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ABSTRACT
We study an iterative beam search algorithm for the permutation flowshop (makespan and flow-
time minimization). This algorithm combines branching strategies inspired by recent branch-
and-bounds and a guidance strategy inspired by the LR heuristic. It obtains competitive results,
reports many new-best-so-far solutions on the VFR benchmark (makespan minimization) and
the Taillard benchmark (flowtime minimization) without using any NEH-based branching or
iterative-greedy strategy.
The source code is available at: https://gitlab.com/librallu/cats-pfsp.

1. Introduction
In the flowshop problem, one has to schedule jobs, where each job has to follow the same route of machines. The

goal is to find a job order that minimizes some criteria. The permutation flowshop, also called PFSP, is a common
(and fundamental) variant that imposes the machines to process jobs in the same order (thus, a permutation of jobs is
enough to describe a solution). The permutation flowshop has been one of the most studied problems in the literature
[35, 30] and has been considered on various industrial applications [16, 42]. We may also note that the permutation
flowshop is at the origin of multiple other variants, for instance, the blocking permutation flowshop [45], the mul-
tiobjective permutation flowshop [20], the distributed permutation flowshop [11], the no-idle permutation flowshop
[31], the permutation flowshop with buffers [28] and many others. Regarding the criteria to minimize, we study in
this paper, two of the most studied objectives: the makespan (minimizing the completion time of the last job on the
last machine) and the flowtime (minimizing the sum of completion times of each job on the last machine). According
to the scheduling notation introduced by Graham, Lawler, Lenstra, and Rinnooy Kan [13], the makespan criterion is
denoted Fm|prmu|Cmax and the flowtime criterion Fm|prmu|∑Ci.
Consider the following example instance with m = 3machines with n = 4 jobs (j1, j2, j3, j4) with the job processingtime matrix P defined as follows where Pj,m indicates the processing time of job j on machine m:

P =
⎛

⎜

⎜

⎝

3 2 1 3
3 4 3 1
2 1 3 2

⎞

⎟

⎟

⎠

One possible solution can be described in Figure 1. This solution has a makespan (completion time of the last job
on the last machine) of 18 and a flowtime (sum of completion times on the last machine) of 8 + 11 + 16 + 18 = 53.
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Figure 1: A solution for the example instance with a job order � = j1, j2, j3, j4
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Regarding resolutionmethods, themakespanminimization permutation flowshop problem has beenmassively studied
over the last 50 years and a large number of numerical methods have been applied.

In 1983, Nawaz, Enscore, Ham proposed an insertion based heuristic (later called NEH) [27]. This heuristic sorts
jobs by some criterion (usually by a non-decreasing sum of processing times), then adds them one by one at the position
that minimizes the objective function. The NEH, obtained, at the time, excellent results compared to other heuristics
and can be used to perform greedy algorithms and perturbation-based algorithms as well. It has been largely considered
as an essential component in order to solve large-scale permutation flowshop instances, andmultiple methods have been
built using it. One of the most famous ones is the Taillard’s acceleration [39], that reduces the cost of inserting a job
at all possible positions from O(n2.k) to O(n.k). Considering these results, multiple works aim to improve the NEH
heuristic [10, 26, 14, 4, 36, 44, 25] to cite a few.

The (meta-)heuristics state-of-the-art methods for the makespan minimization usually perform an iterated-greedy
algorithm [38, 8]. Such algorithms start with a NEH heuristic to build an initial solution. Then, destroy a part of
it and reconstruct it using again an NEH heuristic. To the best of our knowledge, the current state-of-the-art for the
makespan minimization criterion is the variable block insertion heuristic [15]. The variable block insertion heuristic
starts by finding an initial solution using the FRB5 heuristic [33]. It removes some block of jobs, applies a local search
procedure, then reinserts the block in the best possible position. We may note that other algorithms exist to solve the
makespan minimization. To cite a few, we can find some hybrid algorithms [46] (a combination of the NEH heuristic
as a part of the initial population, a genetic algorithm, and simulated annealing to replace the mutation), memetic
algorithms [17], an automatically designed local-search scheme [29].

The (meta-)heuristics methods for the flowtime minimization also involve the NEH heuristic, but also some other
constructive methods as well. For instance, the Liu and Reeve’s method (LR) [24]. This method performs a forward
search (i.e appending jobs at the end of the partial schedule). It was later improved to reduce its complexity from
O(n3m) to O(n2m), later called the FF algorithm [6]. Later, this scheme was integrated into a beam search algorithm
(more on that later) that obtained state-of-the-art performance [7]. Recently, this beam search was integrated within a
biased random-key genetic algorithm as a warm-start procedure [1]. This is, to the best of our knowledge, the state-
of-the-art method for the flowtime minimization.
Regarding exact-methods, a recent branch & bound [12] brought light on a bi-directional branching (i.e constructing

the candidate solution from the beginning and the end at the same time) combined with a simple yet efficient bounding
scheme to solve the makespan minimization criterion. The resulting branch & bound obtained excellent performance
and was even able to solve to optimality almost all large VFR instances with 20 machines.

Moreover, recently, an iterative beam search has been proposed and, successfully applied to various combinatorial
optimization problems as guillotine 2D packing problems [22, 9], the sequential ordering problem [21] and the longest
common subsequence problem [23]. This iterative beam search scheme, at the beginning of the search, behaves as a
greedy algorithm and more and more as a branch & bound algorithm as time goes (it performs a series of beam search
iterations with a geometric growth). It naturally combines search-space reductions from branch& bounds and guidance
strategies from classical (meta-)heuristics. Considering the success of recent branch & bound branching schemes and
the performance of greedy-like algorithms to solve the permutation flowshop, it would be a natural idea to combine
them. However, to the best of our knowledge, it has not been studied before. This paper aims to fill this gap. For the
makespan criterion, we implemented a bi-directional branching scheme and combined it with a variant of the LR [24]
guidance strategy and use an iterative beam-search algorithm to perform the search. We report competitive results
and find new best-known solutions on many large VFR instances (we improve the best-known solution for almost all
instances with 500 jobs or more and 40 machines or more). Note that these results are interesting and new as almost
all the efficient algorithms in the literature are based on the NEH heuristic or the iterated greedy algorithm. This is
not the case for our algorithm as it is based on a variant of the LR heuristic and an exact-method branching scheme
(bi-directional branching).

Regarding the flowtime criterion, the bi-directional branching cannot be directly applied (the bounding procedure
is less efficient than for the makespan criterion). However, we show that an iterative beam search with a simple forward
search (modified LR algorithm) is efficient, and, reports new best-solutions for the Taillard’s benchmark (almost all
solutions for instances with 100 jobs or more were improved).

This paper is structured as follows: Section 2 presents the branching schemes we implement (the forward and bi-
directional search) for both criteria (makespan and flowtime). Section 3 present the guides we implement (the bound
guide, the idle-time guide and mixes between these two first guides). Section 4 presents the iterative beam search
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strategy and Section 5 presents the results obtained by running all variants described in this paper, showing that an
iterative beam search combined with a simple variant of the LR heuristic can outperform the state-of-the-art.

2. Branching schemes
We present in this section the two branching schemes we use (i.e. the search tree structure): the forward search

(i.e constructing the solution from the beginning) and the bi-directional search (i.e. constructing the solution from the
beginning and the end).
2.1. Forward branching

The forward branching assigns jobs at the first free position in the partial sequences (it constructs the solutions from
the beginning). The root corresponds to a situation where the candidate solution contains no job (i.e. c.STARTING = ∅).
Each of the search-tree node corresponds to the first jobs in the resulting solution. Children of a given node correspond
to a possible insertion of each job that is not scheduled yet at the end of the schedule. Each node stores information
about the partial candidate solution (jobs already added), the release time of each machine, and the partial makespan
(resp. flowtime). A candidate solution (or node) c is considered as “goal” or “feasible” if all jobs are inserted (i.e.
c.STARTING = J ) and contains the following information:

• STARTING: vector of jobs inserted that lead to the candidate c (fist jobs of the sequence we want to generate).
• FRONTSTARTING: vector of times where machines are first available after appending STARTING jobs.
Before presenting the forward children-generation, we present how to insert a job j ∈ J in a candidate solution c

(Algorithm 2.1). This insertion can be done in O(m) where m is the number of machines.

