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Expected properties of gold melt containing intrinsic nuclei

The energy saving  v per volume unit produced by the equalization of Fermi energies of crystals and their melt tends to stabilize tiny unmelted crystals above the melting point T m . The critical parameters and  v have been already determined assuming that  v has an extremum at the crystal critical radius R = R* 2ls ;  v is strongly modified by the quantification of electronic levels in the electrostatic potential created by the electron transfer from the crystal to the melt when the unmelted intrinsic crystal radius R nm is smaller than R* 2ls . Reduced values of  v have been already determined in some bulk metallic glasses comparing the experimental time-temperature-transformation diagrams to the calculated ones. They exactly correspond to the first energy level of one s-electron moving in the same spherical attractive potential in vacuum in spite of the fact that, in a metal, the charge screening is built by many-body effects. The same method is used to predict, for the first time, without any adjustable parameter, the liquid-gold undercooling rate as a function of R nm . Overheating rate influence on unmelted crystal radius is discussed. A very large overheating temperature of about 1.46×T m could be necessary to reduce the energy barrier and eliminate these entities in the melt. The melt viscosity could also be somewhat irreversible above T m as already observed for Fe 83 B 17 eutectics and perhaps in contradiction with claims that the Andrade law is always satisfied. New experiments using large overheating rate with electromagnetic or electrostatic levitation are suggested.

Introduction

Transformations liquid-solid or solid-liquid always induce changes of the conduction electron number per volume unit, and sometimes per atom. The equalization of Fermi energies of a spherical particle having a radius R smaller than a critical value R* 2ls () and of its melt also produces an unknown energy saving  v per volume unit ; the  v value is equal to a fraction  ls of the molar fusion heat H m per molar volume V m . This energy has been already included in the Gibbs free energy change ) , ( 2 R G ls   associated to a crystal formation in metallic melts, being equal to  = (T-T m )/T m and T m the melting temperature [1][START_REF] Tournier | Progress in Light Metals[END_REF][START_REF] Tournier | Proceedings of the V th Int. Symp. Electromagn. Proc. Mat[END_REF]; the thermal variation of  ls has to be an even function of  given by (1) in order to respect the thermodynamic equilibrium conditions given by (2) of a bulk sample at T=T m , regardless of the radius R [START_REF] Tournier | 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields[END_REF][START_REF] Tournier | 13th Conference on Rapidly Quenched and Metastable Materials, Open access Proceedings[END_REF]:
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where  0l corresponds to the free-volume disappearance temperature. The critical parameters R* 2ls and G* 2ls have been calculated assuming that  ls is not radius dependent. The homogeneous nucleation temperature  0l corresponding to the maximum of the nucleation rate per volume unit is unique and equal to 2/3 when  ls0 < 1 and to [ ls () -2]/3 when  ls0 >1 [START_REF] Tournier | 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields[END_REF][START_REF] Tournier | 13th Conference on Rapidly Quenched and Metastable Materials, Open access Proceedings[END_REF]. The classical model neglects the free electron contribution to the free-energy critical barrier called G* 1ls ; then, the nucleation rate J per volume unit and per second has been viewed as being maximum at temperatures depending on the liquid element because the observed undercooling is far above 2/3, does not depend on the overheating rate and is, very often, of the order of 0.2. The new nucleation rate J is given by ( 2):
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, G nm being the free energy change of an unmelted crystal previously solidified and acting as a growth nucleus, v the melt volume, t sn the steady-state nucleation time, k B the Boltzmann constant and lnK ls = 90  2 for pure liquid elements [START_REF] Vinet | [END_REF]. In such heterogeneous nucleation, K ls is proportional to the concentration of active unmelted crystals for nucleation which could be larger than 10 24 -10 25 m -3 as shown by nanocrystallization experiments of glass-forming melts and observation of mean range order clusters [7]. The reduction of lnK ls could be of the order of 10 % as compared to its value for a homogeneous nucleation. The value of  ls0 is equal to 0.217 in 38 liquid elements [1]. The coefficient ) (T ls  is strongly modified by quantification of electronic levels in large electrostatic potential created by the electron transfer from the crystal to the melt when the unmelted intrinsic crystals have a radius R nm much smaller than the critical radius R* 2ls . The reduced value  nm0 of ) ( m ls T  has been already determined in three bulk metallic glass-forming melts by comparing the experimental Time-Temperature-Transformation diagram measured by electrostatic levitation to the calculated one. It exactly corresponds to the first energy level of one selectron moving in the same spherical attractive potential and in vacuum in spite of the fact that, in a metal, the charge screening is built by many-body effects. The electrostatic potential energy, in this model, is proportional to n×z/R nm and then to R 2 nm , nz being the number of conduction electrons above the Fermi level of the melt in a crystal of n atoms [START_REF] Tournier | 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields[END_REF][START_REF] Tournier | 13th Conference on Rapidly Quenched and Metastable Materials, Open access Proceedings[END_REF]. This new model is used in this paper to calculate the gold undercooling as a function of the unmelted crystal radius R nm < R* 2ls and to compare it to the experimental results [8]. There is no contradiction between the first model and the second one. The critical radius R* 2ls is determined by assuming that it exists a radius R nm above which the energy saving  ls0 becomes constant and below which  ls0 depends on it. This assumption is necessary because the difference of Fermi energies of the melt and the solid has to be maximum at T = T m to respect (2); then, it is also assumed that the energy saving coefficient  ls0 is constant above T m . Nevertheless, all radius calculations of surviving crystals in liquid elements made in some previous papers using the assumption of a saving energy  ls0 independent of R nm have to be revised [1][START_REF] Tournier | Progress in Light Metals[END_REF][START_REF] Tournier | Proceedings of the V th Int. Symp. Electromagn. Proc. Mat[END_REF].

