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1 INTRODUCTION

SUMMARY

Regularization is necessary for solving nonlinear ill-posed inverse problems arising in dif-
ferent fields of geosciences. The base of a suitable regularization is the prior expressed by
the regularizer, which can be non-adaptive or adaptive (data-driven), smooth or non smooth,
variational-based or not. Nevertheless, tailoring a suitable and easy-to-implement prior for de-
scribing geophysical models is a nontrivial task. In this paper, we propose two generic opti-
mization algorithms to implement arbitrary regularization in nonlinear inverse problems such as
full-waveform inversion (FWI), where the regularization task is recast as a denoising problem.
We assess these optimization algorithms with the plug-and-play block-matching BM3D reg-
ularization algorithm, which determines empirical priors adaptively without any optimization
formulation. The nonlinear inverse problem is solved with a proximal Newton method, which
generalizes the traditional Newton step in such a way to involve the gradients/subgradients of
a (possibly non-differentiable) regularization function through operator splitting and proximal
mappings. Furthermore, it requires to account for the Hessian matrix in the regularized least-
squares optimization problem. We propose two different splitting algorithms for this task. In
the first, we compute the Newton search direction with an iterative method based upon the first-
order generalized iterative shrinkage-thresholding algorithm (ISTA), and hence Newton-ISTA
(NISTA). The iterations require only Hessian-vector products to compute the gradient step
of the quadratic approximation of the nonlinear objective function. The second relies on the
alternating direction method of multipliers (ADMM), and hence Newton-ADMM (NADMM),
where the least-squares optimization subproblem and the regularization subproblem in the com-
posite objective function are decoupled through auxiliary variable and solved in an alternating
mode. The least-squares subproblem can be solved with exact, inexact, or quasi-Newton meth-
ods. We compare NISTA and NADMM numerically by solving FWI with BM3D regulariza-
tion. The tests show promising results obtained by both algorithms. However, NADMM shows
a faster convergence rate than Newton-ISTA when using L-BFGS to solve the Newton system.

Key words: Inverse theory; Waveform inversion; Controlled source seismology; Numerical
modelling.

ularizer can be added to the objective function as penalty terms or
constrains (Peters & Herrmann 2017; Peters et al. 2019), potentially
renders the solution unique, increases its stability, and prevents data

Non-linear inverse problems frequently arise in different fields of
geosciences (Tarantola 2005). Large-scale problems are typically
solved with iterative local optimization (gradient-based) techniques
such as Newton’s method. Furthermore, such problems are inher-
ently ill-posed and thus require regularization techniques to be im-
plemented such that assumptions and priors about the unknown
models are encoded in the optimization. At the heart of a suitable
regularization is a priori information expressed by the regularizer or
regularization function (Gholami & Siahkoohi 2010). A proper reg-

overfitting. It should be able to (mathematically) describe the so-
Iution while being easy to implement with iterative linearization
methods. These specifications make tailoring a suitable regularizer
nontrivial. A prior can be adaptive or non-adaptive, where by adap-
tive is meant the adaptation of the regularization function to the
problem of interest. Traditional priors used to solve inverse prob-
lems such as smoothness, sparseness, blockiness are non-adaptive
(Tikhonov & Arsenin 1977; Tarantola 2005). They are defined ac-
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cording to the preliminary assumptions about the targeted model,
which are independent of the input of the problem to be solved.
In contrast, adaptive priors are solely derived from the input and
tailored to the output model accordingly. Complex models require
complex priors, which can be hard to derive. Different priors lead to
different forms of regularization, ranging from smooth and convex
single-parameter regularizers (Tikhonov & Arsenin 1977) to non-
smooth and non-convex multi-parameter ones (Gholami & Hos-
seini 2011; Selesnick & Farshchian 2017).

Denoising as the simplest inverse problem (Section 2.1) has
contributed to enormous progress in developing sophisticated adap-
tive and non-adaptive priors for complicated signal recovery from
noisy signals (Milanfar 2012). Some recently proposed excellent
denoising methods include nonlocal means filters (Milanfar 2012;
Goyal et al. 2020) and block matching and 3D filtering (BM3D)
(Dabov et al. 2007) and its variants (Goyal et al. 2020). These
patch-based methods use both local and nonlocal redundancy of
information in the input signal to preserve structures in the solution
by yielding locally adaptive filters via similarity kernels. Specify-
ing the kernel function in these methods is essentially equivalent to
estimating a particular type of empirical prior from the input sig-
nal (Milanfar 2012). This somehow contrasts with the traditional
non-adaptive regularization methods, for which the prior is fixed
and independent from the input signal (Tarantola 2005). Such an
adaptive regularization has been applied to linear inverse problems
in, e.g., Danielyan et al. (2011) and Venkatakrishnan et al. (2013).
We refer the reader to Appendix A for a more detailed review of
the BM3D method that will be used in this study.

The focus of this paper is to present a generic optimiza-
tion framework to implement arbitrary regularizer in nonlinear in-
verse problems such as Full Waveform Inversion (FWI) (Taran-
tola 1984; Pratt et al. 1998; Virieux & Operto 2009). This frame-
work extends proximal Newton-type algorithms to deal with adap-
tive plug-and-play regularizer, which may not have an explicit
optimization (or variational) formulation as BM3D (Dabov et al.
2007). Similar to the classical Newton-type methods, proximal
Newton methods solve a nonlinear inverse problem iteratively as
my1 = my + arAmy, where my, is the model parameters at
iteration k, Amy, is the search direction and «y, is the step length.
When a composite objective function includes a general (and possi-
bly non-differentiable) regularization term, Amj must further in-
volve the gradients/subgradients of the regularization function (Lee
et al. 2014). Proximal Newton methods achieve this task by break-
ing down the original complex problem into simpler subproblems
through operator splitting and proximal mappings. We propose two
distinct algorithms to solve the regularized problem with proximal
Newton methods. In the first, called NISTA, the Newton search di-
rection Amy, is computed at iteration £ by minimizing a composite
objective function given by the sum of the locally quadratic approx-
imation of the nonlinear misfit function involving the Hessian and
the regularization function. The minimum of this surrogate objec-
tive function is found iteratively in an inner loop inside iteration
k with a proximal gradient method (Section 2.2) based upon the
shrinkage-thresholding algorithm (ISTA) (Daubechies et al. 2004;
Attouch & Peypouquet 2016). This method requires one Hessian-
vector product per inner iteration to build the gradient of the surro-
gate linearized misfit function.

