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TINY CRYSTALS SURVIVING ABOVE THE MELTING TEMPERATURE AND ACTING AS GROWTH NUCLEI OF SUPERCONDUCTOR MICROSTRUCTURE
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Magnetic field texturing has shown the possible existence of intrinsic solid nuclei surviving above the melting temperature T m and governing the solidification. Tiny crystals could survive above T m m )/T m larger than v is missing in the Gibbs free energy change associated to the formation of a critical cluster. A double layer of opposite charges could create the solid-liquid int v . The observed 1 and the dimensionless surface energies 1ls calculated for 38 liquid elements assumed as being homogeneous are used to determinev nuclei. The v values at T=T m are equal to 21.7% of the fusion heat per volume unit. The dimensionless surface energy 2ls multiplied by the fusion entropies are the same for all elements. After melting these tiny crystals around T m2 =1.20T m , all the undercooling ratios could tend to -2/3.

Introduction

Large undercooling ratios   = (T-T m )/T m <0 have been observed on many liquid elements after an overheating = s sufficiently large to dissolve foreign particles suspended in the melt which could act as heterogeneous nuclei [1,2]. Contactless electromagnetic or electrostatic processing, droplet free-fall tower and dispersion techniques have produced   values smaller than 0.3 except for elements having a low melting temperature T m : Hg-(T m =232 K.  1 =-0.38), Ga-(T m =303 K.  1 =-0.58), Sn-(T m =520 K.  1 =-0.37), Bi-(T m =544 K.  1 =-0.42), Te-(T m =723 K.  1 =-0.33) [see [1] and references therein]. These elements are easily overheated above T m ; in particular, the overheating ratios applied to mercury and gallium were larger than 0.29. In the case of a free-fall tower furnace, the applied overheating ratios are smaller because a hanging droplet technique is often used.

The theoretical frequency J of crystal nucleus formation per volume unit and per second in undercooled homogeneous melts [3] is varying with  the fusion entropy S m, the dimensionless surface energy  1ls and K v a frequency per m 3 and per second of the order of 10 401 which is slowly varying with temperature and elements [1]. K v includes a coefficient exp(-Q/k B T) related to atom diffusion through the liquid-solid interface [4]. The diffusion coefficient from the liquid to the solid is weakly varying through elements while Q from the solid to the liquid is strongly varying. The droplet volume v and the nucleation time t are determined from the experiments. J is given by (1) for a homogeneous liquid and by (2) when larger number of residual nuclei per volume unit are present in the liquid droplets and a time dependence is observed; G*() given in (3) is the critical energy barrier corresponding to the critical radius above which the crystal growth takes place; N A is the Avogadro number and k B the Boltzmann constant; the surface energy  1ls given by ( 4) is transformed in a volume energy by multiplying it by the mean distance betweens atoms in the melt; this last quantity is then equal to a fraction  1ls H m /V m :
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This classical nucleation model (CNM) [3,4] does not predict the existence of surviving crystals above T m ; the critical radius becomes infinite for =0 and negative for >0; it is also neglecting the free energy of clusters due to stresses arising from volume changes related to the transition solidliquid [2].

The theoretical frequency J attains a maximum for  2/3. A single crystal grows around a unique critical nucleus when J.v.t=1 and Ln(J.v.t)=0 [1]. This phenomenon is observed for     being always larger than - of 38 elements have been assembled from the literature for v.t= 1 1 m 3 .s -1 . The dimensionless surface energy  1ls is calculated from the knowledge of K v , S m and  1 . Assuming that the melts are homogeneous because the existence of intrinsic clusters are not possible inside CNM, the undercooling ratio  of each element is seen as having a minimum for   instead of =-2/3. Contradictions in this CNM application appear in few cases because values of  slightly smaller than  1 are observed; in particular, gallium has  1 =0.5 in spite of a minimum value of 0.58 observed for smaller volumes v [5]. The product  ls  S m is nevertheless determined as being equal to 35.9     . The dimensionless surface energy  1ls tends to zero with  suggesting that the surface energy disappears for =0 in spite of the fact that  the overheating temperature. This observation is suggesting that the undercooling could depend on the overheating and that  1ls is not the expected dimensionless surface energy. The overheating ratio could have been too small to eliminate surviving crystals. The existence of microheterogeneities in liquid alloys is now established [START_REF] Popel | [END_REF]8]. A large overheating is necessary to dissolve them and to obtain a homogeneous liquid. These entities are not viewed as being stable. The microheterogeneous state in liquid alloys is attributed to "a long-lived metastable non-equilibrium one with prolonged relaxation time". As an example, the undercooling ratio of the bulk metallic glass Ti 34 Zr 11 Cu 47 Ni 8 prepared by electrostatic levitation has been studied as a function of the overheating ratio [9]. The undercooling ratio is varying from -0.14 to -0.195 when the overheating ratio increases from 0.172 to 0.258. Nuclei are present in the melt and are governing the solidification.

