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Abstract

This paper studies a real-time parking-sharing program with which owner-

s of private parking spaces can lend their parking spaces to other drivers to

park when these are not in use. Compared with curbside and garage parking

problems, the information of supplies and demands is randomly announced by

drivers and owners respectively via a parking-sharing APP installed on their s-

martphones. Besides, the parking spaces made available by independent owners

are usually heterogeneous in terms of their locations and available time inter-

vals. Thus, two critical issues need to be resolved: (a) appropriately matching

demands and supplies under an uncertain setting; and (b) efficiently scheduling

the demands matched to avoid potential time conflicts. We propose a nov-

el real-time reservation approach based on a rolling-horizon framework, which

can assign multiple drivers to a single parking space in order to better utilize

scarce parking resources. For each period, an integrated optimal matching-and-

scheduling problem is formulated as a mixed integer programming model and

proved to be strongly NP-hard. To fast generate a near-optimal solution to the

problem, a two-stage heuristics derived from the minimum-cost flow problem is

developed. The computational results validate the efficiency and effectiveness

of the proposed approach. Some operational insights are also presented and

discussed.

Keywords:

Parking sharing; reservation system; matching and scheduling; algorithm;

∗Corresponding author
Email address: feng.chu@univ-evry.fr (Feng Chu )

Preprint submitted to Journal of LATEX Templates June 8, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0305054820302008
Manuscript_fe1d7a6b6766f4261bd611a709c4da5b

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0305054820302008
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0305054820302008


1. Introduction

Shortage of parking resources is a significant problem in many large cities.

It is reported that about 30% of vehicles in central areas of a typical city are

cruising for parking and the average cruising time is 8.1 minutes per car [24].

Such inefficient transportation activities not only waste drivers’ time and fuel5

but also cause additional traffic congestion, gas emission, and traffic accidents

[13]. On the other hand, in most metropolitan areas (Beijing for instance),

about 44% of private parking spaces are found to be idle during the daytime.

How to best utilize the private parking spaces has emerged to be an important

topic for academic research and industrial applications.10

In the past decades, more and more parking-sharing programs have been

launched with the support of advanced technologies (e.g., mobile-Internet, R-

FID, infrastructure-to-vehicle, and vehicle-to-infrastructure communications),

such as “ParkEasier” (https://parkeasier.com/) in Los Angeles, Boston,

Chicago and other large cities of US, “JustParking” (https://justpark.com/)15

in London of UK, and “DingdingParking” (http://dingdingtingche.com/) in

Beijing of China. These programs provide efficient alternatives for drivers who

search for parking spaces nearby their destinations and meanwhile provide e-

conomic compensations for owners who rent out their private parking spaces

for other drivers to use. More importantly, the effective usage of private park-20

ing resources can relieve the parking pressure and reduce the traffic congestion

and emissions for the whole society[24]. It is worth noting that parking-sharing

programs have become especially important in many Asian metropolis, such as

Beijing, Shanghai, and Hong Kong, where residential communities and work-

places are nearby each other and therefore opportunities for parking-sharing25

applications arise naturally[32].

The operational protocol of a parking-sharing program is illustrated in Fig-

ure 1. The program has launched an APP installed on users’ smartphones.

Using the APP, an owner can submit supply information to the system, includ-

ing the location of his private parking space and the available time interval (e.g.,30
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Figure 1: Illustration of parking-sharing programs

from 7:00 am to 6:00 pm). A driver, on the other hand, submit her demand

information to the system, including her origin, destination, and the parking

starting and ending times (e.g., from 9:00 am to 5:00 pm). With a certain

matching policy, for example first-book-first-serve rule, the system sends back

a confirmed reservation to the driver who is successfully matched with a park-35

ing space. The confirmed reservation tells the driver the detailed location of

the reserved parking space and the parking fee charged by the system, and the

starting and ending times of using the parking space. The system also sends

a message to the owner whose parking space is reserved, informing him of the

driver’s car information (plate number and brand), the parking income paid by40

the system, and the starting and ending times of using the parking space.

As illustrated in Figure 1, the parking-sharing program is a typical bilateral

platform (market) connecting two distinct user groups, i.e., drivers and own-

ers. In order to reach the economies of scale, the platform needs to attract as

many drivers and owners as possible to participate in the program and to match45

parking demands and supplies together. Currently, to the best of our knowl-

edge, many parking-sharing programs already launched are not as popular as

expected. The reasons are multifold. Firstly, shared parking spaces supplied

by owners may not be convenient to use due to the long walking time from the
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parking space to the final destination. Secondly, most programs allow owners to50

temporarily supply their shared parking spaces whenever they do not use them.

The supplies, as well as the demands, may fluctuate significantly throughout

a day. The program cannot know either the announcement times of drivers

and owners or the exact information of the demands and supplies in advance.

We recognize that individual mobility may have a regular daily trajectory [11],55

but there can be occasions where irregular travel needs occur (please see Ap-

pendix A.1). This paper focuses on the parking-sharing problem to address the

irregular travel needs of drivers and owners. Any parking reservation system

can be easily adapted by pre-treating the regular drivers and owners with the

early-bird-fee rule or a long-term contract firstly, then processing the uncertain60

demands and supplies of irregular drivers and owners, respectively. Besides, the

shared parking resources are usually heterogeneous in terms of the locations

and available time intervals since they are shared by individual owners. Lastly,

the current reservation systems are usually low-efficient and cannot achieve the

global optimal performance of the whole system since the systems let drivers65

manually select and reserve their best parking spaces and even negotiate the

parking fees with owners. The characteristics and problems mentioned above

make the operations management of the program much more challenging than

conventional curbside and garage parking problems in which parking resources

are relatively fixed and deterministic. Therefore, a real-time and dynamic en-70

vironment is considered in this paper and a smart and sophisticated real-time

parking reservation approach involving matching and scheduling procedure is

needed to developed to maximize the performance of the whole system.

The parking management problem has attracted considerable attention in

recent years. Early study aims to reduce the cruising time on streets by pro-75

viding drivers with real-time parking information and further guide drivers to

find available parking slots on the street or in the garages [21]. Real-time in-

formation of parking space availability is often collected by sensors at entrances

and exits or at individual parking slots in garages. For the on-street parking,

crowdsourcing is an emerging approach to collect parking information [1, 4]. To80
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further improve the parking experience and increase utilization of parking s-

paces, some researchers have tried to develop smart parking reservation systems

in which drivers can not only check the available parking spaces but also make

reservations in advance [34, 33, 15, 16, 5, 25, 28]. A variety of mathematical pro-

gramming models and algorithms are proposed to assign limited parking spaces85

to drivers with different objectives, such as the maximum revenues of a parking

reservation system or the minimum drivers walking time from the assigned park-

ing space to their desired destinations [35, 7, 10, 14, 20]. The aforementioned

literature focuses on curbside and garage parking problems, where the parking

spaces are usually seen as homogeneous resources with constant supplies. Also,90

the scheduling of drivers’ parking times is not considered since drivers usually

can park their cars at the reserved spaces as long as they can afford the parking

fees. For a comprehensive review on curbside and garage parking problems,

please refer to [13].

More and more researches are now focused on private parking-sharing pro-95

grams, which assign an available private parking space to satisfy a driver’s

demand. Shao et al. [23] first propose a simple but efficient reservation system

to maximize the profit of the e-platform or the utilization of shared parking re-

sources. A mixed integer programming (MIP) model is established and resolved

by an existing commercial software tool. They indicate that the proposed MIP100

approach outperforms the first-book-first-serve rule in their numerical experi-

ments. Chou et al. [6] propose a reservation policy for accepting or reject-

ing drivers’ demands to maximize revenue in a private parking-sharing system.

