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Abstract. In this paper, continuing the line of our previous works, a nonlinear
adaptive excitation control is designed for a synchronous generator modeled by
a standard third order model on the basis of the physically available measure-
ments of relative angular speed, active electric power and terminal voltage. The
power angle, which is a crucial variable for the excitation control, is not assumed
to be available for feedback, as mechanical power is also considered as an unknown
variable. The feedback control is supposed to achieve transient stabilization and
voltage regulation when faults occur to the turbines so that the mechanical power
may permanently take any (unknown) value within its physical bounds. Transient
stabilization and voltage regulation are achieved by a nonlinear adaptive controller,
which generates both on-line converging estimates of the mechanical power and a
trajectory to be followed by the power angle that converges to the new equilibrium
point compatible with the required terminal voltage. The main contributions here,
compared with our previous works, is the use of on-line computation and tracking
of equilibrium power angle, and the proof of exponential stability of the closed loop
system for states and parameter estimates, instead of the previous asymptotical
one.

1 Introduction

The problem of stabilization of power generators is a classical power systems
and control systems problem. It has been approached for some time now in
many works initially by classic control and linear modern control techniques
with good results, but only locally valid. Recently this problem has been
treated by nonlinear methods as Lyapunov techniques (see for instance [12],
[10], [7)).

Recently, feedback linearization techniques were proposed in [6], [4] and
[13] to design stabilizing controls with the purpose of enlarging the stabil-
ity region of the operating condition. Nonlinear adaptive controls are also
proposed in [1] and [14].

The nonlinear feedback control algorithms so far proposed in the literature
make use of power angle and mechanical power measurements which are
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physically not available and have the difficulty of determining the faulted
equilibrium value which is compatible with the required terminal voltage
once the fault (mechanical or electrical failure) has occurred.

Following the lines of our previous works [5] and [3] we make use of the
standard third order model used in [14] (see [2] and [15]) to show that the
terminal voltage, the relative angular speed and the active electric power
(which are actually measurable and available for feedback) are state variables
in the physical region of the state space

In this paper, continuing our previous results, we study the zero dynamics
of the system, with respect to the terminal voltage, for typical values to show
the existence of two equilibrium points, one stable and one unstable. This
is a motivation for the use of nonlinear control instead of the classical one
computed using the approximate linearized model around the stable point.

In our previous work [5], a nonlinear adaptive feedback control on the
basis of physically available measurements (relative angular speed, active
electric power and terminal voltage) was presented. There, when a pertur-
bation occurred, the system was maintained in the old equilibrium point, no
longer valid, causing wrong outputs, while the estimation of the new equi-
librium point was made. Then, a trajectory to drive the system to the new
equilibrium point was computed.

In the present work, estimation of the new equilibrium point and com-
putation of the trajectory that drives the system there are done on-line.
Global exponential stability is guaranteed for the whole closed loop system
to this new previously unknown equilibrium point. There is a considerable
improvement with respect to the output errors with the on-line procedure,
and robustness is guaranteed by the exponential stability.

2 Dynamical model

As in [5], we consider the simplified mechanical model expressed in per unit
as

d=w
. D Ws
W——ﬁOJ-FE(Pm—PB) (].)

where: d(rad) is the power angle of the generator relative to the angle of the
infinite bus rotating at synchronous speed ws; w(rad/s) is the angular speed
of the generator relative to the synchronous speed w; i.e. w = wy, — w, with
wg being the generator angular speed; H(s) is the per unit inertia constant;
D(p.u.) is the per unit damping constant; P, (p.u.) is the per unit mechanical

input power; P.(p.u.) is the per unit active electric power delivered by the
generator to the infinite bus. Note that the expression w?/w, is simplified as
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w? Jw, =~ ws in the right-hand side of (1). The active and reactive powers are
given by

VB,

P, = X, sin(0) (2)
v, V2

Q= X—dsEq cos(d) — X, (3)

where: E,(p.u.) is the quadrature’s EMF; V;(p.u.) is the voltage at the infi-
nite bus; Xy, = X7+ %XL + Xa(p.u.) is the total reactance which takes into
account Xy(p.u.), the generator direct axis reactance, Xr,(p.u.), the trans-
mission line reactance, and X7(p.u.), the reactance of the transformer, and

the definition Xg 2 Xr+ %XL. The quadrature EMF, E,, and the transient
quadrature EMF, E;, are related by

_deEl_Xd_Xé

B = 2d— *d
D Xis

Vscos(0) (4)

while the dynamics of E; are given by

dE' 1
—1 = _ (K - FE
p Tdo( cuy q) (5)

in which: X}, = X7+ £ X, + X(p.u.) with X, denoting the generator direct
axis transient reactance; uy(p.u.) is the input to the (SCR) amplifier of the
generator; K. is the gain of the excitation amplifier; Tyo(s) is the direct axis
short circuit time constant.

