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ABSTRACT 

The 2nd degree polynomial volume function ( 2 2v ubv wb+ + ), involved in the attractive 
term of cubic equations of state, has a strong influence on the calculated volumetric 
properties and, to a lesser extent, influences the calculated vapor-liquid equilibrium 
properties such as vapor pressure and enthalpy of vaporization. This function contains two 
parameters ( u  and w ) that were either selected constant or constituent-dependent in the 
literature. In this work, it is analyzed through a systematic methodology how parameters u  
and w  influence the accuracy of predicted volumetric and vapor-liquid equilibrium 
properties, both for untranslated and translated cubic equations of state. It was thus possible 
to determine the optimum values of such parameters and to discuss if the values selected in 
well-known cubic equations of state are the most relevant. 

 
Keywords: volumetric properties; cubic equation of state; volume translation; attractive term; 
universal constants. 

1. INTRODUCTION 

Today, computer-aided-process-design software allow virtually any engineer to simulate 
large flowsheets with considerable detail. Such simulators embed many thermodynamic 
models, and among these, equations of state (EoS) play a major role. The proper selection 
of these latter determines in large part the accuracy of the simulation. Indeed, as explained 
by Agarwal et al. [1], if we have an equation of state (EoS) and the ideal-gas heat capacities, 
we can calculate not only phase equilibria, but also all the needed thermodynamic properties 
for a comprehensive model of an entire flowsheet. Among these properties, vapor pressures 
are paramount, liquid densities are fundamental for mass balances whereas enthalpies, 
entropies and heat capacities are key properties for energy and exergy balances. Among 
different types of equations of state, the so-called cubic equations of state (CEoS), usually 
written in pressure-explicit form, arise as a widespread choice due to their accuracy, the low 
number of required experimental parameters and their availability as well, ease of 
implementation, ability to provide reasonable estimation of enthalpies and entropies and 
robustness. In a generalized form, CEoS can be expressed as: 

 ( )
2 2

( )
,

RT a T
P T v

v b v ubv wb
= −

− + +
 (1) 

where parameter a  is a measure of the attractive forces between molecules; parameter b is 
the so-called covolume, which attempts to correct the perfect-gas law for the fact that 
molecules have a non-zero effective volume; and the constants u and w  are either universal 
real numbers (the same values apply to all compounds) or substance-dependent quantities. 
The temperature-dependent ( )a T  parameter is classically written as: 

 ( ) ( )ca T a T= ⋅ α   (2) 
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It is the product of the value of the attractive parameter at the critical temperature ( ca ) 

multiplied by a so-called α-function, which is dimensionless. Such an α-function has a great 
influence on the calculated vapor-liquid equilibrium properties like vapor pressure, enthalpy 
of vaporization and saturated-liquid heat capacity. On the other hand, the volume function of 
the attractive term ( 2 2v ubv wb+ + ) and, in particular, the numerical values assigned to u and 
w  , govern essentially the accuracy of the predicted volumetric properties. To parametrize 
this function, two options are on the table. The first option is to consider u and w  as 
universal (component-independent) constants. By doing so, the critical compressibility factor 

returned by the EoS ( EoS
cz ) is the same for all components. However, known experimental 

values of cz  range between 0.0144 (for magnesium oxide) and 0.637 (for triethyl 

phosphate); therefore, by selecting this first option, the predicted saturated liquid densities, 
and particularly those in the critical region, are inevitably going to deviate from their 
experimental values. However, to the best of our knowledge, a systematic study of how the 
selection of u and w  values (that can be chosen in a very large range of values) influence 
the accuracy of CEoS for property predictions was never conducted. The second option is to 
consider u and w  as component-dependent factors. A first possibility is to correlate u and 
w  to a readily available property like the acentric factor. Alternatively, the volume-translation 
concept, as initially developed by Péneloux et al. [2], can be used: the addition of a 
component-specific volume translation parameter entails that the u and w  parameters 
become component-specific themselves. But, are these two alternatives equivalent? Would it 
be an interest to combine them? (i.e., to use component-dependent u and w  parameters 
and to simultaneously translate the EoS). Here again, we did not find in the literature any 
systematic study comparing the usefulness to correlate u and w  to ω  or to use of a volume-
translated EoS. 

Bearing this in mind, the first part of this paper presents a historical background of the 
most popular modifications of the volume function proposed to improve the ability of CEoS to 
predict volumetric properties. The second part of this paper explores the possibility to 
correlate u and w  to the acentric factor and to simultaneously translate the EoS. In the last 
part of this paper, a map reporting deviations between EoS predictions and experimental 
properties in the u w−  space is screened in order to deem how such parameters influence 
the accuracy of the predicted volumetric and vapor-liquid equilibrium properties, both for 
untranslated and translated CEoS. This map made it possible to determine the optimal ( ,u w ) 
values and to discuss the parametrization of the volume function in the attractive term of 
well-known cubic equations of state. 

2. HISTORICAL BACKGROUND 

An overview of the various modifications operated on the volume function of the attractive 
term of CEoS is presented below. A particular attention is devoted to the choice for the u and 
w  parameters. 

 
2.1. Selection of constant ( ,u w ) values 
In 1873, J.D. van der Waals [3] proposed the first, simplest and best known cubic 

equation of state: 
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,exp
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,exp

27
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,  with:  
1
8

c
c

cc

c

c

R T
a

PaRT
P T v

v b RTv
b

P


 =


= − −  =


 (3) 

It is a so-called 2-parameter CEoS because its application to a pure component requires the 
preliminary knowledge of two experimental (exp) component-dependent parameters (the 
critical temperature ,e xpcT  and pressure ,expcP ). In Eq. (3), R  is the gas constant, T , the 

temperature, P , the pressure and v , the molar volume. The Van der Waals EoS gives a 
qualitatively correct description of fluid properties and phase behavior [4], but it predicts a too 
large critical compressibility factor of 3/8 and thus leads to very poor correlation of densities 
in the critical region. By identification with Eq. (1), it is noticeable that u  and w  were set to 

0u w= = . Although numerous modifications of the Van der Waals equation were proposed, 
very few different ( , )u w  pairs were tested out.  

As a matter of fact, the two EoS which received most attention in the last 50 years are 
those proposed by Soave [5] (he introduced the so-called Soave-Redlich-Kwong EoS 
denoted SRK) and Peng-Robinson [6–8] (PR). For a given pure component, such modern 
EoS require the specification of three macroscopic properties ( ,e xpcT , ,expcP  and expω ) and 

they are thus equivalent to a 3-parameter corresponding states principle [9,10]. In this paper, 
they are simply referred as 3-parameter EoS. The equation developed by Harmens [11] (Ha) 
to predict the properties of air also received substantial attention.  

Without clear explanation or theoretical foundations, all these authors assumed that u  
and w  are subject to the constraint: 1u w+ = . As a first example, the SRK EoS is 
characterized by 1u=  and 0w =  and the corresponding critical compressibility factor is equal 
to 1/ 3 . The SRK EoS is defined by: 

 ( )

( )

( )

2

2
exp exp

2 2
,exp

,exp

,exp

,exp

3

3

( ) 1 1

0.480 1.574 0.176

( )
,  

( )

1
0.42748

9 2 1

2 1
0.08664

3
corresponds to: 1 ; 0 and 1 3

c

c
c a

c

cc
b

c

a

b

c

T m T T

m

R T
a

P

RTa TRT
P T v b

v b v v b P

u w z

  α = + −  


= + ω − ω



= Ω

⋅ α

= −  = Ω
− + 


Ω = ≈
 −

 −Ω = ≈


= = =

 (4) 

 
In 1976, Peng and Robinson selected 2u =  and 1w = −  so that the corresponding critical 
compressibility factor is equal to 0.3074. The PR EoS expression is: 
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 (5) 

 
In 1977, focusing on the reproduction of vapor-liquid equilibria (VLE) of the nitrogen-argon-
oxygen system, Harmens selected 3u =  and 2w =− . He claimed that the strength of the 
equation lied in the fact that for nitrogen 0.2883cz = , which is very close to the value 

returned by his model: 0.2862cz = . 

