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A unique vitreous transition temperature T* g has been recently determined by an extrapolation of the fully-relaxed enthalpy H r down to zero as a function of temperature. This exothermic heat is linearly decreasing with temperature and the slope dH r /dT is equal to the specific heat jump from the vitreous to the undercooled state and to the specific heat difference between crystal and melt because a freezing of atom freedom degrees in the liquid state is associated with the vitreous transition at T* g . It has been also shown that T*g is a material constant which is equal to a crystal homogeneous nucleation temperature in glassforming melts. A volume energy saving  v has been added to the classical Gibbs free energy change H m /V m for a crystal formation in a melt where H m is the fusion heat, V m the molar volume, = (TT m )/T m and T m the melting temperature. We show here that  v is equal to the Laplace pressure change (p-p 0 ) as compared to the classical pressure p 0 = H m /V m acting on crystals imbedded in a melt. The model is able to strictly predict the precise values of the Vogel-Fulcher-Tamman temperature, the energy saving  v, the Laplace pressure p and the ratio T* g /T 0g of fragile liquids when the equilibrium transition temperature T* g is known.

These predictions do not work in strong liquids because there are many possible values of T* g when the VFT temperature is known. The viscosity at T* g has to be known to predict this temperature. The fragility indexes of fragile glasses and the map of fragility indexes of strong liquids depending on the T* g and T 0g have been also calculated as a function of T* g .

1-Introduction

The debate about the origin of the vitreous state seems to be closed among materials scientists because the freezing of liquid-state below a temperature T g called the vitreous or glass transition is attributed up to now to a kinetic origin instead of a thermodynamic one in spite of the existence of some specific heat measurements using a stepwise differential scanning calorimetry (DSC) technique which shows that the transition temperature is fixed and only depends on the chemical composition. A reversible specific heat shows a jump at a temperature T* g regardless the heating and cooling rates and an exothermic or endothermic heat is relaxed during the relaxation time at temperatures T g smaller or larger than T* g when AS 2 Se 3 and As 2 S 3 samples are annealed at T g after quenching at lower temperatures [1][2][3].

We assume that a thermodynamic transition temperature T* g exists among the time dependent transition temperatures T g in glass formers which does not depend on the heating and cooling rates and we look at some consequences of this assumption. A relaxation time  exists at any temperature around T* g ;  increases when the temperature decreases and is viewed as a time-lag in crystal transient nucleation necessary to induce the transformation of an undercooled fragile liquid in a frozen vitreous state [4]. The sample can be quenched in the undercooled state down to temperatures T g lower than T* g as shown in Figure 1. A transformation in an equilibrium state occurs at any temperature smaller or larger than T* g and is accompanied by a relaxed enthalpy which does not depend on time when it is saturated.

The relaxation time has to be much longer than the time necessary to homogenize the temperature inside the sample before starting the enthalpy measurement. The fully-relaxed enthalpy H r at T g is equal to the surface ABCD in Figure 1 when the sample has been cooled down to this temperature. The enthalpy H r is an endothermic heat equal to the surface CDEF when the sample is heated from the vitreous state to a temperature T g larger than T* g . The following equation applied to fragile glass-forming melts is obeyed:
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where C pgl is equal to the specific heat difference C pl -C pg between the undercooled and vitreous or crystallized states in agreement with a whole freezing of the melt [4]. This description is based on the assumption that the relaxation time is, in fact, a time-lag related to transient homogeneous nucleation. It is corroborated by the viscosity increase with time towards the equilibrium of the vitreous state at temperatures smaller than T* g because we expect that the viscosity in the vitreous state has to be larger than the one in the undercooled quenched melt [5][6][7].

