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Abstract. A nonlinear adaptive excitation control is designed for a synchronous
generator modeled by a standard third order model on the basis of the physically
available measurements of relative angular speed, active electric power and terminal
voltage. The power angle, which is a crucial variable for the excitation control, is not
assumed to be available for feedback. The feedback control is supposed to achieve
transient stabilization and voltage regulation when faults occur to the turbines
so that the mechanical power may permanently take any (unknown) value within
its physical bounds. Transient stabilization and voltage regulation are achieved
by a nonlinear adaptive controller, which generates both converging estimates of
the mechanical power and the new equilibrium point compatible with the required
terminal voltage.

1 Introduction

The analysis of transient stability of a synchronous generator connected to
an infinite bus when large and sudden faults occur is a classical power system
problem, which has been addressed via Lyapunov techniques (see for instance
[12], [10], [6] ) in which models of increasing complexity are used) in order to
determine the critical clearing time, that is the time before which the fault
has to be cleared so that the faulted trajectory still belongs to the stability
region of the stable operating condition.

Feedback linearization techniques were proposed in [5], [3], [14] to design
stabilizing controls with the purpose of enlarging the stability region of the
operating condition. Nonlinear adaptive controls are proposed in [1] which
keep the machine in synchronism when short circuits occur in the transmis-
sion lines. Nonlinear adaptive controls are also proposed in [15] to improve
damping without requiring the knowledge of the operating point. The non-
linear feedback control algorithms so far proposed in the literature make use
of power angle measurements which are physically not available and have the
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difficulty of determining the faulted equilibrium value which is compatible
with the required terminal voltage once the fault (mechanical or electrical
failure) has occurred.

In this paper we make use of the standard third order model used in [15]
(see [2] , [13] ) to show that the terminal voltage, the relative angular speed
and the active electric power (which are actually measurable and available for
feedback) are state variables in the physical region of the state space. Since the
purpose of the excitation control is to regulate the terminal voltage without
loosing the synchronism, we compute the zero dynamics of the system with
respect to the terminal voltage and we obtain a highly nonlinear second order
dynamics. We then design following [8] a nonlinear adaptive feedback control
on the basis of physically available measurements (relative angular speed,
active electric power and terminal voltage) which is adaptive with respect
to the unknown mechanical power generated by the turbines and achieves
transient stability for all physical faults affecting mechanic power generation.
The mechanical power estimation quickly recovers the faulted value so that
the faulted equilibrium point corresponding to the desired terminal voltage
level can be determined and the synchronous generator can be smoothly
transferred to the faulted equilibrium point with no loss of synchronism.

2 Dynamical model

Consider the simplified mechanical model expressed in per unit as

δ̇ = ω

ω̇ = −D

H
ω +

ωs

H
(Pm − Pe) (1)

where: δ(rad) is the power angle of the generator relative to the angle of the
infinite bus rotating at synchronous speed ωs; ω(rad/s) is the angular speed
of the generator relative to the synchronous speed ωs i.e. ω = ωg − ωs with
ωg being the generator angular speed; H(s) is the per unit inertia constant;
D(p.u.) is the per unit damping constant; Pm(p.u.) is the per unit mechanical
input power; Pe(p.u.) is the per unit active electric power delivered by the
generator to the infinite bus. Note that the expression ω2

s/ωg is simplified as
ω2

s/ωg ' ωs in the right-hand side of (1). The active and reactive powers are
given by

Pe =
VsEq

Xds
sin(δ) (2)

Q =
Vs

Xds
Eq cos(δ)− V 2

s

Xds
(3)
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where: Eq(p.u.) is the quadrature’s EMF; Vs(p.u.) is the voltage at the infi-
nite bus; Xds = XT + 1

2XL +Xd(p.u.) is the total reactance which takes into
account Xd(p.u.), the generator direct axis reactance, XL(p.u.), the trans-
mission line reactance, and XT (p.u.), the reactance of the transformer. The
quadrature EMF, Eq, and the transient quadrature EMF, E′q, are related by