 
2.2. Selection of component-dependent ( ,u w ) pairs 
As previously stated, assigning universal values to u  and w  entails the prediction by the 

EoS of a unique cz  value for all components. In order to improve the prediction of liquid 

densities in the critical region, the cz  parameter must be made component-dependent and 

no longer universal. One way to reach this goal is to use component-dependent values for u  
and w . A possibility is to correlate u  and w  to a readily available property. This is exactly 
what Schmidt and Wenzel [12] decided to do in 1980 after noticing that the SRK EoS better 
describes liquid molar volumes (at 0.7rT = ) of spherical molecules like methane (for which 

0ω = ) than the PR EoS while, conversely, the PR EoS yields better results for n-heptane 
(the acentric factor of which is about 0.35) than the SRK EoS. Both the SRK ( 1 ; 0u w= = ) 

and PR ( 2 ; 1u w= = − ) EoS satisfy 1u w+ =  so that Schmidt and Wenzel kept this 

relationship. Moreover, in order to find back the SRK EoS ( 0w = ) when 0ω =  and the PR (

1w = − ) EoS when 0.35ω≈ , they set: = − ω3w . This led them to the following expression: 

 ( )
( )2 2

( )
,

1 3 3
ca TRT

P T v
v b v bv b

⋅ α
= −

− + + ω − ω
  (6) 

 
The same year, a similar methodology was applied by Harmens and Knapp [13]. They 

also kept 1u w+ =  and, following Schmidt and Wenzel, they developed a complex 
correlation to estimate u  from the mere knowledge of the acentric factor. They proposed: 

 
2 3 4

2
exp exp

1 3
1

0.10770 0.76405 1.24282 0.96210

 with: 0.3211 0.080 0.0384

c

c c c c

c

z
u

z z z z

z

− = + + − +
 = − ω + ω

  (7) 
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For small-size molecules characterized by 13cz = , Eq. (7) returns 1u=  and 0w =  

corresponding to the SRK EoS. Similarly, by setting 0.3074cz =  (corresponding to 

intermediate-size molecules like n-hexane), the PR EoS constants are obtained ( 2u =  and 

1w = − ). 
 

In 1982, Patel and Teja [14] also followed the footsteps of Schmidt and Wenzel and 
selected 1u w+ = . For non-polar molecules, w  was correlated to the acentric factor and a 
Soave-type α-function was used. In particular, in order to determine w , it is first necessary 
to calculate the smallest positive root (noted minx ) of the following cubic equation: 

 
( ) ( )3 2 2 3

2
exp exp

2 3 3 0

with: 0.329032 0.076799 0.0211947

c c c

c

x z x z x z

z

 + − + − =


= − ω + ω

  (8) 

Once done: 
min

3 1cz
w

x

−
=  (9) 

For a light non-polar substance characterized by 0ω = , Eq. (9) returns a value of w  close to 
zero so that the new equation is comparable to the SRK equation and, for components 
whose acentric factors are close to 0.3, we get 1w ≈ −  so that the proposed equation is 
comparable to the PR EoS. As previously observed with the works by Schmidt and Wenzel 
or Harmens and Knapp, characteristics of both the SRK and PR equation are implicit in the 
new formulation by Patel and Teja. 
For polar molecules, Patel and Teja failed to correlate w  and the shape parameter m  of the 
α-function (see, e.g., Eq. (4)) with the acentric factor. They thus decided to work with a 4-
parameter CEoS. m  and w  were considered as adjustable parameters and were fitted 
component by component on experimental vapor-pressure and liquid-density data. In the 

end, their EoS requires the knowledge of ,expcT , ,expcP , m  and w . 

 

In 1976, Fuller [15] published a 5-parameter EoS that requires the knowledge of ,expcT , 

,expcP , ,expcv , expω  and expP  (the experimental value of the parachor) for a given pure 

component. With the aim of accurately correlating the liquid densities of polar and non-polar 
components, he decided to set 0w =  and to make u  component and temperature-
dependent. Fuller also selected a temperature-dependent covolume and we know today that 
such a choice is thermodynamically inconsistent since it leads to the crossing of isotherms in 
a (P,v) plane and to negative heat capacities [16–18]. His final equation takes the form: 

 ( )
2

,exp ,exp ,exp exp exp

( )
,

( ) ( , , , , , )
c

c c c

a TRT
P T v

v b T v u T T P v P bv

⋅ α
= −

− + ω ⋅
  (10) 

 
In 1992, Twu et al. [19] carried out an analysis of the CEoS on a u w−  diagram with the 

aim of discussing the representation of volumetric properties. 21 possible combinations of u  
and w  were checked for a number of alkanes, alcohols and glycols. They established that 
the relationship between u  and w  should be: 4u w− =  for the best representation of 
saturated-liquid densities. The following expression was obtained: 

 ( )
2 2

( )
,

( 4)
ca TRT

P T v
v b v w bv wb

⋅ α
= −

− + + +
  (11) 
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In Eq. (11), w  is treated – component by component – as an adjustable parameter. It is 
obtained by minimizing the deviations between calculated and experimental liquid densities. 
In order to simultaneously get accurate vapor pressures, Twu used a 3-parameter (noted L,
M , and N ) α-function [20] so that in the end, each pure component is characterized by 6 

parameters ( ,expcT , ,expcP , w , L,M , N ). 

At this step, we believe it is important to recall that the brilliant concept to make u  and w  
substance-dependent in order to get better liquid densities was first introduced by Clausius 
who proposed the following equation in 1880 [21]: 

 ( )
( )2

( ) 1
,    with: ( )c r

r
r

a TRT
P T v T

v b Tv c

⋅ α
= − α =

− +
 (12) 

where c  is a component-dependent parameter. For such an EoS, we immediately get: 

2
c

u
b

=  and 
2c

w
b
 =  
 

. 

Another method to obtain component-dependent u and w parameters (and thus to get cz  

component-dependent in order to achieve better representation of volumetric properties) is to 
translate the EoS. This simple and ingenious concept, proposed by Péneloux [2], 
corresponds to a translation of the whole P-v isotherm (of the amount c− ) along the volume 
axis. Indeed, for a given component, the saturated-liquid volume calculated by a CEoS at a 
given temperature is usually notably different from the experimental value but the difference 
between the calculated and the experimental volume is approximately constant when varying 
the temperature. Consequently, a temperature-independent volume translation (all the 
calculated molar volumes are translated by a constant amount c) significantly improves the 
description of saturated-liquid densities. Assuming that subscripts o  and t  refer to the 
original (i.e. untranslated) and translated equations of state, respectively, the shifted volume 

tv  (closer to the experimental value than ov ) is linked to ov  by: 

 t ov v c= −  (13) 

In Eq. (13), the substance-dependent volume-translation parameter, c, is often determined in 
order that the translated EoS exactly reproduces the experimental saturated liquid volume at 

0.8rT = . At this step it is possible to determine the relationship between ou  and ow  

stemming from the untranslated EoS and tu  and tw  from the translated EoS. 