The second algorithm, called NADMM, relies on the alternat-
ing direction method of multipliers (ADMM) (Boyd et al. 2010;
Aghamiry et al. 2019b). ADMM decouples the linearized least-
squares objective function and the regularization term via an aux-
iliary variable and solves the two subproblems in alternating mode

with the primal-dual method of multipliers. The first subproblem
requires to solve at each iteration k a linear system involving the
Hessian, just like classical Newton-type methods. This system can
be solved exactly or approximately with inexact or quasi-Newton
algorithms (Nocedal & Wright 2006; Métivier et al. 2017).

An important property of the proposed algorithms is that they
only need the output of the regularizer without requiring any in-
formation about its functional form and statistical properties. This
black-box implementation brings flexibility to the algorithms for
implementing arbitrary adaptive and non-adaptive regularizations
in the nonlinear inverse problem. Therefore, the main properties of
the proposed regularization method can be summarized as follow:
[1] It can be easily implemented for existing nonlinear optimization
algorithms. [2] The regularizer is treated as black-box denoiser, and
thus, regularization which has not an explicit optimization formula-
tion such as plug-and-play denoiser can be used. [3] Irrespective of
the differentiability of the regularizer, it can be implemented with
iterative gradient-based solvers. [4] The computational overhead
generated by the regularization is the computation of the proxi-
mal/denoising operator at each iteration, and hence is negligible
in most cases.

We implement the proposed adaptive regularization to solve
full-waveform inversion (FWI), an ill-posed PDE-constrained non-
linear optimization problem, in which the subsurface parameters
and the wavefields are defined as the minimizers of the Euclidean
distance between observed and calculated data (Tarantola 1984;
Pratt et al. 1998). Among different methods to solve this con-
strained optimization problem, we consider a variable projection
formulation leading to the classical FWI (Pratt et al. 1998) and a
PDE-relaxation formulation implemented with ADMM (Aghamiry
et al. 2019c). The ADMM formulation, which updates the parame-
ters and the wavefields in alternating mode, is referred to iteratively
refined wavefield reconstruction inversion (IR-WRI) (Aghamiry
et al. 2019¢,b). Numerical tests performed show outstanding per-
formance of the adaptive regularization in building complicated ve-
locity models by the above waveform inversion methods.

2 PRELIMINARIES

We start with a brief review of the concepts and formulas of the
linear inverse theory used in this paper. This section is intended for
background, and the readers who are familiar with linear inverse
theory can skim over this section.

In linear inverse problems, the desired model, denoted by the col-
umn vector m, needs to be estimated from measurements d that are
related to m via a linear operator/matrix A, i.e. d = Am + e for
some random noise e. For a Gaussian distributed random noise, the
estimation problem usually appears as determination of the mini-
mizer of a suitably defined objective function

argmin%ﬂdemHng)\R(m), 2.1

where R is a regularizer or regularization function, which somehow
prevents data overfitting and )\ determines regularization weight.
Different forms of R have been proposed, ranging from smooth
and convex single-parameter functions (Tikhonov & Arsenin 1977)
to non-smooth and non-convex multi-parameter ones (Gholami &
Hosseini 2011; Selesnick & Farshchian 2017). In its simplest form,
R(m) = |[jm — m”"*"||3 is a damping term that encourages m
not to be very far from the prior model m?"*°" (Tarantola 2005).



2.1 Denoising and Proximal Operator

In denoising problem, A = I (the identity matrix) and the estimate
is simply defined as

prox, 5 (d) = arg min %Hd —m|3 + AR(m). 2.2)

This is called the proximal operator of R (Combettes & Pesquet
2011; Parikh & Boyd 2013). Despite its simple definition, proximal
operators are powerful tools in optimization because 1) the general
optimization problem (2.1) can be solved by proximal algorithms,
which merely require to evaluate the gradient of the misfit func-
tion, M(m) = i|/d — Aml||3, and the proximal operator (2.2).
2) Since a proximal operator involves the information about gradi-
ents/subgradients of R, proximal algorithms handle both differen-
tiable and nondifferentiable forms of R. This contrasts with tradi-
tional algorithms, such as the Newton’s algorithm, which requires
the objective to be differentiable. Furthermore, the interpretation of
the proximal operator as a denoising problem (Kamilov et al. 2017)
allows us to solve optimization problem (2.1) with advanced regu-
larizations embedded in sophisticated denoising algorithms such as
non-local means (NLM), Block-matching and 3D filtering (BM3D)

(Appendix A) or deep learning denoisers (Meinhardt et al. 2017).

2.2 The Proximal Gradient Method

The proximal-gradient method is an important tool for solv-
ing non-linear problems we describe in subsequent sections.
In order to see how the proximal operator (2.2) helps to
solve (2.1), we use the majorization-minimization (MM)
approach (Lange 2016), which has a simple convergence
proof. The governing idea of MM is to find the minimum
of non-convex/convex function M(m) + AR(m) via the it-
erative minimization of a simpler convex surrogate function
M (m) + AR(m) that majorizes M(m) + AR(m) at step
kE (e. Mip(m) + AR(m) > M(m) + AR(m)). Fig. 1
shows a schematic of the MM process. The non-convex func-
tion M(m) + AR(m) is shown in blue while a few surrogate
functions m(m) + AR(m) for points my, k € {0,1,2}, are
shown in orange, pink and red, respectively. This figure shows
how the iterative MM algorithm approaches a local minimum of
M(m) + AR(m) through the minimum of easy to minimize

surrogate functions M, (m) + AR (m).

It is interesting to note that, for M(m) = 1|/d — Aml||3 and
¢ € (0,1/||AJ|?) with || A]| the largest singular value of A, we
have that

M(m) + AR(m) < My (m) + AR(m), 2.3)

with equality at m = my, where

—~ 1
M (m) = M(my) + (m — my)" VM (my) + %llm —myJ3,

(2.4)

in which my, is a reference model (previous iterate) and V.M (my,)
is the gradient vector. This approximation allows us to minimize
(2.1) by iteratively minimizing a simpler problem

my41 = arg min My (m) + AR(m). (2.5)
Simple algebra shows that equation (2.5) is equivalent to

My 1 = Prox,, g (M — cVM(my)). (2.6)
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Figure 1. The function M (m) is shown in green where it has a global
minimum at (4,0). Also M(m) + AR (m) is shown in blue with a global
minimum at (6,0) while a few surrogate functions M, (m)+AR(m), k €
{0, 1,2} are shown in orange, pink and red, respectively. The MM algo-
rithm seeks to find a local minimizer of M(m) + AR (m), blue curve,
by iteratively minimizing easy-to-minimize functions M, (m) + AR (m).
Minimization of My (m) + AR(m) gives a new optimal point,m;, ms
and mg3, and it reaches to the minimum of M (m) 4+ AR (m) when k tends
to infinity.