Equations

Several equations are used to calculate the undercooling temperature expected in presence of unmelted crystals of radius R nm < R* 2ls . The free energy change associated with a crystal formation of radius R is given by (4): 
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The critical radius and the critical energy barrier are given by ( 5) and ( 6):
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R* 2ls = 26.210 10 m and G* 2ls /k B T = 510 for  =0 with V m = 1.0810 5 m 3 ,  ls0 = 0.217, ln K ls = 90, H m = 12600 J, T m = 1336 K, S m = 9.43 J.K 1 . The critical radius R* 2sl of a liquid droplet inside an unmelted crystal is obtained by changing  in - in [START_REF] Tournier | 13th Conference on Rapidly Quenched and Metastable Materials, Open access Proceedings[END_REF] when  > 0 [1][START_REF] Tournier | Progress in Light Metals[END_REF][START_REF] Tournier | Proceedings of the V th Int. Symp. Electromagn. Proc. Mat[END_REF]. As already shown, the attractive potential -U 0 defined by ( 7) is a good approximation for nz >> 1, n being the atom number per crystal of radius R nm and z the difference of the conduction electron number per atom between crystal and melt, e the electron charge,  nm0 ×H m the quantified electrostatic energy saving per mole at T m ,  0 the vacuum permittivity and N A the Avogadro number:
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The first-energy level E q of an s electron moving in vacuum in a negative spherical potential well -U 0 corresponds in several bulk metallic glass-forming melts to the same potential energy -U 0 . The Schrödinger equation has been written with wave functions only depending on the distance r from the potential centre for an s state [START_REF] Landau | Mécanique Quantique[END_REF]:
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are given by the k value and by (8) as a function of the potential U 0 associated with a crystal radius R = R nm , n increasing with the cube of R nm :
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Results

U 0 in gold is equal to 1.90910 17 J and E q = 1.908210 17 J for  nm0 =  ls0 = 0.217 and R* 2ls = 26.210 -10 m for = 0; z is deduced as being equal to 0.1032; z has to stay constant at the melting temperature regardless of the radius R nm because the crystal Fermi energy is constant. In fig. 1,  nm0 is calculated from U 0 given by ( 7) for various values R nm and z = 0.1032 at T = T m ;  nm0 is constant above the critical radius R* 2ls . Each value E q is assumed to be equal to the first energy level of one s electron moving in the same spherical attractive potential in vacuum in spite of the fact that, in a metal, the charge screening is built by many-body effects.

The potential energy U 0 deduced from E q produces the same quantified energy E q in a gold melt. This assumption will be again justified by an agreement with experimental results.