Algorithm 2.1: Forward search: insertion of job j in candidate solution c (INSERTFORWARD(c, j))
Input: candidate solution (or node) c
Input: job to be inserted j ∈ J

1 c.FRONTSTARTING1 ← c.FRONTSTARTING1 + Pj,1
2 for i ∈ {2,…m} do
3 if c.FRONTSTARTINGi−1 > c.FRONTSTARTINGi then

/* there is some idle time on machine i */
4 idle ← c.FRONTSTARTINGi−1 − c.FRONTSTARTINGi
5 c.FRONTSTARTINGi ← c.FRONTSTARTINGi−1 + Pj,i
6 else

/* no idle time on machine i */
7 c.FRONTSTARTINGi ← c.FRONTSTARTINGi + Pj,i
8 end
9 end

10 c.STARTING ← c.STARTING ∪ {j}

Algorithm 2.2 presents the forward branching pseudo-code (how to generate all children of a candidate solution
c).

Algorithm 2.2: Forward search children generation from a candidate solution c (CHILDREN(c))
Input: candidate solution (or node) c

1 children ← ∅
2 for j ∈ unscheduled jobs do
3 children ← children ∪ INSERTFORWARD(Copy(c), j)
4 end
5 return children
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2.2. Bi-directional branching
To the best of our knowledge, the bi-directional branching was first introduced in 1980 [32]. The bi-directional

search appends jobs at the beginning and the end of the candidate solution. It aims to exploit the property of the inverse
problem (job order inversed and machine order inversed). Since then, the efficiency of this scheme has been largely
recognized to solve the makespan minimization optimally [2, 18, 19, 5, 3, 37]. Recently, a parallel branch & bound was
successfully used to solve the makespan minimization criterion [12] using this bi-directional scheme. Multiple ways
to decide if the algorithm performs a forward or backward insertion were studied (for instance alternating between a
forward insertion and backward insertion). This study found out that the best way is selecting the insertion type that
has the less remaining children after the bounding pruning step. Ties are broken by selecting the type of insertion that
maximizes the sum of the lower bounds as large lower bounds are usually a more precise estimation.

A candidate solution (or node) c is considered as “goal” or “feasible” if all jobs are inserted (i.e. c.STARTING ∪
c.FINISHING = J ) and contains the following information:

• STARTING: vector of jobs inserted at the beginning of the partial permutation that lead to the candidate c (first
jobs of the sequence we want to generate).

• FRONTSTARTING: vector of times where machines are first available after appending STARTING jobs.
• FINISHING: (inverted) vector of jobs inserted at the end of the partial permutation that lead to the candidate c

(last jobs of the sequence we want to generate).
• FRONTFINISHING: vector of times where machines are no more available after appending STARTING jobs.
Algorithm 2.3 presents the bi-directional branching pseudo-code. We use INSERTFORWARD (Algorithm 2.1) to

insert a job within the STARTING vector and INSERTBACKWARD that inserts a job within the FINISHING vector. This
procedure is almost similar to INSERTFORWARD but iterates over machines in an inverted order (m → 2 instead of
2 → m). It generates children of both the forward and backward search (lines 1-6), prunes nodes that are dominated by
the best-known solution (or upper-bound, lines 7-8). Then, it chooses the scheme that has fewer children (thus, usually
a smaller search-space) and breaks ties by selecting the scheme having the more precise lower bounds (sum of lower
bounds).

Algorithm 2.3: Bi-directional search children generation from a candidate solution c (CHILDREN(c))
Input: candidate solution (or node) c

1 F ← ∅ /* F correspond to the children obtained by forward search */
2 B ← ∅ /* B correspond to the children obtained by backward search */
3 for j ∈ unscheduled jobs do
4 F ← F ∪ INSERTFORWARD(Copy(c), j)
5 B ← B ∪ INSERTBACKWARD(Copy(c), j)
6 end
7 F ← {c|c ∈ F if BOUND(c) < best known solution} /* removing forward nodes dominated by the UB */
8 B ← {c|c ∈ B if BOUND(c) < best known solution} /* removing backward nodes dominated by the UB */
9 if |F| < |B| ∨ (|F| = |B| ∧

∑

c∈F BOUND(c) > ∑

c∈B BOUND(c)) then
10 return F /* chosing the forward search */
11 else
12 return B /* chosing the backward search */
13 end

3. Guides
In the previous section, we discussed the branching rules that define a search tree. As such trees are usually large,

a way to tell which node is apriori more desirable is needed. In branch-and-bounds, this mechanism is called “bound”
and also constitutes an optimistic estimate of the best solution that can be achieved in a given sub-tree. In constructive
meta-heuristics, the guidance strategy is usually not an optimistic estimate which often allows finding better solutions
L. Libralesso et al.: Page 4 of 12
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(for instance the LR [24] greedy guidance strategy). In this section, we present several guidance strategies for both the
makespan and flowtime criteria.
3.1. Bound

We define the bound guidance strategy for the forward search and makespan minimization as follows. It measures
the first time the last machine (machine m) is available and assumes that each remaining job can be scheduled without
any idle time.

F g1 = Cmaxf,m + Rm

The bound guidance strategy for the bi-directional search and makespan minimization is defined as follows. It
generalizes the bound for the forward search by also taking into account the backward front. We may note that the
bi-directional branching allows computing a better bound as all machines are relevant for this bound (compared to the
forward branching bound in which only the last machine is used to compute a bound).

FB g1 = max
i∈M

(Cmaxf,i + Ri + Cmaxb,i)

The flowtime bound is defined as the sum of end times for each job scheduled in the forward search. Each time a
job is added to the candidate solution, the flowtime value is modified.
3.2. idle time

The bound guide is an effective guidance strategy, but is known to be imprecise at the beginning of the search
(i.e. the first levels of the search tree). Another guide that is usually considered as a part of effective greedy strategies
(for instance the LR heuristic) is to use the idle time of the partial solution. Usually, a solution with a small idle time
reaches good performance on both the makespan or flowtime criteria.

The idle time can be defined as follows:

FB g2 =
∑

i∈M
If,i + Ib,i

3.3. bound and idle time
As it is noted in many works [24, 7], another interesting guidance strategy is to combine both guidance strategies

discussed earlier (i.e. the bound and idle time guides). Indeed, while the bound guide is usually ineffective to guide
the search close to the root, it is very precise close to feasible solutions. Inversely, the idle time is an efficient guide
close to the root but relatively inefficient close to feasible solutions. We study the bound and idle time guide that
linearly reduces the contribution of the idle time to favor the bound depending on the completion level of the candidate
solution.

The bound and idle time guide can be defined as follows, where C is a value used to make the idle time and bound
comparable:

g3 = � . g1 + (1 − �) . C . g2

where � corresponds to the proportion of jobs added (i.e. 0 if no jobs are added, 1 if all jobs are added). It is
defined as follows: � = |F |+|B|

|J | for the bi-directional branching or � = |F |
|J | for the forward branching.

3.4. bound and weighted idle time
Another useful remark found in greedy algorithms for the permutation flowshop problem [24] is to add additional

weight to the idle time produced by the first machines at the beginning of the search (as it will have a greater impact on
the objective function than the others). However, the LR heuristic cannot be directly applied in a general tree search
context. Indeed, it is sometimes noted [7] that algorithms like the beam search usually compare nodes from different
parents, thus, it is needed to adapt the LR heuristic guidance that only compares nodes with the same parent. We
L. Libralesso et al.: Page 5 of 12



Iterative beam search algorithms for the permutation flowshop

propose two different simple yet efficient ways to implement similar ideas. The search is guided by a combination of
a weighted idle time and by the bounding procedure.

The first guide, used for the forward search for the flowtime minimization is defined as follows, where Iw is the
weighted idle time and C = m.

∑

i∈M Ii
2 :

F g4 = � . g1 + (1 − �) . (Iw + C)

At each time we add a job j to the end of the partial solution, we increase the weighted idle times as follows where
v is the idle time added by the job j in machine i:

Iw = Iw + v . (� . (m − i) + 1)

For the bi-directional branching, we present a new guidance strategy that considers the sum of idle time percentage
for each front. Doing this, it allows making idle time on the first machines more important to the forward search and
the idle time on the last machines more important to the backward search. The bound and weighted idle time guide for
the bi-directional search is defined as follows:

FB g4 = (1 − �).g1.