From the perspective of economics, Xu et al. [32] design direct and indirect

exchange market mechanisms with money flow to incentivize more drivers and105

owners to take part in the shared parking market. Xiao and Xu [30] propose

a novel double VCG auction mechanism to effectively restrain both restrain

drivers and owners opt out in the shared parking market. Xiao et al. [31]

propose two truthful double auction mechanisms with two novel principles to

respectively encourage drivers and owners to report their truth information to110

the parking-sharing system.
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In the literature reviewed above, the parking reservation systems and mech-

anisms are designed under a static environment in which parking demand and

supply are assumed to be known parameters. Besides, the matching models

and algorithms developed can only assign a single parking space to at most one115

driver, which is known as an one-to-one matching pattern, even though more

than one driver can share the same parking space when there is no overlap-

ping in their parking times. In a practical environment, the parking reservation

system should be designed to deal with uncertainties of parking demand and

supply. Guo et al. [12] use a Gaussian mixture model to describe the random120

arrival and departure times of drivers and then develop a simulation-based opti-

mization tool for a parking-sharing e-platform to maximize the expected profits.

Recently, Wang and Wang [28] propose an innovative flexible parking reserva-

tion system to mitigate the effects of parking uncertainty from both demand

and supply.125

Motivated by the needs in parking-sharing applications and researches, this

study proposes a real-time reservation approach to deal with a private parking-

sharing problem in which demands and supplies occur randomly. The reserva-

tion system runs in a periodic operational mode, and a rolling-horizon frame-

work is applied to roll the system forwards in a finite operational horizon. With130

the information on the demands and supplies collected during a period, the

system may appropriately match multiple drivers with a single parking space,

referred to as a multi-to-one matching pattern, and efficiently schedule the

matched demands at the same parking space. The integrated matching-and-

scheduling problem is formulated as an MIP model and proved to be strongly135

NP-hard. To efficiently tackle the MIP model in a real-time operational setting,

a set of pre-processing constraints are first introduced to reduce the solution

space. Then, an iterative two-stage heuristic algorithm is developed to fast

generate a near-optimal solution. Finally, a simulation experiment setting is

established based on the real data from “DingdingParking” application in a140

CBD of Beijing city. Experimental results of single- and multi-period scenarios

show that the proposed matching-and-scheduling approach can significantly re-
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duce the total traveling cost of all drivers and improve the utilization of parking

spaces, compared with the existing one-to-one matching pattern.

The contributions of this work are highlighted as follows.145

• A novel real-time parking reservation approach is proposed for a private

parking-sharing program in an uncertain environment. To deal with the

fluctuations in demand and supply, the system is designed in a periodic

operational mode with a rolling-horizon framework. In each period, the

received demands and supplies are optimally matched with a multiple-to-150

one matching pattern in which a parking space can be assigned to more

than one driver if there is no overlapping in their parking times. Moreover,

the matched demands of multiple drivers are scheduled to avoid potential

time conflicts of using the same parking space.

• To tackle the integrated matching-and-scheduling problem efficiently in155

the real-time setting, the computational complexity of the problem is first

analyzed, and then an iterative two-stage heuristic algorithm is proposed.

In the first stage of the algorithm, a relaxed matching model is reduced

to a network flow problem and is solved based on a revised capacitated

minimum-cost flow algorithm [18]. In the second stage, a simple but ef-160

ficiently heuristic rule is developed to schedule the matched demands at

the same parking space.

• A simulation experiment bed is established based on the real data from

“DingdingParking” application. Experimental results show that the pro-

posed multiple-to-one matching pattern outperforms the existing one-to-165

one matching pattern. Compared with the commercial software tool,

ILOG-CPLEX (version 12.80 ), the proposed iterative two-stage algorithm

can fast find a near-optimal solution for large scale instances.

The rest of the paper is organized as follows. Problem description and

analysis are presented in Section 2. The formulation of the problem and the170

proof of the computational complexity are presented in Section 3. The iterative
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two-stage algorithm and the computational results are presented in Sections 4

and 5, respectively. We discuss the extensions and future study in Section 6,

and conclude this paper in Section 7.

2. Problem description and analysis175

2.1. Periodic operations of real-time parking reservation system

We address a real-time reservation problem for a parking-sharing program.

The finite operational horizon on each weekday is equally divided into T deci-

sion periods. The system collects parking demands and supplies announced by

drivers and owners, respectively, for each period T, T ∈ {1, 2, 3, ... T}. At the180

end of period T , the system provides an optimal matching-and-scheduling solu-

tion based on the collected information. Subsequently, a successfully matched

driver receives a confirmation on her demand: The location of the parking space

and the starting and ending times of using the space. Meanwhile, the owner,

whose parking space is assigned to the driver, receives a message: The starting185

and ending times of his parking space being occupied and the number plate

of the driver’s car. Then, the successfully matched drivers and the parking s-

paces with zero available time are removed from the demand and supply lists,

respectively. The unmatched drivers stay in the list until they are successfully

matched or their demands are expired in a future period. The available time190

interval of some owners may be divided into several subintervals if their parking

spaces are shared by multiple drivers. In such a case, we see each subinterval

as a single parking space owned by a dummy owner with the same location.

In the next period T + 1, the system generates a new matching-and-scheduling

solution based on the updated lists of demands and supplies. The reservation195

system rolls forwards by a rolling-horizon framework.

2.2. Description of the problem

For period T, T ∈ {1, 2, 3, ... T}, there are a list of drivers I and a

list of owners J in the system, as illustrated in Figure 2. For driver i, i ∈ I,
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Figure 2: Periodic operations of the parking-sharing reservation system

her demand information is denoted as Di(oi, di, ai, bi, ei), where oi and di are200

respectively the locations of her current origin and desired destination; ai and

bi are respectively the earliest departure time from the origin and the requested

latest arrival time at the destination; and ei is the estimated staying duration

at the destination. For a parking space j, j ∈ J , his supply information is

denoted as Ej(rj , hj , kj), where rj is the location of the shared parking space205

and [hj , kj ] denotes the available time interval of the parking space. With the

collected demands and supplies, the reservation system generates a matching

solution M = {m(i, j)|i ∈ I, j ∈ J}, and the corresponding scheduling scheme

S = {(si,j , s′i,j)|∀m(i, j) ∈M}, wherem(i, j) indicates that driver (i.e., demand)

i is matched with parking space (i.e., supply) j , and si,j and s′i,j are the210

scheduled starting and ending times of driver i for parking space j, respectively.

Note that, hereinafter, the terms of driver and demand as well as the terms of

parking space and supply are used interchangeably. We use pronouns ”she” or

”her” and ”he” or ”his” to differ a driver and an owner.

Let us consider a specific match m(i, j) and the corresponding parking215

scheme (si,j , s
′
i,j). The driver i’s traveling and parking actions by using parking

space j are illustrated in Figure 3. Firstly, driver i leaves from oi and parks her
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car at rj from time si,j . Secondly, she walks to di and stays there for a duration

ei. After that she walks back to rj before time s′i,j , and drives her car back to

oi. The driving time between oi and rj is ti,j , the walking time between rj and220

di is t
′

i,j , and the directly driving time between oi and di is ti. Note that pa-

rameters ti,j , t
′

i,j , and ti are given constants estimated with advanced real-time

transportation information and navigation systems, such as Google maps.

Figure 3: The spatial and temporal relation in match m(i, j)

For a match m(i, j), the corresponding travel cost of driver i is the sum

of her round trip cost from the origin to the destination via. space j and the225

corresponding parking fee, which is defined as

ci,j = 2αti,j + 2βt
′

i,j + γwi,j , (1)

where parameters α and β are travel cost per unit time for driving and walking,

respectively, parameter γ is the parking fee per unit time, and wi,j denotes the

parking duration of driver i at space j. It is clear that a driver’s travel cost

ci,j is determined by the location of the matched space and the corresponding230

parking duration.