The gold undercooling temperatures are calculated as a function of the radius R nm using  nm0 given in Fig. 1, (1,[START_REF] Tournier | Proceedings of the V th Int. Symp. Electromagn. Proc. Mat[END_REF][START_REF] Vinet | [END_REF], v.t = 1210 -9 s.m 3 , ln(J.v.t sn ) = 0 and ln(K ls .v.t sn ) = 71.8 to analyze experimental results [START_REF] Vinet | [END_REF]8]. The unmelted crystal radius R nm is plotted as a function of the undercooling rate in Fig. 2 and Fig. 3 . The homogeneous nucleation of a melt droplet inside a surviving crystal could melt it with overheating as shown in Fig. 2-2 for ln(K ls .v.t sn ) = 36, K sl = 90, v  10 27 m 3 and t sn = 3600 s. This disappearance temperature above T m is obtained using (3), replacing the effective energy barrier (G* 2sl -G nm ) by G 2ls given by ( 4) with  changed in - [START_REF] Tournier | 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields[END_REF],  ls constant above T m and equal to  nm0 given in Fig. 1 as a function of R nm and G 2sl /k B T =36. An overheating rate of 43.7 % would have to be applied to eliminate all surviving crystals with a processing time t sn = 3600 s and to obtain a much larger undercooling rate. An overheating larger than 13 % (170 K) would be sufficient to suppress the nuclei producing a maximum undercooling of 2.3 %. The unmelted crystals with 1.3 < R nm < 2.25 nm are not acting as growth nuclei because the nucleation barrier becomes too high below T m for ln(K ls .v.t sn ) = 71.8. The undercooling rate jumps from 2.8 % to 17.6 % (235 K) after an overheating rate which could increase up to 28.7 % (383 K) for ln(K ls .v.t sn ) = 71.8 . The existence of this jump explains why the undercooling rate does not depend on overheating rate varying up to about 28.7 %. G. Wilde et al have varied the overheating up to 164 K without any change of the undercooling of 212 K observed with ln(K ls .v.t sn ) = 76.8 [8]; the model predicts, in this case, an undercooling rate of 16.25 % (217 K).

An overheating of about 38% (510 K) could be necessary to only obtain an undercooling rate of 18.5 % (247 K). The overheating rate limits are approximate values because the radii of surviving crystals always depend on the processing time [START_REF] Tournier | 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields[END_REF]; this time t sn has been taken equal to 3600 s in our calculations.

The influence of the overheating rate on material crystal orientation when magnetic fields are applied on melts is known since a long time [START_REF] Tournier | 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields[END_REF]. New experiments are needed to clarify the problem of strong overheating influence on surviving-crystal radius distribution and on undercooling. The use of electromagnetic levitation or electrostatic levitation is also necessary to eliminate the influence of impurities introduced by crucibles during overheating.  nm0
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The liquid viscosity could also be somewhat irreversible above T m as already observed for Fe 83 B 17 eutectics and perhaps in contradiction with claims that the Andrade law is always satisfied [11]. 

Conclusion

The energy saving induced by the Fermi energy equalization of crystals and their melt leads to the presence of surviving crystals above the melting point. They govern the crystallization and the undercooling rate of liquid metals. This energy is strongly modified by quantum effects for a radius smaller than the critical radius. A simple model of quantification already used to determine the crystallization temperature of bulk glass-forming melts has been applied; the gold undercooling rate is predicted in agreement with recent experimental results without using any adjustable parameter. The undercooling rate jumps from 2.3 % to 16 % and is very stable after applying a broad window of overheating temperatures. The model is based on the assumption that the first energy level occupied in vacuum by one s electron moving in the same spherical electrostatic potential than in a metallic melt is exactly equal to the experimental energy saving associated with each crystal. The influence of the overheating rate on the crystallization temperature could be studied by electromagnetic levitation. Such study would be very important to determine whether the radius of surviving crystals is limited by growth of melt droplets imbedded into surviving crystals or by wearing away when the overheating temperature and the processing time increase.

Fig. 1 :

 1 Fig. 1: The gold energy saving coefficient  nm0 plotted versus the unmelted crystal radius R nm up to R* 2ls .

Fig. 2 :

 2 Fig. 2: lnv.t = 18.2: Undercooling induced by crystals of radius R nm calculated with ln(K ls .v.t sn ) = 71.8; lnv.t = 54: Disappearance of surviving crystals of radius R nm as a function of  by homogeneous nucleation of a liquid droplet inside surviving crystals using ln(K sl .v.t sn )  36.

Fig. 3 :

 3 Fig. 3: Solidification at the melting temperature T m and undercooling near T m .
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