An endothermic heat bump depending on the heating rate characterizes the transition glass-melt at T g when the vitreous transition is determined with a technique of differential scanning calorimetry (DSC) without any anomaly at T* g . It can be deduced that the exothermic heat ought to be a linear function of the temperature and then C pgl cannot depend on temperature. The vitreous transition T* g would be defined, in this description, at the disappearance temperature without any anomaly at T* g . The disappearance temperature T* g of the relaxed enthalpy is obtained, in these conditions, using a linear extrapolation of H r down to zero. The T* g would separate the frozen and undercooled states. [4]; the thermodynamic transition temperature T* g exists and has been extrapolated from the measurements of the fully-relaxed enthalpy. A reversible specific heat jump is observed in As 2 Se 3 at the same temperature T* g with a stepwise DSC technique regardless the cooling and heating rates [1][2][3].

The specific heat jump of As 2 Se 3 calculated from ( 1) is equal to the measured one in perfect agreement with the description given in Figure 1. C lg is a little smaller in the other glassforming melts than that measured by DSC because of the existence of a residual endothermic contribution.

The idea of a thermodynamic transition T* g is so much rejected that the disappearance temperature of the relaxed enthalpy is never used to determine the glass transition in spite of the fact that this quantity does not depend on time when it is saturated. The equilibrium viscosity values (T) below T g are also considered, up to now, as belonging to the undercooled state because the vitreous state is viewed as a continuous prolongation of the liquid state at lower temperatures. A continuous Vogel-Fulcher-Tammann law given by (2) including values below and above T g is used to determine the VFT temperature T 0 and the fragility index D* [5][6][7]:
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This analysis tends to deny the observation of a phase transition using the viscosity measurement. Nevertheless, an increase of viscosity exists during the relaxation time which is the time lag for the formation of a cluster distribution. The viscosity values of the quenched state belong to the undercooled state and the equilibrium viscosity to the frozen vitreous state.

The reversible specific heat measurement however indicates that the transition always occurs at the same temperature T* g while the exothermic heat depends on the temperature of annealing. This transformation of the undercooled melt in a frozen state at any temperature T g would only produce an exothermic heat while the equilibrium reversible transition of fragile liquids would always occur at T* g because there is a minimum of the energy saving at this temperature [1][2][3].

The relaxation times are too long to be related to a first or second order phase transition. They have to be associated with a crystal nucleation temperature leading in a first step to a vitreous phase on the long way to a crystallized phase. The transient homogeneous nucleation time to form a cluster distribution and the steady-state nucleation time all together lead to unattainable time lags before the occurrence of a homogeneous crystallization [START_REF] Gutzov | The Vitreous State[END_REF]. The Gibbs free energy change ×H m /V m associated with a cluster formation in a melt has to be increased to reflect the volume energy saving  v associated with Fermi energy equalization of nascent crystals and melts. The reduced temperature  is equal to (T-T m )/T m , T m the melting temperature, H m the fusion heat per mole and V m the molar volume [START_REF] Tournier | [END_REF][10][11][START_REF] Tournier | Progress in Light Metals[END_REF][START_REF] Tournier | Vth Int. Symp. Electromagn. Process. Mater. Ed S Taniguchi[END_REF]. A similar proposal has been made for crystal formation in metallic and nonmetallic melts because the chemical potential of a small cluster ought to differ from the bulk value in presence of a density difference between cluster and melt and of a Laplace pressure p added to the classical pressure p 0 of the melt [START_REF] Wu | [END_REF]. The energy saving as compared to ×H m would be equal to (pp 0 )×V m . We have recently shown that these two quantities are equal for titanium at the melting temperature [START_REF] Tournier | Proceedings of the 12th world conference on titanium[END_REF].

The energy saving coefficient  ls =  v /H m ×V m is a function of   ;  ls is equal to a maximum value  ls0 at T m corresponding to the maximum of the Fermi energy difference and to zero at =  0g where  0g is equal to the Vogel-Fulcher-Tammann temperature which corresponds to the free-volume disappearance temperature [START_REF] Tournier | [END_REF]10]. Metallic clusters formed in a liquid element with a radius smaller than the critical one has a one-particle-density of states of s state electrons disappearing at low radius. The energy saving associated with cluster radii smaller than 0, 5 nanometer is a quantified quantity which leads to a conduction gap opening.