(

∑

i∈M

If,i
Cmaxf,i

+
Ib,i

Cmaxb,i

)

+ �.g1

4. The search strategy: Iterative beam search
Beam Search is a tree search algorithm that uses a parameter called the beam size (D). Beam Search behaves like

a truncated Breadth First Search (BrFS). It only considers the best D nodes on a given level. The other nodes are
discarded. Usually, we use the bound of a node to choose the most promising nodes. It generalizes both a greedy
algorithm (if D = 1) and a BrFS (if D = ∞). Figure 2 presents an example of beam search execution with a beam
width D = 3.
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Figure 2: Beam Search Iterations with a beam width D = 3
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Beam Search was originally proposed in [34] and used in speech recognition. It is an incomplete (i.e. performing a
partial tree exploration and can miss optimal solutions) tree search parametrized by the beam width D. Thus, it is not
an anytime algorithm. The parameter D allows controlling the quality of the solutions and the execution time. The
larger D is, the longer it will take to reach feasible solutions, and the better these solutions will be.
Recently, a variant of beam search, called iterative beam search, was proposed and obtained state-of-the-art results on

various combinatorial optimization problems [21, 22, 23, 9]. Iterative beam search performs a series of restarting beam
search with geometrically increasing beam size until the time limit is reached. Algorithm 4.1 shows the pseudo-code
of an iterative beam search. The algorithm runs multiple beam searches starting with D = 1 (line 1) and increases
the beam size (line 8) geometrically. Each run explores the tree with the given parameter D. In the pseudo-code,
we increase geometrically the beam size by 2. This parameter can be tuned, however, we did not notice a significant
variation in the performance while adjusting this parameter. This parameter (that can be a real number) should be
strictly larger than 1 (for the beam to expand) and should not be too large, say less than 3 or 5 (otherwise, the beam
grows too fast and when the time limit is reached, most of the computational time was possibly wasted in the last
incomplete beam, without providing any solution).

Algorithm 4.1: Iterative Beam Search algorithm
Input: root node

1 D ← 1
2 while stopping criterion not met do
3 Candidates ← {root}
4 while Candidates ≠ ∅ do
5 nextLevel ← ⋃

n∈Candidates children(n)
6 Candidates ← best D nodes among nextLevel
7 end
8 D ← D× 2
9 end

5. Numerical results
In this section, we perform various experiments to evaluate the efficiency of the algorithms discussed in the pre-

vious sections. In Subsection 5.1, we present numerical results obtained in the makespan minimization version and
Subsection 5.2, the results obtained in the flowtime minimization version. All algorithms have been implemented in
C++ and executed on an Intel(R) Core(TM) i5-3470 CPU @3.20GHz with 8GB RAM. As the CPU has 4 physical
cores, we ran 4 tests in parallel to obtain results faster. For both objectives, we study the ARPD (Average Relative
Percentage Deviation), defined as follows:

ARPDIa =
∑

i∈I

Mai −M∗
i

M∗
i

. 100
|I|

where I is a set of instances with similar characteristics,Mai corresponds to the objective obtained by algorithm a on
instance i. AndM∗

i the best-so-far solution objective for instance i. The ARPD describes the performance of a given
algorithm on a given instance type. A positive ARPD implies that the algorithm finds in average, solutions dominated
by the best-known ones and a negative ARPD implies that the algorithm can improve on the best-known solutions.
5.1. Makespan minimization

We ran each algorithm for m.n.45 milliseconds where n is the number of jobs and m the number of machines as it
is usually done in the literature for the makespan minimization. We evaluate our algorithms on the famous VFR set
of instances [43]. That consists of sets of 10 instances with a job number n ∈ {100, 200…800}, a machine number
m ∈ {20, 40, 60}. The benchmark is commonly used in the literature to evaluate the performance of optimization algo-
rithms. Most instances with 20 machines are closed [12]. The best-so-far results are an aggregation of the results found
in the literature [8, 15, 12]. Figure 3 presents the ARPD obtained on the VFR instances and makespan minimization.
L. Libralesso et al.: Page 7 of 12
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F g1 F g2 F g3 F g4 FB g1 FB g2 FB g3 FB g4
VFR100_20 18.70 3.45 3.79 3.43 2.29 11.05 9.84 0.58
VFR100_40 17.41 4.62 4.62 3.68 5.83 9.67 9.39 2.25
VFR100_60 16.54 5.18 5.07 4.79 6.35 9.50 9.52 3.68
VFR200_20 21.38 2.93 3.59 1.78 1.30 10.59 8.50 1.75
VFR200_40 21.93 4.69 4.82 2.56 5.73 14.68 14.50 0.24
VFR200_60 20.27 5.35 5.51 2.77 8.13 15.75 14.56 1.86
VFR300_20 22.44 2.02 2.72 1.72 0.83 7.40 5.53 1.43
VFR300_40 22.41 4.41 4.73 1.09 5.60 16.79 14.29 -0.80
VFR300_60 20.88 5.22 5.66 1.55 8.01 12.77 12.65 0.85
VFR400_20 22.68 1.98 2.52 1.86 0.76 4.32 3.20 1.40
VFR400_40 24.34 4.06 4.53 0.70 5.67 16.06 14.95 -0.97
VFR400_60 21.91 5.54 6.01 0.82 7.91 17.54 16.36 0.16
VFR500_20 24.42 1.57 2.43 1.63 0.50 3.51 3.01 1.30
VFR500_40 24.08 3.26 3.83 0.70 4.82 14.27 12.79 -0.86
VFR500_60 22.42 5.88 6.12 0.58 8.41 16.59 15.53 -0.59
VFR600_20 23.39 1.21 2.06 1.49 0.50 3.32 2.38 1.26
VFR600_40 24.47 3.46 3.83 0.63 5.50 16.12 14.46 -0.65
VFR600_60 22.94 5.46 5.89 0.40 7.94 13.22 12.39 -0.91
VFR700_20 24.51 1.38 2.05 1.63 0.30 2.49 1.98 1.20
VFR700_40 25.27 3.19 3.91 0.48 4.47 13.73 13.14 -0.27
VFR700_60 23.11 5.55 5.82 0.07 8.06 15.92 14.20 -1.19
VFR800_20 24.51 1.14 1.93 1.43 0.16 2.05 1.81 1.09
VFR800_40 25.12 3.30 4.08 0.32 4.18 13.95 13.42 0.09
VFR800_60 23.89 5.90 6.40 0.05 7.89 15.91 14.35 -1.25
nb new-best-known 0 0 0 20 0 0 0 104

Figure 3: Average Relative Percentage Deviation (ARPD) of all the presented algorithms on the VFR instances and the
makespan minimization version. The Forward branching is denoted by F (FB for the Forward and Backward (bi-directional)
branching). We remind that g1 denotes the bound guide, g2 the idle time, g3 the alpha guide and g4 the weighted alpha
guide.

discussions: Regarding the forward branching procedures, we observe a significant improvement by including the
idle time in the guide and obtain the best results by including a weighted idle time within the guide (similarly to the
principles presented in the LR heuristic [24]). Indeed, ARPD ranges from 17% to 25% for the bound guide, and goes
down between 1% to 5% for the idle time only and the guide combining the idle time and the bound. Finally, the best
results for the forward search are obtained using a weighted idle time and bound guide. Sometimes with an ARPD
close to 0% on large instances (meaning it competes with all the best results obtained in the literature), even finding 20
new-best-known solutions. We note that this result is interesting as this algorithm “only” combines ideas from the LR
heuristic and an iterative beam search. Thus without using components present in recent meta-heuristic state-of-the-art
algorithms like local-search moves, the iterated-greedy algorithm, or, NEH-based insertion schemes.