The undercooling ratio of pure bismuth is not only depending on the overheating rate but also on the overheating period. The authors have suggested the presence of solid bismuth particles progressively melted with time [10].

Processing magnetic materials in a magnetic field is building solids having their elementary grains aligned along an easy-magnetization axis. Melts are containing solid nuclei which can be aligned during solidification in a magnetic field when the applied overheating ratios   are not larger than a critical value  c  10 -3 or 10 -2 [START_REF] Tournier | Materials Processing in Magnetic fields[END_REF]. Alignment is very weak when overheating ratios are larger than  c . These results are strongly suggesting the possible existence of unmelted crystals of intrinsic nature.

The objective of this paper is to examine the assumption of the existence of intrinsic nuclei which could precipitate the solidification in many melts well above = -2/3 by reducing the energy barrier due to the free energy saving related to the previous solidification of surviving crystals. A much better agreement between the experimental results and CNM can be obtained when a negative contribution  v R  is added to the free energy change due to the phase transformation [START_REF] Tournier | Int. Symp. on Magneto-Science[END_REF][START_REF] Tournier | Materials Processing in Magnetic fields[END_REF]. This energy per volume unit  v    is determined from  1ls and  1 as being equal to 21.7% of the fusion heat per volume unit for =0. Its contribution to the new dimensionless surface energy  ls is small but not negligible because it increases  ls by 21.7% for =0;  v decreases with  2 down to zero when   -0.63. This value corresponds to many observations of the disappearance of the free volume for  0.66 in amorphous metallic alloys [START_REF] Gutzow | the Vitreous State[END_REF].

2-Modifying the classical nucleation-growth model by adding a new contribution - v per volume unit to the Gibbs free energy change associated to a crystal formation in homogeneous melts

A supplementary contribution - v per volume unit is expected in many substances because an electron transfer from the solid to the liquid or from the liquid to the solid is equalizing the Fermi energies. An electrostatic interaction between opposite charges carried by two interface layers would correspond to the energy saving associated to this electron transfer. It would be associated to the volume change at the phase transformation. In nonmetallic substances, the change of electronic density at the interface solid-liquid could lead to charged colloids and also induce an electrostatic double layer. There would be Z m charges carried by each layer separated by a very small distance. In these conditions, the electrostatic energy of a critical radius cluster would be proportional to e 2 Z m 2 /R 2ls and varying as R 2ls 3 under the condition that the surface charge density is not dependent on the radius; the charge number Z m per tiny crystal would increase as R 2ls 2 . The electrostatic contribution - v is introduced in the free energy change G 2ls associated to the transformation as shown in (5):

ls v v ls R R G T G 2 2 3 2 4 3 4 ) ( ) (          (5) 
The critical radius R 2ls is now defined by [START_REF] Tournier | Int. Symp. on Magneto-Science[END_REF],  2ls being the new surface energy,  2ls the new dimensionless surface energy defined by an equation similar to (4);  v is defined as a fraction  ls of the fusion heat per volume unit in (7):
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The critical energy barrier G 2 *() is given by (8):
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The new nucleation rate J 2 is given by ( 1) and ( 2) with G*/k B T= G 2 */k B T; its maximum value is obtained for dLnJ/d= 0 and

 2 = ( ls -2)/3 (9)
The value  2 =-2/3 is found again for  ls = 0. This revised model also predicts the presence of tiny crystals surviving in the melt for <  ls () up to their melting temperature T m2 . The critical radius R 2ls is diverging when   ls i.e. T tending to T m2 : T m2 = (1+ ls )T m (10) 

3-Determination of the electrostatic energy - v and the new surface energy 2ls as a function of 

A first relation [START_REF] Tournier | Materials Processing in Magnetic fields[END_REF] between  2ls and  ls is obtained by combining ( 1) and ( 8) and replacing  by   = ( ls -2)/3 for LnJ 2 = 0; it corresponds to LnK v equal to the energy barrier divided by k B   written as a function of  ls . A linear variation of ( 2ls ) 3 with (1+ ls ) 3 Ln(K v ) is then obtained. The relation (1) for a homogeneous liquid combined with (8) leads to ( 2ls ) 3 proportional to LnK v as shown in [START_REF] Tournier | Materials Processing in Magnetic fields[END_REF] while the relation (2) for a heterogeneous liquid leads to an effective value ( 2ls ) 3 eff proportional to Ln(K v. v.t) instead of LnK v [1]:
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The undercooling ratios  1 observed on 38 liquid elements [1,2] are much smaller than  2 and determined by intrinsic crystals or in few cases by impurity clusters suspended in melts because the energy barrier is reduced by the previous solidification of these surviving crystals. The effective dimensionless surface energy ( ls ) eff is obeying to [START_REF] Gutzow | the Vitreous State[END_REF] corresponding to Ln(K v .v.t)=71.91.5, v.t=10 -81 m 3 .s -1 and LnK v =90 [START_REF] Tournier | Int. Symp. on Magneto-Science[END_REF].
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The parameter  ls the relation between the critical energy barrier G 2 * for the crystal growth in a homogeneous melt, the observed critical energy barrier G 1 * and the free energy change saving G nm associated to the presence of crystallized nuclei; G nm is given by ( 5) when R 2ls is replaced by the radius R nm of surviving crystals:

