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Towards 3D ultrasound guided needle steering
robust to uncertainties, noise and tissue

heterogeneity
Guillaume Lapouge1,2,∗, Philippe Poignet1, Jocelyne Troccaz2

Abstract—This paper presents a new solution for 3D steering
of flexible needles guided by 3D B-mode ultrasound imaging. It
aims to realize a robust steering, by accounting for uncertainties,
noise and tissue heterogeneities, while limiting tissue-related
disturbances. The proposed solution features interconnected state
observer, automatic needle tip segmentation and path planning
algorithms. Measurement quality, state uncertainties and tissue
heterogeneity are considered for robust needle steering with
helical paths of variable curvature. Fast replanning allows
for adaptability to unexpected disturbances. An experimental
validation has been done through 62 insertions of 24 Gauge
bevel-tip nitinol needles in various tissue. Results are promising,
characterized by mean targeting errors of less than 1 mm
in homogeneous phantoms, 1.5 ± 0.9 mm in heterogeneous
phantoms and 1.7 ± 0.8 mm in ex-vivo tissue. This new approach
is a step towards a precise and robust patient-specific gesture.

Index Terms—path planning, needle steering, 3D ultrasound
imaging

I. INTRODUCTION

State of the Art for Image-based Needle Steering

The context of this paper is percutaneous surgical proce-
dures in which a physician inserts a needle into biological
tissue to realize biopsies, drug delivery, brachytherapy etc. To
increase the precision and the capabilities of such operations,
robotic needle steering has been introduced with the added
value of obstacle avoidance, target tracking, complex path
computation and an increased targeting precision. There are
several ways to guide a flexible needle into soft tissue. In
this paper, we consider beveled tip needles. The asymmetry
of the tip imbalances the forces applied to it and causes natural
deflection in a privileged direction during the insertion. When
rotated around its main axis, the needle deflection direction
changes, allowing 3D control of this nonholonomic system.

In this paper, we will focus on computing a complex path
to reach a target. More information on control objectives and
issues in needle steering can be found in [1].

To begin with, many algorithms for needle steering are
validated through simulation. Tracking for 2D steering has
been developed in a simulated environment with stochastic
motion roadmap in [2] to account for uncertainties. It has been
extended to 3D simulated steering in [3]. In [4] both modeling
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and measurement uncertainties are taken into account. [5]
completes this work with fast replanning for intra-operative
adaptation to system uncertainties.

However, steering needles in real objects represents a sig-
nificant leap in complexity.

First, image-based needle detection proves to be chal-
lenging. Indeed, clinically compatible imaging sensors either
provide a poor image quality (e.g. ultrasound (US) imaging),
or present security and cost constraints (e.g. MRI systems
and CT scanners). In spite of its limitations such as artifacts,
low resolution and sampling rate [6], ultrasound imaging is
the preferred clinical imaging solution for needle insertion. It
allows for simple and affordable real-time imaging. However,
because the needle is barely visible in ultrasound images,
several solutions [7], [8], involve the robotized translation of
a 2D probe (also called 2.5D) so that the needle tip is always
in the best detection configuration. Such a translation may not
always be clinically feasible. In [9] and [10], 3D ultrasound
imaging is used in Doppler mode to detect a vibrated or rotated
needle. Yet, the localization precision remains low despite
an increased technical complexity (vibrating device, adapted
control strategy, etc.). With the exception of [11], [12] and
[13], there is, to our knowledge, no 3D B-mode ultrasound
guided flexible needle steering.

Furthermore, because of tissue heterogeneity, tissue de-
formation and modeling uncertainties, the needle does not
have a deterministic behavior. For more robustness to such
uncertainties, a fast trajectory replanning approach is adopted
in many experimental works [14], [15], [13], [16], [17], [18].
Online curvature estimation for the needle kinematic model
has also proven to be useful [19], [20] as the observed
curvature might vary from the expected one and tissue may
be heterogeneous. The curvature of the needle may also be
controlled, thus simplifying the steering. To do so, a first ap-
proach consists in using an actuated needle. Nonetheless, such
a solution decreases the clinical compatibility by requiring a
specific instrument. A second approach is to adopt a duty-
cycling approach and alternate between pure insertions and
insertions with high speed rotation [21]. However, in biological
tissue, repeated rotations may cause additional issues such as
increased needle torsion, tissue winding and trauma [13], [22].

Contribution

This paper presents a novel 3D needle steering approach
specifically designed for robustness to low needle visibility
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Fig. 1: Overview of the sub-processes of the proposed needle
steering solution.

in 3D US volumes and potential disturbances caused by
heterogeneous media. The contribution is manifold:
• stiffness map-based path planning with helical paths of

variable curvature;
• interconnection of adaptive and asynchronous new meth-

ods to achieve robustness (cf. Fig. 1);
• experimental validation with varied materials and needles.

In sections II-B and II-C needle localization methods com-
patible with 3D B-mode ultrasound imaging and previously
validated are quickly introduced.

A new path planning algorithm is detailed in section II-D.
This algorithm generates a plan relying not only on pose
estimation, but also on curvature estimation and prediction.
This allows to significantly reduce tissue trauma and fibers
winding around the needle shaft. Indeed, the algorithm com-
putes smooth 3D helical paths with depth-dependent and tissue
specific curvature, thus removing the need for duty cycled
insertions.

The curvature is estimated both online for the current needle
position and offline along planned needle paths through a
pre-operative tissue stiffness map, as the tissue may present
some heterogeneity. The path planning runs in two steps:
fast planning and in-depth path analysis. We propose new
metrics for extensive path quality analysis taking into account
state estimation uncertainty, variable measurement quality and
tissue trauma.