Eq =
Xds

X ′
ds

E′q −
Xd −X ′

d

X ′
ds

Vscos(δ) (4)

while the dynamics of E′q are given by

dE′q
dt

=
1

Td0
(Kcuf − Eq) (5)

in which: X ′
ds = XT + 1

2XL +X ′
d(p.u.) with X ′

d denoting the generator direct
axis transient reactance; uf (p.u.) is the input to the (SCR) amplifier of the
generator; Kc is the gain of the excitation amplifier; Td0(s) is the direct axis
short circuit time constant. Substituting (2) into (1) and (4) into (5), we
obtain the state space model

δ̇ = ω

ω̇ = −D

H
ω +

ωs

H

(
Pm − Vs

X ′
ds

E′q sin(δ) +
Xd −X ′

d

XdsX ′
ds

V 2
s sin(δ) cos(δ)

)
Ė′q =

1
Td0

(
Kcuf −

Xds

X ′
ds

E′q +
Xd −X ′

d

X ′
ds

Vs cos(δ)
)

(6)

in which (δ, ω, E′q) is the state and uf is the control input. Since Pe is measur-
able while E′q is not, it is convenient to express the state space model using
(δ, ω, Pe) as states which are equivalent states as long as the power angle δ
remains in the open set 0 < δ < π. Taking account of the notation

T ′d0 =
X ′

ds

Xds
Td0

where T ′d0 is the direct axis transient short circuit time constant, differenti-
ating (2) with respect to time, and using (1)-(5), we obtain

δ̇ = ω

ω̇ = −D

H
ω − ωs

H
(Pe − Pm)

Ṗe = − 1
T ′d0

Pe +
1

T ′d0

{
Vs

Xds
sin(δ)[Kcuf + T ′d0(Xd −X ′

d)
Vs

X ′
ds

ωsin(δ)]

+ T ′d0Peω cot(δ)}
(7)
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which is valid provided that 0 < δ < π. Note that when δ is near 0 or near
π the effect of the input uf on the overall dynamics is greatly reduced. The
generator terminal voltage is given by

Vte
jϕ =

jXsEqe
j( π

2 +δ) + jXdVse
j π

2

jXds

where

Xs = XT +
XL

2
Xds = Xd + Xs

so that its modulus is

Vt =
1

Xds
(X2

s E2
q + V 2

s X2
d + 2XsXdEqVscos(δ))

1
2

or in the new state variables

Vt =
(

X2
s P 2

e

V 2
s sin2(δ)

+
X2

dV 2
s

X2
ds

+
2XsXd

Xds
Pecot(δ)

) 1
2

(8)

which is the output of the system to be regulated to its reference value Vtr =
1(p.u.)

If this is done, the zero dynamics will be

δ̇ = ω

ω̇ = −D

H
ω +

ωs

H
(Pm +

Xd

XsXds
V 2

s sin(δ) cos(δ)

− Vs

Xs
sin(δ)

√
V 2

tr −
X2

d

X2
ds

V 2
s sin2(δ)

which are very complex, and for some initial conditions or parameters values
may become unstable as we may see in Fig. (1) where δ goes out of the region
0 < δ < 180 and ω grows out of physical boundaries.

The operating conditions (δ0, ω0, Pe0) of the synchronous generator model
(7) are given by

ω0 = 0
Pe0 = Pm

−Pm +
Vs

Xds
Kcufsin(δ) = 0
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Fig.1. Zero Dynamics

Note that while ω0 = 0, Pe0 = Pm are not affected by uf , from the
third equation above we see that there are two operating conditions δs, δu,
0 < δs < π

2 , π
2 < δu < π for constant inputs uf > (PmXds)/(KcVs);

(δs, 0, Pm) is an asymptotically stable equilibrium point while (δu, 0, Pm) is
an unstable equilibrium point. The stable operating condition (δs, 0, Pm) and
the corresponding excitation constant input

Kcuf0 =
PmXds

Vssin(δs)

are chosen so that the modulus of the generator terminal voltage

Vt =
1

Xds
(X2

s K2
c u2

f0 + V 2
s X2

d + 2XsXdKcuf0Vscos(δs))
1
2

is equal to the prescribed value.
The power angle is not measurable and is also not a physical variable

to be regulated; the only physical variable to be regulated is the output Vt,
while (Vt, ω, Pe) are measured and are available for feedback action.