Regarding the bi-directional branching procedures, we observe that the bound guide performs well in most cases,
from 0.16% to 8% ARPD. However, using the idle time in the guide (idle time only or idle time combined with the
bound) decreases the performance of the algorithm (performances ranging from 2% to 17%). It seems to indicate
that the idle time is a less efficient guide than the bound for this branching strategy. However, the weighted idle time
proves to be a significant bonus and largely improves the quality of the solutions, from −1.25% to 3% ARPD, finding
100 new-best-known solutions on 160 open instances. Again “only” by combining simple ideas (in this case, the LR
guidance strategy, the iterative beam search and the bi-directional branching).
5.2. Flowtime minimization

In the literature, algorithms are executed for exactly 1 hour per instance [1], which implies a lot of wasted time on the
smallest instances. In this paper, we perform experiments using the following time limit: m.n.360 milliseconds where
n is the number of jobs and m the number of machines. It allows spending less time on small instances where it is not
needed and exactly 1 hour on the largest ones. We show that even using less time, our algorithm can compete with the
state-of-the-art and even returns new best-known solutions on most open instances. We perform the comparison using

L. Libralesso et al.: Page 8 of 12



Iterative beam search algorithms for the permutation flowshop

the well-known Taillard dataset [40] that contains instances ranging from 20 to 500 jobs and 5 to 20 machines. Each
class of instance contains 10 instances. As the bi-directional branching is not suited for the flowtime minimization (due
to the objective structure) and the impact of different variants of the LR heuristic guidance have been already performed
in the literature [7], we only study the impact of the iterative beam search using LR-inspired guidance strategies (bound
biased by the idle time and the bound biased by the weighted idle time). Figure 4 presents the results obtained for the
flowtime minimization on the Taillard dataset.

F g3 F g4
TAI_20_5 0.00 0.00
TAI_20_10 0.00 0.19
TAI_20_20 0.00 0.57
TAI_50_5 0.27 0.07
TAI_50_10 0.30 0.60
TAI_50_20 0.14 0.93
TAI_100_5 -0.10 -0.15
TAI_100_10 -0.02 -0.10
TAI_100_20 -0.18 0.62
TAI_200_10 -0.30 -0.50
TAI_200_20 -0.54 -0.22
TAI_500_20 -0.32 -0.45
nb new-best-known 51 44

Figure 4: Average Relative Percentage Deviation (ARPD) of all the presented algorithms on the Taillard instances and
the flowtime minimization version. The “F g3” algotrithm is an iterative beam search guided by the bound guide biased
using the idle time and the “F g4” being the iterative beam search guided by the bound guide biased using the weighted
idle time.

discussions: We observe that both algorithms perform well for many instances and find new-best-known solutions
on approximately 50/100 open instances). By contrast with the makespan minimization, both guidance strategies are
comparable in terms of performance (the weighted idle time did not have a significant impact): sometimes g3 performs
better than g4 and vice-versa. Wemay note that the main difference between our results and the beam search algorithms
found in the literature [7] is that we use an iterative beam search that allows performing beam search with larger if the
remaining time allows it. This result seems to indicate that the iterative beam search can be of interest to the community
as it reports good results compared to other search strategies.

6. Conclusions & perspectives
In this paper, we present some iterative beam search algorithms applied to the permutation flowshop problem

(makespan and flowtime minimization). These algorithms use branching strategies inspired by the LR heuristic (for-
ward branching) and recent branch-and-bound schemes [12] (bi-directional branching). We compare several guidance
strategies (starting from the bound as commonly done in most branch-and-bounds) to more advanced ones (LR inspired
guidance). We show that the combination of all of these components obtains state-of-the-art performance. We report
105/160 new-best-so-far solutions for the permutation flowshop (makespan minimization) on the open instances of the
VFR benchmark and 55/100 new-best-so-far solutions for the permutation flowshop (flowtime minimization) on the
open instances of the Taillard benchmark. These algorithms compare, and sometimes perform better, than the algo-
rithms based on the NEH branching scheme (which is usually considered as “the most efficient constructive heuristic
for the problem” [8]) and the iterated greedy algorithm (again considered as “the most efficient approximate algorithm
for the problem” [8]). We believe that the performance of the bi-directional branching combined to the iterative beam
search highlighted in this paper could draw the interest of the community for these techniques as they are rather un-
explored, although simple and efficient. Studying these techniques leads to a few other questions: We considered the
iterative beam search and showed that it is competitive with classical meta-heuristics for the permutation flowshop.
However, many other exist. For instance Iterative Memory Bounded A* [9, 22], Beam Stack Search [47], Anytime
Column Search [41]. To the best of our knowledge, they have not been tested yet for the permutation flowshop. In
this paper, we studied the makespan and flowtime minimization criteria and achieved competitive results. Many more
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flowshop variants have been studied. For instance, the blocking flowshop, the distributed permutation flowshop and
many others. It could be interesting to assess the performance of the LR-based beam search on these variants.
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A. Notations
• J : all the jobs
• M : all the machines
• n: job number (n = |J |)
• m: machine number (m = |M|)
• F (resp. B): all the jobs scheduled in the prefix (resp. suffix)
• Cmaxf,i: first availability of machine i in the forward search
• Cmaxb,i: first availability of machine i in the backward search
• Ri: remaining processing time on machine i. Ri = ∑

j∈J⧵{F∪B} pij
• If,i: total idle time on machine i in the forward search
• Ib,i: total idle time on machine i in the backward search
• �: proportion of scheduled jobs. � = |F |+|B|

|J | on bi-directional branching or � = |F |
|J | on forward branching.

• g1: guidance function based on the bound (makespan or flowtime)
• g2: guidance function based only by the idle time
• g3: guidance function based on both the bound and idle time
• g4: guidance function based on both the bound and weighted idle time
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B. detailed numerical results