This is nothing but the famous iterative shrinkage-thresholding al-
gorithm (ISTA) (Daubechies et al. 2004) (also known as forward-
backward splitting algorithm and proximal gradient method).
FISTA (Beck & Teboulle 2009) is an accelerated version that uses
a particular linear combination of the two last iterates to perform
the update. A simple acceleration is obtained by using the extrapo-
lation method of Nesterov (Nesterov 1983), leading to the general-
ized form of ISTA (Attouch & Peypouquet 2016)

{mm = prox yz (Px — VM (pr))

_ 2.7
Pk+1 = Mgy + zT_;(mkH —my).

3 METHOD

A nonlinear inverse problem such as FWI with a general form of
regularization can be written as

min M(m) + AR (m), 3.D

where m gathers the model parameters. In optimization problem
(3.1), M(m) is the data misfit function. Its minimization ensures
that the simulated data F'(m) are close to the measurements d,
where F' is a nonlinear differentiable function. R(m) is the pos-
sibly non-differentiable regularization, which encodes the prior
knowledge about the model parameters and prevents data overfit-
ting. A is the trade-off parameter that balances between the data
misfit and regularization terms.

A Newton-type method majorizes the misfit term with a local
quadratic function of form

Mi(m) = M(my) + (m — my)" VM (my)

+%(m—mk)THk(m—mk), 3.2)
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where my, is the iterate at iteration k, V.M (my) is the gradient
vector, and Hy, is the Hessian matrix V2 M (myg) or an approxi-
mation of it.

Using the approximation in equation (3.2), proximal Newton-
type methods solve problem (3.1) iteratively as

my 1 = my + arAmg, (3.3)

where «y, is the step length, which can be determined by a line
search method, and

Amy = arg IEiIl Mi(my, + Am) + AR(my + Am) (3.4)

is a search direction (Lee et al. 2014). Computation of the search
direction Amy, is the most computationally expensive part of this
algorithm because it requires the minimization of a composite func-
tion given by the sum of a quadratic term involving the Hessian ma-
trix, equation (3.2), and the regularization term R. For A = 0, the
algorithm reduces to a classical Newton method, where an approx-
imation of the Hessian can be employed, leading to quasi-Newton
methods or gradient method if Hj, reduces to a scaled version of the
identity matrix. For A # 0, however, determination of the search di-
rection in problem (3.4) is more challenging. In the following, we
propose two methods for this task.

3.1 Newton-ISTA (NISTA)

NISTA relies on the first-order iterative shrinkage-thresholding al-
gorithm (ISTA). We refer the reader to Daubechies et al. (2004) and
Section 2.2 for a more detailed review of this method to estimate
iteratively the Newton search direction of problem (3.4). This re-
quires to implement the following inner loop within the outer loop
over k

o+3

Am, * = Ap® — ¢, [HrAp® + VM(my)),
4+ 1
Am; ™ = prox,, \x (my + Amk+2) — my, (3.5)
AP = Am{ 4 £ (A — Am),
where [ is the inner iteration count, Ap® = 0, and ¢; €

(0,1/|Hy||®). The term in bracket in the first line of equation (3.5)
is the gradient of the surrogate function Mg (m), equation (3.2).
Also, the operator in the second line of equation (3.5), prox(e),
is the proximal operator of the regularization term R(m), which
can be viewed as a denoiser (Section 2.1). For many choices of
the regularizer R, there can be a closed-form expression for the
denoiser in the second subproblem of (3.5). The main property of
this formulation is that it can be generalized to exploit multiple
(even data-driven) priors by using different denoisers (e.g., BM3D
(Dabov et al. 2007), the weighted nuclear norm (Kamilov et al.
2017)) instead of the prox operator. It is important that the denoiser
function is treated as a black box, i.e., we only need access to the
output of the denoiser for a given input, irrespective of its functional
form.

The NISTA is summarized in Algorithm 1. The algorithm is
started with Apy = 0. However, to reduce the number of itera-
tions, we can perform a warm start of the inner loop by using the
results of the previous iteration. Any approximation of the Hes-
sian (diagonal, BFGS approximation) can be used to perform the
Hessian-vector product in line 5 of Algorithm 1. Alternatively, a
second-order adjoint-state method can be used to perform this prod-
uct (Métivier et al. 2013).

Algorithm 1 Adaptive regularization by NISTA.

Require: starting point my,
1: set Ap® =0
2: repeat
3:  Compute the step direction:

4 foré:l}oNfldo

5 Am, 2 = Ap’ — e, (HiAp’ + VM (my))
1

6: Am™ = prox,, \z (my + Ami+2) —my

o ApT = Aml L (AmE - Amf)

8:  end for

9 Select step length o, with a line search algorithm.

10:  Update: myy1 = my + axAmy .
11: until stopping conditions are satisfied.

3.2 Newton-ADMM (NADMM)

NADMM is obtained by solving optimization problem (3.4) via the
alternating direction method of multipliers (ADMM) (Boyd et al.
2010). By introducing the auxiliary variable p = my+Am, we re-
cast the minimization problem in (3.4) as the following constrained
problem:

Arnin Mi(my, + Am) + AR(p) subjectto mj + Am = p.
m,p

(3.6)
Solving problem (3.6) with an augmented Lagrangian method leads
to the following saddle point problem
min max Mg (my + Am) + AR(p)

Am,p q
1
+ (@, my + Am —p) + 5 |[my + Am —p3, 3.7

where q is the Lagrange multiplier and 1/c serves as a penalty
parameter. Applying the scaled form of ADMM (Boyd et al. 2010,
section 3.1.1) to problem (3.7), when combined with equation (3.3),
gives the iteration

Amj = arg minam ./Wk (my + Am)
+-L |lmy + Am — py — qu|2

2¢p
my41 = my + arAmy (3.8)

