END_REF]:
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The quantified solutions E q = n* nm0 *H m /N A calculated from the knowledge of U 0 or U 0 calculated from E q are given by the k value which has to respect the following relation: These values of the energy saving have been used to predict the diagram given in figure 1. The potential energy is nearly equal to the quantified (measured) one in the metallic state when R nm is larger than 0.5 nm. A conduction gap is opened when the cluster diameter is smaller than 1 nanometer. A unique bound conduction electron has an energy of 80 mev when ndz is equal to 1and R nm = 0.32 nm. Measurements of the conduction gap in small clusters of various metals in the same range of cluster sizes lead to similar quantities [START_REF] Vinod | [END_REF]. Clusters in melts and in vacuum have similar electronic properties.

Electronic properties of Titanium Clusters

The number of transferred electrons in vacuum to produce the potential U 0 is nz; z is temperature dependent because the Fermi energy difference decreases with the undercooling temperature; the good agreement between observed and predicted undercooling temperatures shows that the assumption that z does not depend on the radius is correct. The cluster density of states per mole D(E F ) at the Fermi level and the Fermi energy difference E F between cluster and melt have to obey to (10) and (11) in the metallic state:
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where m is equal to the ratio of electron masses m*/m 0; m 0 is the electron rest mass and m* the effective mass. We deduce from these two relations that the effective density of states mD(E F ) and the effective Fermi energy difference E F /m of clusters imbedded in melts are defined by ( 12) and ( 13) where R nm is measured in meter: These equations can be applied to all elements and alloys in the metallic state of clusters; z can be calculated, in a first approximation without quantified quantities, writing that the energy saving of a cluster of n atoms is equal to the potential energy U 0 given by (11). The cluster density of states is proportional to the radius R nm at a constant temperature. A conduction gap opening is occurring in all clusters below a radius of the order of 0.5 nm; this phenomenon occurs when E F /m is no longer proportional to the Laplace pressure p which is equal to 2 times the surface energy divided by the cluster radius. The surface energy is equal to the coefficient of 4R 2 in (1). It has been already shown that the classical Gibbs free energy change ( ls = 0) cannot be the true change because of the Laplace pressure p [14]. The chemical potential of a small cluster ought to differ from the bulk value by -V(p-p 0 ). We observe that the free-energy change depends on z*p in figure 3; z weakens it when the critical radius decreases. The energy saving per mole is equal to p*V m only at the melting temperature and is strongly weakened by quantum effects at low radius; radii of 0.5 nm and 1.1 nm respectively correspond to p = 2.7*10 9 Pa and p = 10 9 Pa.

Conclusion

The equations (1,2,3) have been used to show that :1the vitreous transitions T g have a thermodynamic origin; 2a thermodynamic transition T* g at equilibrium follows a scaling law as a function the energy saving; 3-the titanium undercooling temperatures are predicted for the first time without any adjustable parameter; 4-the electronic properties of clusters in melts and in vacuum are similar ; 5the saving energy is equal to the crystal molar volume multiplied by the Laplace pressure only at the melting temperature.
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 1 Figure 1. The crystal radius Rnm is plotted in the right side versus the overheating reduced temperature  () and versus the undercooling reduced temperature  (< 0); ln(Kls.v.tsn) = 36 and ln(v.tsn) = 54 for  > 0; ln(Kls.v.tsn) = 71.8 and 90 or ln(v.tsn) = -18.2 and 0 for  < 0; for tsn = 1s and  < 0, the sample volume corresponds to 1 m 3 or 12 mm 3 .  All Ti crystals surviving in liquid titanium would be melted after 600 s at a temperature equal to 2759 K (or  = 0.42) knowing that T m = 1943 K. As an example, an intermediate overheating temperature corresponding to  =

  0 and z at the melting temperature are calculated from the quantified energy  v = 0.217*H m /V m where H m = 15400 J, V m =1.11*10 -5 m 3 and from the critical radius R* 2ls = 2.8 nm[1];  nm0 is then determined at T m for each value of R nm with z = 0.135 and represented in figure2.

Figure 2 .

 2 Figure 2. The quantified energy saving and the potential energy are plotted versus the spherical crystal (cluster) radius Rnm at the melting temperature Tm = 1943 K with z = 0.135.

Figure 3 .

 3 Figure 3. The energy saving coefficient ls is plotted versus the Laplace pressure multiplied by z when the temperature increases up to Tm.
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  The energy saving coefficient has been plotted as a function of p at T m in figure4:

Figure 4 .

 4 Figure 4. The energy saving coefficient nm0 calculated at the melting temperature as a function of the cluster radius is plotted versus the Laplace pressure p.
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