L. Libralesso et al.: Page 12 of 12



Iterative beam search algorithms for the permutation flowshop

best-so-far F g1 F g2 F g3 F g4 FB g1 FB g2 FB g3 FB g4
VFR100_20_1 6.173 7.307 6.317 6.324 6.359 6.252 7.112 7.035 6.172
VFR100_20_2 6.267 7.471 6.421 6.534 6.586 6.386 7.535 7.347 6.306
VFR100_20_3 6.221 7.384 6.384 6.394 6.398 6.319 6.787 6.650 6.231
VFR100_20_4 6.227 7.447 6.455 6.455 6.399 6.306 7.483 7.235 6.268
VFR100_20_5 6.264 7.410 6.362 6.386 6.609 6.468 7.254 7.098 6.330
VFR100_20_6 6.285 7.399 6.457 6.490 6.468 6.521 6.843 7.027 6.333
VFR100_20_7 6.401 7.594 6.669 6.683 6.558 6.593 6.656 6.650 6.409
VFR100_20_8 6.074 7.230 6.230 6.214 6.219 6.213 6.467 6.380 6.083
VFR100_20_9 6.328 7.470 6.719 6.747 6.464 6.472 6.542 6.500 6.426
VFR100_20_10 6.125 7.314 6.502 6.504 6.441 6.269 6.572 6.575 6.167
VFR100_40_1 7.846 9.303 8.233 8.214 8.230 8.300 8.558 8.640 8.010
VFR100_40_2 7.976 9.355 8.375 8.377 8.121 8.443 8.945 8.888 8.091
VFR100_40_3 7.894 9.366 8.258 8.255 8.142 8.331 8.846 8.867 8.018
VFR100_40_4 7.913 9.254 8.171 8.156 8.379 8.336 8.268 8.240 8.154
VFR100_40_5 7.997 9.275 8.472 8.475 8.353 8.481 8.522 8.476 8.108
VFR100_40_6 7.993 9.350 8.339 8.345 8.288 8.432 8.374 8.332 8.279
VFR100_40_7 7.980 9.356 8.317 8.335 8.206 8.523 8.298 8.284 8.344
VFR100_40_8 7.957 9.263 8.281 8.288 8.244 8.413 8.926 8.947 8.122
VFR100_40_9 7.888 9.332 8.208 8.208 8.174 8.361 9.142 9.052 7.987
VFR100_40_10 7.917 9.322 8.371 8.373 8.141 8.372 9.150 9.080 8.036
VFR100_60_1 9.353 10.808 9.946 9.935 9.868 10.050 10.285 10.287 9.757
VFR100_60_2 9.567 11.151 10.095 10.023 9.968 10.081 10.160 10.155 9.738
VFR100_60_3 9.349 11.033 9.823 9.817 9.743 9.902 10.681 10.690 9.656
VFR100_60_4 9.403 11.069 9.919 9.949 9.911 9.981 10.368 10.387 9.613
VFR100_60_5 9.431 10.917 9.916 9.929 9.740 10.039 9.976 9.912 9.966
VFR100_60_6 9.630 11.279 10.044 10.044 10.088 10.234 10.572 10.517 10.016
VFR100_60_7 9.346 10.933 9.852 9.874 9.861 10.008 10.344 10.414 9.654
VFR100_60_8 9.523 11.189 10.041 10.046 9.967 10.158 10.344 10.387 9.843
VFR100_60_9 9.488 10.866 10.008 9.954 10.050 10.082 10.326 10.391 10.070
VFR100_60_10 9.572 11.073 9.918 9.889 10.001 10.134 10.588 10.526 9.829
VFR200_20_1 11.272 13.546 11.436 11.553 11.513 11.473 11.605 11.549 12.213
VFR200_20_2 11.240 13.473 11.869 11.852 11.489 11.381 12.821 12.647 11.444
VFR200_20_3 11.294 13.716 11.514 11.556 11.433 11.445 12.422 12.306 11.328
VFR200_20_4 11.188 13.629 11.434 11.442 11.368 11.307 12.475 12.539 11.265
VFR200_20_5 11.143 13.504 11.442 11.573 11.494 11.340 11.903 11.733 11.242
VFR200_20_6 11.310 14.030 11.552 11.798 11.457 11.456 12.579 12.179 11.428
VFR200_20_7 11.365 13.840 11.532 11.590 11.584 11.523 12.631 12.260 11.437
VFR200_20_8 11.128 13.501 11.566 11.636 11.311 11.148 12.345 11.981 11.279
VFR200_20_9 11.091 13.449 11.636 11.720 11.240 11.365 12.830 12.592 11.285
VFR200_20_10 11.294 13.655 11.628 11.636 11.432 11.346 12.601 12.080 11.366
VFR200_40_1 13.124 15.833 13.856 13.786 13.442 13.731 15.301 14.977 13.139
VFR200_40_2 13.049 16.029 13.704 13.578 13.350 13.734 13.634 13.840 13.131
VFR200_40_3 13.222 16.167 13.750 13.758 13.523 13.835 15.590 15.677 13.228
VFR200_40_4 13.163 16.108 13.816 13.771 13.548 13.945 16.003 15.662 13.232
VFR200_40_5 12.974 16.077 13.569 13.741 13.273 13.744 14.560 15.661 12.997
VFR200_40_6 13.061 16.094 13.833 14.005 13.313 13.861 15.208 15.167 13.134
VFR200_40_7 13.220 15.921 13.719 13.733 13.507 14.070 15.188 14.883 13.296
VFR200_40_8 13.132 15.903 13.556 13.520 13.616 13.812 14.786 14.929 13.123
VFR200_40_9 13.033 15.939 13.706 13.754 13.429 13.921 15.665 15.172 13.051
VFR200_40_10 13.146 15.799 13.760 13.793 13.480 13.982 14.452 14.160 13.114
VFR200_60_1 14.906 18.193 15.741 15.744 15.258 16.128 18.063 17.883 15.029
VFR200_60_2 14.909 18.012 16.196 16.156 15.187 16.105 17.419 17.228 15.236
VFR200_60_3 15.134 17.970 15.898 15.906 15.645 16.544 17.430 17.156 15.598
VFR200_60_4 14.968 17.818 15.692 15.727 15.387 16.254 16.442 16.365 15.376
VFR200_60_5 15.042 18.084 15.767 15.756 15.695 16.207 17.747 17.464 15.414
VFR200_60_6 14.996 17.967 15.717 15.761 15.391 16.073 17.562 17.073 15.101
VFR200_60_7 15.006 17.917 15.814 15.827 15.334 16.322 17.957 17.801 15.180
VFR200_60_8 14.894 18.007 15.684 15.766 15.251 16.168 16.034 15.993 15.170
VFR200_60_9 14.925 18.102 15.725 15.764 15.372 16.042 17.563 17.328 15.167
VFR200_60_10 14.908 17.947 15.465 15.527 15.319 16.023 17.052 17.192 15.203

Figure 5: Makespan minimization full results: 100 and 200 jobs
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best-so-far F g1 F g2 F g3 F g4 FB g1 FB g2 FB g3 FB g4
VFR300_20_1 16.089 19.716 16.249 16.356 16.336 16.207 17.343 16.970 16.278
VFR300_20_2 16.483 20.454 16.888 16.928 16.793 16.638 17.818 17.770 16.735
VFR300_20_3 16.129 19.805 16.365 16.561 16.414 16.166 17.637 16.907 16.340
VFR300_20_4 16.168 19.634 16.377 16.575 16.356 16.308 17.829 17.346 16.368
VFR300_20_5 16.283 19.889 16.701 16.738 16.508 16.369 17.755 17.477 16.524
VFR300_20_6 16.021 20.082 16.264 16.333 16.464 16.237 17.306 16.900 16.292
VFR300_20_7 16.244 19.974 16.689 16.741 16.507 16.373 16.643 16.643 16.705
VFR300_20_8 16.369 19.789 16.688 16.919 16.558 16.524 17.844 17.408 16.487
VFR300_20_9 16.324 19.827 16.725 16.839 16.767 16.441 17.167 16.958 16.473
VFR300_20_10 16.780 20.256 17.252 17.341 16.977 16.983 17.582 17.510 17.010
VFR300_40_1 18.199 22.319 19.114 19.025 18.255 19.130 21.391 20.768 18.059
VFR300_40_2 18.373 22.648 19.382 19.212 18.657 19.191 21.625 21.656 18.218
VFR300_40_3 18.348 22.609 19.088 19.322 18.536 19.562 21.062 21.465 18.242
VFR300_40_4 18.227 22.412 18.759 18.864 18.539 19.407 21.573 20.973 18.095
VFR300_40_5 18.343 22.435 19.175 19.285 18.536 19.327 22.067 21.332 18.195
VFR300_40_6 18.340 22.392 19.225 19.300 18.428 19.553 21.679 20.951 18.177
VFR300_40_7 18.396 22.311 19.166 19.188 18.733 19.461 21.678 21.004 18.202
VFR300_40_8 18.290 22.166 19.120 19.316 18.393 19.184 21.599 20.101 18.187
VFR300_40_9 18.261 22.488 18.991 18.964 18.530 19.171 19.291 18.902 18.093
VFR300_40_10 18.286 22.307 19.123 19.255 18.452 19.331 21.832 22.076 18.132
VFR300_60_1 20.483 24.419 21.397 21.554 20.648 22.086 21.573 21.744 20.662
VFR300_60_2 20.249 24.526 21.252 21.234 20.457 21.783 23.896 23.536 20.444
VFR300_60_3 20.328 24.647 21.556 21.740 20.621 22.050 24.072 24.053 20.468
VFR300_60_4 20.293 24.520 21.321 21.391 20.467 22.027 23.651 23.176 20.564
VFR300_60_5 20.200 24.549 21.436 21.549 20.801 21.738 23.405 23.159 20.235
VFR300_60_6 20.280 24.383 21.367 21.415 20.621 21.713 21.890 21.998 20.400
VFR300_60_7 20.358 24.822 21.779 21.737 20.922 22.099 21.531 21.726 20.638
VFR300_60_8 20.319 24.576 21.236 21.378 20.566 22.085 23.574 23.972 20.647
VFR300_60_9 20.405 24.744 21.159 21.431 20.645 21.905 24.039 23.736 20.503
VFR300_60_10 20.385 24.561 21.411 21.370 20.698 22.101 21.616 21.898 20.458
VFR400_20_1 21.042 25.934 21.577 21.639 21.215 21.116 22.145 21.766 21.383
VFR400_20_2 21.346 26.270 21.693 21.784 21.795 21.553 22.493 22.112 21.611
VFR400_20_3 21.380 26.822 21.910 22.012 21.742 21.523 21.726 21.749 21.979
VFR400_20_4 21.200 25.776 21.567 21.689 21.628 21.307 21.523 21.516 21.432
VFR400_20_5 21.399 25.910 21.953 22.269 21.829 21.613 22.744 22.152 21.666
VFR400_20_6 21.134 25.799 21.402 21.670 21.399 21.345 22.269 21.823 21.311
VFR400_20_7 21.507 26.199 21.998 22.040 22.084 21.664 23.064 22.548 21.825
VFR400_20_8 21.198 26.071 21.432 21.527 21.710 21.320 21.728 21.620 21.478
VFR400_20_9 21.236 25.898 21.714 21.743 21.668 21.508 22.472 22.441 21.480
VFR400_20_10 21.456 26.513 21.869 21.895 21.796 21.564 21.942 21.990 21.705
VFR400_40_1 23.393 29.121 24.225 24.328 23.602 24.563 27.809 27.111 23.159
VFR400_40_2 23.380 29.227 24.260 24.347 23.467 24.886 24.384 25.004 23.055
VFR400_40_3 23.467 28.986 24.182 24.452 23.783 24.590 26.893 26.908 23.258
VFR400_40_4 23.269 29.285 24.277 24.365 23.226 25.029 28.186 27.259 22.896
VFR400_40_5 23.213 28.818 24.188 24.199 23.330 24.818 27.737 27.594 22.984
VFR400_40_6 23.298 28.837 24.212 24.376 23.400 24.300 27.429 27.585 23.103
VFR400_40_7 23.415 29.280 24.236 24.321 23.529 24.782 28.610 27.597 23.197
VFR400_40_8 23.290 28.982 24.561 24.700 23.438 24.667 24.853 24.991 23.149
VFR400_40_9 23.424 29.172 24.537 24.608 23.764 24.507 28.395 27.655 23.322
VFR400_40_10 23.606 28.946 24.563 24.636 23.848 24.867 26.990 26.992 23.362
VFR400_60_1 25.395 30.869 27.068 27.209 25.563 27.677 29.938 29.502 25.359
VFR400_60_2 25.549 31.091 27.035 27.034 25.737 27.770 30.060 29.120 25.636
VFR400_60_3 25.707 31.170 27.079 27.467 25.793 27.647 30.053 29.892 25.658
VFR400_60_4 25.638 30.985 27.317 27.339 25.983 27.314 29.051 29.451 25.797
VFR400_60_5 25.669 31.179 26.822 26.942 26.025 27.394 30.367 29.596 25.788
VFR400_60_6 25.407 30.940 26.444 26.615 25.689 27.306 30.083 29.858 25.473
VFR400_60_7 25.415 31.320 26.987 26.990 25.525 27.335 30.479 30.247 25.434
VFR400_60_8 25.603 31.200 27.006 27.187 25.702 27.794 30.167 30.038 25.509
VFR400_60_9 25.673 31.645 26.830 27.050 25.825 28.023 30.021 29.551 25.731
VFR400_60_10 25.658 31.353 27.284 27.262 25.957 27.691 30.348 30.292 25.747