We assume that on-time arrival is the main consideration of the drivers in

our study. Thus, they will consider either self-driving with a confirmed parking

space or taking taxi. In other words, on-street parking which requires uncertain

time for searching and waiting is not an alternative to be considered in our235

model. The corresponding taxi fee of her round trip from the origin to the

destination is formulated as follows.

c0i = 2(ψ + θmax(0, ti − t0)), (2)
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where ψ is the fixed minimum fee, also known as the flag-down fare in the taxi

industry, θ is the price per unit time in taxi, and max(0, ti− t0) is the traveling

time exceeding the flag-down time t0. Equation (2) implies that a driver just240

pays a fixed minimum fee ψ if the traveling time is shorter than the flag-down

time, namely ti < t0. Besides, the waiting time costs of a taxi traveling to pick

up the driver at the origin and the destination are neglected because this study

assumes that a driver can reserve a taxi before the travel using an e-hailing App

or a dial-hailing method.245

As mentioned in the Introduction, the parking-sharing program is a typical

bilateral platform and needs to attract as many drivers and owners as possible in

order to reach the economies of scale. Drivers in most applications focus on their

travel costs via shared parking spaces. Hence, the problem under investigation is

to determine an appropriate matching-and-scheduling solution to maximize the250

sum of the travel cost savings of the drivers in the current list, compared with

the taxi fee from the perspective of operational management. Note that similar

objective functions have been considered in the literature [23, 30, 31]. Also, we

realize that there exist other important indicators, such as the utilization rate of

shared parking spaces, and the ratio of successfully matched drivers. We discuss255

these indicators in the simulation experiments of this paper.

2.3. Problem analysis

First of all, the parking time of driver i at parking space j is wi,j ≡ 2t
′

i,j+ei,

and the ending time s′i,j is calculated by s′i,j = si,j + wi,j . Hence, in the

following formulation, we only need to determine the matching m(i, j) and the260

corresponding parking starting time si,j .

Secondly, to respect the scales of feasible matching conditions, the following

Constraints (3)-(4) are used to filter infeasible parking spaces from original set

J for each driver i, i ∈ I. We say that the following two necessary conditions

must hold if space j is feasible for driver i.265

max(ai + ti,j , hj) + t
′

i,j ≤ bi, (3)
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max(ai + ti,j , hj) + wi,j ≤ kj . (4)

Constraint (3) implies that driver i ’s earliest arrival time at her destination

(i.e., max(ai+ ti,j , hj)+ t
′

i,j) cannot exceed the required latest arrival time (i.e.,270

bi). Constraints (4) means that driver i ’s earliest departure time from space j

(i.e., max(ai + ti,j , hj) + wi,j) cannot exceed the upper bound of the available

time interval (i.e, kj). Consequently, for each driver i, the set of feasible spaces

is constructed as Ji, where Ji ⊆ J and for each parking space j, the set of

of feasible drivers is constructed as Ij , where Ij ⊆ I. The following problem275

formulation is established based on the identified feasible sets Ij and Ji.

Before the formal formulation, the main notations are listed in Table 1.

3. Mathematical formulation

This section proposes an MIP model for the stated problem in Section 2 and

analyzes the computational complexity of the problem.280

3.1. Integrated matching-and-scheduling model

To formulate the problem, two classes of constraints are considered. The first

one is the class of matching constraints, which ensure that the parking time of

a driver does not exceed the available time interval of the matched space. The

second one is the class of scheduling constraints, which ensure that there are285

no conflicts for any two drivers’ parking times if both are assigned to the same

parking space. The integrated optimal matching-and-scheduling problem is for-

mulated as follows.

Problem P maxCS = max
∑
i∈I

∑
j∈Ji

(c0i − ci,j)xi,j , (5)

s.t.
∑
j∈Ji

xi,j ≤ 1, ∀i ∈ I, (6)

si,j ≥ max(ai + ti,j , hj)xi,j , ∀j ∈ Ji,∀i ∈ I, (7)

si,j ≤ min(bi − t′i,j , kj − wi,j)xi,j ,∀j ∈ Ji,∀i ∈ I, (8)

12



Table 1: Main notations

Parameters

I: set of demands (i.e., drivers) for period T ;

J : set of supplies (i.e.,parking spaces) for period T ;

Ij set of feasible drivers for parking spaces j, j ∈ J ;

Ji set of feasible parking spaces for driver i, i ∈ I;

oi, di: origin and destination of driver i, i ∈ I, respectively;

ai: earliest departure time from origin oi, i ∈ I;

bi: latest arrival time at destination di, i ∈ I;

ei: estimated staying duration at destination di, i ∈ I;

rj : location of parking space j, j ∈ J ;

[hj , kj ]: available time interval of parking space j, j ∈ J ;

ti,j : driving time between oi and rj , i ∈ I and j ∈ J ;

t′i,j : walking time between rj and di, i ∈ I;

ti: driving time between oi and di, i ∈ I;

wi,j : parking time of driver i at parking space j, i ∈ I and j ∈ J ;

α: travel cost per unit time for self-driving;

β: travel cost per unit time for walking;

γ: parking fee per unit time;

ψ: minimum constant taxi fee, also known as the flag-down fare;

θ taxi price per unit time;

c0i : travel cost of driver i by taking a taxi, i ∈ I;

ci,j : travel cost of driver i by self-driving and using parking space j,

i ∈ I and j ∈ J ;

G large enough value;

Decision variables

xi,j binary integer variable, xi,j = 1, if driver i is matched with

parking space j; xi,j = 0, otherwise, for i ∈ Ij , j ∈ J ;

yi,i′ binary integer variable, yi,i′ = 1, if driver i parks before driver i′

at the same parking space; yi,i′ = 0, otherwise, for i < i′, i, i′ ∈ I.

13



si′,j ≥ si,j + wi,j − (3− xi,j − xi′,j − yi,i′)G,∀i, i′ ∈ Ij ,∀j ∈ J, (9)

si,j ≥ si′,j + wi′,j − (2− xi,j − xi′,j + yi,i′)G, i < i′, i, i′ ∈ Ij ,∀j ∈ J, (10)

si,j , si′,j ≥ 0, xi,j ∈ {0, 1}, and yi,i′ ∈ {0, 1}, i < i′, i, i′ ∈ Ij ,∀j ∈ J. (11)

290

In the model above, the objective function (5) is to maximize the total travel

cost saving (i.e, CS) of all drivers. Note that driver i may have a negative travel

cost saving by using a shared parking slot if the drivers travel cost via a shared

parking slot exceeds the taxi fee, i.e., c0i < ci,j . This case usually happens when295

the drivers travel time/distance is so short that the taxi cost in Equation (2) is

reduced to the minimum fixed cost 2ψ and meanwhile the driver’s parking fee

is relatively high. In such a case, the mixed integer programming approach will

not assign the parking space to the driver, since such assignment will worsen the

objective value. Constraints (6) guarantee that any driver is assigned to at most300

one space. The matching Constraints (7)-(8) require that the starting time of

driver i parking at space j cannot be earlier than the possible earliest starting

time (i.e., max(ai + ti,j , hj)) or later than the possible latest ending time (i.e.,

min(bi − t′i,j , kj −wi,j)) if driver i is matched with space j (i.e, xi,j = 1). More

specifically, in the right term of Constraint (8), bi − t′i,j is the latest starting305

time at space j with respect to the requested arrival time at the destination

and kj −wi,j is the latest starting times with respect to the upper bound of the

available time interval. The scheduling Constraints (9)-(10) jointly guarantee

that the parking time of driver i does not conflict with that of another driver i′,

if the two drivers are assigned to space j (i.e., xi′,j = xi,j = 1). More specifically,310

Constraint (9) ensures that the starting time of driver i′ using space j cannot

be earlier than the ending time of driver i, if driver i uses the space before

driver i′. Constraint (10) ensures that the starting time of driver i using space

j cannot be earlier than the ending time of driver i′, if driver i′ uses the space

before driver i. Note that if the two drivers are not assigned to space j, namely,315

xi′,j+xi,j < 2, the two constraints always hold because the bigGmakes the right
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terms to be small enough values regardless whether yi,i′ = 1 or 0. Constraints

(11) are restrictions on the decision variables. When an optimal solution to the

MIP model P is obtained, the corresponding optimal matching solution and

scheduling scheme are constructed as M∗ = {m(i, j)|xi,j = 1,∀i ∈ Ij , j ∈ J}320

and S∗ = {(si,j , s′i,j = si,j + wi,j)|∀m(i, j) ∈M∗}, respectively.

3.2. Complexity analysis

The computational time complexity of the problem is presented in following

Theorem 1.

Theorem 1. Problem P formulated by Constraints (5)-(11) is strongly NP-325

hard.