An experimental validation is described in section III.
Insertions were made in homogeneous phantoms, heteroge-
neous phantoms and ex-vivo tissue with significant progress
in robustness and precision when compared to our previous
results in [13]. Further relevant comparison with the state of
the art is also provided in Table III.

II. MATERIALS AND METHODS

A. Overview

This paper proposes a novel flexible needle steering method
compatible with 3D ultrasound B-mode imaging. This method
can be subdivided into clearly defined sub-processes (see Fig.
1).

On the hardware side, the Prosper robot developed in [23]
inserts a flexible needle into soft tissue (see Fig. 2). The
feedback is given by the robot sensors, 3D ultrasound imaging

Fig. 2: Experimental setup. Prosper Robot (1); Needle (2);
Phantom (3); US probe (4).

and Shear Wave Elastography (SWE) measurements. Detailed
information on hardware can be found in section III-A.

The software solution is composed of :
• a needle tip pose and curvature observer (see section

II-B),
• a needle tip segmentation algorithm (see section II-C),
• a path planning and control algorithm (see section II-D).

Although each algorithm block has been developed and vali-
dated independently, the robustness of the proposed solution
is enhanced by the interconnection between the blocks.

B. Tip Pose Modeling and Estimation

A critical issue in needle steering is the accurate estimation
of the needle state.

i) Needle-Tissue Interaction Model
The needle tip behavior is modeled by a modified unicycle

model that we propose. As in [24], when inserted without
rotation, the needle tip traces a circular arc of curvature κ. If
rotated by 180°, the needle traces another arc in the opposite
direction, not tangent to the first one, with a discontinuity
angle βcut.

Rotations are expressed using Tait-Bryan angles (see Fig.
3). This model is built from the regular unicycle approach
introduced in [25]. With the hypothesis that β is small, βcut
is modeled as a deviation of βcut

2 cos (−γ) in yaw and of
βcut

2 sin (−γ) in pitch of the needle as it is rotated. The virtual
wheel of the kinematic motion model is therefore aligned with
the direction of insertion xt, as illustrated in Fig. 3.

Finally, this model can be seen as an extension of the
one presented in [24], that does not limit the needle motion
modeling to piecewise circular curves. It should be noted that
the model does not strictly represent the motion presented in
[24], but that is not noticeable in practice, under the conditions
that β and βcut are small. The model can be written in the
joint state-space as ẋ = f(x,u) as follows:



ẋ
ẏ
ż
α̇

β̇
γ̇
κ̇


=



cosα cosβ 0
sinα cosβ 0
− sinβ 0

κ cos γ secβ − κβcut

2 sin γ cos γ tanβ −βcut

2 sin γ

−κ sin γ − κβcut

2 (cos γ)2 tanβ −βcut

2 cos γ
κ cos γtanβ 1

0 0


[
u1

u2

]
,

(1)
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Fig. 3: Modified unicycle kinematic model. When the needle
is rotated of 180°, the path bends with the angle βcut.

where x, y, z are the Cartesian coordinates of the needle
tip in the 3D US volume frame [mm]; α, β and γ are the yaw,
pitch and roll of the needle tip [rad]; κ is the curvature of the
needle tip trajectory [mm−1]. The inputs u1 and u2 correspond
respectively to the insertion speed [mm.s−1] and the rotation
speed [rad.s−1] of the needle tip. βcut is the cutting angle
[rad] described in Fig. 3.

ii) Needle Tip Pose and Curvature Observer
A multi-rate unscented Kalman filter runs asynchronously

to take into account measurements coming from :
• a sensor providing the orientation of the needle base;
• the segmentation algorithm detailed in section II-C;
• SWE measurements.
The observer gives a robust estimation of the needle tip

pose with a mean error of 0.6 mm [19]. It also provides
an online estimate of the needle curvature κ. The observer
does not constrain the needle motion to successive circular
in-plane motions, as it does not rely on circle fitting to
estimate the needle path curvature. Therefore, it allows for
a greater freedom in the control strategy. More details about
the estimation methods are available in [19].

C. Needle Tip Segmentation

Because of real-time constraints, processing the entire 3D
US volume should be avoided. Considering a follow the leader
motion of the needle shaft, the estimated needle tip path
provides prior knowledge of the needle position to the seg-
mentation algorithm. The needle segmentation can therefore
be focused to a specific region of interest (ROI), defined as
a curved tube centered around the estimated needle tip path.
Its radius can be set by the user depending on the diameter of
the chosen needle shaft (see Fig. 4). At the current estimated
tip location, the region of interest radius may be increased for
a more flexible tip localization in noisy US volumes at the
cost of increased risks to falsely detect artifacts as the needle
tip. In the following sections, only data inside the ROI are
considered.

(a) Original 3D US volume. The bright horizontal trace was created
by a previous needle insertion.

(b) In the tubular region of interest (red tube), white voxels were
classified in the needle class, dark ones in the background class. In
the blue search area, the tip is segmented (yellow cross).

Fig. 4: Needle tip segmentation in a 3D US volume. The
needle in the 3D volume is visualized with a combination
of 2D slices (delimited by dotted lines).

The acquired 3D US volumes are subject to artifacts and
noise. It is frequently a challenge to determine which voxels
belong to the needle. Furthermore, depending on the observed
medium, the histogram of the voxels intensity can vary dras-
tically.