Figure 6: Makespan minimization full results: 300 and 400 jobs
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Iterative beam search algorithms for the permutation flowshop

best-so-far F g1 F g2 F g3 F g4 FB g1 FB g2 FB g3 FB g4
VFR500_20_1 26.253 32.562 26.600 26.812 26.703 26.318 27.582 27.139 26.656
VFR500_20_2 26.555 32.773 26.875 27.161 27.035 26.786 27.433 27.202 26.862
VFR500_20_3 26.268 32.757 26.647 26.835 26.685 26.444 26.907 27.006 26.593
VFR500_20_4 25.994 32.623 26.551 26.949 26.488 26.102 26.744 26.715 26.295
VFR500_20_5 26.703 33.177 26.915 27.198 27.048 26.843 27.271 27.187 27.169
VFR500_20_6 26.325 32.944 27.027 27.247 26.854 26.374 27.506 27.314 26.544
VFR500_20_7 26.313 32.861 26.693 26.863 26.749 26.474 27.105 27.208 26.723
VFR500_20_8 26.217 32.349 26.570 26.703 26.555 26.420 26.803 26.803 26.559
VFR500_20_9 26.345 33.100 26.810 26.873 26.777 26.466 27.473 26.759 26.719
VFR500_20_10 26.034 32.078 26.435 26.748 26.410 26.101 27.414 27.588 26.302
VFR500_40_1 28.402 35.162 29.766 29.764 28.331 30.083 29.277 29.905 28.183
VFR500_40_2 28.613 35.761 29.421 29.714 29.011 29.631 33.786 32.957 28.310
VFR500_40_3 28.526 36.006 29.575 29.713 28.653 29.672 33.521 32.471 28.401
VFR500_40_4 28.615 34.798 29.289 29.361 28.803 30.232 33.067 32.001 28.378
VFR500_40_5 28.579 35.521 29.516 29.735 28.844 29.753 33.390 33.081 28.289
VFR500_40_6 28.432 34.683 29.435 29.633 28.643 29.568 33.687 33.024 28.138
VFR500_40_7 28.553 35.589 29.683 29.853 28.704 30.068 30.463 30.460 28.307
VFR500_40_8 28.488 35.555 29.337 29.643 28.844 30.000 32.417 32.260 28.299
VFR500_40_9 28.640 35.728 29.467 29.448 28.839 30.413 32.792 32.856 28.407
VFR500_40_10 28.644 35.448 29.294 29.562 28.813 29.820 33.841 33.006 28.318
VFR500_60_1 30.682 38.110 32.619 32.681 30.848 33.467 36.212 35.569 30.491
VFR500_60_2 30.664 37.489 32.537 32.344 30.924 33.207 35.416 34.622 30.532
VFR500_60_3 30.852 37.768 33.114 33.011 30.979 33.486 36.670 35.404 30.671
VFR500_60_4 30.793 37.687 32.518 32.819 31.145 33.130 35.390 35.383 30.672
VFR500_60_5 30.763 37.624 32.553 32.475 31.051 33.527 36.672 36.371 30.540
VFR500_60_6 30.788 37.843 32.524 32.614 31.069 33.482 35.603 35.779 30.597
VFR500_60_7 30.826 37.800 32.687 32.932 30.893 33.532 35.810 36.018 30.528
VFR500_60_8 30.837 37.261 32.696 32.807 30.808 33.202 36.844 36.117 30.584
VFR500_60_9 30.805 37.763 32.424 32.589 30.836 33.702 35.728 35.279 30.645
VFR500_60_10 30.866 37.553 32.316 32.452 31.119 33.030 34.603 35.138 30.787
VFR600_20_1 31.303 38.430 31.801 32.271 31.774 31.402 32.495 32.088 31.600
VFR600_20_2 31.281 38.305 31.675 31.953 31.887 31.731 32.781 32.394 31.753
VFR600_20_3 31.374 38.812 31.817 32.104 31.694 31.501 32.521 32.066 31.670
VFR600_20_4 31.417 38.879 31.648 31.718 31.702 31.669 32.000 31.857 31.759
VFR600_20_5 31.354 38.842 31.590 31.831 31.799 31.450 32.287 31.983 31.769
VFR600_20_6 31.613 38.684 31.974 32.243 32.112 31.792 32.094 32.058 32.035
VFR600_20_7 31.461 38.728 31.995 32.188 31.962 31.530 32.957 32.432 31.951
VFR600_20_8 31.414 38.590 31.825 32.097 31.991 31.528 32.468 32.292 31.701
VFR600_20_9 31.473 39.149 31.638 31.881 31.960 31.511 32.611 32.168 32.052
VFR600_20_10 31.021 38.671 31.528 31.890 31.508 31.156 31.910 31.828 31.361
VFR600_40_1 33.683 41.668 34.398 34.702 33.991 35.621 38.040 37.455 33.385
VFR600_40_2 33.405 41.752 34.639 34.843 33.654 35.047 39.863 39.017 33.237
VFR600_40_3 33.713 41.633 35.217 35.230 33.957 35.529 37.783 38.386 33.587
VFR600_40_4 33.584 41.596 34.554 34.510 33.544 35.394 37.975 37.514 33.254
VFR600_40_5 33.401 41.423 34.637 34.815 33.615 34.932 39.009 38.767 33.220
VFR600_40_6 33.626 42.297 34.312 34.520 33.869 35.259 38.919 38.553 33.420
VFR600_40_7 33.545 42.007 35.204 35.289 33.725 35.658 40.408 38.749 33.413
VFR600_40_8 33.298 41.441 34.812 34.814 33.397 35.294 38.126 38.396 33.078
VFR600_40_9 33.567 41.588 34.623 34.849 33.839 35.529 39.483 38.086 33.250
VFR600_40_10 33.473 41.931 34.483 34.571 33.816 35.458 39.720 38.830 33.284
VFR600_60_1 35.976 43.980 37.649 37.956 36.009 38.931 37.908 38.353 35.920
VFR600_60_2 35.923 44.098 37.462 37.834 35.836 38.626 42.296 40.873 35.561
VFR600_60_3 35.917 44.400 37.718 37.742 36.350 38.643 41.393 41.845 35.670
VFR600_60_4 36.000 44.670 38.001 37.889 36.227 38.731 42.377 42.419 35.640
VFR600_60_5 36.004 44.049 38.112 38.201 35.902 38.630 41.973 40.904 35.606
VFR600_60_6 35.943 44.676 38.074 38.258 36.042 38.814 42.807 40.751 35.529
VFR600_60_7 35.965 43.729 37.971 38.011 36.265 38.802 38.278 39.218 35.717
VFR600_60_8 35.894 43.914 38.344 38.570 36.052 38.827 38.491 38.780 35.499
VFR600_60_9 35.987 44.365 38.297 38.627 36.328 39.316 39.006 39.172 35.588
VFR600_60_10 35.943 44.166 37.551 37.658 35.974 38.765 42.554 41.788 35.563