As a matter of fact (Vt, ω, Pe) is an equivalent state for the models (6)
and (7) since (see appendix for the derivation of this formula)

δ = arccotg

(
Vs

XsPe

(
−XdVs

Xds
+

√
V 2

t − X2
s

V 2
s

P 2
e

))
(9)

If the parameters (Vs, Xs, Xd, Xds) are known, state measurements are
available. From (9) it follows that in order to regulate the terminal voltage
Vt to its reference value (Vtr = 1(p.u.)) δ should be regulated to

δs = arccotg

(
Vs

XsPm

(
−XdVs

Xds
+

√
V 2

tr −
X2

s

V 2
s

P 2
m

))
(10)

From a physical viewpoint the natural choice of state variables is (Vt, ω, Pe)
which are measurable. The state feedback control task is to make the stability
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region of the stable equilibrium point (Vtr, 0, Pm) as large as possible. In fact
the parameter Pm may abruptly change to an unknown faulted value Pmf

due to turbine failures so that (Vtr, 0, Pm) may not belong to the region of
attraction of the faulted equilibrium point (Vtr, 0, Pmf ). The state feedback
control should be design so that typical turbine failures do not cause insta-
bilities and consequently loss of synchronism and inability to achieve voltage
regulation.

A reduction from Pm to (Pm)f of the mechanical power generated by the
turbine, changes the operating condition: the new operating condition (δs)f

is the solution of

− (Pm)f

Pm
+

sin(δ)f

sin(δs)
= 0

and since (Pm)f is typically unknown, the corresponding new stable operating
condition (δs)f is also unknown.

3 Robust and adaptive stabilization

The model (7) is rewritten as

δ̇ = ω

ω̇ = −D

H
ω − ωs

H
(Pe − θ)

Ṗe = − 1
T ′d0

Pe +
Vs

XdsT ′d0

sin(δ)Kcuf +
(Xd −X ′

d)V
2
s

XdsX ′
ds

ωsin2(δ) + Peω cot(δ)

(11)

in which θ(t) is a possibly time-varying disturbance: the parameter θ is as-
sumed to be unknown and to belong to the known compact set [θm, θM ]: the
lower and upper bounds θm, θM are known.

Let δr(t) be a smooth reference signal to be tracked. Define (λ1 > 0)

δ̃(t) = δ(t)− δr(t)
ω∗ = −λ1δ̃ + δ̇r

ω̃ = ω − ω∗ = ω + λ1δ̃ − δ̇r

so that the first two equations in (11) are rewritten as

˙̃
δ = −λ1δ̃ + ω̃

˙̃ω = −D

H
ω +

ωs

H
(θ(t)− Pe)− λ2

1δ̃ + λ1ω̃ − δ̈r
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Define (λ2 > 0, k > 0) the reference signal for Pe as

P ∗e =
H

ωs

{
−D

H
ω − λ2

1δ̃ + λ1ω̃ − δ̈r + λ2ω̃ + δ̃ +
1
4
k
(ωs

H

)2

ω̃

}
+ θ̂

while θ̂ is an estimate of θ = Pm and

P̃e = Pe − P ∗e

so that (11) may be rewritten as (θ̃ = θ − θ̂)

˙̃
δ = −λ1δ̃ + ω̃

˙̃ω = −δ̃ − λ2ω̃ − ωs

H
P̃e −

k

4

(ωs

H

)2

ω̃ +
ωs

H
θ̃

˙̃Pe = − 1
T ′d0

Pe +
Vs

XdsT ′d0

sin(δ)Kcuf +
(Xd −X ′

d)V
2
s

XdsX ′
ds

ωsin2(δ) + Peω cot(δ)

− H

ωs

{(
−λ2

1 + 1 + λ1
D

H

)
(−λ1δ̃ + ω̃)