Starting with a non-translated EoS with the form of Eq. (1) in which ou  and ow  are 

constant: 

 ( ) 2 2

( )
, c

o o
o o o o o o o o

a TRT
P T v

v b v u b v w b

⋅ α
= −

− + +
  (14) 

the expression of the translated EoS is obtained by replacing in Eq. (14) ov  by ( )tv c+  and 

ob  by ( )tb c+  [22,23]. This gives the form: 

 ( ) 2 2

( )
,

( ) ( )( ) ( )
c

t t
t t t o t t o t

a TRT
P T v

v b v c u b c v c w b c

⋅ α
= −

− + + + + + +
  (15) 

By rearranging Eq. (15), in the form of Eq. (1), we get: 
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( ) 22 2

(2 )
( )

,  with:

( 2 ) (1 )

t o o
tc

t t
t t t t t t t t

t o o o o o
t t

c
u u u

ba TRT
P T v

v b v u b v w b c c
w w u w u w

b b

  = + +  
 ⋅ α = − − + +     = + + + + +   

   

(16) 

Depending on the component-dependent parameters c and tb , the tu  and tw  parameters 

are now component-dependent, and thus ,c tz , the critical compressibility factor of the 

translated CEoS, is component dependent too. Indeed, as a direct consequence of having 

translated the critical volume ( , ,c t cov v c= − ), we immediately get: ,exp
, ,

,exp

c
c t c o

c

P
z z c

RT
= − . 

Finally, in Table 1, the values of u  and w  are reported for all the CEoS previously 
mentioned. 
 
Table 1. Selected values of u  and w  for the volume function of the attractive term in 
cubic equations of state. 

EoS u  w  

Van der Waals (1873) [3] 0 0 

Clausius (1880) [21] 2
c
b

 
2c

b
 
 
 

 

Soave-Redlich-Kwong (1972) [5] 1 0 

Peng and Robinson (1976) [6] 2 1−  

Harmens (1977) [11] 3 2−  

Schmidt and Wenzel (1980) [12] 1 3+ ω 3− ω 

Harmens and Knapp (1980) [13] component-dependent 1 u−  

Patel and Teja (1982) [14] 1 w−  component-dependent 

Fuller (1976) [15] component-dependent 0 

Twu, et al. (1992) [19] 4 w+  component-dependent 

translated EoS (1982) [2] (2 )o o
t

c
u u

b
 + +  
 

  
2

( 2 ) (1 )o o o o o
t t

c c
w u w u w

b b
   + + + + +   
   

  

 
This table highlights that very few ( ,u w ) pairs of constant parameters were explored. It is 

however well-established that the SRK and PR EoS predict the saturated liquid volumes with 
an average deviation of about 16% and 8% respectively. This means that by changing the (
,u w ) pair from (1; 0)  to −(2 ; 1)  , the deviations are divided by 2. Thus, by screening all the 

possible ( ,u w ) pairs, the optimal one, leading to the most accurate reproduction of 
volumetric data, could be determined. This table also shows that the volume-translation 
concept was never applied to an EoS expressing u  and w  as generalized functions of the 
acentric factor. For all these reasons, in the next sections the usefulness of using functions of 
the acentric factor for the ( ,u w ) parameters in a translated EoS is first discussed. Then, a 
large screening of ( ,u w ) pairs for both untranslated and translated CEoS will be performed 
to identify the optimal one. 
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3. ON THE INTEREST TO COMBINE ω-DEPENDENT (u,w) PARAMETERS AND A 
VOLUME-TRANSLATION PARAMETER IN A CEOS 

3.1. On the interest to select ω-dependent ( ,u w ) pairs in untranslated CEoS 

In order to highlight the interest of selecting ω –dependent ( ,u w ) parameters for a better 
correlation of liquid-density data, let us illustrate that the selection of universal ( ,u w ) 
constants entails that minimum deviations over liquid-density data are solely obtained for 
molecules having a specific acentric factor. To do so, the SRK ( 1u = , 0w = ) and PR (

2u = , 1w = − ) EoS, that embed a generalized α-function, are considered. Note that a 
similar study was conducted by Schmidt and Wenzel 40 years ago but these authors only 
calculated the deviation over one kind of datum: the molar volume at 0.7rT = . Here, our plan 
is to consider a larger range of temperatures to get more reliable conclusions. Following 
Schmidt and Wenzel, 14 hydrocarbons ranging from CH4 ( 0.01ω = ) to n-decane ( 0.49ω= ) 
were selected. For each of them, the correlation reported by the DIPPR database to estimate 
the molar liquid volume at saturation was used to generate 50 equidistant data points 

between minT  and   0.9max cT T= . Here, minT  is the minimum temperature at which sat
liqv  can 

be estimated from the DIPPR correlation. Once done, the MAPE (Mean Absolute Percentage 

Error) on sat
liqv  was calculated as: 

 

, ,
50

,1

100
50

sat sat
liq liq

sat
liq

v vsat DIPPR sat CEoS
liq i liq i

vsat DIPPRi
liq i

v T v T
MAPE

v T=

   −   
   =

 
 
 

∑  (17) 

The results shown in Fig. 1 highlight that, for a given acentric factor value, deviations on sat
liqv  

are strongly impacted by the choice of the EoS i.e. by the values assigned to u  and w . Fig. 
1, in which a large range of temperature was considered, differs significantly from the one 
published by Schmidt and Wenzel but leads to similar conclusions: the SRK EoS ( 1u= , 

0w = ) describes well the liquid volume at low values of ω; while the PR EoS ( 2u = , 1w = −
) yields the best results around 0.30ω=  (for n-hexane).  
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Figure 1. Deviation on saturated liquid molar volume up to 0.9rT =  as a function of the 

acentric factor ω , calculated by the SRK and PR EoS. The 14 substances are by order of 
ω : CH4, C2H4, C2H6, C3H6, C3H8, but-1-ene, n-butane, benzene and the n-alkanes from n-
pentane to n-decane. 

 
What can be said for ω  values different from 0 and 0.3? For sure, Fig. 1 does not help to 
determine which ( ,u w ) pair is suitable when, e.g., 0.5ω = . Schmidt and Wenzel assumed 

3w = − ω and 1 3u = + ω although they had no argument justifying that u  and w  should be 
linear functions of ω . 
 

3.2. On the interest to select ω-dependent ( ,u w ) pairs in translated CEoS 
The second possibility to make cz  component-dependent is to translate the EoS explaining 

why it was now decided to check the influence of the acentric factor on the correlation of 
saturated-liquid volumes with translated versions of the SRK and PR EoS. In this study, the 
substance-dependent volume-translation parameter, c, was determined, component by 
component, in order the translated EoS exactly reproduces the experimental saturated liquid 

volume at a reduced temperature of 0.8, [ ,exp( 0.8)sat
liq rv T = ], that is: 

 ( ),
,exp0.8 ( 0.8)sat CEoS sat

r liq rliqc v T v T−= = − =u  (18) 

where ( ), 0.8sat CEoS
rliqv T− =u  is the molar volume calculated with the original (untranslated) 

CEoS at 0.8rT = . 

The results are visible in Fig. 2 and, in comparison to Fig. 1, the change is drastic: for both 

the translated SRK and PR EoS, the MAPE on sat
liqv  is more or less constant regardless of 

the acentric factor value. 
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Figure 2. Deviation on saturated liquid molar volume ( sat

liqv ) up to 0.9rT =  as a function of 

the acentric factor ω , calculated by the translated-SRK and translated-PR EoS. The scale 
has intentionally been kept identical to the one of Fig. 1 and the 14 substances are those of 
Fig. 1.  

 
It is no longer possible to assert that the SRK EoS is more suitable for spherical molecules 
and the PR EoS is more suitable for larger molecules. Independently of the acentric factor 
value, the translated-PR (t-PR) EoS leads to smaller deviations on liquid densities than the 
translated-SRK (t-SRK). We can thus conclude that u and w  strongly affect the correlation 
of liquid densities but have to be selected as universal constants (ω-independent) when 
CEoS are translated. There is thus no benefit to select component-dependent ( ,u w ) pairs 
and to simultaneously translate the EoS. Such a result is extremely important and opens the 
way to the search for an optimal ( ,u w ) set of universal constants that would potentially lead 
to better results than those obtained with the t-PR EoS (about 2% on liquid molar volumes 
according to Fig. 2). 
 