Proof: We first construct a decision version of Problem P , defined as “DVP :

Is there a feasible solution to Problem P ?”. We then reduce the decision version

of a classical parallel machines scheduling problem [22, 17], known as a strongly

NP-complete one [8], into an instances of the constructed DVP. Thus Problem330

P is strongly NP-hard.

Firstly, let us introduce the decision version of a classical parallel machines

scheduling problem, denoted as P ||Cmax. There is |I| different jobs to be pro-

cessed on |J | identical parallel machines. For each job i, 1 ≤ i ≤ |I|, its process-

ing time pi is independent of the machines. The decision version of P ||Cmax is335

that whether we can assign all jobs to parallel machines so that the maximum

completion time of each machine does not exceed a given parameter CU .

Now, consider a special instance of problem P with |J | parking spaces each

of which has an available time interval [0, CU ] and |I| drivers each of which

has a parking duration wi,j = pi on all spaces. Then the decision version of the340

special instance is whether there exists a feasible solution that assigns all drivers

to spaces within time interval [0, CU ]. If we consider parking spaces as parallel

machines and drivers’ demands as jobs, the decision version of the above special

instance of Problem P is equivalent to the decision version of P ||Cmax.

As it has been known that the decision version of P ||Cmax is strongly NP-345

complete [8], the decision version of Problem P is also strongly NP-complete.
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Consequently, Problem P is strongly NP-hard. �

4. Iterative two-stage heuristic algorithm

Because of the strong NP -hardness nature of the problem P , it may result

in unacceptable computational time if one applies an MIP solver, for example,350

ILOG-CPLEX, to solve middle- and large-sized instances of Problem P . In

this section, an iterative two-stage heuristic algorithm (two-stage algorithm for

short) is developed to fast find a near-optimal solution to Problem P under a

real-time computational environment.

In the first stage of the algorithm, a matching problem, denoted as PR, is355

formulated by relaxing partial matching and scheduling constraints from model

P . The matching problem PR is equivalent to a minimum-cost flow problem in

a directed network and can be solved by a revised capacitated minimum-cost

flow algorithm [18]. In the second stage, with the generated matching solution

MR, a straightforward but efficient heuristic method is proposed to schedule360

the matched drivers’ demands of a same space. Note that the drivers’ demands

can not be successfully scheduled if the conflicts of these drivers’ parking times

cannot be avoided. If that happens, the algorithm adjusts the initial match-

ing solution based on the identified conflicts and tries to schedule the drivers’

demands once more. The matching and scheduling process repeats until all365

matched drivers being successfully scheduled or no parking spaces being avail-

able for the unscheduled drivers. The framework of our two-stage algorithm is

presented in Figure 4. In the following, we provide the details of the two stages.
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Figure 4: Framework of the two-stage algorithm

4.1. Matching stage

In this stage, the original model P is relaxed by removing Constraints (7)-

(11) and adding additional capacity Constraint (12).

Problem PR max
∑
i∈I

∑
j∈Ji

(c0i − ci,j)xi,j

s.t. Constraint (6)∑
i∈Ij

wi,jxi,j ≤ (kj − hj) ≡Wj . (12)

xi,j ∈ {0, 1}, i ∈ Ij , j ∈ J. (13)
370

Constraint (12) requires that the sum of drivers’ parking durations not exceed

the length of the available time interval of parking space j (i.e.,Wj) if these

drivers are assigned to parking space j.

To efficiently solve the matching problem, model PR is reduced to a network

flow problem [3, 9, 19]. Let G(V,A) be a directed network as depicted in Figure375

5, where V = I ∪ J ∪ {s} ∪ {t} denotes the set of vertices consisting of drivers
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I, parking spaces J , a source vertex s and a sink vertex t, and A = {(i, j)|i ∈

I, j ∈ J} ∪ {(s, i)|i ∈ I} ∪ {(j, t)|j ∈ J} denotes the set of arcs. An arc

(i, j) ∈ A, associated with a flow capacity wi,j , connects vertex i to vertex j. If

there is a flow with volume li,j , 0 ≤ li,j ≤ wi,j , through arc (i, j), it generates380

a cost πi,j =
ci,j−c0i
wi,j

li,j < 0. Especially, we set that an arc(s, i) has a capacity

ws,i = maxj∈Ji wi,j and generates zero cost with an arbitrary volume of flow,

and an arc(j, t) has capacity wj,t = kj − hj ≡ Wj and generates zero cost with

an arbitrary volume of flow.

Figure 5: Minimum-cost flow in network G(V,A)

The following specific requirements are added to the network graph, with385

respect to the constraints of problem PR. First, considering Constraints (6),

in the feasible network flow, there is at most one outgoing flow from a driver

vertex i to all space vertexes j, ∀j ∈ Ji; while a space vertex j can have more

than one entering flow from driver vertexes i, i ∈ Ij . Second, with respect to

Constraints (12), the total amount of flow through an arc(j, t),∀j ∈ J , cannot390

exceed its capacity Wj , namely
∑
i∈Ij li,t ≤Wj ,∀j ∈ J . Third, with the binary

variable Constraints (13), the amount of flow through arc(i, j), i ∈ Ij ,∀j ∈ J ,

is set as li,j = wi,j if xi,j = 1 or li,j = 0 otherwise. Similarly, the amount of

flow through arc(s, i), ∀i ∈ I, is set as ls,i ∈ {0, ws,i|∀j ∈ Ji} and the amount

of flow through arc(j, t),∀j ∈ J , is set as lj,t ∈ {
∑
i∈I′j

wi,j |∀I ′j ⊆ Ij}. The flow395

balance constraints on any a vertex is required, which implies that the entering
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flow of a vertex equals its outgoing flow, except vertexes s and t. Based on

the network established, a matching solution MR is equivalent to flows from

vertex s to vertex t through network G(V,A), where an arc (i, j) with flow

li,j = wi,j , i ∈ Ij ,∀j ∈ J , corresponds to a match m(i, j) in MR. Therefore, the400

matching problem PR is reduced to the capacitied minimum-cost flow problem

in network G(V,A) considering the above specific requirements.

Our proposed algorithm derived from the capacitied minimum-cost flow al-

gorithm [18] successively identifies augmenting paths f∗ with the current maxi-

mum cost from vertex s to vertex t. For an introduction on the flow augmenting405

path in a network flow problem, please refer to [29, 2]. Here, we briefly intro-

duce the framework of the algorithm. First, a residual network Gf∗(V,A) is

initialized as the same one as the network G(V,A). Then the minimum-cost

augmenting path is found in Gf∗(V,A) as follows. For the arcs in the augment-

ing path, their flows in the network G(V,A) are augmented. Also, the residual410

network Gf∗(V,A) is updated by calculating the residual capacity of arcs, mov-

ing arcs with zero residual capacities and adding reserve arcs. The processing

continues until there is no new augmenting path in Gf∗(V,A). Compared with

the existing minimum-cost flow algorithm [18], our algorithm has the following

two revisions.415

Firstly, we give the following definition of an augmenting path in residual

network Gf∗(V,A).

Definition (augmenting path). A path f from vertex s to vertex t is

referred to as an augmenting path if the cost of the path satisfies
∑

(i,j)∈f πi,j <

0 and the capacity of the ending arc(j, t) satisfies wj,t >
∑

(i,j)∈u+ wi,j −420 ∑
(i,j)∈u− wj,i, where u+ (resp. u−) is the set of forwards arcs (resp. reverse

arcs) from driver vertexes i ∈ Ij ( resp. parking space vertex j ∈ J ) to the

parking space vertex j (resp. driver vertexes i).

Hence, a minimum-cost augmenting path, denoted as f∗, is identified as

f∗ = arg min
f∈F

∑
(i,j)∈f

πi,j , (14)
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425

where F is the set of augmenting paths in Gf∗(V,A).

Secondly, the flow augmentation on the identified augmenting path f∗ is

calculated as follows. In the network G(V,A), for an arc (i, j) ∈ f∗, j 6= t and

the ending arc (j, t) ∈ f∗, the flow are augmented as li,j = wi,j and lj,t =

lj,t +
∑

(i,j)∈u+ wi,j −
∑

(i,j)∈u− wj,i, respectively.430

For the detailed steps of the capacities minimum-cost flow algorithm, please

refer to [18].