Pk+1 = ProX, yg (Me41 — q)
qk+1 = dk + Pk+1 — Mg,

where the primal and dual variables are updated in alternating
mode. A key property of the ADMM algorithm, equation (3.8), is
that we don’t need to solve it exactly at each iteration. The errors
which are made by inexact solving of equation (3.8) are compen-
sated by the Lagrange multipliers. This statement was corroborated
by numerical experiments that showed that one (inner) iteration of
equation (3.8) generates solutions that are accurate enough to guar-
antee the fast convergence of the ADMM algorithm (Goldstein &
Osher 2009; Boyd et al. 2010; Aghamiry et al. 2019b, 2020a).
With a change of variable m2"**" = py, + qu, the first subproblem
in (3.8) requires us to solve

. v 1 riorT
min M (my + Am) + fﬂmk +Am — m?""|3, (3.9)
m k
which has a closed-form minimizer given by
Amy = (cxHy + 1) (—ex VM(my) + Am? ™), (3.10)

where Am}™"" = m}™"" — my,. This is a generalized gradient

step because it implicitly includes the information carried out by



the gradient/subgradient of the possibly non-differentiable regular-
izer. It is seen that the prior information introduced by R(m) in
the original problem (3.1), regardless of its mathematical form or
its differentiability, is replaced by the a priori information that the
(unknown) model at each iteration is a sample of a known Gaus-
sian probability density whose mean is m%™**" and whose covari-
ance matrix is a scaled identity matrix. The regularization appeared
as a damping term that encourages the model not to be very far
from the dynamic prior/reference model m%"*°", unlike traditional
Bayesian approach (Tarantola 2005) where the a priori model is
static. The (cxHy + I)™! in Newton system (3.10), line 4 of Al-
gorithm 2, can be approximated with any quasi-Newton or inexact
Newton methods such as L-BFGS (Nocedal & Wright 2006) or
the truncated Newton method (Métivier et al. 2017). The proposed

NADMM method is summarized in Algorithm 2.

Algorithm 2 Adaptive regularization by NADMM.

Require: starting point mg
I: setpo=qo =0
2: repeat
3:  Compute the Hessian Hy, or an approximation to it.
4:  Compute the step direction:
Amy, = (cp,Hy + I)fl(fckv./\/l(mk) +Pr+qr —my).
Select step length o, with a line search algorithm.
Update: my4+1 = my + arAmy.
Update: pgt1 = prokaAR(mkH — qg).
Update: qr+1 = dk + Pr+1 — Mp41
until stopping conditions are satisfied.

R A

3.3 Application to Full Waveform Inversion

In the Numerical example section, we assess the algorithms 1 and 2
against seismic full-waveform inversion (FWI) (Virieux & Operto
2009) methods with a series of benchmark velocity models. FWI
is a nonlinear multivariate PDE-constrained optimization problem,
which can be formulated in the frequency domain as

min  |Pu—d|3, subjectto A(m)u=b, (3.11)

where m € R™*?! denotes the discrete subsurface model parame-
ters, b € CV*! the source term, u € CV*! the modelled wave-
field, d € CM*! the recorded seismic data and P € RM*N 4
linear observation operator that samples u at the receiver positions.
This objective function is for one frequency and one source. Exten-
sion to multiple frequencies and sources is simply implemented by
summation over sources and frequencies in the objective function
and by adding multiple right-hand sides in the constraint, equa-
tion (3.11) (Aghamiry et al. 2019a). The matrix A (m) € CV*¥,
whose coefficients depend on m, represents the discretized PDE
(Pratt et al. 1998; Plessix 2007). Here, we briefly review the two
different formulations of FWI that will be used. The first classical
one relies on variable projection to recast the nonlinear constrained
problem as an unconstrained problem with a reduced search space
(Plessix 2006). The second extends the linear regime of the wave-
form inversion by relaxation of the PDE constraint with ADMM
(Aghamiry et al. 2019c) in the framework of the wavefield re-
construction inversion (WRI) method (van Leeuwen & Herrmann
2013, 2016) (see also Huang et al. (2018a) and Huang et al. (2018b)
for some variants). This recasts the original nonlinear constrained
problem as a biconvex problem according to the bilinearity of the
wave equation in wavefield and model parameters.
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3.3.1 Reduced-space FWI

Classical FWI (Pratt et al. 1998; Plessix 2006) strictly enforces the
PDE constraint, u = A(m) 'b, in the misfit function at each
iteration by projection of the full multivariate search space onto the
parameter search space for sake of computational efficiency. This
leads to the following monovariate misfit function

1
M(m) = [|d - F(m)]3, (3.12)
where F(m) = PA~*(m)b is the calculated data. The gradi-
ent and the Hessian of equation (3.12), which are required for
Proximal-Newton methods, are given by (Pratt et al. 1998)

VM(m) = -J" Ad, (3.13)
and
o3T
om7T’

where Ad = d — F(m) and J is the sensitivity or the Fréchet
derivative matrix, defined as

VPM(m)=J"J +

[Ad]---|Ad], (3.14)

Ji;(m) = %ﬂt”ﬁ (3.15)
In practice, the gradient is calculated with the adjoint-state method
(Plessix 2006). The action of the Hessian can be taken into ac-
count approximately with preconditioned quasi-Newton method
(I-BFGS) or truncated Newton methods (see Métivier & Brossier
(2016) for an overview).

3.3.2 ADMM-based Wavefield Reconstruction Inversion
(IR-WRI)

In classical FWI, the wave-equation A(m)u = b is solved ex-
actly at each iteration to generate the reduced form of the objective
function (3.12). In the wavefield reconstruction inversion (WRI)
method (van Leeuwen & Herrmann 2013, 2016), the wave-equation
is processed as a weak constraint (namely, it is satisfied approxi-
mately) with a penalty method such that the simulated wavefields
match the observations to a great extent. Then, the parameters are
updated from the wavefields by least-squares minimization of the
wave equation errors (van Leeuwen & Herrmann 2013; Aghamiry
et al. 2019c¢). Updating the wavefields and the subsurface parame-
ters in alternating mode at iteration k leads to the following objec-
tive function for m

1
M(m) = 2 [|b — A(m)ux |3, (3.16)

where the so-called data-assimilated wavefield uy (Aghamiry et al.
2020b) is the least-squares solution of the overdetermined system
gathering the wave equation and the observation equation

(e ()

where ©1 > 0 is the penalty parameter. Note that equations (3.16)
and (3.17) are provided assuming a single source experiment. For
multiple sources, the objective function (3.16) is simply obtained
by summation over sources, while one augmented system (3.17)
per source needs to be solved (Aghamiry et al. 2019a). For (3.16),
the gradient and Hessian are given by

VM(m) = —L" (b — A(m)uy), (3.18)
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where
V:M(m) =L"L, (3.19)
and
L, = 2AmuLl: (3.20)
3mj

The columns of the matrix L contain the so-called virtual sources
(Pratt et al. 1998), that makes this matrix diagonal when optimiza-
tion parameters are squared slownesses.