Remark: although not shown, the results depicted in Fig. 2 were confirmed by considering 
an extended database of 1,300 pure compounds – including all families of chemical species 
– and for which accurate pseudo-experimental liquid densities could be extracted from the 
DIPPR database. 
 

3.3. Search for ω-dependent (u, w ) parameters to be used with untranslated CEoS that 
lead to the same performance as ( ou , ow ) universal constants used in translated CEoS 

What have we learnt? 
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1) In section 3.2, it has been shown that the combination of constant universal parameters (

2ou = , 1ow = − ) of the PR EoS and a component-specific volume-translation parameter 

leads to quite low deviations over liquid-density data (around 2%). 
2) As stated in section 2.2, by translating an EoS characterized by constant universal 

parameters ( ou , ow ), we obtain component-dependent u and w parameters, noted ( ,t tu w ). 

The relationship between the ( ,o ou w ) and ( ,t tu w ) sets of parameters has been derived 

(see Eq. (16)). For the PR EoS ( 2ou = , 1ow = − ), one obtains: 

 2 2

(2 ) 2 4

( 2 ) (1 ) 1 2

t o o
t t

t o o o o o
t t t

c c
u u u

b b

c c c
w w u w u w

b b b

    = + + = +    
   


      = + + + + + = − +     
     

 (19) 

Once again, although ( ou , ow ) are constant parameters, ( tu , tw ) are component specific, 

since c and tb  are component specific: the substance-dependent volume-translation 

parameter, c, is indeed determined by Eq. (18) and according to Eqs. (5) and (13) 

,exp

,exp
0.07780 c

t
c

RT
b c

P
= − . 

 

Component-dependent ( ,t tu w ) parameters stemming from Eq. (19) lead to an average 

deviation over liquid-density data of about 2% and can thus be considered as reference 
values. Consequently, for 14 pure components, they were plotted versus ω  in Fig. 3 in order 

to highlight the relationship between the component-specific parameters ( tu , tw ) on one 

hand, and ω  on the other hand. Doing so, it will be possible to evaluate the empirical 
correlations proposed by Schmidt and Wenzel ( 3w = − ω and 1 3u = + ω ) and see if they 
moved in the right direction. 
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Figure 3. Plot of tu  (●) and tw  (●) stemming from the t-PR EoS as a function of the acentric 

factor ω . With such u and w  parameters, the MAPE on sat
liqv  is about 2% (see Fig. 2) so 

that such pairs can be considered as optimal values. The 14 substances are those of Fig. 1. 
The two straight lines ( 3w = − ω and 1 3u = + ω) recall the values recommended by Schmidt 
and Wenzel. 

 
Fig. 3 highlights that to get accurate densities (the same as those obtained with the t-PR 
EoS), it is enough to select u acentric factor-dependent and to keep w  constant ( 1w = − ). It 
is noticeable that u must be an increasing function of ω  but the relationship proposed by 
Schmidt and Wenzel ( 3 1u = ω+ ) has a too steep slope. After considering a database of 
1300 components, it was found that a good fit of u and w  with respect to ω , was: 

 
0.7 1.9

1

u

w

= ω+
 = −

 (20) 

Eq. (20) clearly establishes that ( ) 0.9 0.7u w+ = + ω  is not constant. It takes a value equal to 
one (as recommended by Schmidt and Wenzel) only for a small molecule like the propane. In 
1992, Twu et al. [19] recommended ( ) 4u w− =  but this relationship deviates significantly 
from Eq. (20). 
 

4. SEARCH FOR THE OPTIMAL (u,w) SET FROM A MAP REPORTING DEVIATIONS 
BETWEEN EOS PREDICTIONS AND EXPERIMENTAL PROPERTIES IN THE (u,w) 
SPACE 

As previously discussed, very few pairs of constant ( ,u w ) parameters were tested. For 
untranslated CEoS, we find (0,0) for the VdW EoS, (1,0) for the SRK EoS, (2, -1) for the PR 
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EoS and (3, -2) for the Harmens EoS. Such pairs are however not equivalent at all in terms 
of correlation of liquid-density data. As an example, we know that the deviations on liquid 
densities are twice smaller with the PR EoS than with the SRK EoS. It seems thus pertinent 
to wonder what are the optimal values of ( ,u w ), i.e., what are the ( ,u w ) values that lead to 
the best correlation of both volumetric and VLE equilibrium data. For clarity, let us recall that 
u  and w  only have a small influence on the accuracy of VLE predictions. 

The previous section also highlighted that the volume translation technique was certainly 
the best option to make u  and w  component-dependent. Such a technique indeed avoids to 
develop a correlation between ( ,u w ) and ω . In turn, it necessitates the knowledge of the 
experimental molar volume at 0.8rT = . The strong impact of u  and w  on translated-CEoS 

was also emphasized. As an example, deviations on liquid densities were found to be close 
to 2% with the t-PR EoS and about 4% with the t-SRK EoS. 

For all these reasons, it was decided to meticulously explore the u w−  space in order to 
determine the optimal values of these two parameters for both an untranslated and a 
translated CEoS.  

Note that optimal values of the ( ,u w ) universal parameters for an untranslated CEoS are 
searched for comparative purpose only. We know from the previous section that a better 
strategy exists for improving the reproduction of liquid-density data (i.e., the use of universal (
,u w ) constants in a translated CEoS). However, as mentioned previously, the untranslated 

PR EoS is currently the best CEoS using universal ( ,u w ) constants in terms of reproduction 
of liquid-density data and it is interesting to determine if better ( ,u w ) values could be found 
for this kind of untranslated EoS.  

 
4.1. Exploration of map reporting deviations between EoS predictions and experimental 

properties in the u w−  space 
In order to explore the u w−  space, it is necessary to identify the feasible values of u  and 

w . According to Segura et al. [24], these parameters must be selected in order to ensure 
that the volume function of the attractive term ( + +2 2v ubv wb ) remains strictly positive in the 
molar volume range of applicability of the EoS (i.e., for any v b≥ ) and therefore, that the 
attractive term of the EoS remains positive and finite, as physically expected. Segura et al. 
obtained the following set of constraints: 

 
+ > − > −


< ≤ −

2

1 if 2

4 if 2

u w u

u w u
 (21) 

These constraints are represented in Fig. 4 (see the dashed line) and separate the −u w 
space in two parts: a first one called “Region III” defines all the unfeasible ( ,u w ) pairs (i.e., 

the ( ,u w ) pairs leading to negative values of + +2 2v ubv wb  for v b≥ ), while the remaining 
region corresponds to the feasible ( ,u w ) pairs. This latter can be divided in two sub-regions 

denoted Region I and Region II in Fig. 4. Region I is such that the polynomial + +2 2v ubv wb  
exhibits complex roots while region II is associated with real roots. In practice, the 
representative points of CEoS of the literature all belong to Region II.  
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Figure 4. Representation of the feasible and unfeasible regions of CEoS in the −u w space. 

 
In this study, in order to realize a very large screening of ( ,u w ) pairs, i.e. to explore a very 

large part of Region II, u  was varied between −2 and 10, while w  was subject to the two 
above constraints (see Eq. (21)). 

To build the u w−  map, a variation step equal to 0.05 was selected for each parameter so 
that more than 50,000 ( ,u w ) combinations were tested. 