To solve this issue, we propose to use the naive Bayesian
classification approach detailed in [26]. The intensity his-
togram is approximated by a sum of two normal distributions:
a needle normal distribution Nn and a background normal
distribution Nb. The probability distribution parameters are
estimated using Expectation-Maximisation. Each voxel of the
ROI is then classified as belonging to the needle class if its
probability to belong to Nn is superior to its probability to
belong to Nb.

The needle tip detection is done around the estimated needle
tip position i.e. at the tip of the ROI (see Fig. 4). The estimated
tip coordinates (x0F , y0F , z0F), in the image frame F , are
provided by the observer described in section II-B.

In its neighborhood, the needle tip is detected as the
weighted centroid of the voxels belonging to the needle class.
The weighting wp of a voxel p verifies:

wp ∝ wp1xFt
− wp2(yF − y0F), (2)

where wp1 , wp2 ∈ R2
+; xFt

is the abscissa of the voxel in the
estimated tip frame Ft; yF is the ordinate of the voxel in the
image frame F .

The term in ”xFt
” corresponds to the research of the needle

tip in the direction of the insertion, whereas the term ”yF −
y0F” aims at avoiding the bias caused by reverberation artifacts
such as comet tail artifacts or guided wave artifacts (see [6]
for more details).

The proposed algorithm allows for fully automatized binari-
sation, without relying on manual thresholding. Although the
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coefficients wp1 and wp2 are empirically set by the user, this
segmentation method has proven to be robust to needle and
tissue changes. As it can be seen in Fig. 4, it is also robust
to temporary presence of bright spots and traces of previous
insertions.

The algorithm is sensitive to the ratio wp1

wp2
. As the research

of the needle tip must be done mainly towards xt, this ratio
is constrained to wp1

wp2
> 1. To prevent a shift towards the

reverberation artifacts, we recommend to tune 2 <
wp1

wp2
< 10.

Robustness to temporary needle loss is ensured by the
data fusion that is done by the observer. When no voxel
classified in the needle class is found in the tip search area, the
segmentation fails. However, using equation (1), the observer
still estimates the needle tip position from the inputs u1, u2

and other available measurements to recover it whenever it is
visible.

More details about the segmentation methods are available
in [27].

D. Path Planning and Analysis

In an attempt to prevent tissue lesion and fibers winding
around the needle observed in [13] and [22], 3D helical paths
are preferred over the duty cycling approach described in [21].
The trajectories are therefore done at a constant insertion speed
of 0.5 mm.s−1 and at piecewise constant and slow rotation
speed.

Generating such trajectories requires significant computa-
tion time. A two step approach is adapted here to achieve fast
replanning: fast path planning and in-depth path analysis.

The approach detailed below aims at introducing a general-
ized robust path planning solution which allows for complex
motion and obstacle avoidance. It is robust to the chosen
needle and insertion medium, heterogeneity in the tissue
and uncertainties both in the measurements and in the state
estimation.

i) Reachability-guided RRT
The proposed path planning is based on an input sampling

RRT which considers reachability as in [28].
Based on the model described by (1), this algorithm builds

paths from a configuration qinit to a target pgoal while
avoiding obstacles (cf. Fig. 5). qinit is taken equal to the
needle tip state estimate when the planning starts. A point
prand is drawn randomly in the working space W ⊂ R3 (cf.
Fig. 5a). The closest tree node qnear from prand is then chosen
and the tree is grown from qnear by applying inputs in Unew.
Unew = [(u1, l1); (u2, l2)...(un, ln)] where ui ∈ [umin, umax]
and li ∈ [lmin, lmax] are rotation speed and insertion length
inputs respectively. To simplify the determination of the reach-
able space, the unicycle model (βcut = 0) is used for its
computation. This approximation can be done safely as it
underestimates the reachable space of the needle. Besides, the
value of βcut is small, thus reducing the difference between
true and approximated reachable spaces. With this hypothesis,
the reachable space of the needle in the configuration q is
delimited by a solid torus in R3 of radii equal to 1

κ , the needle

(a) A point prand is randomly drawn in W .

(b) Reachability-guided choice of the closest node, creation of qnew

from the best sampled input.

(c) Connection of qnew to the target pgoal, creation of qreach.

Fig. 5: Detailed RRT growth. The tree (in blue) must link an
initial configuration qinit to the target pgoal while avoiding
an obstacle (in red). The figure is plotted with βcut = 0 for
more clarity.

radius of curvature. In the needle tip frame Ft, these points
have constrained Cartesian coordinates (xFt

, yFt
, zFt

) so that

xFt
≥
√

2

κ

√
(y2

Ft
+ z2

Ft
)− y2

Ft
− z2

Ft
. (3)

The euclidean norm does not take into account the non-
holonomy of the system. In other words, the closest node it
defines does not guaranty the reachability of prand. Therefore,
the research of the closest node is reduced to the subset of
nodes from which prand is reachable. This technique allows
for better spatial exploration of W .

Among all nodes sampled in order to reach prand only the
subset that guarantees the reachability of pgoal is considered.
Then, the closest node qnew, as defined by the euclidean norm,
is kept to grow the tree (cf. Fig. 5b). Irrelevant tree growth is
therefore avoided.