+
(
−D

H
+ λ1 + λ2 +

k

4

(ωs

H

)2
)(

−D

H
ω − λ2

1δ̃ + λ1ω̃ − ωs

H
Pe − δ̈r

)}
−
(
−D

H
+ λ1 + λ2 +

k

4

(ωs

H

)2
)

θ̂ − ˙̂
θ

−
(
−D

H
+ λ1 + λ2 +

k

4

(ωs

H

)2
)

θ̃ +
D

ωs
δ̈r +

H

ωs

˙̈
δr

Defining (λ3 > 0)

θ̃ = θ − θ̂

uf =
T ′d0Xds

VsKc sin(δ)
φ0

φ0 =
1

T ′d0

Pe −
(Xd −X ′

d)
XdsX ′

ds

V 2
s ω sin2(δ)− Peω cot(δ)

+
H

ωs

{(
−λ2

1 + 1 + λ1
D

H

)
(−λ1δ̃ + ω̃)

+
(
−D

H
+ λ1 + λ2 +

k

4

(ωs

H

)2
)(

−D

H
ω − λ2

1δ̃ + λ1ω̃ − ωs

H
Pe − δ̈r

)}
+
(
−D

H
+ λ1 + λ2 +

k

4

(ωs

H

)2
)

θ̂ + ˙̂
θ

− k

4

(
−D

H
+ λ1 + λ2 +

k

4

(ωs

H

)2
)2

P̃e −
D

ωs
δ̈r −

H

ωs

˙̈
δr − λ3P̃e +

ωs

H
ω̃
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the closed loop system becomes

˙̃
δ = −λ1δ̃ + ω̃

˙̃ω = −δ̃ − λ2ω̃ − ωs

H
P̃e −

k

4

(ωs

H

)2

ω̃ +
ωs

H
θ̃

˙̃Pe =
ωs

H
ω̃ − λ3P̃e

−
(
−D

H
+ λ1 + λ2 +

k

4

(ωs

H

)2
)

θ̃

− k

4

(
−D

H
+ λ1 + λ2 +

k

4

(ωs

H

)2
)2

P̃e

The adaptation law is (γ is a positive adaptation gain)

˙̂
θ = γProj

((
P̃e

(
D

H
− λ1 − λ2 −

k

4

(ωs

H

)2
)

+ ω̃
ωs

H

)
, θ̂

)
where Proj(y, θ̂) is the smooth projection algorithm introduced in [11]

Proj(y, θ̂) = y, if p(θ̂) ≤ 0

Proj(y, θ̂) = y, if p(θ̂) ≥ 0 and 〈gradp(θ̂), y〉 ≤ 0

Proj(y, θ̂) = [1− p(θ̂)|grad p(θ̂)|], otherwise

(12)

with

p(θ) =
(θ − θM+θm

2 )2 − ( θM−θm

2 )
ε2 + 2ε( θM−θm

2 )

for ε an arbitrary positive constant which guarantees in particular that:

i) θm − ε ≤ θ̂(t) ≤ θM + ε

ii) |Proj(y, θ̂)| ≤ |y|
iii) (θ − θ̂)Proj(y, θ̂) ≥ (θ − θ̂)y

Consider the function

W =
1
2
(δ̃2 + ω̃2 + P̃e

2
) (13)

whose time derivative, according to (11), is
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Ẇ = −λ1δ̃
2 − λ2ω̃

2 − λ3P̃e
2

+ ω̃
ωs

H
θ̃ − k

4

(ωs

H

)2

ω̃2

−
(
−D

H
+ λ1 + λ2 +

k

4

(ωs

H

)2
)

θ̃P̃e −
k

4

(
−D

H
+ λ1 + λ2 +

k

4

(ωs

H

)2
)2

P̃e
2

Completing the squares, we obtain the inequality

Ẇ ≤ −λ1δ̃
2 − λ2ω̃

2 − λ3P̃e
2

+
2
k

θ̃2 (14)

which guarantees arbitrary L∞ robustness from the parameter error θ̃ to the
tracking errors δ̃, ω̃, P̃e.