4 NUMERICAL EXAMPLES
4.1 Wavefield Inversion of Inclusions Models

We first assess the NISTA and NADMM algorithms in the
FWI/WRI framework using BM3D as denoiser. To highlight the
adaptivity power of BM3D, we design four different velocity mod-
els, where inclusions of different shape are added to a 2 km x 2 km
homogeneous background velocity model (v = 2 km/s) (first col-
umn of Fig. 2). Also, to show the flexibility of the proposed adap-
tive regularization in managing different priors simultaneously, we
put all the four inclusions together in the background model and
reconstruct them jointly (Fig. 3). For all the tests of this section,
data are generated by five sources at the surface (with 400 m spac-
ing) and 50 m equally spaced receivers placed on all the bound-
aries except the surface. The forward modelling is performed with
a 9-point stencil finite-difference method implemented with anti-
lumped mass and PML absorbing boundary conditions to solve the
Helmholtz equation, where the stencil coefficients are optimized to
the frequency (Chen et al. 2013) (this scenario is considered for all
wave-propagation examples in this paper). The source signature is
a Ricker wavelet with a 10 Hz dominant frequency. We start the
inversion from the homogeneous background model (v = 2 km/s)
and invert simultaneously four frequency components (5, 7, 10, and
12.5 Hz) of noiseless and noisy data with FWI and IR-WRI with
and without the BM3D regularization.

We first apply FWI and IR-WRI via NADMM without and
with BM3D regularization. It is worth to mention that, when a
denoiser is used for regularization, the regularization weight A is
embedded in the standard deviation of noise (o) of the denoiser,
o = Ve (see equation 2.6). We set o of BM3D equal to 25 and
45 for noiseless and noisy data, respectively (Appendix A). We per-
form FWI with the L-BFGS quasi-Newton method with line search
to perform NADMM. We perform the inversion with noiseless data
and set the maximum number of iteration to 70 as stopping criterion
for IR-WRI in both cases (without and with BM3D). For FWI, the
stopping criteria is set to the model error (/2-norm of the difference
between true and estimated model) achieved by IR-WRI for a fair
comparison between the two waveform inversion methods. Fig. 2
shows the results obtained by FWI and IR-WRI for all four mod-
els without and with regularization. It is clearly seen that, for both
methods, regularization improved the results and successfully re-
covered the shape of the different anomalies, thanks to the adaptive
nature of the BM3D. It is worth noting that IR-WRI performed bet-
ter than FWI, although the focus of this paper is not to compare the
two methods as this topic has been already addressed in Aghamiry
et al. (2019c). Instead, we aim to show how adaptive regularization
can improve the results of both methods when it is implemented
with proximal Newton algorithms.

We continue by using a model that includes all four inclusions (Fig.
3a). Fig. 3 shows the velocity models estimated by FWI (Figs. 3b-c)

and IR-WRI (Figs. 3d-e) with and without regularization. The dif-
ferent inclusions are jointly reconstructed with the same accuracy
as in the case where they are reconstructed independently (Fig. 2).
This highlights the local-adaptivity property of the BM3D regular-
ization.

4.1.1 Sensitivity to the regularization parameter

The only free parameter of BM3D is o (Appendix A) which is
selected by trial and error in this paper. Here we want to asses
the sensitivity of the final results against . We apply NADMM-
based FWI and IR-WRI with BM3D as regularizer on noiseless
data using different values of o. For each o, the stopping crite-
ria is chosen as in the previous test (70 iterations for IR-WRI and
model error achieved by IR-WRI for FWI). The velocity mod-
els estimated by FWI and IR-WRI with BM3D regularization for
o = [160, 40, 5, 1] are shown in Fig. 4. Note that the results with
o = 20 are shown in Figs. 3c and 3e for FWI and IR-WRI, respec-
tively. It is seen that both of FWI and IR-WRI can reconstruct an
acceptable model for a wide range of values of o, i.e. o = [5 —40].

4.1.2 Robustness against noise

We continue by assessing the robustness of the proposed method
against random noise. We apply NADMM-based FWI and IR-WRI
without and with BM3D when the data are contaminated with dif-
ferent level of random noises. The relative root mean square error
(RMSE) curves versus signal to noise ratio (SNR) is depicted in
Fig. 5, where RMSE and SNR are defined as

|l — m. ||

RMSE = 100 , 4.1

[[m |2

in which m and m. are the estimated and true models, respectively,
and

SNR = 20log (Szgnal RMS amplztude) . 2)

Noise RM S amplitude

Fig. 5 shows the average value (over 20 runs) for each SNR. Fur-
thermore, we use ||Pux —d||2 = 1.01¢ as the stopping criterion of
iteration, where ¢ is the ¢ norm of the noise. The velocity models
estimated by FWI and IR-WRI without/with BM3D regularization
for SNR=5db are shown in Fig. 6. In order to show how the data are
fitted, the difference between the estimated and noiseless (10 Hz)
data for the tests of Fig. 6 are shown in Fig. 7.

4.1.3 A comparison between NISTA and NADMM

Here, we use the BM3D regularized FWI with noiseless and noisy
data to compare NISTA and NADMM. Both NISTA and NADMM
algorithms are implemented with L-BFGS to account for the action
of the Hessian (Line 5 and 4 of Algorithms 1 and 2, respectively).
Fig. 8 shows the velocity models reconstructed by both algorithms
and Fig. 9 shows the corresponding convergence history (the value
of the objective function as a function of the iteration count). Al-
though we perform approximately 100 inner iterations of proximal
gradient to estimate the search direction of NISTA, NADMM still
performs better. Furthermore, since we implement both algorithms
with L-BFGS, the results show that in practice NADMM should be
preferred to NISTA.
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4.2 Performance on benchmark models