The same size-dependent changes in the electronic structure of metal clusters in vacuum have been observed by scanning tunneling spectroscopy. Metallic clusters in melts have the same properties than in vacuum [START_REF] Tournier | Proceedings of the 12th world conference on titanium[END_REF]. The new crystal nucleation temperature  2ls is equal to ( ls -

2)/3 instead of -2/3 as predicted by the classical nucleation model with  ls = 0. These two relations have to be respected at the homogeneous nucleation temperature and lead to a quadratic equation that has been used to determine  2ls as a function of  ls0 and  0g [START_REF] Tournier | [END_REF]11]. The Angell's description in terms of strong and fragile glass-forming melts is found when we assume that the vitreous transition occurs at the homogeneous nucleation temperature of glass-forming melts. The quadratic equation solutions have been used to determine, in agreement with many experimental results, the relations between the VFT temperatures T 0g governing the temperature dependence of relaxation time of many melts, the vitreous transition T* g and the energy saving coefficient  ls0 at T m .

The quantified energy savings of crystals having a radius equal or smaller than the critical one depends on the number of s state electrons which are transferred from a nascent crystal to the melt. A spherical attractive potential energy is created which is screened in the melt by conduction electrons;  ls0 at T = T m is quantified, depends on the crystal radius R nm and corresponds to the first energy level of one-s electron moving in vacuum in the same spherical attractive potential despite the fact that the charge screening is built by many-body effects [START_REF] Tournier | [END_REF]11,[START_REF] Tournier | Proceedings of the 12th world conference on titanium[END_REF]. The existence of an energy saving  v has for consequence that some crystals having a radius smaller than the critical one survive above T m , act as growth nuclei in undercooled melts and produce crystallization at temperatures much higher than the homogeneous nucleation temperature when the cooling rate is too weak. These quantified values of  ls0 have been used to predict the undercooling temperatures of gold and titanium in perfect agreement with experiments [START_REF] Tournier | Proceedings of the 12th world conference on titanium[END_REF][START_REF] Tournier | Proceedings of the 6th International Conference on Electromagnetic Processing of Materials[END_REF].

This model is used here to describe the energy saving variation when the glass transition temperature T g is varied near the thermodynamic transition T* g of several glassforming melts. Several maps are established which represent T* g /T 0g versus the reduced glass transition temperature * g , the energy saving coefficients  ls0 of strong and fragile glasses versus * g . The energy saving coefficient  ls0 is always larger in fragile glass-forming melts than that of strong melts.

We also show, for the first time, that the quantity (pp 0 )×V m /H m is equal to the energy saving coefficient  ls0 per mole at the melting temperature and to  ls down to T g regardless of melts. It explains why this model can be used in nonmetallic glass-forming melts [4].

2-The Gibbs free energy change associated with crystal formation in melts is completed by an energy saving

Transformations liquid-solid always induce changes of the conduction electron number per volume unit, and sometimes per atom. The equalization of Fermi energies of a spherical particle containing n atoms having a radius R smaller than a critical value R* 2ls () and of its melt produces an unknown energy saving  v per volume unit. The  v value is equal to a fraction  ls of the molar fusion heat H m per molar volume V m . This energy has been included in (3) which is the Gibbs free energy change G 2ls () associated with a crystal formation in metallic melts, being equal to  = (T-T m )/T m and T m the melting temperature [START_REF] Tournier | [END_REF][10][11][START_REF] Tournier | Progress in Light Metals[END_REF][START_REF] Tournier | Vth Int. Symp. Electromagn. Process. Mater. Ed S Taniguchi[END_REF];
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N A is Avogadro's number, k B Boltzmann's constant, S m in (4) the fusion entropy, J in (5) the nucleation rate, G* 2ls the critical energy barrier of crystal growth given by ( 7), R* 2ls the growth critical radius given by ( 8), v the sample volume, t sn in (5) the steady-state nucleation time, T 0g in (5) the disappearance temperature of the free-volume in glass-forming melts having a viscosity following a Vogel-Fulcher-Tammann law [START_REF] Doolittle | [END_REF]; lnA in ( 6) is equal to 90 in liquid elements and to about 100 at the vitreous transition T g when K ls in ( 5) and ( 6) is defined in m -3 .s -1 [4,[START_REF] Tournier | [END_REF]18] ; B/(T g T 0g ) in ( 6) is equal to 36 (see 7-). The contribution of unmelted crystals (clusters) of radius R nm to the reduction of the critical energy barrier is given by (3) with R = R nm being constant and equal to R nm when T decreases down to a temperature for which G eff /k B T = G* 2ls /k B T -G nm /k B T in (5) becomes equal to lnK ls [START_REF] Gutzov | The Vitreous State[END_REF]19]. The classical equations G 1ls () and  ls are obtained with  ls = 0 [18,19]. The experimental values of  ls and of the lowest undercooling temperatures have been used to determine  ls and  ls [10,18].