The projection algorithms (12) guarantee that θ̃ is bounded, and, by

virtue of (13) and (14), that δ̃, ω̃ and P̃e are bounded. Therefore, ˙̂
θ is bounded.

Integrating (14), we have for every t ≥ t0 ≥ 0

−
∫ t

t0

(λ1δ̃
2 + λ2ω̃

2 + λ3P̃e
2
)dτ +

2
k

∫ t

t0

θ̃2dτ ≥ W (t)−W (t0)

Since W (t) ≥ 0 and, by virtue of the projection algorithm (12),

θ̃(t) ≤ θM − θm + ε

it follows that∫ t

t0

(λ1δ̃
2 + λ2ω̃

2)dτ ≤ W (t0) +
2
k

(θM − θm + ε)2(t− t0)

which, if W (t0) = 0 (i.e. t0 is a time before the occurrence of the fault),
implies arbitrary L2 attenuation (by a factor k) of the errors δ̃ and ω̃ caused
by the fault. To analyze the asymptotic behavior of the adaptive control, we
consider the function

V =
1
2
(δ̃2 + ω̃2 + P̃e

2
) +

1
2

1
γ

θ̃2

The projection estimation algorithm (12) is designed so that the time
derivative of V satisfies

V̇ ≤ −λ1δ̃
2 − λ2ω̃

2 − λ3P̃e
2

(15)

Integrating (15), we have

limt→∞

∫ t

t0

(λ1δ̃
2 + λ2ω̃

2 + λ3P̃e
2
)dτ ≤ V (0)− V (∞) < ∞

From the boundedness of ˙̃
δ, ˙̃ω and ˙̃Pe, and Barbalat’s Lemma (see [9], [7])

it follows that

limt→∞

∥∥∥∥∥∥
 δ̃(t)

ω̃(t)
P̃e(t)

∥∥∥∥∥∥ = 0
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4 Simulation results

In this section some simulation results are given with reference to the eight-
machine power system network reported in [3] with the following data:

ωs = 314.159 rad/s D = 5 p.u. H = 8s
Td0 = 6.9s Kc = 1 Xd = 1.863 p.u.

X ′
d = 0.257 p.u. XT = 0.127 p.u. XL = 0.4853 p.u.

The operating point is δs = 72o, Pm = 0.9 p.u., ω0 = 0 to which corre-
sponds Vt = 1 p.u., with Vs = 1 p.u..

It was considered a fast reduction of the mechanical input power, and
simulated according to the following sequences

1. The system is in pre-faulted state.
2. At t = 0.5s the mechanical input power begins to decrease.
3. At t = 1.5s the mechanical input power is 50% of the initial value.
4. At t = 2s the controller starts to drive the system to the new predicted

equilibrium power angle.
5. At t = 4s the system finishes to drive the system to the new equilibrium.

The simulations were carried out using as control parameters

λi = 20 1 ≤ i ≤ 3
γ = 1 k = 0.1

Fig. 2a) shows that the predicted equilibrium power angle ((δs)f ) is avail-
able since t = 1.5s i.e. from the moment when the mechanical power arrives
at its final value. One may see that δ follows perfectly its reference value δr.

Actually, δr may be very fast, but the magnitude of the control signal will
grow as well. In these simulations, the control signal was kept lower than twice
of the necessary to keep the system at its original equilibrium point. If larger
controls are acceptable, the system may be driven faster to its equilibrium.

In Fig. 2b) one may see that the estimation of the mechanical power is
very fast and accurate, and that the electrical power is correctly driven to the
mechanical one. The electrical power just leaves its equilibrium value during
the time that the system is driven for its new equilibrium point. One can
see that before being driven to its final equilibrium value, δ is kept at its
original one (0.5 ≤ t ≤ 2). The same may be observed in Fig. 2c) for the
rotor velocity.

Fig. 3a) shows how the output voltage drops during the fault, and goes
to its correct value when the system is driven to the predicted equilibrium
point. Note that during the time (1.5 ≤ t ≤ 2) the system is stable, but the
output voltage is not anymore the correct one.