G 2  G 1 *= G nm (13) 
The critical radiusR 2ls is unchanged in presence or absence of intrinsic nuclei. The crystal growth is occurring at   when the crystal radius R nm is equal to R 2ls (  ) and G nm is minimum. Then, the derivatives (dLnJ 1 */d  and(dLnJ  */d  are equalbecausedG nm */d  as written in; (dLnJ 1 */d  is calculated assuming that ( 1ls 3 ) eff is not temperature dependent because this quantity has been determined under this condition [1].An effective value ( 2ls ) eff corresponding to Ln(K v .v.t)= 71.9 is deduced as a function of ( 1ls
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The dimensionless electrostatic energy  ls and the new dimensionless surface energy  2ls have been calculated as a function of  and all homogeneous liquid elements are obeying to the following laws (15) and ( 16):
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These laws are respected inside the error bar on LnK v . Each element has its own value of LnK v ,  2ls and  ls ; a variation of K v by a factor 100 would change LnK v by only by 5%; the dimensionless surface energy  2ls is nearly the same for all elements and weakly increasing with temperature as expected by Turnbull [3]. These similar values for all elements are showing that the surviving intrinsic crystals are spherical because any other shape would induce a dimensionless surface energy variation. The critical energy barrier for crystal growth in a homogeneous melt divided by k B T is the same for all elements and is diverging for =-0.196 or T m2 =1.196 T m . This upper limit for the existence of unmelted intrinsic crystals is obtained by solving the equation  ls == 0.217(1-2.5 2 ).

4-The radius of surviving spherical crystals

The presence of surviving crystals in undercooled melts is reducing the free energy change associated to a crystal formation as shown by relation [START_REF] Lu | [END_REF] and is precipitating solidification. The radius R nm of such nuclei is obtained by using [START_REF] Lu | [END_REF] which is easily transformed in (17):
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The effective energy barrier G 1 *() observed for = 1 is known [1] and G 2 *() is calculated with (8,15,16) for LnK v = 90 and Ln(K v .v.t)= 71.9. The quantity G nm is the free energy saving associated with the previous solidification of surviving crystals; it is obtained by replacing R by R nm in ( 5); (N A /V m ) sol and (N A /V m ) liq are the atom numbers per volume unit of solid and liquid at T=T m ; two positive solutions are found for R nm ; the smallest one is chosen because R nm is inducing crystal growth at   forLn(K v .v.t)= 71.9 to be smaller than the critical radius R 2ls *(= 1 ). The ratio R nm /R 2sl *(=0) is about 0.3 for many elements and less than 0.16 only for Ga=0,064, Bi= 0.1, Hg= 0.12, Sn= 0.13, Te= 0.16 because these 5 elements with a low melting temperature have been submitted to larger overheating ratios than the 33 others. The radius R nm and R 2ls are represented versusthe undercooling ratio for copper, aluminum and titanium in figures 1, 2 and 3; and R nm are dependent of the overheating temperature of the melt.