The thermal variation of  ls is an even function of  given by [START_REF] Tournier | [END_REF] where  0g = (T 0g T m )/T m [START_REF] Tournier | [END_REF]10]; then, the fusion heat of unmelted crystals remains equal to H m regardless of their radius.
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The derivative dJ/d is proportional to (3 ls +2) when G nm = 0 [10]; the homogeneous nucleation temperature T 2ls is given by (10)   (10) We apply these equations to glass-forming melts assuming that the glass transitions occurs at T* g = T 2ls (or  g =  2ls ) [4].

3-The crystal homogeneous nucleation temperature and the vitreous transition

The crystal growth critical energy G* 2ls given by (1) divided by lnK ls is plotted in Figure 2 as a function of the reduced temperature using several values of  ls0 covering the entire window of bulk glass-forming melts. The homogeneous nucleation temperature  2ls occurs at temperatures increasing with  ls0 . The equality G* 2ls  lnK ls is respected in a broad window of temperatures above the nucleation temperatures;  2ls strictly depends on the energy saving which increases with  ls0 and  0g as shown by ( 9) while lnK ls depends on the temperature in (6) through the viscosity [START_REF] Gutzov | The Vitreous State[END_REF]. The crystal homogeneous nucleation temperature is also determined by kinetic effects through lnK ls . The relaxation time is viewed as the transient nucleation time  ns given by ( 11) : (11) where  is Zeldovitch's factor, N = N A /V m , J c the atom critical number for steady-state nucleation [START_REF] Gutzov | The Vitreous State[END_REF]. The value of  ns at the vitreous transition viewed as a crystal homogeneous nucleation temperature is of the order of 100 seconds. The pre-exponential factor  0 is proportional to T g /H m /V m lnK ls /K ls with T g /H m being nearly the same in all melts. We deduce that lnK ls is equal to 62.5  2, lnA = 98.5  2 with B/(T g -T 0g ) = 36 in all undercooled melts at T* g (see 5-), K ls and A in m -3 s -1 with B = T 0g D* in (2) and ( 6) and D* the fragility index [4,20,21].

The nucleation temperature  2ls occurs not only at a precise value of the energy saving coefficient  ls0 but also when lnK ls becomes equal to 62.5  2 [4]; kinetic and thermodynamic effects are combined to produce the vitreous transition; nevertheless,  2ls may exist without being a vitreous transition when D*T 0 /(T 2ls -T 0g ) cannot be equal to 36, lnK ls is much larger than 62.5 in many liquid elements and the viscosity remains too small in spite of an Arrhenius behavior. 
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4-Fragile glass-forming melts