4.2. Scheduling stage

This subsection schedules the parking times of the matched drivers in MR

according to the following heuristic rule. Considering objective function (5), we435

introduce the following metric to determine the priorities of the matched drivers

of using the same parking space, which reflects a driver’s contribution ratio to

the objective value of Problem P .

εi(j) =
c0i − ci,j
wi,j

, m(i, j) ∈MR. (15)

where εi(j) is the unit cost-saving factor of driver i at parking space j. Driver440

i with a larger value of εi(j) contributes more value to the objective value per

parking-time unit. Thus she has a higher priority of using the parking space

compared to other competing drivers. All matched drivers in MR to space j are

sorted in an ordered list Ψj = {[1], [2], ..|Ψj |} with non-increasing εi(j), where

ε[1](j) ≥ ε[2](j) ≥ ... ≥ ε[|Ψj |](j).445

For each space j, we sequentially insert the parking demands of the matched

drivers into its available time interval according to the order in Ψj . Accordingly,

the starting and ending times of driver [1]’s parking are determined as s[1],j =

max (a[1] + t[1],j , hj) and s′[1],j = s[1],j + w[1],j . The starting and ending times
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of others are calculated as450

s[i],j = max (a[i] + t[i],j , s
′
[i−1],j), and

s′[i],j = s[i],j + w[i],j , 2 ≤ i ≤ |Ψj |.
(16)

We say that driver [i] is not successfully scheduled at space j if s′[i],j ≥ kj ,

[i] ∈ Ψj , which implies that there is no enough available time for driver [i]’s

parking demand. Subsequently, the unsuccessfully scheduled driver is added

to the set of remaining drivers, denoted as Φ, and will be re-matched in the

next iteration. Note that space j may be shared by multiple drivers, whose455

scheduled parking duration (s[i],j , s
′
[i],j) divide the available interval [hj , kj ] into

several subintervals, denoted as [hlj , k
l
j ]. In the next iteration, we can update

parking space set J with some dummy parking spaces, each of which has an

available time interval as [hlj , k
l
j ] and the same locations. The detailed steps of

scheduling procedure is presented in lines 5-22 of Algorithm 1 in the following460

subsection.

4.3. Steps of the two-stage algorithm

Integrating the matching and scheduling procedures in the above two sub-

sections, the steps of the two-stage algorithm are presented in Algorithm 1 be-

low. The algorithm iteratively improves the matching-and-scheduling solution465

to approximate the optimal one, though it solves the matching and schedul-

ing subproblems independently. In particular, the algorithm firstly generates

a trial matching solution MR by relaxing the scheduling constraints (line 2 of

Algorithm 1). For each iteration (lines 3 to 28 of Algorithm 1), the algorithm

sequentially schedules the parking times of the matched drivers in MR at the470

same space j according to order Ψj in subsection 4.2 (lines 6-16 of Algorithm

1). The unsuccessfully scheduled drivers are added to set Φ because there is no

enough available time to meet their parking demands (line 18 of Algorithm 1).

These unsuccessfully scheduled drivers will be matched and scheduled again at

other parking spaces in the next iteration. The available interval of the parking475

space will be updated according to the scheduled parking durations of the suc-
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cessfully scheduled drivers (line 20 of Algorithm 1). The algorithm iteratively

run matching and scheduling procedures until all matched drivers are success-

fully scheduled (line 23 of Algorithm 1) or no parking space is available to meet

the unscheduled drivers’ demands (line 3 of Algorithm 1). The numerical exper-480

imental results in Section 5.2 indicate that the final matching-and-scheduling

solutions approximate closely the optimal solutions of the instances tested.

Algorithm 1 : Steps of the two-stage algorithm

1: Initialize: matching solution M ← ∅, and scheduling solution S ← ∅;
2: Generate a trial matching solution MR to model PR by the revised capaci-

tied minimum-cost flow algorithm;
3: while MR 6= ∅ do
4: Set Φ← ∅;
5: for each parking space j in MR do
6: Sort the drivers matched to parking space j in the non-descending order

Ψj = {[1], [2], ..[|Ψj |]} in terms of metric εi(j) in Equation (15);
7: Set s[1],j ← max(a[1] + t[1],j , hj) and s′[1],j ← s[1],j +w[1],j , for [1] ∈ Ψj ;

8: if s′[1],j ≤ kj then
9: Add m([1], j) to M and (s[1],j , s

′
[1],j) to S;

10: else
11: Add driver [1] to Φ;
12: end if
13: for each driver [i] in Ψj , i = 2, 3, ..., |Ψj | do
14: Set s[i],j ← max(a[i] + t[i],j , s

′
[i−1],j) and s′[i],j ← s[i],j + w[i],j ;

15: if s′[i],j ≤ kj then
16: Add m([i], j) to M and (s[i],j , s

′
[i],j) to S;

17: else
18: Add driver [i] to Φ;
19: end if
20: Divide interval [hj , kj ] into several subintervals [hlj , k

l
j ] according to

the scheduled parking duration (s[i],j , s
′
[i],j) in S;

21: end for
22: end for
23: if Φ = ∅ then
24: Goto line 29;
25: end if
26: Set I ← Φ and update J with subintervals [hlj , k

l
j ];

27: Generate a new MR to model PR with the updated I and J ;
28: end while
29: Output M and S.
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The computational time of the two-stage algorithm depends mainly on the it-

erations consisting of lines 3-28 of Algorithm 1. Now let us consider the schedul-

ing procedure in lines 5-22 of Algorithm 1 with the generated matching solution485

MR. Line 6 of Algorithm 1 consumes O(|Ψj | log |Ψj |) time to construct se-

quence Ψj by sorting matched drivers for each parking space j. As there are

at most |I| drivers and |J | parking spaces, the computational time of sorting

matched drivers for all parking spaces is O(
∑|J|
j=1(|Ψj | log |Ψj |)) ≤ O(|I| log |I|).

Lines 7-22 of Algorithm 1 need at most O(|I|) time to determine the start-490

ing times of all matched driver for all parking spaces and divide the available

interval into at most O(|I|) subintervals. Therefore, the computational time

complexity of lines 5-22 of Algorithm 1 is O(|I| log |I|). Line 27 of Algorithm

1 calls the revised capacities minimum-cost flow algorithm to generate a trial

matching solution. In the worst case, it needs at most BU times to augment495

the flow from initial zero flow to the maximum flow in network G(V,A), where

BU ≡ min (
∑
i∈Ij ,j∈J wi,j ,

∑
j∈JWj) is the upper bound of the flow in the

network. The computational time for finding each augmenting path in net-

work G(V,A) is O(|V ||A|) ≤ O(|I||J |+ |J |2). Therefore, line 27 needs at most

O(BU (|I||J |+|J |2)) computational time. Based on the above analysis, the com-500

putational time of each iteration is at most O(BU (|I||J |+|J |2)+|I|(log |I|). The

algorithm runs |I| iterations in the worst case that only one driver is matched

and scheduled in each iteration. Consequently, the total computational time

complexity of the algorithm is at most O(BU |J |(|I|2 + |I||J |) + |I|2 log |I|).

5. Simulation experiments505

To examine the performance of the two-stage algorithm and the multi-to-one

matching pattern, a simulation experiment bed is established partially based

on the statistical results of the real data collected from “DingdingParking” ap-

plication in a CBD of Beijing city. We firstly compare the two-stage algorithm

with the state-of-the-art commercial MIP solver, CPLEX tool (version 12.80),510

in solving single-period instances. For the performance evaluation of the pro-
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posed parking reservation system with the multiple-to-one matching pattern, a

multi-period scenario for five weekdays is generated. Three metrics: The total

travel cost saving of drivers (i.e., the optimization objective of the problem), the

fulfillment rate of demands, and the utilization rate of shared parking spaces, are515

recorded and compared with those provided by the existing one-to-one matching

pattern.