Figure 7: Makespan minimization full results: 500 and 600 jobs
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Iterative beam search algorithms for the permutation flowshop

best-so-far F g1 F g2 F g3 F g4 FB g1 FB g2 FB g3 FB g4
VFR700_20_1 36.285 45.173 36.881 37.169 36.812 36.496 37.447 37.104 36.916
VFR700_20_2 36.220 44.898 36.563 36.884 36.820 36.355 36.684 37.310 36.676
VFR700_20_3 36.419 44.634 37.156 37.263 37.107 36.594 37.326 37.121 36.971
VFR700_20_4 36.361 45.075 36.800 36.907 36.777 36.361 37.556 37.084 36.619
VFR700_20_5 36.496 46.158 37.076 37.518 37.128 36.647 37.452 37.169 36.956
VFR700_20_6 36.556 45.744 37.030 37.433 37.219 36.558 37.376 37.073 36.927
VFR700_20_7 36.540 45.561 36.945 37.235 37.055 36.586 37.506 37.293 36.912
VFR700_20_8 36.418 44.983 36.938 37.205 37.209 36.527 37.199 37.128 36.790
VFR700_20_9 36.212 45.545 36.880 37.025 36.923 36.329 37.482 37.059 36.634
VFR700_20_10 36.362 45.284 36.636 36.687 36.762 36.505 36.898 36.737 36.839
VFR700_40_1 38.767 48.140 39.786 39.882 39.053 40.619 43.966 43.673 38.573
VFR700_40_2 38.560 48.750 39.855 40.379 38.548 39.797 40.433 45.233 38.316
VFR700_40_3 38.460 48.388 39.710 39.852 38.692 40.847 45.858 44.636 38.261
VFR700_40_4 38.597 48.549 39.597 40.064 38.799 40.163 45.958 44.192 38.460
VFR700_40_5 38.490 47.881 39.485 39.771 38.846 40.108 39.145 40.199 38.339
VFR700_40_6 38.440 48.035 40.004 40.418 38.452 39.979 46.046 44.169 38.352
VFR700_40_7 38.355 48.340 39.312 39.589 38.531 40.452 45.127 43.757 38.189
VFR700_40_8 38.817 48.138 40.213 40.298 39.106 40.580 45.685 44.259 38.778
VFR700_40_9 38.569 48.418 39.637 39.722 38.854 40.270 40.997 41.780 38.825
VFR700_40_10 38.712 48.596 40.482 40.860 38.752 40.190 45.522 44.575 38.635
VFR700_60_1 41.192 50.359 43.381 43.904 41.430 44.966 48.093 47.887 40.772
VFR700_60_2 41.002 50.651 43.732 43.890 41.350 44.532 48.688 46.729 40.664
VFR700_60_3 41.173 50.511 43.257 43.176 40.981 44.841 48.492 47.555 40.581
VFR700_60_4 41.120 50.625 43.033 42.841 41.008 43.658 48.858 47.026 40.491
VFR700_60_5 41.167 50.535 43.605 43.772 41.071 44.793 48.514 46.562 40.641
VFR700_60_6 41.159 50.536 43.816 43.722 41.082 44.476 47.269 47.437 40.714
VFR700_60_7 40.734 50.379 43.191 43.170 40.737 44.130 47.259 47.224 40.331
VFR700_60_8 41.305 50.534 43.482 43.868 41.443 44.338 47.951 46.697 40.830
VFR700_60_9 41.111 50.864 43.404 43.546 41.163 44.446 47.823 47.859 40.501
VFR700_60_10 41.186 51.162 43.049 43.207 41.182 44.099 43.649 44.563 40.730
VFR800_20_1 41.413 52.067 41.877 42.181 41.976 41.521 42.044 42.158 41.843
VFR800_20_2 41.282 51.449 41.657 42.107 41.957 41.323 41.886 42.119 41.623
VFR800_20_3 41.319 52.365 41.683 42.024 41.818 41.367 42.245 42.006 41.693
VFR800_20_4 41.375 52.005 41.878 42.106 41.923 41.452 42.226 41.942 42.056
VFR800_20_5 41.626 51.981 42.209 42.666 42.250 41.704 42.496 42.479 41.959
VFR800_20_6 41.919 52.373 42.644 42.918 42.556 41.919 42.640 42.549 42.416
VFR800_20_7 41.395 51.177 41.645 41.747 41.742 41.541 42.014 41.725 41.812
VFR800_20_8 41.390 50.761 42.006 42.605 42.093 41.505 42.518 42.443 42.022
VFR800_20_9 41.697 51.467 42.197 42.316 42.435 41.697 42.916 42.706 42.113
VFR800_20_10 41.489 50.943 41.847 42.245 42.073 41.557 42.408 42.272 41.908
VFR800_40_1 43.466 53.765 45.065 45.367 43.691 45.513 50.262 50.510 43.261
VFR800_40_2 43.575 54.404 44.440 44.650 43.818 45.174 48.957 48.298 43.289
VFR800_40_3 43.596 54.709 44.876 45.287 43.668 44.863 52.525 49.450 43.313
VFR800_40_4 43.743 55.055 45.069 45.659 43.828 45.522 51.327 51.034 43.491
VFR800_40_5 43.794 54.471 45.621 45.977 43.750 45.993 47.330 47.583 46.117
VFR800_40_6 43.638 54.697 44.938 44.997 43.659 45.709 48.982 50.102 43.370
VFR800_40_7 43.484 54.649 44.562 44.641 43.787 45.310 48.764 48.729 43.384
VFR800_40_8 43.666 54.693 45.720 46.263 43.834 45.532 50.455 49.794 43.469
VFR800_40_9 43.643 54.597 44.772 44.927 44.008 45.540 47.844 49.387 43.477
VFR800_40_10 43.630 54.773 45.571 46.286 43.595 45.294 50.638 49.907 43.446
VFR800_60_1 46.279 57.427 48.747 48.952 46.498 49.897 54.669 54.027 45.680
VFR800_60_2 46.232 58.017 48.663 49.075 46.159 50.324 53.338 52.429 45.728
VFR800_60_3 46.258 57.295 49.104 49.153 46.243 49.567 54.299 53.912 45.698
VFR800_60_4 46.261 57.072 48.430 48.699 46.218 49.707 53.221 52.813 45.696
VFR800_60_5 46.164 56.947 48.705 49.005 46.526 49.924 52.729 52.635 45.490
VFR800_60_6 46.288 56.301 49.747 50.097 46.350 49.451 53.784 53.185 45.504
VFR800_60_7 46.061 57.252 49.565 49.885 46.186 49.896 53.804 52.550 45.600
VFR800_60_8 46.257 57.812 49.104 49.183 46.029 49.979 52.997 52.442 45.964
VFR800_60_9 46.279 57.744 49.071 49.162 46.171 50.146 53.303 52.208 45.766
VFR800_60_10 46.211 56.850 48.420 48.665 46.162 49.850 53.702 52.451 45.383