Equations ( 9) and ( 10) are applied at T = T 2ls (or  =  2ls ); the quadratic equation ( 12) is obtained:
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There are two values of  2ls given in [START_REF] Tournier | Vth Int. Symp. Electromagn. Process. Mater. Ed S Taniguchi[END_REF] which are solutions of [START_REF] Tournier | Progress in Light Metals[END_REF] for each value of  0g and  ls0 respectively larger than 2/3 and 1 [START_REF] Tournier | [END_REF]11]; they correspond to fragile glass-forming melts and are out-of-equilibrium values:
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The minimum value of  ls0 is obtained when ( 14) and ( 15) are respected: The coefficients  lso of four fragile glass-forming melts N°1, 2, 3 and 5 are represented in Figure 3 as a function of  2ls assuming that  2ls is equal to  g [22,7,23,5,6]; the transition at equilibrium is given by ( 14) and represented by a straight line; the various parameters characterizing these melts are given in Table 1.
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The ratios T* g /T 0g have been calculated using ( 14) and ( 15) and are compared with the experimental results in Table 1 and Figure 4. We assume in the calculation of T* g that the six melts are fragile. The melts N°4 and N°6 are not following the equations ( 14) and ( 15) of fragile melts in spite of the fact that their experimental reduced temperature  0g is a little larger than -2/3. Their vitreous transition is much larger than the expected value for a fragile melt. The experimental values T 0g of N°6 and of N° 4 are a little large because of experimental errors. The other melts N°1, N°2, N°3 and N°5 are fragile; their glass transition corresponds to the thermodynamic transition and to the minimum of  ls0 represented in figure 3. A glass transition of 622 K and an energy saving coefficient  ls0 = 1.229 are calculated from [START_REF] Tournier | Vth Int. Symp. Electromagn. Process. Mater. Ed S Taniguchi[END_REF] with T 0g = 356 K which corresponds to  0g = 2/3 assuming that the melt N° 6 is strong. The same ratio T* g /T 0g is plotted as a function of  0g in Figure 5; it strongly varies when  0g is very close to 2/3. The vitreous transition of fragile liquids tends to be equal to the free-volume disappearance temperature.

The fragile liquids have an equilibrium homogeneous nucleation temperature  2ls that only depends on  ls0 and does not strictly depend on lnK ls and then on the viscosity even if lnK ls has a value nearly equal to 62.5 at this temperature. The kinetic character of the vitreous transition  2ls = *g is accompanying the thermodynamic vitreous transition at equilibrium because the freezing of atom freedom degrees is produced by a well-defined value of lnK ls which is T* g dependent through [D*T og /(T* g -T 0g )] and also through lnA.

5-Strong glass-forming melts

The energy saving coefficient  ls0 of strong glass-forming melts is calculated using [START_REF] Tournier | Vth Int. Symp. Electromagn. Process. Mater. Ed S Taniguchi[END_REF] when  2ls =  g and  0g < 2/3 are known. There is a boundary  0g = 2/3 (or T 0g = T m /3) that separates strong and fragile undercooled liquids in Angell's classification [20]. The coefficient  ls0 is calculated with [START_REF] Tournier | Vth Int. Symp. Electromagn. Process. Mater. Ed S Taniguchi[END_REF] and is plotted in Figure 6 as a function of * g = (T* g -T m )/T m for various values of  0g . It varies from 0.217, which is the energy saving coefficient of liquids elements, up to 2. The nucleation reduced temperature  g increases from -2/3 up to zero and corresponds to many possible values of the vitreous transition. It has been shown that T g strongly depends on the heating rates; the homogeneous nucleation temperature  0g can exist without leading to a vitreous transition because lnK ls in ( 6) is not always equal to equal to 62.5 [4][5][6].

The largest values of  ls0 correspond in Figure 6 to fragile melts and are aligned on a straight line while the  ls0 of strong melts is smaller and decreases when  0g tends to -1 with the increase of the Arrhenius character of the VFT law. Liquids are called strong because they are more resistant to structural change than fragile liquids [20]. The VFT temperature of fragile glasses near the maximum of T g /T 0g is equal to about 0.65×T g and increases up to 0.77×T g at higher temperatures while 0.5× g has to be added to  ls0 ( g ) [4]. These changes of the VFT temperature and the energy saving also characterize the fragile liquids and would be related to a decrease of the Fermi energy difference between crystal and melt when the temperature decreases. This change could be present or absent in the strong ones.

