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The energy saving produced by the equalization of Fermi energies of a crystal and a melt has been associated to the crystal formation in undercooled melts to determine the new homogeneous-nucleation critical-temperature T 2 and the new nucleation critical barrier as a function of the temperature T. Small unmelted clusters act as nuclei by reducing the critical energy barrier and the nucleation times; the glass transition temperature T g occurs near T=T 2 . The temperature dependence of the specific heat difference of the undercooled melt with the

1-Introduction

Transformations liquid-solid are accompanied by changes of the conduction electron number per volume unit. The equalization of Fermi energies of a solid particle and of its melt produces an unknown energy saving v  equal to a fraction ls  of the fusion heat per volume unit. All crystal nucleation models have been built to describe the crystallization of all types of materials without taking account of v  in metallic alloys [1][2][3]. This contribution has been recently added to the Gibbs free energy change associated to a crystal formation in 38 liquid elements; tiny intrinsic crystals can survive above the melting temperature and act as heterogeneous nuclei for crystallization above a homogeneous-nucleation critical-temperature T 2 ; the thermal variation of ls  is an even function of  having a maximum value 0 ls  =0.217 for T=T m in agreement with the thermodynamic equilibrium conditions and a zero value when the free volume of melts disappears [4][START_REF] Tournier | Progress in Light Metals[END_REF][START_REF] Tournier | the V th Int. Symp. Electromagn. Proc. Mat[END_REF].

The same analysis is applied to metallic glass-forming melts because large values of 0 ls  induced by large Fermi energy changes are expected due to weak localization of conduction electrons in the melts [START_REF] Mott | [END_REF]9].

2-The crystal nucleation model completed

When the Gibbs free energy change for a crystal formation takes account of the energy saving v   , the relations (1) and ( 2) are obtained for 38 liquid elements [4][START_REF] Tournier | Progress in Light Metals[END_REF][START_REF] Tournier | the V th Int. Symp. Electromagn. Proc. Mat[END_REF]: 
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S m being the fusion entropy per mole, V m the molar volume, N A the Avogadro number, H m the fusion enthalpy per mole, Ln[K ls (T)]  90 2 or (K ls  10 39 1 m -3 .s -1 ), and is in fact reduced to a value smaller than the critical radius of liquid -droplet homogeneous -nucleation [START_REF] Tournier | the V th Int. Symp. Electromagn. Proc. Mat[END_REF]; these nano-size crystals of radius R govern the crystallization for to the effective critical energy barrier is calculated using (3) [START_REF] Gutzow | The vitreous state[END_REF]; its thermal variation is determined by the temperature dependence of the critical radius R 2ls; R nm is temperature independent as long as the nucleation time is not attained:
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Assuming that the intrinsic nuclei are numerous, the nucleation rate J m -3 s -1 is given by ( 4) [1][2][3]17]:
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J attains a maximum equal to 1 for
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when the nucleation is homogeneous;  2 does not depend on Ln[K ls ()] values. The steady-state nucleation time t sn necessary to observe the first crystallization induced by a heterogeneous nucleation at a temperature T is given by J.v.t sn = 1 where J 1.

3-The glass transition

The 0 ls  values of glass-forming melts are deduced from the measured
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where T 2 =T g . The K ls value is equal to a constant A 0  weakly varying with T divided by the viscosity  given by a Vogel-Fulcher Tammann (VFT) equation [START_REF] Gutzow | The vitreous state[END_REF]. It is assumed that the free volume disappears at T=T 0 or 0    as a consequence of the Doolittle relation between the viscosity and the free volume [START_REF] Gutzow | The vitreous state[END_REF]; D* is the glass fragility parameter. Ln (K ls ) is chosen equal to :
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LnA is of the order of 90 and will be slightly varied. The values of T m , T g ,  g , T 0 ,  0 , D* and l ls0

 of some undercooled melts are given in Table 1.

Table 1

The melting temperature T m , the glass transition T g , The VFT temperature T 0l of the undercooled melt, the glass fragility D*,  g = (T g -T m )/T m ,  0l = ( T ol -T m )/T m , the calculated nose temperature T n , the electronic energy saving coefficient l The glass transition is accompanied by a free volume freezing and a thermal variation change of v  below  g as compared to that of the undercooled liquid; per unit volume can be calculated from the derivative of
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it is a linear function of the temperature in agreement with measurements on Pd 43 Cu 27 Ni 10 P 20 alloys [12]. given by ( 7) is in very good agreement with experimental measurements on Pd 43 Cu 27 Ni 10 P 20 alloys:
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A residual contribution linearly varying with the temperature below  g down to  0l is reproduced. The model also predicts a change of the VFT temperature of Pd-Ni-Cu-P glass from 452.3 K ( 0l =-0.436) to 413.8 K ( g 0  =-0.484). A viscosity weakening below the glass transition has been already observed in some glasses [START_REF] Gutzow | The vitreous state[END_REF]22].