To introduce goal research bias, from each created node
qnew, a new set of inputs is applied to try and connect the
tree with pgoal. If the process is successful, a new node qreach
is added to the tree (cf. Fig. 5c). Else, a new point prand is
drawn and the process starts again.

ii) Varying Tissue Stiffness
To account for the needle cutting angle and variable cur-

vature, the modified unicycle model presented in section II-B
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Fig. 6: 24 Gauge needle curvature as a function of the tissue
stiffness.

is integrated for path generation. From pre-operative or intra-
operative elastography measurements, a tissue stiffness map
can be computed. This map enables the RRT algorithm to
consider the expected curvature changes during the planning.
Because the current curvature is estimated online by the
observer detailed in section II-B, this value is preferred over
elastography measurements. Therefore, the path planning is
classically done with the estimated radius of curvature in qinit.
However, when encountering a significant stiffness change
(e.g. leading to a change in curvature ≥ 0.001 mm−1),
the curvature used for path planning is computed from the
stiffness-curvature relationship detailed in Fig. 6. Indeed, after
a 4 cm deep insertion, a change in curvature of 0.001 mm−1

would roughly cause an unexpected 1 mm deflection (resp.
4 mm for an 8 cm insertion). The deflection at a certain
depth for a pure insertion can be computed from equation
(3) by considering an in plane deflection (zFt

= 0, yFt
≥ 0).

Under the condition xFt
< 1

κ , at the insertion depth xFt
, the

deflection yFt
is the smaller solution of y2

Ft
− 2
κyFt

+x2
Ft

= 0.
If no drastic curvature change is expected, elastography

measurements may prove unnecessary because of their lack
of precision. In that case, the online curvature estimation may
be sufficient and more accurate than SWE measurements.

The stiffness-curvature relationship illustrated in Fig. 6 has
been obtained empirically. Five pure insertions have been
done per homogeneous phantom of known elasticity (and per
needle) and tracked using 3D ultrasound imaging. The radius
of curvature is estimated online with the method developed in
section II-B. The median value of this estimation is kept as
the measurement of the curvature for a given phantom. The
needle curvature varies with respect to the tissue stiffness, the
needle flexibility, and the tip asymmetry [29].

In these first trials, the stiffness map is computed from pre-
operative SWE imaging. Although 3D SWE acquisitions can
be acquired with a suitable probe, a first approach adopted
here is to extrapolate 2D SWE acquisitions to obtain a locally
estimated 3D stiffness map.

iii) Choice of an Optimal Motion Plan
After computing efficiently a set of successful needle tip

trajectories via the RRT, a second in-depth analysis can be

TABLE I: General correlation* between objectives and cost
function coefficients

Targeting
Precision

Obstacle
Avoidance

Measurements
Quality

Tissue Trauma
Minimization

c1 ++ - - -
c2 - ++ none -
c3 - none ++ -
c4 - - - ++

++ : strong positive correlation.
- : negative correlation.

* The correlation may change depending on the setting.

started. For each successful path Φ, the multi-rate unscented
Kalman filter is started from the state qinit ∈ R7 with its
estimate covariance matrix P k|0 ∈ R7×7, with the control
strategy computed for Φ. No measurement is considered in that
case, as the path is only simulated. Only a random subset of
successful paths are recomputed this way with a fine precision
inherited from the estimation algorithm presented in II-B.

The optimal motion plan must be chosen, among these com-
puted paths, as a trade-off between the following correlated
criteria:
• reach the target with precision;
• avoid obstacles;
• maximize the needle visibility in the US volumes;
• limit the tissue trauma.
This trade-off can be formalized as the research of the path

Φ that minimizes the cost function:

J(Φ) = c1dtarget(Φ)+c2pcol(Φ)+c3R̄(Φ)+c4ccommand(Φ),
(4)

where c1, c2, c3, c4 ∈ R4
+ are coefficients tuned by the user to

prioritize the objectives depending on the application. dtarget
is the final euclidean distance to the target. pcol(Φ) detailed
in (8) is the probability to collide with an obstacle. R̄(Φ)
detailed in (7) is inversely proportional to the needle visibility.
ccommand(Φ) detailed in (5) is the control cost.

For all the insertions presented in this paper, the coefficients
ci were set so as to give equal importance to all objectives,
i.e., normalize the variation range of the four terms composing
J(Φ). However, the user can change them in real-time depend-
ing on the desired objectives. The correlation between these
coefficients and the control objectives are detailed in Table
I. These correlations are computed from path planning in a
static environment with one obstacle, one target and one static
needle. They represent the average variation of the objectives
costs, when the value of a coefficient ci is increased. A visual
illustration of this process is proposed in a video1.

iv) Tissue Damage
An easily overlooked issue for needle steering in biological

tissue is the possible winding of the tissue around fine needles.
This winding is caused by the rotation of the needle shaft
inside the tissue. The needle tip may suffer from the accu-
mulation of fibers that cover its bevel and prevents the robot
from controlling the needle. Another effect of such winding

1Available at https://youtu.be/aI5-jT2cbRY.

https://youtu.be/aI5-jT2cbRY
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is a strong adherence of the needle shaft to its surroundings.
This may result in increased tissue trauma, unexpected needle
behavior or even the inability to further insert or retract the
needle [22].

Therefore, in this paper, we wish to compute smooth paths,
that reduce the control cost ccommand(Φ) [rad] defined as the
amount of rotation in the tissue.

ccommand(Φ) =
∑
i

(|u(Φi)|.T (Φi)), (5)

where the trajectory Φ is composed of subinsertions Φi of
constant rotation speed u(Φi) [rad/s] over a period T (Φi) [s].

v) Measurement Uncertainties
The needle visibility is a critical criterion when using 3D US

imaging. The visibility of the needle in 3D B-mode ultrasound
imaging depends on factors such as the distance between
the needle and the probe, the incidence angle of the US
waves on the needle and the shadowing artifacts. Although a
precise confidence map can be computed to take into account
shadowing or luminous artifacts [11], we consider in a first
approach that the image quality decreases linearly with the
observation depth.