The thermodynamic vitreous transition T* g of a strong melt continuously increases with  ls0 for a given value of  0g as shown in figure 6. A strong glass has a relaxation time which follows a VFT law around the vitreous transition [6]. The true T* g can be determined by studying the thermal variation of the fully-relaxed enthalpy and the value of  ls0 can be deduced from the knowledge of T* g and T 0g using [START_REF] Tournier | Vth Int. Symp. Electromagn. Process. Mater. Ed S Taniguchi[END_REF]. A unique value of T* g is also expected in each strong melt in spite of the existence of many possible homogeneous nucleation temperatures because T* g is probably fixed by a unique and universal value of viscosity at this temperature.

6-Is the viscosity a universal quantity accompanying the vitreous transition?

The thermodynamic vitreous transition T* g of a strong melt continuously increases with  ls0 for a given value of  0g as shown in Figure 6. A strong glass has a relaxation time which follows a VFT law around the vitreous transition [6]. The true T* g can be determined by studying the thermal variation of the fully-relaxed enthalpy and the value of  ls0 can be deduced from the knowledge of T* g and T 0g using [START_REF] Tournier | Vth Int. Symp. Electromagn. Process. Mater. Ed S Taniguchi[END_REF]. A unique value of T* g is then expected in each strong melt in spite of the existence of many possible homogeneous nucleation temperatures because T* g is probably fixed by a unique and universal value of viscosity at this temperature.

7-The fragility indexes of strong and fragile liquids

The relation ( 16) is used to calculate the fragility indexes which results from the fact that [D*T og /(T* g -T 0g )] is considered, up to now, as being equal to 36-39 [20,21]. The constant 36 is used to calculate the fragility indexes of liquids when T g /T 0g is known; It is deduced from the average value of the proportionality coefficient of D* with (T* g /T 0g 1) The ratio T* g /T 0g of strong and fragile liquids is calculated using ( 13) and ( 14) respectively.

The fragility indexes of fragile and strong liquids deduced from ( 16) are plotted as a function of  ls0 in Figure 7 )
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The product (pp 0 )×V m = p×V m is equal to the saving energy per mole and p 0 = ×H m /V m is the classical contribution which does not depend on the free volume. The energy saving  ls ×H m /V m is also the change in the Laplace pressure that we have introduced in (3) ignoring that D. T. Wu, L. Granasy and F. Spaepen had already suggested that an energy (p-p o )V m ought to be added in the classical equation of the Gibbs free energy change for a crystal formation [START_REF] Wu | [END_REF]. The Laplace pressure change p tends to zero with the cluster radius and with the free volume not only in metallic glass-forming melts but also in nonmetallic glassforming melts because the equations ( 9) and ( 10) are followed by the two types of melts [4,[START_REF] Tournier | Proceedings of the 12th world conference on titanium[END_REF].

9-Conclusion

The vitreous transition temperature T* g has been recently viewed as a material constant which is equal to the crystal homogeneous nucleation temperature in glass-forming melts.

This result has been obtained by adding a volume energy saving  v per volume unit to the classical Gibbs free energy change H m /V m for a crystal formation in a melt. We have shown that  v is equal to the experimental Laplace pressure change (p-p 0 ) as compared to the classical pressure p 0 = H m /V m acting on crystals imbedded in a melt. It is now easier to understand why this model also works for nonmetallic glass-forming melts because such inhomogeneous pressure is acting on all crystals having a radius smaller or equal to the critical one.

We have also shown that the model is able to strictly predict the precise value of the Vogel-Fulcher-Tamman temperature, the energy saving  v and the ratio T* g /T 0g of fragile liquids when the equilibrium transition temperature T* g is known. These predictions are not possible in strong liquids because there are a lot of possible values of T* g when the VFT temperature T 0g is known. The viscosity at T* g has to be fixed to determine T 0g . The fragility indexes of fragile glasses and the map of fragility indexes of strong liquids depending on the T* g and T 0g have been calculated as a function of T* g .