Figure 8: Makespan minimization full results: 700 and 800 jobs
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Iterative beam search algorithms for the permutation flowshop

best-so-far F g3 F g4
TA1 / tai20_5_0 14.033 14.033 14.033
TA2 / tai20_5_1 15.151 15.151 15.151
TA3 / tai20_5_2 13.301 13.301 13.301
TA4 / tai20_5_3 15.447 15.447 15.447
TA5 / tai20_5_4 13.529 13.529 13.529
TA6 / tai20_5_5 13.123 13.123 13.123
TA7 / tai20_5_6 13.548 13.548 13.548
TA8 / tai20_5_7 13.948 13.948 13.948
TA9 / tai20_5_8 14.295 14.295 14.295
TA10 / tai20_5_9 12.943 12.943 12.943
TA11 / tai20_10_0 20.911 20.911 20.911
TA12 / tai20_10_1 22.440 22.440 22.440
TA13 / tai20_10_2 19.833 19.833 19.872
TA14 / tai20_10_3 18.710 18.710 18.769
TA15 / tai20_10_4 18.641 18.641 18.641
TA16 / tai20_10_5 19.245 19.245 19.350
TA17 / tai20_10_6 18.363 18.363 18.376
TA18 / tai20_10_7 20.241 20.241 20.268
TA19 / tai20_10_8 20.330 20.330 20.455
TA20 / tai20_10_9 21.320 21.320 21.325
TA21 / tai20_20_0 33.623 33.623 33.623
TA22 / tai20_20_1 31.587 31.587 31.726
TA23 / tai20_20_2 33.920 33.920 34.318
TA24 / tai20_20_3 31.661 31.661 31.661
TA25 / tai20_20_4 34.557 34.557 34.726
TA26 / tai20_20_5 32.564 32.564 32.988
TA27 / tai20_20_6 32.922 32.922 33.160
TA28 / tai20_20_7 32.412 32.412 32.412
TA29 / tai20_20_8 33.600 33.600 33.902
TA30 / tai20_20_9 32.262 32.262 32.474
TA31 / tai50_5_0 64.802 65.020 64.817
TA32 / tai50_5_1 68.051 68.149 68.074
TA33 / tai50_5_2 63.162 63.247 63.162
TA34 / tai50_5_3 68.226 68.241 68.226
TA35 / tai50_5_4 69.351 69.738 69.360
TA36 / tai50_5_5 66.841 66.852 66.841
TA37 / tai50_5_6 66.253 66.427 66.277
TA38 / tai50_5_7 64.332 64.447 64.401
TA39 / tai50_5_8 62.981 63.566 63.203
TA40 / tai50_5_9 68.770 68.845 68.834

Figure 9: Flowtime minimization full results: TAI1 to TAI40
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Iterative beam search algorithms for the permutation flowshop

best-so-far F g3 F g4
TA41 / tai50_10_0 87.114 87.140 87.353
TA42 / tai50_10_1 82.820 82.967 83.241
TA43 / tai50_10_2 79.931 80.094 80.106
TA44 / tai50_10_3 86.446 86.475 86.637
TA45 / tai50_10_4 86.377 86.567 86.628
TA46 / tai50_10_5 86.587 86.729 87.010
TA47 / tai50_10_6 88.750 89.720 89.759
TA48 / tai50_10_7 86.727 86.730 87.719
TA49 / tai50_10_8 85.441 85.952 86.197
TA50 / tai50_10_9 87.998 88.392 88.722
TA51 / tai50_20_0 125.831 125.831 126.245
TA52 / tai50_20_1 119.247 119.397 120.594
TA53 / tai50_20_2 116.459 116.536 117.727
TA54 / tai50_20_3 120.261 120.811 121.359
TA55 / tai50_20_4 118.184 118.379 119.434
TA56 / tai50_20_5 120.586 120.637 121.526
TA57 / tai50_20_6 122.880 123.120 124.274
TA58 / tai50_20_7 122.489 122.583 123.447
TA59 / tai50_20_8 121.872 121.872 123.022
TA60 / tai50_20_9 123.954 124.275 125.425
TA61 / tai100_5_0 253.232 252.821 252.624
TA62 / tai100_5_1 242.093 241.593 241.737
TA63 / tai100_5_2 237.832 237.240 237.345
TA64 / tai100_5_3 227.738 227.420 227.329
TA65 / tai100_5_4 240.301 240.114 240.024
TA66 / tai100_5_5 232.342 232.131 232.008
TA67 / tai100_5_6 240.366 240.745 239.843
TA68 / tai100_5_7 230.945 230.304 230.371
TA69 / tai100_5_8 247.677 247.472 247.437
TA70 / tai100_5_9 242.933 243.254 243.062
TA71 / tai100_10_0 298.385 298.002 297.749
TA72 / tai100_10_1 273.826 273.852 273.765
TA73 / tai100_10_2 288.114 288.275 287.614
TA74 / tai100_10_3 301.044 300.545 300.601
TA75 / tai100_10_4 284.279 283.961 283.637
TA76 / tai100_10_5 269.686 269.436 269.453
TA77 / tai100_10_6 279.463 280.681 280.467
TA78 / tai100_10_7 290.908 290.219 289.947
TA79 / tai100_10_8 301.970 301.843 302.110
TA80 / tai100_10_9 291.283 291.439 290.735

Figure 10: Flowtime minimization full results: TAI41 to TAI80
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Iterative beam search algorithms for the permutation flowshop

best-so-far F g3 F g4
TA81 / tai100_20_0 365.463 366.544 368.283
TA82 / tai100_20_1 372.449 371.544 374.585
TA83 / tai100_20_2 370.027 369.571 373.153
TA84 / tai100_20_3 372.393 370.754 374.532
TA85 / tai100_20_4 368.915 366.924 370.549
TA86 / tai100_20_5 370.908 370.950 374.142
TA87 / tai100_20_6 373.408 372.225 374.978
TA88 / tai100_20_7 384.525 383.271 386.348
TA89 / tai100_20_8 374.423 374.413 376.850
TA90 / tai100_20_9 379.296 378.948 381.513
TA91 / tai200_10_0 1.042.494 1.040.290 1.035.022
TA92 / tai200_10_1 1.028.957 1.025.209 1.024.879
TA93 / tai200_10_2 1.043.467 1.041.260 1.037.699
TA94 / tai200_10_3 1.029.244 1.021.739 1.018.655
TA95 / tai200_10_4 1.029.384 1.027.978 1.024.342
TA96 / tai200_10_5 999.241 995.394 994.499
TA97 / tai200_10_6 1.042.663 1.040.074 1.038.736
TA98 / tai200_10_7 1.035.981 1.034.159 1.034.056
TA99 / tai200_10_8 1.015.389 1.013.444 1.012.533
TA100 / tai200_10_9 1.022.277 1.018.518 1.017.258
TA101 / tai200_20_0 1.223.860 1.210.533 1.219.147
TA102 / tai200_20_1 1.234.081 1.230.809 1.233.361
TA103 / tai200_20_2 1.259.866 1.250.456 1.253.413
TA104 / tai200_20_3 1.228.060 1.221.033 1.222.571
TA105 / tai200_20_4 1.219.886 1.209.411 1.215.093
TA106 / tai200_20_5 1.219.432 1.213.883 1.217.223
TA107 / tai200_20_6 1.234.366 1.232.351 1.237.431
TA108 / tai200_20_7 1.240.627 1.229.895 1.231.867
TA109 / tai200_20_8 1.220.873 1.216.338 1.221.412
TA110 / tai200_20_9 1.235.462 1.235.641 1.238.120
TA111 / tai500_20_0 6.558.547 6.542.681 6.529.190
TA112 / tai500_20_1 6.679.507 6.659.112 6.656.697
TA113 / tai500_20_2 6.624.893 6.608.608 6.596.258
TA114 / tai500_20_3 6.649.855 6.623.800 6.612.598
TA115 / tai500_20_4 6.590.021 6.578.189 6.576.523
TA116 / tai500_20_5 6.603.691 6.581.804 6.571.552
TA117 / tai500_20_6 6.576.201 6.551.244 6.546.293
TA118 / tai500_20_7 6.629.393 6.612.945 6.605.891
TA119 / tai500_20_8 6.589.205 6.552.881 6.543.443
TA120 / tai500_20_9 6.626.342 6.606.392 6.590.453

Figure 11: Flowtime minimization full results: TAI81 to TAI120
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