The quality is proportional to the x, y, z terms of the
measurement noise covariance matrix R of the Kalman filter
detailed in section II-B. As in [19], the standard deviations of
the tip cartesian coordinates measurements are chosen equal
to

σactual = (1 + a
d

dmax
)σoptimal, (6)

where σoptimal is the standard deviation of the Cartesian
coordinates in the best case (close to the transducer). σactual
is its actual value at the given tip position. d is the distance of
the given tip position to the transducer. dmax is the acquisition
depth of the transducer (8 cm here). a ∈ R+ reflects the quality
loss of the signal, empirically set to 1.

The needle visibility along a path Φ is characterized by the
mean measurements uncertainty

R̄(Φ) = meanΦ (σactual) . (7)

vi) Collision Probability
As the needle is inserted, its future behavior is uncertain.

Not only because its current state is only estimated, but also
because the model cannot fully represent the real system
behavior. This may lead to unexpected obstacle collision in
spite of an initially adequate planning. If a simple geometric
obstacle clearance can be introduced, it does not take into
account the physical behavior of the needle and the probability
of collision. This is why obstacle avoidance is handled as
follows.

The tip pose estimation provided by the Kalman filter
described in section II-B is used to propagate the state un-
certainties.

The multi-rate unscented Kalman filter is started from
the state qinit ∈ R7 with its estimate covariance matrix
P k|0 ∈ R7×7, with the control strategy computed for Φ.
No measurement is considered in that case, as the path is

Fig. 7: Uncertainties propagation along a mean path computed
by the RRT.

only simulated. The estimate covariance matrix P k|0 is thus
computed along Φ, and expresses the possible divergence of
the real path around Φ (see Fig. 7).

The collision probability of a planned path Φ with an
obstacle pcol is computed from the heuristic:

pcol(Φ) = max
k

(∫
obstacle

N (µk(Φ), Σk(Φ))

)
, (8)

where µk ∈ R3 is the mean estimated cartesian position of
the needle tip after k iterations. Σk ∈ R3×3 is the estimation
covariance matrix of the needle tip cartesian coordinates. Σk

being the submatrix of P k|0 such that

P k|0 =

(
Σk ×
× ×

)
. (9)

This collision probability has a physical meaning that allows
a user to set precise goals (e.g. realize an insertion with a
collision probability smaller than 5%).

vii) Fast Replanning
As discussed in the aforementioned section, the needle be-

havior is prone to uncertainties. Besides, the environment itself
is likely to change unexpectedly (e.g. tissue deformation, target
or obstacle movement, etc.). In this context, pre-operative
planning seems unsuitable for robust, intra-operative needle
steering.

We propose to take a fast replanning approach centered
around the current pose estimation provided at 100 Hz by
the multi-rate unscented Kalman filter q̂k|k (i.e. qinit = q̂k|k).
Such an approach gives to the planning algorithm the ability to
adapt to unexpected changes in the system through computa-
tion of new paths. Besides, the path planning considers the new
trust we have in the current tip pose estimate. If the estimate
covariance matrix Pinit of qinit increases following missing
or incorrect measurements, the obstacle collision computation
is updated accordingly. The obstacle is then avoided with a
greater margin.

III. EXPERIMENTAL ASSESSMENT

62 insertions with a 24 Gauge nitinol beveled-tip needle
were made in various media to validate the robustness of the
proposed solution for fine superelastic needles. 5 insertions
were made with a 18 Gauge steel biopsy needle to evaluate
the approach when using stiffer needles.
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A. Hardware and Software Implementation

The needle is inserted at the constant speed of 0.5 mm.s−1

by the Prosper robot developed by N. Hungr [23] for prostate
brachytherapy. The rotation inputs, computed by the iteration
bounded RRT in the interval [−π/3, π/3] rad.s−1, are directly
used in the steering algorithm. This is made possible by the
fast replanning approach which recomputes the best inputs for
the current system configuration (at a frequency ≥ 1 Hz and
provided that the insertion speed remains low).

The same modified unicycle model is used for observation
and path planning. For all insertions, the cutting angle is set
equal to its average value of 3°, as deduced from the data
fitting done in [19]. In this experimental context, the torsion
of the needle around its axis, as it is rotated in the tissue, is
considered negligible. Indeed, the needle is constantly inserted
as it rotates, which helps release the torsional energy it may
accumulate [30].

Throughout the 67 insertions performed, the segmentation
algorithm weights were set as wp1 = 3 and wp2 = 1. The
ROI tube diameter was chosen equal to 2.4 mm in all reported
experiments.

The 24 Gauge nitinol needles have a 30° beveled-tip. These
needles are treated to be more echogenic. Their surface is
either coated with polyurethane foam as in [19] or etched
with a laser as described in [13]. The 18 Gauge steel needles
also have a 30° beveled-tip, but they do not have any surface
treatment. The ultrasound volumes are acquired at 1 Hz with
a 3D end-fire probe 4DEC-9/10 used with the Ultrasonix
Sonix RP ultrasound system. The US volume voxels are cubes
with 0.4 mm edges. The pre-operative SWE measurements are
acquired through the SuperLinear™ SLH20-6 probe used with
the SuperSonic Imagine Aixplorer® ultrasound system.