5.1. The simulation experiment bed

We collect the real data set consisting of 1609 demand records and 995 supply

records from “DingdingParking” application. We find that the announcement520

times of drivers are concentrated in three phases: Early morning (about from

7:00 am to 9:00 am), late morning (about from 9:00 am to 12:00 am), and

afternoon (about from 2:00 pm to 6:00 pm). Also the announcement times of

owners are concentrated in three phases: Early morning (about from 6:00 am

to 10:00 am), late morning (about from 10:00 am to 12:00 am), and afternoon525

(about from 1:00 pm to 3:00 pm). Accordingly, we classify drivers and owners

into three types, respectively indexed as driver types I, II, and III, and owner

types I, II and II. Type I drivers and type I owners are mostly commuters with

regular travel needs, who submit their demands or supplies in early morning

and have relatively long parking times or available time intervals. Types II and530

III drivers and types II and III owners are identified as irregular travelers with

occasional travel purposes, who send their demands or supplies in late morning

and afternoon, and have relatively short parking time or available time interval.

The detailed statistical description of the three types of drivers and owners are

presented in Appendix A.1.535

A simulation experiment bed is established to simulate the demands and sup-

plies submitted by drivers and owners respectively through the horizon from 6:00

am to 6:00 pm for five weekdays. The announcement times of the three types

demands and supplies are respectively generated by two independent Poisson

processes with the different announcement rates listed in Tables A.3 and A.4.540

Note that the temporal parameters of demands: The earliest departure time
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(ai), the latest arrival time (bi), and the estimated staying duration (ei) are not

recorded by the current “DingdingParking” application. We cannot access to

the spatial parameters oi, di, and rj either, due to the users’ privacy protection

rule of the application. To deal with these gaps, our experiment assumes that545

these missing parameters are subjected to normal probability distributions and

estimate them by the collected data. The detailed methods are introduced in

Appendix A.2.

With the generated demand Di(oi, di, ai, bi, ei) and supply Ej(rj , hj , kj),

for each driver i, her traveling time between oi and rj is calculated as ti,j =550

line(oi, rj)/v , where line(oi, rj) is the airline distance between oi and rj and

v = 0.60 km/min is the average vehicle speed. Her directly traveling time

between oi and di is ti = line(oi, di)/v. The walking time between rj to di

is calculated as t′i,j = line(rj , di)/v
′, where v′ = 0.083 km/min is the average

walking speed. Last, the travel cost parameters are set as α = 0.50 yuan/min,555

β = 2 yuan/min, γ = 0.05 yuan/min, θ = 1.20 yuan/min, ψ = 10 yuan, and

t0 = 5 mins in this experiment.

5.2. Computational results of single-period instances

In this subsection, 25 groups of single-period instances are generated with

various sizes: |I|, |J | = 10, 20, 30, 40, and 50, by the simulation bed in sub-

section 5.1. The two-stage algorithm and CPLEX are applied to solve the

instances generated. We let CPLEX output an initial feasible solution (denoted

as (M0, S0)) and the optimal solution (denoted as (M∗, S∗)). Note that due to

the NP-nature of problem, we terminate CPLEX and let it output the relaxed

solution with the best upper bound so far if CPLEX cannot find an optimal so-

lution within a computational time limit equaling one hour. The computational

times of the two-stage algorithm and CPLEX, the values of Gap of the near-

optimal solutions (denoted as (MH , SH)) generated by the two-stage heuristic

algorithm from (M∗, S∗) as well as the values of Gap of the initial feasible solu-

tion (M0, S0) from (M∗, S∗) are listed in Table 2. Besides, we report the ratio

of size of feasible matching pairs filtered by Constraints (3)-(4) to the size of
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Table 2: Performance of the two-stage algorithm and CPLEX

Groups of
instances
(|I| ∗ |J |)

Size of
problem
reduced
RS(%)

(M∗, S∗)
by CPLEX

(M0, S0)
by CPLEX

(MH , SH) by
two-stage algorithm

CPU time
(seconds)

Number of
solvable
instance

CPU time
(seconds)

Gaps
(%)

CPU time
(seconds)

Gaps
(%)

10*10 86.00 0.05 50 0.04 55.38 0.04 2.50
10*20 85.06 0.16 50 0.04 60.90 0.04 6.39
10*30 85.53 0.25 50 0.04 63.73 0.06 7.01
10*40 83.62 0.15 50 0.04 72.67 0.04 4.01
10*50 85.35 0.19 50 0.04 73.53 0.06 3.22
20*10 84.91 0.26 50 0.04 64.65 0.03 6.17
20*20 88.75 0.62 50 0.04 71.99 0.09 4.90
20*30 87.64 0.56 50 0.04 71.84 0.06 8.54
20*40 86.65 0.66 50 0.05 76.78 0.05 6.88
20*50 86.96 0.31 50 0.05 77.98 0.05 5.44
30*10 86.10 0.65 50 0.04 72.32 0.03 7.21
30*20 87.47 2.49 50 0.04 76.57 0.04 8.79
30*30 89.28 5.55 50 0.05 78.48 0.06 8.73
30*40 86.24 6.32 50 0.06 81.66 0.06 8.53
30*50 87.37 9.97 50 0.06 81.80 0.08 8.28
40*10 84.64 8.62 50 0.04 76.36 0.04 5.78
40*20 86.14 41.07 50 0.05 80.01 0.07 10.95
40*30 87.05 92.53 50 0.06 82.25 0.07 10.56
40*40 91.31 482.32 45 0.07 83.68 0.14 9.52
40*50 87.17 1147.69 36 0.08 84.78 0.10 8.75
50*10 84.30 59.39 50 0.05 80.31 0.05 5.70
50*20 86.62 296.68 48 0.06 81.89 0.10 9.25
50*30 87.15 609.14 39 0.06 83.73 0.24 13.78
50*40 86.50 1466.45 31 0.07 83.74 0.39 14.28
50*50 87.28 1797.35 28 0.09 83.75 0.65 13.18

Average 86.60 241.18 47 0.05 76.03 0.11 7.93

demand and supply, denoted as RS, and the numbers of instances in which an

optimal solution can be found within one hour by CPLEX in Table 2 as well.

The calculation methods of Gap and RS are respectively

Gap =
CS((M∗, S∗))− CS(·)

CS((M∗, S∗))
× 100%, and

RS =

∑
j∈J |Ij |+

∑
i∈I |Ji|

2|I||J |
× 100%,

where CS((M∗, S∗)) is the total travel cost saving by (M∗, S∗), and CS(·) is

the total travel cost saving by either (MH , SH) or (M0, S0).560
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Figure 6: Computational times of five groups of instances with |I| = |J |

The quality of the solutions (i.e., “Gap”) generated by the two-stage algo-

rithm is shown in the 6th column of Table 2. We can see that the two-stage

algorithm can efficiently generate high-quality solutions for the instances of the

25 groups. The average gap is 7.93% for all instances, even though the best

upper bounds so far are used for the calculation of gaps of some large-size in-565

stances. Furthermore, for the instances with small-size with |I|=10, 20, 30, and

40, and |J |=10, 20, and 30, CPLEX can generate optimal solutions and the gaps

do not exceeded 11%. For some instances with large-size, CPLEX cannot yield

optimal solutions within one hour due to the NP-hard nature of the problem,

the gaps of larger-size instances become larger because of bad upper bounds570

provided by CPLEX. Besides, we analyze the effect of the volumes of parking

demand and supply on the performance of the two-stage algorithm. The al-
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gorithm generates relatively better solutions with smaller value of gaps to the

instances when |I| is much larger or smaller than |J |, while the algorithm has

slightly larger values of gaps to the instances with |I| closing to |J |, reflecting575

the general balance of parking demand and supply.