The glass transition has been defined by T g =T 2 without special validation. The temperature  2 could be a little larger or smaller than  g instead of being equal. In the first case, the energy barrier increases and then decreases very quickly and could make the crystallization much easier; then, the glass transition has to be very close to  2 . In the second case, the VFT temperature  0g is decreased as compared to the initial value corresponding to  g = 2 and then, the viscosity weakening is amplified. Measurements of viscosity below the glass transition and of the specific heat jump are necessary to evaluate any difference in this relation. The temperature T 0g has not to be too low as compared to T 0l because the viscosity would be too much weakened below T g ; the relation g    2 seems to be more compatible with few results already known [START_REF] Gutzow | The vitreous state[END_REF]22].

4-Temperature-Time-Transformation diagrams

The calculation of the nucleation time t of the first crystallization has to take account not only of the steady-state nucleation time t sn but also of the time-lag  ns in transient nucleation [START_REF] Gutzow | The vitreous state[END_REF] with:
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J is the steady-state nucleation rate equal to (v.

t ns ) -1 , ) (z  the Zeldovitch-factor, 6 / 2 * 0   a
, N the atom number per volume unit, j c the atom number in the critical sphere. The first crystallization occurs when J = (v.t sn ) -1 ; t sn can be calculated from (4) only when the sample volume v is known. The critical energy barrier is obtained by using ( 2) and the values of l ls  as a function of ; t sn is deduced from (4) with ln(K ls ) given by ( 5). The various parameters used in these calculations are given in Table 1 The isothermal-crystallization first-event of several mg samples have been studied by processing in B 2 O 3 [13,16,20,23]; it is not reproducible above 700K because the contribution G nm is varying from sample to sample. The calculated TTT curves are reproducible below 700K when the nucleation time at the nose temperature is strongly varying; it is due to the large contribution of the time-lag  ns at lower temperatures. Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22. [START_REF] Tournier | Progress in Light Metals[END_REF] The TTT diagram has been studied using a containerless electrostatic levitation technique [14]. The nose temperature and the nose time are 800 K and 70 s, respectively. Two TTT curves have been calculated by using the parameters given in Table 1, A = 86 and 90. They have respectively nose temperatures of 800 K and 745 K. Mg 65 Y 10 Cu 25 The experimental TTT diagrams are easily reproduced by using sample volumes varying from 1.2E-9 to 4E-10 m 3 , A=86, 400 < T g < 420 K. The nose temperature is varying from 563 to 565 K [22].

Nickel

The liquid elements have  2 = -2/3 or T 2 = 0.333T m ; the nickel glass transition T g after a cooling rate of 3E+10 K/s is equal to 0.246*T m [15]. The glass transition is smaller than 0.33*T m because the measurement time is too long compared to the cooling time. The TTT diagram calculated with LnK ls = 90 has a nose at T n = 0.333T m .

Conclusion

The glass transition T g occurs near the new homogeneous-nucleation criticaltemperature T 2 equal to ; values of 0 ls  are larger than 1 in bulk glasses [4][START_REF] Tournier | Progress in Light Metals[END_REF][START_REF] Tournier | the V th Int. Symp. Electromagn. Proc. Mat[END_REF]. It produces a free volume freezing [START_REF] Gutzow | The vitreous state[END_REF]18] and an increase of the electronic energy saving [11][12][13][14][15]. They explain the critical cooling and heating rate variations, the magnitude order changes of the crystallization time by the existence of intrinsic heterogeneous nuclei which are not melted. Their presence is known since many years in spite of applying relatively large overheating [24][25][26][27].
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  disappearance temperature of the free volume and of  ls ; tiny crystals can survive above T m up to ls
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 0 at T = T m associated to a crystal formation are given for various melts with references. N°1= Pd 43 Cu 27 Ni 10 P 20 (A = 84); N°2 = Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22.5 (A = 84) ; N°3 = Mg 65 Y 10 Cu 25 (A = 86); N°4 = Nickel (A = 90).
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 ls respectively being the electronic energy saving coefficients in the undercooled liquid and in the glass; l 0  and g 0  respectively corresponding to the liquid and the glass VFT temperatures. The specific heat jump
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 1 Figure 1: The calculated difference ) (T C p  between the glass specific heat C pg and the specific heat C pl of Pd 43 Cu 27 Ni 10 P 20 undercooled melt extrapolated from T g = 585 K down to T ol = 452.3 K.
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  respectively being the electronic energy saving coefficients in the undercooled liquid and in the glass. The specific heat jump T=T g of the Pd 43 Cu 27 Ni 10 P 20 undercooled liquid is used to calculate linear function of T and the parameters involved in g ls  . The theoretical thermal variation of p C  is then in very good agreement with the experimental measurements of have been used to predict the nose temperature of TTT diagrams of Nickel, Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22.5 , Pd 43 Cu 27 Ni 10 P 20, Mg 65 Y 10 Cu 25

Pd 43 Cu 27 Ni 10 P 20

  . The time-lag is easily obtained when t sn has been determined. The influence of  ns is very important near the glass transition. The calculated nose temperatures T n of Mg 65 Y 10 Cu 25 , Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22.5, Pd 43 Cu 27 Ni 10 P 20 and Nickel melts are given in Table 1 in agreement with measurements.
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