The phantoms are made of gelatin, agar or ex-vivo tissue
samples enclosed in gelatin. Heterogeneous agar phantoms
have also been made, which consist in two homogeneous
halves fused together on about half a millimeter. The targets
are, either virtual static points set in the ultrasound volume,
or aluminum balls of radius 1 mm implanted in the tissue to
allow for contact detection.

To simulate a scenario in which the needle might not be
initially perfectly oriented or where the target moves, the
targets are misaligned with the initial needle orientation. Target
misalignment is defined as the distance of the target to the line
that extrapolates the initial needle pose (see the figure in Table
II).

The proposed solution has been developed in C++ in the
CamiTK framework (see [31] for more details). All blocks
illustrated in Fig. 1 are designed to run asynchronously in
independent threads. To achieve the desired performance,
we used the CPU multiprocessing library OpenMP, with
NVIDIA® GPU parallel computing platform CUDA®. The
code runs on a laptop with an Intel® Core™ I5-8300H CPU
with an NVIDIA® GeForce® GTX 1050 Ti GPU. The needle
tip pose and curvature observer runs at 100 Hz, the needle
tip segmentation is done every acquired frame and the path
replanning is done at about 1Hz.

B. Experimental Protocol

In the experimental protocol, the user sets up the US
imaging system, then inserts the needle a few millimeters into
the tissue. The needle must be manually localized in the 3D
US volume as two points, one being the tip. The user can
then provide the theoretical needle curvature, or the needle
type and a stiffness map. The target (mandatory) and obstacles
(optional) can be added as spheres of a chosen radius. The
RRT may then be started and the possible paths visualized. The
four coefficients of the cost function can be tuned in real-time
to prioritize objectives. On the user command, the robotized
insertion begins, following the RRT results until the target is
attained or becomes unreachable.

The initial static target misalignment was voluntarily chosen
significantly high in comparison with the maximum deflection
achievable in each phantom. This proves the ability of the
algorithm to steer the needle in difficult conditions. We believe
this validates the capacity to also attain moving targets that are
initially less misaligned.

C. Insertion Setting

i) Homogeneous Phantom and nitinol Needle
A first validation is made in homogeneous gelatin or agar

phantoms to validate the proposed solution in a simple config-
uration. In this medium, the needle visibility is at its highest.
No fibers or tissue heterogeneity are expected and the tissue
elasticity and estimated needle curvature are well known.

For a part of the experiments (without obstacle), the target
is a physical object. Here, it is an aluminum ball of 1 mm
radius (i.e. matching the 2 mm spatial resolution of the probe
used here), soldered to a wire. When the needle touches the
target, a circuit is closed and a buzzer rings, certifying a good
mechanical contact with the target. This method proves to be
more reliable and precise than manual visual segmentation of
the needle tip when the targeting precision is submillimetric.

20 insertions were made in a 15% gelatin phantom (E ∼
150 kPa), 10 with an obstacle. The theoretical needle curvature
is κ = 0.0055 mm−1 (see Fig 6). This corresponds to a
maximum final deflection of 19 mm for a 8 cm insertion with-
out rotation. The high curvature allows for large deflections
and complex helical needle steering with significant obstacle
avoidance. The aim of these experiments is not to match a
given tissue stiffness, but rather to bring a proof of concept of
our algorithm functioning.

ii) Multi-Layered Phantom and nitinol Needle
A second set of insertions made into a multi-layered phan-

tom aims to validate the robustness of the proposed method
to drastic tissue stiffness changes.

No obstacle is defined in the phantom. A stiffness map is
created by the user after estimating the stiffness of the phantom
layers with pre-operative SWE imaging (see Fig. 9b).

10 insertions were made in an agar phantom with 5% (E ∼
380 kPa) and 2.5% (E ∼ 110 kPa) agar layers (see Fig. 9)
for theoretical needle curvatures of κ = 0.0080 mm−1 and
κ = 0.0050 mm−1 respectively (see Fig 6). In 5 of them, the
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stiffness map is taken into account in the planning. In 5 others,
the curvature is only initialized as κ = 0.0080 mm−1.

The phantom stiffness is chosen high to better evaluate the
impact of a variation of tissue stiffness on the steering ability
in the perspective of a real clinical application. For instance, in
prostate brachytherapy, the modification of stiffness between
the perineum (∼30 kPa) and a cancerous prostate (∼100 kPa)
yields a similar evolution in needle curvature which nearly
doubles.

iii) Ex-Vivo Tissue Sample, Soft Phantom and nitinol Needle
A third set of insertions made into pork tenderloin aims

to evaluate the performance of the proposed method with
real tissue. No obstacle was defined in the tissue. The tissue
structure is fibrous. The medium is therefore very echogenic
which greatly decreases the needle visibility in the US vol-
umes. Besides, the needle behavior is more uncertain than in
homogeneous phantoms.

25 insertions were made in pork tenderloin (E ∼ 25
kPa) encased in gelatin. The theoretical needle curvature is
κ = 0.0025 mm−1 (see Fig 6), corresponding to a final
deflection of 8 mm for a 8 cm insertion without rotation.
For a fair comparison with homogeneous phantom insertions,
7 additional insertions were made into a soft 7% gelatin
phantom (E ∼ 30 kPa) with similar theoretical curvature and
comparable target misalignment.

iv) Stiff needles
The validation for stiff needles is made in homogeneous

agar phantom to validate the proposed solution in a simple
configuration. As the needle did not benefit from surface
treatment, its visibility is highly affected by artifacts in the
US volume.