The computational times in Table 2 indicate that the two-stage algorithm

runs much faster (less than one second in CPU time ) than CPLEX for gener-

ating (M∗, S∗). On average, the computational time of the two-stage algorithm

is only of 0.05 % of that consumed by CPLEX. The data in the column “RS”580

indicates that Constraints (3) and (4) reduce the sizes of matching pairs (i.e.,

Ij and Ji) and thus speeds up the algorithm. In addition, we present the CPU

times consumed by the two-stage algorithm and CPLEX for 50 instances of five

groups with instance sizes |I| = |J | = 10, 20, 30, 40, and 50 in Figure 6. The

CPU times of the two-stage algorithm are relatively stable and small, compared585

with the CPU times of CPLEX. It implies that the computational efficiency

of the two-stage algorithm is less affected by the parameters of instances. The

main reason is that the algorithm uses a revised capacitied minimum-cost flow

algorithm to generate a trial matching solution and a simple but efficient heuris-

tic rule to schedule the matched demands. Comparing the computational times590

of the algorithm for solving instances with |I| < |J | and |I| > |J |, the two-stage

algorithm consumes relatively longer computational time to solve the instances

with |I|
|J| = ν > 1 than those with |I|

|J| = 1
ν . For example, the algorithm con-

sumes 59.39 seconds for instances 50 ∗ 10, namely |I|
|J| = 5, while it consumes

0.19 seconds for the instances 10 ∗ 50, namely |I||J| = 0.2. In the instances with595

|I|
|J| > 1 implying that the parking demand exceeds the supply, the algorithm

usually assigns more drivers to the same parking spaces. The algorithm thus

needs more iterations and computational times to adjust the matching solution

and then schedules the matched drivers’ parking times.

In addition, we compare the performance of the two-stage algorithm with600

CPLEX for just generating initial feasible solutions to the problem instances.

As shown in Table 2, comparing the corresponding terms “Gap” for each group,

the solutions (MH , SH) generated by the two-stage algorithm are much better

28



than the initial feasible solutions (M0, S0). The average gap of (M0, S0) for 25

groups is 76.03%, while that of (MH , SH) is 7.93%. On the other hand, the two-605

stage algorithm runs fast, with 0.11 seconds as the average computational time,

which is only twice of the average computational time to generate (M0, S0) by

CPLEX. To sum up, the results above indicate that the two-stage algorithm

can efficiently generate near-optimal matching-and-scheduling solutions to the

numerical instances with various sizes.610

5.3. Computational results of a multi-period scenario

To simulate a multi-period scenario for five weekdays, the horizon from 6:00

am to 6:00 pm of each weekday is divided into T = 72 periods with 10 minutes

for each period. Instances of sizes 300*100, 300*150, and 300*200 are randomly

generated with the simulation bed in subsection 5.1. As stated in Section 2,615

the reservation system makes use of the flexibility of drivers’ trips to schedule

the matched drivers at the same parking space. The flexibility of driver i’s

trip is defined as the slack time δi = bi − ai − ti. Thus, we use three slack

times δi = 5, 15, and 25 minutes for all drivers’ trips to investigate the effect of

flexibility of drivers’ trips on the performance of the system. In this experiment,620

we set the maximum slack time as 25 minutes because further increasing the

number of slack time has little effect on the performance of the system.

The performances of our reservation system with one-to-one and multi-to-

one matching patterns are evaluated by the following three metrics: Total travel

cost savings of drivers (CS), the fulfillment rate of demands (SM), and the u-625

tilization rate of shared parking spaces (UR). The first one is the optimization

objective of the problem, the second one measures the rate of drivers who suc-

cessfully obtain parking spaces through the system and the third one measures

the utilization of the shared parking spaces. The first two metrics reflect the

benefits of drivers and the last one reflects the benefits of owners. The calcula-630

tions of the three metrics are given as follows.

CS =
∑72
T=1

∑
m(i,j)∈MT

(c0i − ci,j),
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where
∑
m(i,j)∈MT

(c0i − ci,j) is the total travel cost saving and MT is the gen-

erated matching solution for each period T .

SM =
∑72
T=1

|MT |
|IT | ,635

where |MT |
|IT | is the ratio of demands satisfied (i.e., |MT |) to the total demands(i.e.,

|IT |) for each period T .

UR =
∑72
T=1

∑
i:m(i,j)∈MT

wi,j/
∑
j∈J(kj − hj),

where
∑
m(i,j)∈MT

wi,j/
∑
j∈J(kj−hj) is the utilization rate of the shared park-

ing spaces for each period T .640

The simulation results for the one-to-one and the multiple-to-one matching

patterns are presented in Figures 7-9. Observing the values of CS in Figure

7, we find that the multiple-to-one matching pattern can save more travel cost

for the drivers than the one-to-one matching pattern in all instances. Besides,

the multiple-to-one matching pattern also outperforms the one-to-one matching645

pattern in terms of the other two metrics: SM and UR as illustrated in Figures

8 and 9. The average improvement rates are 17.25% and 8.08% in terms of SM

and UR, respectively. The reason is that the multiple-to-one matching pattern

can assign multiple drivers to the “best” parking space if the available time

interval of the space can accommodate the parking demands of these drivers.650

Furthermore, we analyze the three metrics CS, SM , and UR obtained by

the multiple-to-one pattern with any given slack times δi. The values of CS

and SM both increase but the values of UR decrease when private parking

spaces are supplied by owners from |J | = 100 to 200. The intuition is that

the benefits of drivers, measured by CS and SM , are improved if sufficient655

parking spaces are supplied by owners. However, the utilization rates of the

shared parking spaces, measured by UR, are affected if excessive parking spaces

are supplied even though the proposed algorithm can assign multiple drivers to

use the same parking space. Therefore, from the perspective of utilization of

parking spaces, it is a challenging task to balance the demands and supplies in660

a dynamic environment.
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Figure 7: Travel cost savings (CS) with different slack times

Figure 8: Fulfillment rates (SM) with different slack times

Figure 9: Utilization rates (UR) with different slack times

In addition, we investigate the effect of the flexibility of drivers’ trips on the

performance of the system. As presented in Figures 7 to 9 when the slack time

δi increases from 5 to 25 minutes, all metrics obtained by both patterns are

improved, but the improvements of one-to-one matching pattern is relatively665

small. It indicates that the flexibility of drivers’ trips has a positive effect on

improving the performance of the parking reservation system. It is because

that the system can use the slack times of driver trips to improve the integrated

matching-and-scheduling procedure. The results also show that when the slack
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time reaches a degree, δi = 15 mins, further increasing the slack time to 25670

mins has little effect on improving the performance of the system. Thus, in

parking-sharing management, to achieve a better performance of the system,

we only need drivers to provide a certain degree of slack times of their trips.

To sum up, the computational results of single-period and multiple-period

instances respectively demonstrate that our proposed two-stage algorithm out-675

performs the existing CPLEX tool and the multiple-to-one matching pattern

dominates the one-to-one matching one.

6. Discussions

First of all, we note that limiting the supply of parking spaces, setting high

parking price, and applying a tradable credit scheme are effective methods to680

reduce traffic congestion in many city centers [26, 27]. However, the aim of this

study is to optimize the system performance at the operational level by saving

the drivers’ travel costs in parking-sharing services. Drivers taking part into

a parking-sharing program usually have relatively strong self-driving demands.

For example, drivers need to carry some heavy stuff with themselves to their685

destinations, they need to drop off some family members at schools or workplaces

during their trips, or they have some physical problems so that they have to

drive their cars to their destinations. The optimization objective of our problem

may induce more travelers to select the self-driving alternative. In our further

study, we plan to investigate the effect of parking-sharing programs on traffic690

congestion and develop an approach to trade off the travel cost of drivers and

traffic congestion. In addition, this study considers the situation where on-time

arrival is the main concern of the drivers, and therefore assumes that a driver

without a reserved parking space will take taxi as the alternative, instead of

looking for on-street parking slots. A future research topic is to develop an695

integrated travel demand management system in which multiple travel modes,

such as on-street parking, parking-sharing, taxi, ridesharing, and public modes,

are taken into account. In such a complicated problem, travelers’ selection
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behaviors need to be investigated and modeled.