Clearly, each ( ,u w ) pair defines a new EoS for which a mathematical expression of the α-
function is required. However, the open literature only defines generalized α-functions for the 
RK and PR EoS. In other words, α-functions are only available for 2 single combinations of 
the ( ,u w ) parameters. These well-known expressions are recalled below: 

 

( )
( )

( )
( )

2

2
exp exp exp

2

2
exp exp exp

( ) 1 11
 ; SRK EoS ;   

0 with: 0.480 1.574 0.176
 

( ) 1 12
 ; PR EoS ;   

1 with: 0.37464 1.54226 0.26992

c

c

T m T Tu

w m

T m T Tu

w m

   α = + −=   
  =  ω = + ω − ω 


  α = + −=    
 = −  ω = + ω − ω 

 (22) 

In order to overcome this lack of information, for each ( ,u w ) pair, the ( )expm ω  expression 

to be used in the Soave α-function ( ( ) 2
( ) 1 1 cT m T T α = + −  ) has to be re-determined. For 
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this purpose, a procedure similar to the one used by Soave for the development of the SRK 
EoS was followed [5]: ω  values ranging from zero to 1.4 with a step of 0.05 were assumed. 
For each of these ω  values, the experimental reduced vapor pressures at 0.7rT =  was 

determined from the definition of the acentric factor: 1( 0.7) 10sat
r rP T −ω−= = . Once done, the 

m  value enabling to reproduce exactly this latter quantity is determined. This procedure is 
possible, i.e., does not require to specify values of cT  and cP  because generalized CEoS 

obey the 3-parameter corresponding states theorem which stipulates that the calculated 

values of sat
rP only depend on rT  and m . Finally, the m  values were correlated with respect 

to ω  using a third-order polynomial expression: 

 ( ) 2 3m A B C Dω = + ω+ ω + ω  (23) 
 
The accuracy of each EoS, i.e. of each ( ,u w ) combination is assessed by evaluating the 

deviations between calculated and experimental vapor pressures ( satP ), enthalpies of 

vaporization ( v a p H∆ ) and saturated molar liquid volumes ( sat
liqv ) for a huge number of pure 

components. Indeed, thanks to the DIPPR database, we were able to find 1721 compounds 
belonging to many different chemical families (hydrocarbons, halogenated, oxygenated, 
sulfur, nitrogen compounds, etc.) for which at least vapor pressure data could be accurately 
generated from a temperature-dependent correlation. More information about this database 
can be found in one of our previous papers [25]. This initial number of 1721 was reduced to 
1525 because the behavior of 196 non-classical compounds could not be described properly 
by the 1-parameter Soave α-function. They were removed to avoid introducing a bias in the 
results. We also know that a 1-parameter α-function cannot catch simultaneously satP , 

v a p H∆  and liquid heat capacity ( ,
sat
Pliqc ) data, explaining why this latter property was 

disregarded here. Table 2 summarizes the available property data for the 1525 components 
considered in this study. 
 
Table 2. Available properties for the 1525 components that are used to determine the 
optimum values of u  and w . 

Property Number of compounds 
satP  1525 

v a p H∆  1318 
sat
liqv  1300 

 
For each property, the DIPPR correlations are used to generate 50 equidistant data points 
following the rules explained in the Appendix. In the end, for each ( ,u w ) combination, a kind 
of "global mean percent error (GMPE) per property" expressed through Eqs. (24) and (25) for 
the untranslated and translated EoS, respectively, are calculated: 
 

 
2

4

sa

untranslated

t sat
vap liqG

MAPE P MAPE H MAPE
P

v
M E

⋅ + ∆ +
=  (24) 

 

 
3

sat

translated

sat
vap liqG

MAPE P MAPE H MAPE v
MPE

+ ∆ +
=  (25) 
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where: 

 
1

satP

sat

NC
sat

j
jsat

P

MAPE P

MAPE P
NC

==
∑

  (26) 

 1

Hvap

vap

NC

j vap
j

vap H

MAPE H

MAPE H
NC

∆

=
∆

∆

∆ =
∑

  (27) 

 1

satvliq

sat
liq

NC
sat

j liq
jsat

liq v

MAPE v

MAPE v
NC

==
∑

  (28) 

satPNC , vap H
N C

∆  and 
sat
liqv

NC  are given in Table 2. These are the number of components for 

which experimental satP , v a p H∆  and sat
liqv  could be extracted from the DIPPR database. The 

jM A P E  on a given property for a component j  is calculated as: 

 
( ) ( )

( )
50

1

100
50

prop propDIPPR CEoS
i i

j propDIPPR
i i

prop T prop T
MAPE prop

prop T=

−
= ∑   (29) 

 
4.2. Optimal ( ,u w ) values for untranslated CEoS 

The results obtained for all the tested ( ,u w ) combinations (more than 50,000 with a 
variation step equal to 0.05) are visible in Fig. 5. The ( ,u w ) pair leading to the smallest value 
of untranslatedGMPE  (Eq. (24)) is: 

 
2.10

0.75
opt

opt

u

w

=
 = −

  (30) 

It is however possible to define in Fig. 5 a small region of ( ,u w ) parameters for which the 
difference between the values of the parameters is not significant in terms of untranslatedGMPE  

value. In other words, such parameters lead to equivalent minima for the untranslatedGMPE  

value defined in Eq. (24). Such a region is characterized by: 

 [ ]1.95,2.20  and 1.89 3.22optu w u∈ = − +   (31) 

It is noticeable that the PR EoS is quite close to this zone (see Fig. 5). On the other hand, the 
VdW and RK EoS, as expected, yield to higher values of untranslatedGMPE  due to the 

limitations to reproduce liquid molar volumes. This is particularly true for the VdW EoS and to 
a lesser extent for the SRK EoS. 
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Figure 5. Values of the global mean percentage error per property (see Eq.(24)) as a 
function of the parameters u  and w  for untranslated CEoS. 

For a better comparison, Table 3 shows the MAPE on satP , v a p H∆  and sat
liqv  obtained with 

the VdW, SRK, PR and the optimized untranslated EoS characterized by 2.10u =  and 
0.75w = − . All EoS use the Soave α-function. It is noticeable that the optimized EoS 

developed in this work makes it possible to gain 1% of accuracy on the prediction of liquid 
molar volumes in comparison with the PR EoS which was until now the most accurate 

untranslated CEoS for sat
liqv . 

 
Table 3. Comparison of the main untranslated CEoS (VdW, SRK, PR) with the optimized 
untranslated CEoS developed in this work. Note that all EoS are combined with a Soave-type 
α-function. 

EoS u  w  
GMPEuntranslated 

(Eq. (24)) 
MAPE on satP  
(1525 fluids) 

MAPE on 

v a pΔ H  

(1318 fluids) 

MAPE on sat
liqv  

(1300 fluids) 
( rT < 0.9 ) 

VdW 0 0 17% 2.0% 2.7% 60% 
SRK 1 0 6.1% 1.8% 2.6% 18% 
PR 2 -1 3.3% 1.5% 2.6% 7.6% 

This work 2.10 -0.75 3.1% 1.5% 2.5% 6.7% 

 
Remark: in this study the CEoS are parameterized classically, i.e. in order to exactly get: 

,
,exp ,exp( )sat EoS

c cP T P= . It is however well-known that by constraining a CEoS to pass 

through the experimental critical coordinates, the compressibility of saturated liquids cannot 
be represented correctly [10]. The unique solution to get a better accuracy would be to fit the 
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three pure-component parameters (let us say b, ca  and Soavem ) of a given CEoS to 

saturated liquid densities and vapor pressures as is conventionally done with SAFT-type 
EoS. In addition, as explained by Polishuk [26–28], incorrect compressibility values may lead 
to higher deviations on density data at very high pressures (much higher deviations than 
those reported in Table 3 for the saturated liquid). 
 