We continue by assessing the performance of the NADMM-based
adaptive IR-WRI algorithm using well-documented 2D bench-
mark subsurface velocity models in exploration seismic, e.g. the
Marmousi II (Martin et al. 2006), SEG/EAGE overthrust (Amin-
zadeh et al. 1997), SEG/EAGE salt (Aminzadeh et al. 1997), syn-
thetic Valhall (Prieux et al. 2011) and 2004 BP salt (Billette &
Brandsberg-Dahl 2004) benchmark velocity models. The selected
target from these benchmark models are shown in the first col-
umn of Fig. 10, respectively. The fixed-spread acquisition with a
few equally spaced sources at the sea bottom and a line of equally
spaced receivers at the 25 m depth is used for all of the tests (see
Table 1 for more technical details). Also, the models are discretized
with 25 m spacing in horizontal and vertical directions. We com-
pute the wavefields using Perfectly-Matched Layer (PML) absorb-
ing boundary conditions along the bottom, right, and left sides of
the model using 10 grid points in the PMLs and a free-surface
boundary condition at the surface and a 10 Hz Ricker wavelet
is used as the source signature. We design a multiscale inversion
with a classical continuation frequency strategy in the selected fre-
quency band by proceeding over small batches of two frequencies
with a frequency interval of 0.5 Hz. We also perform three paths
through the batches, where the starting and finishing frequencies
of the paths and other technical details about the models are re-
ported in Table 1. Also, we use 60, 40, and 25, respectively, for
o of BM3D in the first, second and third path. The initial velocity
models are crude models, as shown in the second column of Fig. 10.
Accordingly, we tackle these benchmarks with IR-WRI only since
FWI would remain stuck in a local minimum due to cycle skipping.

We set the number of IR-WRI iterations per frequency batch equal
to 10 or £2-norm of source residuals equal to 1e-3 as the stopping
criteria. The estimated models without and with BM3D regulariza-
tion with NADMM (Algorithm 2) are shown in the third and fourth
columns of Fig. 10, respectively. A direct comparison along verti-
cal logs (as depicted with dashed lines in first column of Fig. 10)
between the true velocity, the initial and the final velocity models
without/with BM3D regularization are shown in Figs. 11a-d, for
Marmousi II, SEG/EAGE salt, Synthetic Valhall and 2004 BP salt
models, respectively. The results show that, although the different
benchmark models are characterized by different kinds of struc-
tures, adaptive regularization combined with IR-WRI manages to
reconstruct accurately each of them with a significant jump of qual-
ity compared to the case where BM3D is not used.

5 CONCLUSIONS

In this paper, we proposed a flexible optimization framework based
upon proximal Newton methods to implement arbitrary regulariza-
tions (smooth, nonsmooth, adaptive) in nonlinear inverse problem
such as FWI and its WRI variant. The regularization problem is re-
cast as a denoising problem through proximal mapping such that
the optimization algorithm only needs the output of the denoiser.
This means that any denoiser can be easily implemented as a black
box in the optimization algorithm. This open the door to leading-
edge plug-and-play denoisers such as the block-matching BM3D
method, which has no explicit optimization formulation (it can not
be cast as a variational problem). Two different algorithms (NISTA
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Table 1. Technical details of the benchmark models

Inverted frequency Outer iterations

T e S
Marmousi IT 425 x 11.5 250 50 [3-10] [3-8], [4-9], [5-10]
SEG/EAGE salt model 2.1x7.38 100 25 [3-7] [3-6], [3.5-7], [4-7]
Synthetic Valhall 5.25 x 16 500 100 [3-13] [3-9], [4-11.5], [5-13]
2004 BP salt 5.8 x 16.25 250 50 [3-13] [3-9.5], [3.5-11.5], [5-13]

05 !
Dista®

. 1 4,
0.5 % 0 0

“ 00 Dghaoce K\m‘\ Y
Figure 3. Inclusion test. (a) True velocity model. (b-e) Velocity models
estimated by (b) FWI without regularization, (¢) FWI with regularization,

(d) IR-WRI without regularization, (e) IR-WRI with regularization.

and NADMM) based upon FISTA and ADMM are proposed to
implement the proximal Newton method. Both of them requires
to perform Hessian-vector products, which can be implemented
with quasi-Newton or second-order adjoint-state method. Both al-
gorithms are assessed against a series of well-documented subsur-
face models. In all cases, the results show that NADMM should be
preferred at the expense to NISTA. Although the adaptive BM3D
regularizer was used in this study, more conventional Tikhonov, To-
tal Variation or a combination of the two can be easily implemented
in NISTA-based and NADMM-based FWI and IR-WRI. To allow
people to evaluate the NISTA and NADMM algorithm, we have
made some codes available at https://gitlab.oca.eu/wind.

6 ACKNOWLEDGEMENTS

We would like to thank editors Frederik Simons, Fern Storey,
and two anonymous reviewers for their comments which help im-
proving the manuscript. This study was partially funded by the
WIND consortium (https://www.geoazur.fr/WIND), sponsored by
Chevron, Shell, and Total. This study was granted access to the
HPC resources of SIGAMM infrastructure (http://crimson.oca.eu),
hosted by Observatoire de la Céte d’ Azur and which is supported

15

&\mﬂ

by the Provence-Alpes Cote d’ Azur region, and the HPC resources
of CINES/IDRIS/TGCC under the allocation A0050410596 made
by GENCI. Hossein S. Aghamiry would like to thank the IDEX
UCA JEDI with the WIMAG project for their support. Ali Gho-
lami would like to acknowledge the financial support of university
of Tehran for this research under grant number 27711-1-06.

REFERENCES

Aghamiry, H., Gholami, A., & Operto, S., 2019a. ADMM-based multi-
parameter wavefield reconstruction inversion in VTI acoustic media with
TV regularization, Geophysical Journal International, 219(2), 1316—
1333.

Aghamiry, H., Gholami, A., & Operto, S., 2019b. Implementing bound
constraints and total-variation regularization in extended full waveform
inversion with the alternating direction method of multiplier: application
to large contrast media, Geophysical Journal International, 218(2), 855—
872.

Aghamiry, H., Gholami, A., & Operto, S., 2019c. Improving full-
waveform inversion by wavefield reconstruction with alternating direc-
tion method of multipliers, Geophysics, 84(1), R139-R162.

Aghamiry, H., Gholami, A., & Operto, S., 2020a. Compound regular-
ization of full-waveform inversion for imaging piecewise media, I[EEE
Transactions on Geoscience and Remote Sensing, 58(2), 1192—-1204.

Aghamiry, H. S., Gholami, A., & Operto, S., 2020b. Accurate and effi-
cient data-assimilated wavefield reconstruction in the time domain, Geo-
physics, 85(2), AT-A12.

Aminzadeh, F., Brac, J., & Kunz, T., 1997. 3-D Salt and Overthrust mod-
els, SEG/EAGE 3-D Modeling Series No.1.