The surviving crystal radius cannot increase with the overheating ratio s  m  m in spite of because a droplet can homogeneously grow inside them and reduce their size [START_REF] Lu | [END_REF]. Homogeneous nucleation kinetics of a melt in superheated crystals above their melting temperature T m has been analyzed in order to find the occurrence of a massive homogeneous nucleation temperature of melting in superheated crystals. The critical radius R 2ls () is increasing with s >0 as shown by [START_REF] Tournier | Int. Symp. on Magneto-Science[END_REF] and diverging for  s = 0.196. A mechanism of melting has to take place in order to limit the crystal radius to R nm which could grow up to the droplet volume v without liquid nucleation. The following calculation is made for Ln(K v .v.t) =71.9 and also for smaller values taking the activation energy Q for atomic diffusion in surviving crystals into account. It is assumed that the crystals are only melted by homogeneous nucleation of a liquid droplet. To form a liquid spherical nucleus inside a perfect crystalline lattice, the Gibbs free energy change would be: (14): E is the change in the strain energy density per volume unit resulting from the volume change upon melting. It can also be written E=f H m /V m as a fraction f of the fusion heat per volume unit. The fraction f is small as compared to E is the change in the strain energy density per volume unit resulting from the volume change upon melting. It is written E=f H m /V m as a fraction f of the fusion heat per volume unit. The fraction f is small compared to  ls and difficult to evaluate at high temperature; an upper limit of f could be 0.018 for Cu, 0.03 for Ti and Al [14]. The surface energy  2sl and the electrostatic energy  v being proportional to LnK v are modified when LnK v is changed by the diffusion activation energy. The critical energy barrier G*(T)/k B T for a spontaneous liquid growth inside particles is: .19, 0.17 and 0.17 are equal to 0.167, 0.15 and 0.155. These values explain why   is seen as a limit of the undercooling ratio of each element far from 2/3 in spite of the application of large overheating ratios  s ( nevertheless not larger than 0.196). An overheating interval in which the largest particles have a stable radius up to  c  can exist as shown in Figures 1 and2 . The radius R nm (=0) can stay unchanged up to  c and the processing time can be strongly increased without melting up to  c . They melt progressively with time and temperature above  c and their radius are following the R nm () curves calculated for the same value of v.t and their time dependence is very weak. The  c existence has been already observed for several compounds [START_REF] Tournier | Materials Processing in Magnetic fields[END_REF] and in particular for Dy 3 Al 2 (f=0.01). This compound is textured after solidification in a magnetic field when  remains smaller than  c . Crystal growth can take place at T=T m leading to bigger particles free to align in a magnetic field. Solidification starts at smaller temperatures than T m from surface heterogeneities or from intrinsic nuclei smaller than the radius R nm (0) for crystal growth. For Dy 3 Al 2 , after an overheating ratio  c , the solidification in a magnetic field leads to crystal alignment without recalescence. After an overheating above  c , an undercooling is observed followed by recalescence accompanying solidification without texturing [START_REF] Tournier | Materials Processing in Magnetic fields[END_REF]. 
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5-Conclusion

A new analysis of undercooling experiments related to the crystal nucleation-growth phenomena is proposed in this contribution: -Tiny crystals are surviving above the melting temperature T m of 38 elements. -These crystals act as intrinsic growth nuclei in undercooled liquids and precipitate the solidification because their presence is reducing the critical energy barrier for nucleation in homogeneous liquids.

-A negative contribution - v = - ls H m /V m to the Gibbs free energy change for a crystal formation is missing in the classical growth nucleation model, H m /V m being the fusion heat per unit volume. This quantity is stabilizing tiny crystals above the melting temperature.

-This missing contribution represents the same fraction  ls of the fusion heat per unit volume of 38 elements and is varying with the undercooling ratio = (T-T m )/T m ; -The dimensionless surface energy  2ls is given by a unique formula for the 38 elements -The transfer of conduction electrons from the solid to the liquid or from the liquid to the solid is inducing an interface electrostatic interaction that is missing in the Gibbs free energy change used in the classical nucleation-growth model for a crystal formation. -This analysis is confirming that the classical nucleation-growth model, when completed, is very efficient to describe the experimental properties of melts.
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  and 3 have been calculated for >0 with LnK v = 72 and Ln(K v .vt)= 54 for aluminium and titanium and LnK v = 82 and Ln(K v .v.t)= 64 for copper. The growth critical radius R 2sl of liquid droplet of Cu, Al and Ti are also plotted versus  s . The particle radius R nm producing a spontaneous solidification for  1 after a quench from  s , is represented by a parallel to the  axis in Figures 2, 3 and 4. The calculated superheating ratios  s for Cu, Al and Ti respectively leading to the undercooling ratios  1 =0

Figures 1 , 2 and 3 :

 13 Figures 1, 2 and 3: The critical radius R 2ls and R 2sl of crystal and liquid growths and the radius R nm of surviving crystals are plotted versus  1 <  <0.196. The strain energy density is a fraction f of the fusion heat per volume unit. In Figure 1, 2 and 3, the calculations of R nm for >0 with f= 0.018, LnK v = 82 and Ln(K v .v.t)= 64 for Cu, f= 0.03, LnK v = 72 and Ln(K v .v.t)= 54 for Al, f=0.03, LnK v = 72 and Ln(K v .v.t) = 54 for Ti. The radius R nm for <0 corresponds to LnK v = 90 and Ln(K v .v.t)= 71.9; the surface energy proportional to LnK v has been modified. The surviving crystal size R nm (=0) is stable from= 0 to  c for Ti and Cu and is slightly decreasing for Al.

  0.63. This disappearance is occurring when the free volume becomes negligible in agreement with observations of the free volume disappearance in metallic amorphous alloys for =0.66.

  frequency K v per volume unit and per second acting as a prefactor in the nucleation rate for a crystal formation is weakly varying with elements.-The surviving crystals could melt at a second fusion temperature T m2 = (1+ ls ) T m = 1.20 T m .
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