4.3. Optimal ( ,u w ) values for translated CEoS 
It is recalled that the volume correction was determined in order to exactly reproduce the 

liquid molar volume at 0.8rT = , for each pure component. The results obtained for all the 

tested ( ,u w ) pairs are shown in Fig. 6. It is noticeable that they differ notably from those 
obtained for untranslated CEoS. In the present case, there is not a unique ( ,u w ) combination 
leading to a minimum (or a specified) value of Eq. (25) but instead a valley of ( ,u w ) 
combinations all located along a second-order polynomial line. As an example, in Fig. 6, the (
,u w ) pairs that minimize the translatedG MPE  quantity defined by Eq.(25) are identified by a 

dark blue line the equation of which is: 

 20.14 0.47 0.47opt opt optw u u= − −  (32) 

The following couples of parameters: 
0

0.47

u

w

=
 = −

, 
1

0.80

u

w

=
 = −

, 
2

0.85

u

w

=
 = −

 or 
3

0.62

u

w

=
 = −

 

are thus equivalent and all minimize Eq. (25). 
 

 

Figure 6. Values of the global mean percentage error per property (see Eq. (25)) as a 
function of the parameters u  and w  for translated CEoS. 
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By superimposing Fig. 5 and Fig. 6, it is noticeable that the locus of optimal values drawn 
in Fig. 6 overlaps the small region in Fig. 5 that minimizes Eq. (24). By selecting an ( ,u w ) 
pair in this overlapping zone, we get simultaneously the most accurate untranslated and 
translated CEoS. The u and w  values satisfying simultaneously Eq. (31) and Eq. (32) are: 

 
2.16

0.86
opt

opt

u

w

=
 = −

 (33) 

In the rest of the paper, the translated CEoS using the ( ,u w ) values reported in Eq. (33) is 

called the t-OptiM EoS. Table 4 shows the MAPE on satP , v a p H∆  and sat
liqv  obtained with 

the t-VdW, t-SRK, t-PR and the t-OptiM EoS. All EoS use the Soave α-function. Since a 
volume translation does not change the phase equilibrium conditions [2,22,23], the MAPEs 
on satP , and v a p H∆  reported in Table 4 are strictly the same as those given in Table 3. Only 

the deviations on sat
liqv  are modified. 

 
Table 4. Comparison of the main translated CEoS (t-VdW, t-SRK, t-PR) with the optimized 
translated CEoS developed in this work and called t-OptiM. All EoS use a Soave-type α-
function. 

EoS u  w  
GMPEtranslated 

(Eq. (25)) 
MAPE on satP  
(1525 fluids) 

MAPE on 

v a pΔ H  

(1318 fluids) 

MAPE on sat
liqv  

(1300 fluids) 
( rT < 0.9 ) 

t-VdW 0 0 2.9% 2.0% 2.7% 4.1% 
t-SRK 1 0 2.6% 1.8% 2.6% 3.5% 
t-PR 2 -1 2.0% 1.5% 2.6% 1.9% 

t-OptiM 2.16 -0.86 2.0% 1.5% 2.5% 1.9% 

 
The comparison of Table 3 and Table 4 highlights the colossal positive impact of a volume 

translation. As an example, the MAPE on sat
liqv  are reduced from 60% to 4% for the VdW 

EoS. Similarly, they are reduced from 18 to 3.5% for the SRK EoS. Both the t-PR and the t-

OptiM EoS show deviations on sat
liqv  that are as low as 2%. Such a table makes it also 

possible to conclude that by selecting ( 2u =  ; 1w = − ), Peng and Robinson made a very 
good choice. This couple of values is indeed extremely close to the optimal one so that the t-
PR EoS is certainly the most accurate CEoS today available. As a direct consequence, there 
is only a minor difference between the t-PR and t-OptiM EoS in Table 4. The t-SRK and t-
VdW EoS lie outside but near the region of optimal parameters [see Fig. 6 and Eq. (32)]. 
 

4.4. Optimal translated and consistent CEoS 
As stated in the introduction, the second-order polynomial volume function (

2 2v ubv wb+ + ) has a strong influence on the calculated volumetric properties whereas the 

α-function has a strong influence on the calculated VLE properties like satP , v a p H∆  and 

,
sat
Pliqc . It was thus decided to couple the optimized ( ,u w ) parameters determined in this study 

( 2.16optu = , 0.86optw =− ) with the highly flexible 3-parameter α-function proposed by Twu 

in 1991 [20]: 

 ( ) ( )1( ) exp 1N M MN
r r rT T L T−  α = −   (34) 
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This association should enable to define the most accurate CEoS ever published. In this 
study, the three L,M , N  parameters were determined for the 1721 pure components 
recommended by Piña-Martinez et al. [25] following the fitting procedure these authors 
advised to implement. In order to guarantee safe property predictions in both subcritical and 
supercritical domains, the parameters were fit to experimental data in order that the resulting 
α-function obeys the following list of constraints: 

 

( )

2

2

3
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0 and  continuous
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

α
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

 (35) 

An α-function that fulfills all of the conditions reported in Eq. (35) can be considered as 
consistent (according to Le Guennec et al. [29–31]). In addition to the t-OptiM CEoS, and for 
possible comparison with well-acknowledged CEoS, such a procedure was also applied to 
the t-PR, t-RK and t-VdW thus defining the tc-OptiM, tc-PR, tc-RK and tc-VdW CEoS. Here tc 
stands for translated and consistent to state that the CEoS is used both with a volume 
translation and the consistent version of the Twu 91 α-function. It is worth including the 
Schmidt and Wenzel (SW) EoS in the comparison, i.e., to set u and w  as a function of the 
acentric factor in order to see the potential advantage of such a procedure. The comparison 
of all these translated-consistent models is presented in Table 5 from which it is possible to 

highlight that all the tc-CEoS give similar and very small deviations on satP , v a p H∆  and ,
sat
Pliqc  

thus demonstrating the benefit of using the 3-parameter Twu 91 α-function. 
 
Table 5. Comparison of the most famous translated-consistent CEoS (tc-VdW, tc-RK, tc-PR, 
tc-SW) with the optimized one developed in this work and called tc-OptiM. All EoS are 
combined with the Twu 91 α-function. 

      Untranslated 

EoS 

MAPE on 
satP  

(1721 fluids) 

MAPE on 

v a pΔ H  

(1453 fluids) 

MAPE on 
sat
P,liqc  

(829 fluids) 

MAPE on 
sat
liqv  

(1489 
fluids) 

( rT < 0.9 ) 

MAPE on 

cv  

(1489 
fluids) 

MAPE on 
sat
liqv  

(1489 fluids) 
( rT < 0.9 ) 

MAPE on 

cv  

(1489 
fluids) 

tc-VdW 1.2% 2.0% 2.2% 4.2% 25% 60% 48% 
tc-RK 1.2% 1.9% 2.2% 3.7% 24% 19% 31% 
tc-PR 1.0% 1.9% 2.0% 2.2% 20% 8.5% 21% 
tc-SW 0.9% 1.9% 1.9% 2.9% 18% 7.6% 19% 

tc-OptiM 1.0% 1.9% 2.0% 2.2% 20% 7.6% 20% 
 

Without getting into the details, the error on satP  is 1% whereas the errors on v a p H∆  and 

,
sat
Pliqc  are both 2%. For sat

liqv  data, it is not surprising to find back in Table 5 the deviations 

previously obtained with the t-CEoS (see Table 4) since the α-function has a minor impact on 

the calculation of liquid densities. In Table 5, the deviations on sat
liqv  are however slightly 

higher than those reported in Table 4 because the number of compounds was significantly 
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increased. It is thus not surprising to see that the tc-PR and the tc-OptiM EoS give similar 

deviations on sat
liqv  that are also the smallest ones (about 2%). It was indeed concluded in the 

previous section that the values of u  and w  selected by Peng and Robinson were very close 
to the optimal ( o p tu , optw ) values determined in this study. 