The target is a virtual object. No obstacle is defined in the
phantom as the curvature of the needle is very low.

5 insertions were made in a 2.5% agar phantom (E ∼ 110
kPa). The theoretical needle curvature is κ = 0.001 mm−1.
This corresponds to a maximum final deflection of 3 mm for
a 8 cm insertion without rotation.

D. Results

Detailed experimental results can be found in Table II,
while Fig. 8 and a video2 illustrate real insertion cases. The
target is either virtual and defined as a point in space by the
user, or physical and embedded in the tissue. The distance
to the target is computed as the euclidean distance between
the manually segmented final tip position and the target. The
manual segmentation for one needle configuration is done
with a standard deviation of 0.3 mm. Therefore, the results
in this paper must be appreciated in the light of this manual
segmentation repeatability.

i) Homogeneous Phantom and nitinol Needle
Without obstacle, all insertions were successful (i.e. reached

the physical target) despite the large target misalignment. This
demonstrates a submillimeter targeting accuracy. With obstacle

2Available at https://youtu.be/RtvYRDtAb70.

TABLE II: Needle Steering Results

Insertion Setting
Number

of insertions
[mean insertion length (mm)]

Initial target
misalignment (mm) Targeting

error (mm)

i Homogeneous gelatin 10
[84]

11.8± 3.0
[5.5; 16.3]

< 1∗

i Homogeneous gelatin
with obstacle

10
[93]

5.5± 4.2
[0.9; 12.6]

1.3± 0.6∗∗

[0.5; 2.0]

ii Bi-layered agar 5
[90]

16.0± 10.0
[3.6; 26.2]

3.0± 1.5∗∗

[1.2; 5.5]

ii Bi-layered agar
with elastography

5
[93]

16.2± 4.6
[10.3; 21.0]

1.5± 0.9∗∗

[0.3; 2.9]

iii Homogeneous soft gelatin 7
[87]

6.3± 2.4
[2.8; 8.9]

< 1∗

iii Pork Tenderloin 25
[79]

4.6± 1.8
[1.1; 7.5]

1.7± 0.8∗∗

[0.7; 3.7]

Needle steering results for a 24 Gauge beveled-tip nitinol needle.

iv Homogeneous agar 5
[84]

2.2± 1.0
[1.1; 3.7]

1.3± 0.4∗∗

[0.9; 1.9]

Needle steering results for a 18 Gauge beveled-tip steel biopsy needle.
Format: mean ± standard deviation [minimum; maximum].

∗ Physical target.
∗∗ Virtual static target.

avoidance, the targeting error increased to 1.3±0.6 mm, which
is expected, as both objectives are correlated (see Table I).
Examples of insertions can be found in Fig. 8a and 8b.

ii) Multi-Layered Phantom and nitinol Needle
In multi-layered phantoms, the average targeting error de-

creases to 3.0 ± 1.5 mm as the tissue heterogeneity induces
significant curvature changes. Introducing the elastography
measurements induces a twofold decrease of the targeting error
(to 1.5 ± 0.9 mm) by limiting curvature misestimation. An
example of insertion can be found in Fig. 8c.

iii) Ex-Vivo Tissue Sample and Soft Phantom and nitinol
Needle

In soft homogeneous phantoms, a submillimeter targeting
accuracy can be retrieved. However, when considering inser-
tions made into similar stiffness pork tenderloin tissue, the
targeting error increases to 1.7± 0.8 mm. This is mainly due
to the tissue fibers and fat layers which disrupt the needle
steering by provoking small local buckling and unmodeled
structural interactions. An example of insertion in pork can be
found in Fig. 8d.

iv) Stiff Needles
For stiff needles, the steering response is greatly diminished.

The initial target displacement has therefore been set to a few
millimeters. In soft homogeneous phantoms without obstacle,
the targeting performance is, as expected, lower than that of
nitinol needles, with a targeting error of 1.3± 0.4 mm.

IV. DISCUSSION

The average targeting precision is promising in regard to
similar work [13] with a twofold increase in precision in ex-
vivo biological tissue, and an overall steadier performance to
medium variation. Further result-based comparison with other
works might be irrelevant as the experimental conditions for
needle steering vary greatly.

https://youtu.be/RtvYRDtAb70


9

(a) Insertion in homogeneous gelatin phantom. (b) Insertion in homogeneous gelatin phantom with obstacle (red
sphere).

(c) Insertion in heterogeneous agar phantom with elastography. (d) Insertion in ex-vivo tissue.

Fig. 8: 3D representation of needle steering in various media. For better visualization, the 2D ultrasound pictures represented
here are a combination of 2D slices of a 3D volume, acquired at the end of the needle insertion.

A. Methods

In the following subsections, we will discuss the methods
in the light of the experimental assessment.

1) Needle Tip Localization: In all insertions, the needle tip
localization proved to be robust to low visibility. This can be
seen especially for trials in ex-vivo tissue and with steel biopsy
needles which suffer from significantly high intensity artifacts
(see Fig. 10).

Partial needle shaft loss and lack of contrast are com-
pensated by the Bayesian classification. It adapts the tip
classification accordingly to the ROI histogram. The same
observation can be made when the follow the leader hypothesis
is incorrect and only a part of the needle shaft is in the ROI.

The good performance of the tip localization can also be
explained by the intrinsic robustness of each software block
and their interaction (see Fig. 1). Indeed, when the needle tip
is not visible and the segmentation fails, the other algorithms
rely on the remaining data. In that case, the curvature cannot
be estimated online and is chosen as constant over time. When
the tip becomes visible again, the segmentation recovers the
tip in the ROI updated by the observer, and provides feedback
to the other processes.