The vitreous transition temperature T* g of all glass-forming melts strictly depends on a precise value of the energy saving at the melting temperature and is accompanied by a freezing of supplementary freedom degrees of atoms in melts as compared to those in crystals. This whole freezing is probably produced by a universal value of the liquid viscosity accompanying the preliminary step of transient nucleation leading to crystallization at unattainable times. 1. 1 assuming that these melts are fragile. The [24,22] 
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  when (3 ls +2) = 0; at T = T 2ls , we have in (5) J = 1 m 3 s 1 , v.t sn = 1, ln(J.v.t sn ) = 0 and lnK ls = G* 2ls /k B T 2ls :
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 8 . A unique value of D* or T* g /T 0g corresponds to  ls0 in fragile liquids while an infinity of values of D and T* g /T 0g corresponds in strong liquids to each value of  ls0 . This point has been already discussed in 5-. The energy saving and the Laplace pressure associated with clusters in melts It has been already recognized that a volume energy equal -(p-p 0 )×V m has to be added to the classical Gibbs free energy change ×H m /V m associated with cluster formation in melts in order to reflect the presence of inhomogeneous pressure due to the Laplace pressure p acting on compressible out-of-equilibrium clusters. This proposal can be applied to cluster formation in nonmetallic liquids. In our case, the Fermi energy difference depends on temperature and progressively disappears when the free volume of the melt tends to zero. We have already shown that the saving energy of titanium clusters per mole at the melting temperature T m is equal to (p-p o )V m where p is the Laplace pressure and p 0 the pressure of the melt where p is defined by p = 2×R* 2ls ,  being the cluster surface energy and R* 2ls the critical radius. The pressure p can be calculated from (3,8) and we obtain (17):
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 1 Figure 1: The specific heat difference between liquid and vitreous states is plotted

Figure 2 :

 2 Figure 2:The ratio G* 2ls /k B T/lnK ls given by (7) is plotted versus  = (T-T m )/T m
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 3 Figure 3: The minimum value of the energy saving coefficient  ls0 at the melting
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 4 Figure 4: The theoretical values of T* g divided by T 0g noted A are plotted versus the
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  Cu 15.6 Ni 12.8 Al 10.3 Nb 2.8 and As 2 Se 3 are linear functions of T

	The	fully-relaxed	enthalpies	of	Ti 40 Zr 25 Ni 8 Cu 9 Be 18 ,	glycerol,
	Zr 58.5					

  ). The melts N°1, 2, 3 and 5 are respectively Pd 43 Ni 10 Cu 27 P 20 , Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22.5 , Zr 58.5 Cu 15.6 Ni 12.8 Al 10.3 Nb 2.8 and Zr 65 Al 10 Ni 10 Cu 15 . Their properties are given in Table

Table 1

 1 

	N° melt	T m	T 0g  ls0	T* g * g	T* g /T 0g T g	T g /T 0g D*	ref
	1	Pd 43 Ni 10 Cu 27 P 20	802	365 1.577 576 -0.545 1.58	578 1.58
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The experimental quantities T* g /T 0g noted B and given in table 1 are plotted versus  0g instead of * g in Figure 4. This diagram shows that T* g /T 0g in fragile liquids is strongly varying near 

Table 1:

The references for the VFT temperatures T 0g are: [22 ] for N°1, [7] for N°2, [23] for N°3, [5] for N°4, [22] for N°5 and [6] for N°6. The energy saving coefficients  ls0 and T*g are calculated with ( 14) and ( 15) using the experimental value T 0g considering that all these undercooled melts could be fragile; T* g or * g is the thermodynamic transition temperature of fragile melts; the ratios T* g /T og are indicated as a function of * g = (T* g -T m )/T m ; the temperature T g is the experimental transition temperature. The experimental ratios T g /T 0g can be compared to the theoretical ones T* g /T og . The experimental fragility indexes D* are given in the last column.