The translated-consistent form of the SW EoS cannot achieve the same results for sat
liqv  

as tc-PR and tc-OptiM (but performs better than tc-RK or tc-VdW). This confirms our 
previous conclusions that it is not relevant to select component-dependent ( ,u w ) parameters 
and to simultaneously translate the EoS. 

The VdW EoS, with the introduction of an efficient temperature-dependence of the 
attractive term, can reproduce vapor pressure data of 1721 pure fluids, both polar and non-
polar, with a deviation of 1.2%. At the same time, the enthalpies of vaporization and liquid 
heat capacities are correlated with a deviation of about 2%. With the introduction of a 
constant volume correction, the VdW EoS can reproduce liquid densities with a deviation 
close to 4% (such deviations reach no less than 60% without volume correction!). Contrary to 
a priori beliefs, the tc-VdW EoS is thus accurate enough to be used for process design and 
simulation purposes. These conclusions totally agree with the previous findings of Soave [32] 
and Tassios [33–36] who brilliantly explained how the VdW EoS could be improved. 

 

5. CONCLUSION 

In this work, we studied how the u and w  parameters [involved in the volume function of 
the attractive term in cubic equations of state ( 2 2v ubv wb+ + )] influence the accuracy of the 
description of saturated-liquid molar volume data. We concluded that: 

• As already reported [19], the ability for a CEoS to predict vapor pressure and vapor-
liquid equilibrium (VLE) data requires the selection of an appropriate α-function while 
the accuracy of the predicted volumetric properties is governed by the volume function 
of the attractive term. 

• The unique solution to predict accurate volumetric properties is to make u and w  
component-dependent. 

• The volume translation technique is certainly the best option to make u and w  
component-dependent. Such a technique indeed avoids the development of a 
correlation between ( ,u w ) and ω . Moreover, its application is straightforward. 

• When cubic EoS are translated, u and w  must be ω-independent. There is indeed no 
benefit to select ω-dependent ( ,u w ) pairs and to simultaneously translate the EoS. 

• The empirical relationships between u  and w  proposed in the open literature: 
1u w+ =  or 4u w− =  were not deemed as optimal to get the smallest deviations over 

liquid densities. 
• Selecting 2.16u =  and 0.86w = − , the most accurate untranslated and translated 

CEoS are simultaneously obtained. By coupling such parameters with (i) a 
temperature-independent volume translation in order to exactly reproduce the liquid 
molar volume at 0.8rT =  and (ii) the highly-flexible Twu 91 α-function, we were able to 
propose the most accurate CEoS ever published. It was named tc-OptiM and is able to 

correlate the vapor pressures with an error of 1% whereas errors on v a p H∆ , ,
sat
Pliqc  and 

sat
liqv  are close to 2%. 

• Results obtained with the tc-OptiM EoS are however only slightly better than those 
obtained with the tc-PR [30] CEoS. This is because the values of u  and w  associated 
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with the Peng-Robinson EoS are very close to the optimal ( o p tu , optw ) values 

determined in this study. 
• The tc-VdW EoS (i.e. the translated-VdW EoS coupled with the Twu 91 α-function) is 

accurate enough to be used for process design and simulation purposes. 
 
Our plans it to extend the tc-PR (or tc-OptiM) to mixtures by using, e.g., advanced mixing 
rules like those involved in the E-PPR78 model [37]. 
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APPENDIX 

In this study, generation of the pseudo-experimental data from the DIPPR database obeys 
the following rules: 
 

1) Regardless of the considered property among satP , v a p H∆ , ,
sat
Pliqc  and sat

liqv , 50 

equidistant pseudo-experimental data points are generated in their valid 

temperature range, [ ]min max;T T . 

 

2) For the v a p H∆  and ,
sat
Pliqc  correlations, in the case that maxT  exceeds 0 .98 cT , 

m ax 0 .9 8 cT T=  is set. The reason for this choice is simple: v a p H∆  goes to zero at 

the critical temperature and the calculation of the relative deviation with the 

experimental data induces a division by zero. Similarly, ,
sat
Pliqc  goes to infinity at the 

critical temperature so that, once again, the relative deviation with the 
experimental value cannot be calculated. 
 

3) For the satP  correlations, m a x cT T=  is set. However, in the case where 

( )min 0.1 satP T bar< , the value of minT  is increased to enforce that 

( )min 0.1 satP T bar= . The reason for such a choice is twofold: 

- First and as previously discussed the (u, w ) parameters we want to optimize 
have a strong influence on the calculated liquid densities and to a much 
smaller extent an influence on the calculated vapor pressures. Consequently, 
our conclusions are very insensitive to the choice of minP  (here 0.1 bar). 

- We also know that the 1-parameter Soave α-function can lose accuracy at very 
low temperatures. Consequently, m in 0.1 P bar=  seems a good comprise to 
avoid a bias when determining the optimal values of the parameters u and w. 

 

4) For the sat
liqv  correlations, m ax 0 .9 cT T=  is set (it is indeed well-known that it is not 

possible to properly catch the critical region with a CEoS). 
 



Search for the optimal expression of the attractive term in cubic equations of state 
23 

REFERENCES 

[1] R. Agarwal, Y.-K. Li, O. Santollani, M.A. Satyro, A. Vieler, Uncovering the realities of 
simulation. Part II., Chem. Eng. Prog. 97 (2001) 64–72. 

[2] A. Péneloux, E. Rauzy, R. Freze, A consistent correction for Redlich-Kwong-Soave 
volumes, Fluid Phase Equilibria. 8 (1982) 7–23. https://doi.org/10.1016/0378-
3812(82)80002-2. 

[3] J.D. Van der Waals, On the continuity of the gaseous and liquid states, Leiden, 1873. 
[4] G.M. Kontogeorgis, R. Privat, J.-N. Jaubert, Taking another look at the van der waals 

equation of state–almost 150 years later, J. Chem. Eng. Data. (2019). 
https://doi.org/10.1021/acs.jced.9b00264. 

[5] G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, 
Chem. Eng. Sci. 27 (1972) 1197–1203. https://doi.org/10.1016/0009-2509(72)80096-4. 

[6] D.-Y. Peng, D.B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. 
Fundam. 15 (1976) 59–64. https://doi.org/10.1021/i160057a011. 

[7] D.B. Robinson, D.-Y. Peng, The characterization of the heptanes and heavier fractions 
for the GPA Peng–Robinson programs (RR-28), Res. Rep. GPA. (1978) 1–36. 

[8] A. Pina-Martinez, R. Privat, J.-N. Jaubert, D.-Y. Peng, Updated versions of the 
generalized Soave α-function suitable for the Redlich-Kwong and Peng-Robinson 
equations of state, Fluid Phase Equilibria. 485 (2019) 264–269. 
https://doi.org/10.1016/j.fluid.2018.12.007. 

[9] R. Privat, E. Moine, B. Sirjean, R. Gani, J.-N. Jaubert, Application of the corresponding-
state law to the parametrization of statistical associating fluid theory (SAFT)-type 
models: generation and use of “generalized charts,” Ind. Eng. Chem. Res. 58 (2019) 
9127–9139. https://doi.org/10.1021/acs.iecr.8b06083. 

[10] E. Moine, A. Piña-Martinez, J.-N. Jaubert, B. Sirjean, R. Privat, I-PC-SAFT: an 
Industrialized version of the volume-translated PC-SAFT equation of state for pure 
components, resulting from experience acquired all through the years on the 
parameterization of saft-type and cubic models, Ind. Eng. Chem. Res. 58 (2019) 
20815–20827. https://doi.org/10.1021/acs.iecr.9b04660. 