2) Path Planning: The adaptative path planning enables
obstacle avoidance with little impact on the targeting accuracy
and adapts itself to heterogeneities and uncertainties. These
considerations allow for a robust needle steering motion plan-
ning specifically adapted for insertions in biological tissue.
Indeed, in such tissue the needle may encounter fibers and fat
layers that provoke discontinuities in the needle behavior.

The uncertainties are taken into account through two mecha-
nisms. First, the loop formed by the needle tip pose estimation
and the path planning enables the consideration of the tip
estimation covariance. Second, the fast replanning approach
takes into account the updated state of the needle and that of
its environment.

The algorithm is robust to tissue stiffness changes as the het-
erogeneities are considered through both curvature estimation
and prediction. This leads to the computation of paths with
depth-dependent curvature. This SWE-based motion plan is
introduced for the first time in the context of needle steering.
Even if the stiffness map itself may not be accurate, its
information is valuable. It helps to estimate the reachable space
(see Fig. 9a) and increases the precision of the steering.

One important limitation of fine needle steering in bio-
logical tissue is the winding of fibers around the needle
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(a) Steering of a nitinol needle into a heterogeneous agar phantom
with superimposed US volume. Without elasticity map, the real
trajectory (green curve) differs from the expected trajectory (dotted
red curve) and misses the target (red sphere). With elasticity map,
the unattainability of the target is detected before insertion.

(b) Corresponding sample of shear wave elastography imaging.

Fig. 9: Illustration of the usefulness of the elasticity map in
a heterogeneous medium. The target is placed out of the true
reachable space. The red part of the phantom is stiffer than
the blue one. A trace from a previous insertion can be seen,
the algorithm remains robust to its presence.

tip, making duty cycling approaches very challenging. To
limit such winding, the proposed solution guides the needle
following smooth helical paths that limit the needle rotation.
However, due to the stochastic exploration of the RRT, small
oscillations of the rotation angle occur when the needle is
being inserted. Therefore, better continuity of the needle path
could be introduced to further reduce unnecessary changes in
the motion plan.

B. Clinical applicability

This work is focused on using 3D US imaging that we
believe is a step forward from 2.5D imaging in regard to
clinical applicability. However, in a clinical setup, the position
of the probe may differ from what is presented in this paper
and could negatively affect the needle tip localization. In
real applications, this potential issue should be limited by
the practitioner efforts to place the probe to ensure good
needle visibility, as is naturally often done in regular needle
procedures.

Insertions with superelastic needles rods have been pre-
sented in this paper to achieve greater deflection than clinically
available needles. In real tissue, the steering of steel needles
is reduced to a few millimeters and limits tissue motion
compensation and obstacle avoidance. Despite this, the utility
of the algorithm still remains as the path is recomputed to
account for the obstacle and target motion, while minimizing
tissue damage and possible buckling.

Fig. 10: Example of bad visibility of a steel needle in a
3D ultrasound volume. Top picture: original volume. Bottom
picture: automatically needle tip tracking in green.

To fulfill more constrained objectives, the steering response
could be amplified. First, the experiments would benefit from
a greater depth of insertion, constrained by the clinical appli-
cation. Also, clinically compatible needle design and actuation
strategies can be selected to raise the needle curvature value
[29]. Finally, the steering capability is increased for clinical
insertions in stiff tissue (e.g. the prostate gland).

The use of SWE could also be translated to a clinical
scenario (e.g. prostate brachytherapy). A 3D map of the tissue
stiffness could be acquired preoperatively or intraoperatively
while the insertion is stopped. During the insertion, tissue
tracking (e.g. prostate tracking [32]) could then be used to
update the elasticity map to the tissue deformation.

A possible clinical application of the proposed method is the
avoidance of the pubic arch in the case of prostate brachyther-
apy. This could be done to reach previously unattainable
regions of the prostate while minimizing tissue trauma, and
accounting for the stiffness difference between the prostate
and the surrounding tissue.

In this proof of concept project, the insertion speed is
set equal to 0.5 mm.s−1. It may seem impractical for long
insertions. However, simulations carried out at 1.5 mm.s−1

validate the performances at a higher insertion speed. That
is, under the condition that the tissue dynamics does not
significantly affect the insertion at the chosen velocity.

V. CONCLUSION

The proposed solution is a promising step towards robust
needle steering into soft and heterogeneous tissue. The inter-
connection between estimation, segmentation, path planning
and asynchronous measurements increases the overall system
robustness.

It allows for needle steering with poor needle visibility
and temporary needle loss, through state estimation, adaptative
needle segmentation and measurement quality mapping. This
is necessary when working with 3D US imaging systems
which have low sampling rate, low spatial resolution and are
subject to noise and artifacts.
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The proposed solution accounts for uncertainties in the
needle-tissue interaction through curvature estimation, patient-
specific elasticity mapping, state covariance estimation, colli-
sion probability computation and fast path replanning.

The chosen steering approach may also cause less trauma
to the tissue, by preferring helical paths over a duty cycling
approach. Four control parameters can be tuned in real-time
by the user to easily prioritize objectives. In practice, such
tuning may depend on the intervention or on the stage of the
intervention.

Future work will involve improving the proposed solution
by incorporating clinical needs such as considering patient
breathing, tissue deformation and putting the surgeon in the
loop. Trials on anatomic subjects will be carried out to further
demonstrate the clinical applicability of this work.
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