Secondly, note that the current systems, such as “DingdingParking” applica-700

tion, adopt the first-book-first-serve rule to confirm the drivers’ parking reserva-

tions. It is obvious that such a system cannot achieve the optimum performance

in most cases. This inspires us to develop a smarter matching-and-scheduling

approach to improve the performance of the program. However, for the appli-

cation of our proposed approach, the program needs additional information of705

driver travel plans, i.e., their earliest departure times, the latest arrival times

and the estimated staying durations at the destinations. It is another interest-

ing topic to encourage drivers to precisely and truthfully report such private

information to the system. This topic is out of the scope of this study and

currently addressed in another working paper.710

Lastly, we note that some study on human mobility shows a high degree of

temporal and spatial regularity from the view point of human pollution and the

individual traveler’s trajectories can be predicted by a probability distribution

[11]. Our paper also obtains similar observations from the real data provid-

ed by “DingdingParking” application. Based on the results in Appendix A.1,715

drivers can be clustered into three types, as shown in Table A.3. The drivers

of type I are mostly commuters who have high degrees of temporal and spatial

regularity. They drive from home to workplaces with relatively fixed arrival

times and parking durations for each weekday. However, the drivers of types II

and III are mostly with occasional travel purposes, for shopping, entertainment,720

dealing with private affairs etc., during the late morning and afternoon. Simi-

larly, owners can also be clustered into the three types, as shown in Table A.4.

Therefore, our paper has proposed a real-time parking reservation approach to

deal with such a complicated scenario. Our simulation experiments show that

the proposed model and algorithm can deal with regular and irregular travel725

needs together. In practice, a parking reservation system can be easily adapted

by pre-treating the regular drivers and owners with the early-bird-fee rule or a

long-term contract firstly, then processing the uncertain demands and supplies

of irregular drivers and owners.
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7. Conclusions730

To deal with the challenge of insufficient parking resources, many large cities

have launched parking-sharing applications, which offer existing private park-

ing spaces to nearby drivers with parking demands. This paper proposes a

real-time parking reservation system for a parking-sharing program. To maxi-

mize the travel cost savings of drivers, an integrated matching-and-scheduling735

model is developed, which not only assigns drivers to feasible parking spaces

but also schedules driver parking times. The optimization problem is proved to

be strongly NP-hard and an iterative two-stage heuristics is developed to fast

generate a near-optimal solution under a real-time setting. The experimental

results of single- and multi-period instances demonstrate the efficiency and ef-740

fectiveness of the proposed two-stage algorithm and multiple-to-one matching

pattern comparing with the CPLEX tool and the existing one-to-one matching

pattern, respectively.

Based on the experimental results in subsection 5.3, we have the following

two operational insights. First, as a sharing economic model, a private parking-745

sharing application needs to encourage more and more drivers and owners to

participate, in order to achieve the effect of a bilateral platform. However, the

experimental results show that excessive supplies or demands can yield little

improvement of the system performance. Furthermore, the un-matched owners

or drivers may leave the platform and may not use it any more in future. As750

it is difficult to decide a perfect balance between the demands and supplies,

since they join the system randomly, it may be reasonable to develop a dynamic

pricing method to control the demands and supplies in a real-time manner.

Second, the experimental results also show that a certain degree of slack times

of drivers’ trips has a meaningful effect on the performance of the system. It755

will be helpful if the operator can design an incentive mechanism to encourage

drivers to provide their real slack times to the system. Obviously, the pricing

method and the incentive mechanism mentioned above are out of the scope of

this study, which will be addressed in future study.
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Appendix A. Experiment setting875

Appendix A.1. Description of collected data

We obtain a real data set with 1608 demands and 995 supplies in Xi’dan

Central Business District (CBD) of Beijing from Oct. 1 to Dec. 31, 2015,

provided by “DingdingParking” application. Each piece of the demand data

records the announcement time when a driver sent her demand to the system,880

the reserved parking time and the actual arrival and departure times from the

shared parking spaces if the driver was matched with a parking space. Each

piece of the supply data records the announcement time when an owner sent

his supply to the system, and the available time interval of the shared parking

space. We artificially classify drivers into three types: Type I drivers are mostly885

commuters in early morning and types II and III drivers are visitors in later

morning and afternoon. Also, we classify owners into three types: Type I owners

are mostly commuters in early morning and Types II and III owners are irregular

travelers with occasional travel purposes in later morning and afternoon. The

average announcement rates and the average parking or supplying time of three890

type drivers and owners are listed in Tables A.3 and A.4, respectively.
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Table A.3: Statistical descriptions of three type drivers

Types of driver
Announcement rates

for every 10 mins
Average parking

time (mins)
Type I during

7:00 am - 9:00 am
0.54 298

Type II during
9:00 am - 12:00 am

0.46 142

Type III during
2:00 pm - 6:00 am

0.43 99

Table A.4: Statistical descriptions of three type owners

Types of owners
Announcement rates

for every 10 mins
Average supplying

time (mins)
Type I during

6:00 am - 10:00 am
0.40 572

Type II during
10:00 am - 12:00 am

0.13 467

Type III during
1:00 pm - 3:00 pm

0.08 269

Appendix A.2. Generation methods of parameters

We establish an experimental simulation bed to generate the demands and

supplies randomly announced from three types of drivers and owners through a

time horizon from 6:00 am to 6:00 pm. The current system of “DingdingPark-895

ing” application does not request drivers to report their earliest departure time

(ai), latest arrival time (bi), or stay duration (ei) to the system. We assume

that these missing parameters are subjected to normal probability distributions

and estimate them by the observable data. For example, we generate bi of type

I drivers by using the collected driver average actual arrival time at the shared900

parking slots added a random value draw from a normal distribution N(x, σ),

namely bi= N(8:00 am, 10 min), where 8:00 am is the average arrival times

and 10 min is the estimated standard variance, both of which are listed under

the Arrival time (bi) in Table A.5. Accordingly, the earliest departure time

is generated as ai = bi − ti − δi, where δi denotes the slack time between bi905

and ai subtracted ti, and is used as a controlling parameter in this experimen-
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t. Similarly, stay durations at the destinations (ei) of three type drivers, the

lower bounds of available time intervals (hj), and the length of the available

time interval (i.e., ∆j) are randomly generated by function N(x, σ), where x

and σ are set as the corresponding parameters of the three types of drivers and910

owners in Tables A.5 and A.6, respectively. The upper bound of the available

time interval of parking space j is calculated as kj = hj + ∆j .

In this experiment, we use a function LG(x0, y0, U(r1, r2), U(0◦, 360◦)) to

randomly generate the locations of origins (oi) and destinations (di) of driver-

s and the locations of parking spaces. In the location-generation function915

LG, parameters x0 and y0 denote the longitude coordinates of the circle dot

of the CBD, an uniform distribution function U(r1, r2) randomly generates a

distance between r1 km and r2 km of the location from the circle dot (x0,

y0) and U(0◦, 360◦) randomly generates an angle between 0◦ and 360◦ of the

location. Hence, we can uniquely generate a location in the CBD with the920

randomly generated parameters: x0, y0, U(r1, r2), and U(0◦, 360◦). The loca-

tions of origins (oi) and destinations (di) of drivers are generated by two func-

tions LG(x0, y0, U(20 km, 40 km), U(0◦, 360◦)) and LG(x0, y0, U(0 km, 1 km),

U(0◦, 360◦)), respectively. The locations (rj) of parking spaces are randomly

generated by LG(x0, y0, U(0 km, 1 km), U(0◦, 360◦)). Consequently, the origins925

and destinations of 300 drivers and locations of 200 parking spaces are illustrated

in Figures A.10 (a)-(c), respectively.

Table A.5: Parameters used to generate demands

Types of
Drivers

Latest arrival time (bi) Stay duration (ei)
mean standard variance mean standard variance

type I 8:00 am 10 mins 5 hours 30 mins
type II 11:00 am 10 mins 2 hours 10 mins
type III 3:30 pm 10 mins 2 hours 10 mins
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Table A.6: Parameters used to generate supplies

Types of
owners

Lower bound of
available time interval (hj)

Length of
available time interval (∆j)

mean standard variance mean standard variance
type I 6:30 am 10 mins 12 hours 20 mins
type II 9:30 am 10 mins 10 hours 10 mins
type III 2:00 pm 10 mins 6 hours 10 mins

42



(a)Origins of drivers

(b) Destinations of drivers (c) Locations of shared parking spaces

Figure A.10: Locations of drivers’ origins and destinations and parking spaces
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