Attouch, H. & Peypouquet, J., 2016. The rate of convergence of nesterov’s
accelerated forward-backward method is actually faster than 1/k"2, SIAM
Journal on Optimization, 26(3), 1824-1834.

Beck, A. & Teboulle, M., 2009. A fast iterative shrinkage-thresholding
algorithm for linear inverse problems, SIAM Journal Imaging Sciences,
2(1), 183-202.

Billette, F. J. & Brandsberg-Dahl, S., 2004. The 2004 BP velocity bench-
mark, in Extended Abstracts, 67" Annual EAGE Conference & Exhibi-
tion, Madrid, Spain, p. B0O35.

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J., 2010. Dis-
tributed optimization and statistical learning via the alternating direction
of multipliers, Foundations and trends in machine learning, 3(1), 1-122.

Chen, Z., Cheng, D., Feng, W., & Wu, T., 2013. An optimal 9-point finite
difference scheme for the Helmholtz equation with PML, International
Journal of Numerical Analysis & Modeling, 10(2).

Combettes, P. L. & Pesquet, J.-C., 2011. Proximal splitting methods in
signal processing, in Fixed-Point Algorithms for Inverse Problems in Sci-
ence and Engineering, vol. 49 of Springer Optimization and Its Appli-
cations, pp. 185-212, eds Bauschke, H. H., Burachik, R. S., Combettes,
P. L., Elser, V., Luke, D. R., & Wolkowicz, H., Springer New York.

Dabov, K., Foi, A., & Egiazarian, K., 2007. Video denoising by sparse 3D
transform-domain collaborative filtering, in 2007 15" European Signal
Processing Conference, pp. 145-149, IEEE.

Danielyan, A., Katkovnik, V., & Egiazarian, K., 2011. Bm3d frames and



©
15 2 2 05

1
0.5
e )

1
L 0.5

1
0.5 )
(ko
o) /4@ 0 0

Distanc®

Adaptive regularized FWI 9

Y

0 n

0.
Dis&a

Figure 4. Inclusion test with different o for BM3D. (a-d) Estimated velocity model using FWI with BM3D regularization with o = 160 (a), 40 (b), 5 (c), and

1 (d). (e-h) Same as (a-d) but for IR-WRI.

! - —% FWI
~ T %o —/\- IR-WRI
3 N ~[3+ FWI+BM3D
=~ \& IR-WRI+BM3D
N

\\*_§_£_§—§

<) - -

=
<2} -~
= Bl
~ \\El-s

-3 _
1
|
0 |
5dB  10dB 15dB 20dB 25dB 00
SNR

Figure 5. RMSE for FWI and IR-WRI without and with BM3D using
NADMM when data are contaminated with different level of noises.

variational image deblurring, IEEE Transactions on Image Processing,
21(4), 1715-1728.

Daubechies, 1., Defrise, M., & De Mol, C., 2004. An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint, Commu-
nications on Pure and Applied Mathematics: A Journal Issued by the
Courant Institute of Mathematical Sciences, S7(11), 1413-1457.

Gholami, A. & Hosseini, S. M., 2011. A general framework for sparsity-

f“‘“ﬂy““'\

2

1.5

X 1 0.5
% 0 0 05 Dist

Distan®

Figure 6. Inclusion test with SNR=5db. Estimated velocity model using
(a) FWI without regularization, (b) FWI with regularization, (c) IR-WRI
without regularization, (d) IR-WRI with regularization.

1
anc® Qmﬂ

Amplitude
Lo =
— T

)

0 50 100 150 200 250 300

FWI

—— e e N e e
FWI+BM3D

Pu - d(](><2)

NS T S TS TN NN NN e NN
IR-WRI

e
IR-WRI+BM3D

0 50 100 150 200 250 300
Reciver index

Figure 7. Real part of the 10 Hz data. (a) The noisy data with SNR=5db are
shown in blue, while the noiseless data are shown in red. (b) The difference
between predicted data (Puy) and noiseless data (do) at the final iteration
of Fig. 6. The residual curves are scaled by factor 2.

based denoising and inversion, IEEE transactions on signal processing,
59(11), 5202-5211.

Gholami, A. & Siahkoohi, H., 2010. Regularization of linear and non-
linear geophysical ill-posed problems with joint sparsity constraints,
Geophysical Journal International, 180(2), 871-882.

Goldstein, T. & Osher, S., 2009. The split Bregman method for L1-
regularized problems, SIAM Journal on Imaging Sciences, 2(2), 323—
343.

Goyal, B., Dogra, A., Agrawal, S., Sohi, B., & Sharma, A., 2020. Image
denoising review: From classical to state-of-the-art approaches, Informa-
tion Fusion, 55, 220-244.

Huang, G., Nammour, R., & Symes, W. W., 2018a. Source-independent
extended waveform inversion based on space-time source extension:
Frequency-domain implementation, Geophysics, 83(5), R449-R461.

Huang, G., Nammour, R., & Symes, W. W., 2018b. Volume source-based
extended waveform inversion, Geophysics, 83(5), R369-387.

Kamilov, U. S., Mansour, H., & Wohlberg, B., 2017. A plug-and-play
priors approach for solving nonlinear imaging inverse problems, /EEE
Signal Processing Letters, 24(12), 1872-1876.

Lange, K., 2016. MM optimization algorithms, vol. 147, STAM.



10  H. S. Aghamiry, A. Gholami and S. Operto

NISTA NADMM
<
=
<
o
= e
> z
L2
(k)
a)
2.6
28 T 24
“ 24 Z 5o
£ 22 &=
& 2
2 >
> 2
2 o5 )
. 2 <, 1.5
%y, 1 1.5 % 0.5 1
73 1 @ 0 0.5 k\“ﬂ\
Q* 0.5 \g{\\ %2, 0 . anCe
9 w00 et 9 Y D

Figure 8. Inclusion test with BM3D regularized FWI using NISTA (a and
¢) and NADMM (b and d). (a-b) Noiseless data, (c-d) Noisy data with
SNR=5db.

Lebrun, M., 2012. An analysis and implementation of the bm3d image
denoising method, Image Processing On Line, 2, 175-213.

Lee, J. D., Sun, Y., & Saunders, M. A., 2014. Proximal Newton-type meth-
ods for minimizing composite functions, SIAM Journal on Optimization,
24(3), 1420-1443.

Martin, G. S., Wiley, R., & Marfurt, K. J., 2006. Marmousi2: An elastic
upgrade for Marmousi, The Leading Edge, 25(2), 156-166.