[11] A. Harmens, A cubic equation of state for the prediction of N2-Ar-O2 phase equilibrium, 
Cryogenics. 17 (1977) 519–522. https://doi.org/10.1016/0011-2275(77)90146-1. 

[12] G. Schmidt, H. Wenzel, A modified van der Waals type equation of state, Chem. Eng. 
Sci. 35 (1980) 1503–1512. https://doi.org/10.1016/0009-2509(80)80044-3. 

[13] A. Harmens, H. Knapp, Three-parameter cubic equation of state for normal substances, 
Ind. Eng. Chem. Fundam. 19 (1980) 291–294. https://doi.org/10.1021/i160075a010. 

[14] N.C. Patel, A.S. Teja, A new cubic equation of state for fluids and fluid mixtures, Chem. 
Eng. Sci. 37 (1982) 463–473. https://doi.org/10.1016/0009-2509(82)80099-7. 

[15] G.G. Fuller, A modified Redlich-Kwong-Soave equation of state capable of representing 
the liquid state, Ind. Eng. Chem. Fundam. 15 (1976) 254–257. 
https://doi.org/10.1021/i160060a005. 

[16] O. Pfohl, Evaluation of an improved volume translation for the prediction of hydrocarbon 
volumetric properties, Fluid Phase Equilibria. 163 (1999) 157–159. 
https://doi.org/10.1016/S0378-3812(99)00199-5. 

[17] P. Ungerer, H.B. De Sant’Ana, Reply to the letter to the editor by O. Pfohl about the 
paper ‘“Evaluation of an improved volume translation for the prediction of hydrocarbon 
volumetric properties”’ [FPE 154, 193–204 (1999)], Fluid Phase Equilibria. 163 (1999) 
161–162. https://doi.org/10.1016/S0378-3812(99)00198-3. 

[18] V. Kalikhman, D. Kost, I. Polishuk, About the physical validity of attaching the repulsive 
terms of analytical EOS models by temperature dependencies, Fluid Phase Equilibria. 
293 (2010) 164–167. https://doi.org/10.1016/j.fluid.2010.03.003. 

[19] C.H. Twu, J.E. Coon, J.R. Cunningham, A new cubic equation of state, Fluid Phase 
Equilibria. 75 (1992) 65–79. https://doi.org/10.1016/0378-3812(92)87007-A. 



Search for the optimal expression of the attractive term in cubic equations of state 
24 

[20] C.H. Twu, D. Bluck, J.R. Cunningham, J.E. Coon, A cubic equation of state with a new 
alpha function and a new mixing rule, Fluid Phase Equilibria. 69 (1991) 33–50. 
https://doi.org/10.1016/0378-3812(91)90024-2. 

[21] R. Clausius, Ueber das verhalten der kohlensäure in bezug auf druck, volumen und 
temperatur, Ann. Phys. 245 (1880) 337–357. 
https://doi.org/10.1002/andp.18802450302. 

[22] J.-N. Jaubert, R. Privat, Y. Le Guennec, L. Coniglio, Note on the properties altered by 
application of a Péneloux-type volume translation to an equation of state, Fluid Phase 
Equilibria. 419 (2016) 88–95. https://doi.org/10.1016/j.fluid.2016.03.012. 

[23] R. Privat, J.-N. Jaubert, Y. Le Guennec, Incorporation of a volume translation in an 
equation of state for fluid mixtures: which combining rule? Which effect on properties of 
mixing?, Fluid Phase Equilibria. 427 (2016) 414–420. 
https://doi.org/10.1016/j.fluid.2016.07.035. 

[24] H. Segura, D. Seiltgens, A. Mejía, F. Llovell, L.F. Vega, An accurate direct technique for 
parameterizing cubic equations of state: Part II. Specializing models for predicting vapor 
pressures and phase densities, Fluid Phase Equilibria. 265 (2008) 155–172. 
https://doi.org/10.1016/j.fluid.2008.01.013. 

[25] A. Pina-Martinez, Y. Le Guennec, R. Privat, J.-N. Jaubert, P.M. Mathias, Analysis of the 
combinations of property data that are suitable for a safe estimation of consistent Twu 
α-function parameters: updated parameter values for the translated-consistent tc-PR 
and tc-RK cubic equations of state, J. Chem. Eng. Data. 63 (2018) 3980–3988. 
https://doi.org/10.1021/acs.jced.8b00640. 

[26] I. Polishuk, Till which pressures the fluid phase EOS models might stay reliable?, J. 
Supercrit. Fluids. 58 (2011) 204–215. https://doi.org/10.1016/j.supflu.2011.05.014. 

[27] I. Polishuk, Addressing the issue of numerical pitfalls characteristic for SAFT EOS 
models, Fluid Phase Equilibria. 301 (2011) 123–129. 
https://doi.org/10.1016/j.fluid.2010.11.021. 

[28] I. Polishuk, Hybridizing SAFT and cubic eos: what can be achieved?, Ind. Eng. Chem. 
Res. 50 (2011) 4183–4198. https://doi.org/10.1021/ie102420n. 

[29] Y. Le Guennec, S. Lasala, R. Privat, J.-N. Jaubert, A consistency test for α-functions of 
cubic equations of state, Fluid Phase Equilibria. 427 (2016) 513–538. 
https://doi.org/10.1016/j.fluid.2016.07.026. 

[30] Y. Le Guennec, R. Privat, J.-N. Jaubert, Development of the translated-consistent tc-PR 
and tc-RK cubic equations of state for a safe and accurate prediction of volumetric, 
energetic and saturation properties of pure compounds in the sub- and super-critical 
domains, Fluid Phase Equilibria. 429 (2016) 301–312. 
https://doi.org/10.1016/j.fluid.2016.09.003. 

[31] Y. Le Guennec, R. Privat, S. Lasala, J.-N. Jaubert, On the imperative need to use a 
consistent α-function for the prediction of pure-compound supercritical properties with a 
cubic equation of state, Fluid Phase Equilibria. 445 (2017) 45–53. 
https://doi.org/10.1016/j.fluid.2017.04.015. 

[32] G. Soave, Improvement of the Van Der Waals equation of state, Chem. Eng. Sci. 39 
(1984) 357–369. https://doi.org/10.1016/0009-2509(84)80034-2. 

[33] P. Watson, M. Cascella, D. May, S. Salerno, D. Tassios, Prediction of vapor pressures 
and saturated molar volumes with a simple cubic equation of state: Part II: The Van der 
Waals - 711 EOS, Fluid Phase Equilibria. 27 (1986) 35–52. 
https://doi.org/10.1016/0378-3812(86)87039-X. 

[34] G.J. Czerwienski, P. Tomasula, D. Tassios, Vapor - liquid equilibria with the vdW - 711 
equation of state, Fluid Phase Equilibria. 42 (1988) 63–83. https://doi.org/10.1016/0378-
3812(88)80050-5. 

[35] I.P. Androulakis, N.S. Kalospiros, D.P. Tassios, Thermophysical properties of pure polar 
and nonpolar compounds with a modified VdW-711 equation of state, Fluid Phase 
Equilibria. 45 (1989) 135–163. https://doi.org/10.1016/0378-3812(89)80254-7. 

[36] D.P. Tassios, Applied Chemical Engineering Thermodynamics, Springer Berlin 
Heidelberg, Berlin, Heidelberg, 1993. https://doi.org/10.1007/978-3-662-01645-9. 



Search for the optimal expression of the attractive term in cubic equations of state 
25 

[37] J.-W. Qian, J.-N. Jaubert, R. Privat, Phase equilibria in hydrogen-containing binary 
systems modeled with the Peng-Robinson equation of state and temperature-
dependent binary interaction parameters calculated through a group-contribution 
method, J. Supercrit. Fluids. 75 (2013) 58–71. 
https://doi.org/10.1016/j.supflu.2012.12.014. 

 