Finally, one can see in Fig. 3b) that the control signal is very smooth and
is kept inside the prescribed bounds.
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(a) (b)

Fig.2. a1) δ (-), δr (- -), (δs)f (-.) a2) Pm (-),θ̂ (-.), Pe (- -) a3) ω
b1) Vt b2) Control signal

5 Conclusions

In this work we have computed the zero dynamics of the system with respect
to the terminal voltage having then obtained a highly nonlinear second or-
der dynamics. We show by simulations that this zero dynamics may become
unstable by a simple change of the input mechanical power. This is our mo-
tivation to control the power angle and the relative angular speed as well as
the terminal voltage.

We then show that the terminal voltage, the relative angular speed and the
active electric power are an equivalent set of state variables for the system.
They have the advantage of being measurable standard outputs from the
system.

We then present the relation between the terminal voltage and power
angle which allows us to avoid measurement of the power angle as well as
to compute the new equilibrium angle that produces the correct terminal
voltage.

Finally we present a nonlinear adaptive feedback control that stabilizes
the system to the pre-faulted equilibrium point, recovers the correct value for
the mechanical power and then, the correct value of the faulted equilibrium
power angle, driving the system smoothly to this new equilibrium point.
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The system may be kept arbitrarily close to the original equilibrium point
and may be driven arbitrarily fast to the new equilibrium point. The only
restriction will be the magnitude of the control signal.

As a continuation of this research, the problem of transmission line failure
will be addressed. We will as well make a deeper study on the behavior of
the zero dynamics of the system with respect to the terminal voltage.
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Appendix
Substituting (2) into (3) we have that

Q = Pe cot(δ)− V 2
s

Xds
(16)

Then one will find that

Q2 =
P 2

e

sin2(δ)
− P 2

e − 2Pe cot(δ)
V 2

s

Xds
+

V 4
s

X2
ds

where we used the relation

cot2 =
1

sin2 − 1

Then, it is easy to find that

X2
s

V 2
s

(Q2 + P 2
e ) +

V 2
s

X2
ds

(X2
d −X2

s ) + 2
(X2

s + XsXd)

Xds
Pe cot(δ)

=
X2

s

V 2
s

P 2
e

sin2(δ)
+

V 2
s

X2
ds

X2
d + 2

XsXd

Xds
Pe cot(δ)

= V 2
t

where the last relation may be verified looking at (8). We then may rewrite

V 2
t =

X2
s

V 2
s

(Q2 + P 2
e ) +

V 2
s

X2
ds

(X2
d −X2

s ) + 2XsPe cot(δ)

Then, we have

cot(δ) =
1

2XsPe
V 2

t −
1

2XsPe

X2
s

V 2
s

(Q2 + P 2
e )− 1

2XsPe

V 2
s

X2
ds

(X2
d −X2

s )

(17)

Substituting (17) into (16) one will find that

Q2 +
2V 2

s

Xs
Q + P 2

e +
V 2

s

X2
s

(V 2
s − V 2

t ) = 0

and consequently we may find its roots. By physical bounds on Q (it must assume
positive and negative values while Vs and Xs are positive) we find that
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Q = −V 2
s

Xs
+

Vs

Xs

√
V 2

t −
X2

s

V 2
s

P 2
e

and then we have that

Q2 =
V 2

s

X2
s

(V 2
t −

X2
s

V 2
s

P 2
e )− 2

V 2
s

Xs

Vs

Xs

√
V 2

t −
X2

s

V 2
s

P 2
e +

V 4
s

X2
s

(18)

Substituting (18) into (17) one will find that

cot(δ) = (
Vs

XsPe
)(− Vs

Xds
Xd +

√
V 2

t −
X2

s

V 2
s

P 2
e )

and finally we have that

δ = arccot

((
Vs

XsPe

)(
− Vs

Xds
Xd +

√
V 2

t −
X2

s

V 2
s

P 2
e

))

For the equilibrium value, we just replace Pe and Vt by its reference values Pm

and Vtr and then we find

δs = arccot

((
Vs

XsPm

)(
− Vs

Xds
Xd +

√
V 2

tr −
X2

s

V 2
s

P 2
m

))