Meinhardt, T., Moller, M., Hazirbas, C., & Cremers, D., 2017. Learning
proximal operators: Using denoising networks for regularizing inverse
imaging problems, in Proceedings of the IEEE International Conference
on Computer Vision, pp. 1781-1790.

Métivier, L. & Brossier, R., 2016. The seiscope optimization toolbox: A
large-scale nonlinear optimization library based on reverse communica-
tion, Geophysics, 81(2), F11-F25.

Métivier, L., Brossier, R., Virieux, J., & Operto, S., 2013. Full Waveform
Inversion and the truncated Newton method, STAM Journal On Scientific
Computing, 35(2), B401-B437.

Métivier, L., Brossier, R., Operto, S., & J., V., 2017. Full waveform inver-
sion and the truncated Newton method, SIAM Review, 59(1), 153-195.
Milanfar, P.,, 2012. A tour of modern image filtering: New insights and
methods, both practical and theoretical, IEEE signal processing maga-

zine, 30(1), 106—128.

Nesterov, Y., 1983. A method of solving a convex programming problem
with convergence rate O(1/k?), in Dokl. Akad. Nauk SSSR, vol. 269,
pp. 543-547.

1
NADMM-noiseless data
NISTA-noiseless data
0.8 —=—NADMM-noisy data
° —6—NISTA-noisy data
=
E 0.6 J
[
2
=
.i 0.4 +F B
o
o
0.2 B
() L L L L L ]

100 120 140 160 180 200
Iteration

0 20 40 60 80

Figure 9. Evaluation of the objective function of four different tests of Fig.
8.

v Noisy data

Nocedal, J. & Wright, S. J., 2006. Numerical Optimization, Springer, 2nd
edn.

Parikh, N. & Boyd, S., 2013. Proximal algorithms, Foundations and
Trends in Optimization, 1(3), 123-231.

Peters, B. & Herrmann, F. J., 2017. Constraints versus penalties for edge-
preserving full-waveform inversion, The Leading Edge, 36(1), 94—100.
Peters, B., Smithyman, B. R., & Herrmann, F. J., 2019. Projection methods
and applications for seismic nonlinear inverse problems with multiple

constraints, Geophysics, 84(2), R251-R269.

Plessix, R. E., 2006. A review of the adjoint-state method for computing
the gradient of a functional with geophysical applications, Geophysical
Journal International, 167(2), 495-503.

Plessix, R. E., 2007. A Helmholtz iterative solver for 3D seismic-imaging
problems, Geophysics, 72(5), SM185-SM194.

Pratt, R. G., Shin, C., & Hicks, G.J., 1998. Gauss-Newton and full Newton
methods in frequency-space seismic waveform inversion, Geophysical
Journal International, 133, 341-362.

Prieux, V., Brossier, R., Gholami, Y., Operto, S., Virieux, J., Barkved, O.,
& Kommedal, J., 2011. On the footprint of anisotropy on isotropic full
waveform inversion: the Valhall case study, Geophysical Journal Inter-
national, 187, 1495-1515.

Selesnick, I. & Farshchian, M., 2017. Sparse signal approximation via
nonseparable regularization, /[EEE Transactions on Signal Processing,
65(10), 2561-2575.

Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic
approximation, Geophysics, 49(8), 1259-1266.

Tarantola, A., 2005. Inverse Problem Theory and Methods for Model
Parameter Estimation, Society for Industrial and Applied Mathematics,
Philadelphia.

Tikhonov, A. & Arsenin, V., 1977. Solution of ill-posed problems, Win-
ston, Washington, DC.

van Leeuwen, T. & Herrmann, F., 2016. A penalty method for PDE-
constrained optimization in inverse problems, Inverse Problems, 32(1),

1-26.

van Leeuwen, T. & Herrmann, F. J., 2013. Mitigating local minima in full-
waveform inversion by expanding the search space, Geophysical Journal
International, 195(1), 661-667.

Venkatakrishnan, S. V., Bouman, C. A., & Wohlberg, B., 2013. Plug-
and-play priors for model based reconstruction, in 2013 IEEE Global

Conference on Signal and Information Processing, pp. 945-948, IEEE.

Virieux, J. & Operto, S., 2009. An overview of full waveform inversion in
exploration geophysics, Geophysics, 74(6), WCC1-WCC26.

APPENDIX A: BLOCK-MATCHING AND 3D FILTERING
(BM3D)

Most of the denoising techniques are based on shrinking small co-
efficients in a transformed domain where the coefficient distribu-
tion is sparse. BM3D (Dabov et al. 2007) is a novel image denois-
ing technique, which is based on an enhanced sparse representation
in a transformed domain where the self-similarities in the image are
exploited. This method contains four steps (Lebrun 2012):

e Select an image patch with size & x k and find all the similar
patches in the original image and group them in a 3D cube.

e Apply a 3D linear transform on the cube.

e Filter the transform coefficients by thresholding or Wiener fil-
tering.

e Apply inverse 3D transform and return the filtered patches to
their correct positions.

Redundancy between patches enables BM3D to reconstruct smooth
and flat parts properly. Furthermore, it is capable to reconstruct fine
details and sharp edges. Despite good performance of this tech-
nique, it has some drawback like artifacts in denoised images when
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Figure 10. IR-WRI without/with BM3D regularization on benchmark models. (a) Marmousi II, (b) SEG/EAGE salt, (c) Synthetic Valhalla and (d) 2004 BP
salt models. The columns of this figure are as follows: True velocity model, initial velocity model, IR-WRI and BM3D regularized IR-WRI with NADMM.
The vertical dashed lines indicate the location of vertical logs of Fig. 11

the signal to noise ratio is poor. Also, the computational complex-
ity is much higher than that of simple denoising methods. The most
computational burden of this method is generated by the first step,
which is grouping and comparing similar patches. For a N x N
image with a k x k patch, it is in order of O(N*k?). The burden
of the remaining steps is related to the used sparsifying transform.
In this paper, we use 3D discrete cosine transform (DCT) and the
computational complexity can be expressed as O(k*R log(k*R))
where R is the number of similar blocks in each cube. Moreover,
BM3D and all of the patch-based denoising methods have a large
number of parameters that are difficult to adjust properly. In this
paper, we used the official package of BM3D, just set the standard
deviation of noise (o) and used the default values for the rest of
the parameters according to table I of Dabov et al. (2007). The o is
selected by trial and error in this paper.
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