Especially because P, is measurable while E,; is not, it is convenient to
express the state space model using (4, w, P.) as states, which are equivalent
states as long as the power angle ¢ remains in the open set 0 < 6 < 7, as
follows.

F=
D w

w——ﬁw—Hs(Pe P,)

. 1 1 V. V.

P.=—P +— = sin(0)[K, T (Xq— X)) = in(é
TP+ | i)y + Ti((Xy = Xo) gosin®)]

+ Ty P.wcot(8)}

in which (0, w, P,) is the state and u; is the control input.
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Note that when § is near 0 or near 7 the effect of the input uy on the
overall dynamics is greatly reduced. Note also that here we have introduced
the notation

Xis
T
de d0

[
TdO_

The generator terminal voltage modulus is given by

2

X2P? X2v?2  2X.Xy
Vi = L d_s > 2 P.cot(8
! (stinQ(é) X3, * Xds ol )>

which is the output of the system to be regulated to its reference value V3, =
1(p.u.)

2.1 Power Angle

The power angle is not measurable and is also not a physical variable to be
regulated; the only physical variable to be regulated is the output V;, while
(Vi,w, P.) are measured and are available for feedback action.

As a matter of fact (V;,w, P.) is an equivalent state for the model (6) (as
proved in [5])

2
d = arccotg (XV;D (— );Vs + [V - %PE)) (7)
sie ds s

If the parameters (V;, X5, X4, Xg4s) are known, state measurements are avail-
able. From (7) it follows that in order to regulate the terminal voltage V; to
its reference value (V4 = 1(p.u.)) 6 should be regulated to

% X4V, X2
ds = arccotg (X]s) (— )gds +4/ Vi — V; P%)) (8)
S m S 8

From a physical viewpoint the natural choice of state variables is (V;,w, P.)
which are measurable. The state feedback control task is to make the stability
region of the stable equilibrium point (V;,,0, P;,) as large as possible. In fact
the parameter P, may abruptly change to an unknown faulted value P,y
due to turbine failures so that (V;,,0, P,,) may not belong to the region of
attraction of the faulted equilibrium point (V;,,0, Pn¢). The state feedback
control should be design so that typical turbine failures do not cause insta-
bilities and consequently loss of synchronism and inability to achieve voltage
regulation.

A reduction from P, to (Py,)s of the mechanical power generated by the
turbine, changes the operating condition: the new operating condition (d;);
is the solution of

(Pm)s  sin(d)s
P, +sin(5s)

=0
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and since (Py,) s is typically unknown, the corresponding new stable operating
condition (d5)y is also unknown.

2.2 Zero Dynamics

If we regulate the voltage output (V;) to its reference value (V;,), the zero
dynamics will be given by

d=w
. D Ws Xd 2 .
w=-gw + 7 (P + XstsVs sin(6) cos(9)

X2
% sin(&)\/ Vit~ S V2sint(9)
which are very complex, and for some initial conditions or parameters values
may become unstable.

If we use the values defined in [5] we may plot w as a function of w and
4, there will then be two points of § that satisfy the equilibrium of the zero
dynamics. These points (the two real ones) are § = 1.26 and 6 = 2.96.

Linearizing the system around each one of these two points, we will have
as eigenvalues the pairs [—0.31 — 7.581, —0.31 + 7.581] and [—13.86, +13.86]
respectively.

Thus we have shown the existence of two equilibrium points, one
stable and one unstable. There will then be an attraction region for the stable
one. If one is driven out of this region (by initial conditions or by a fault),
the controller will not act regulating w and § and the system will become
unstable. This shows that using the output error voltage as the only error
signal may be dangerous as one may regulate this voltage and loose stability.

3 Adaptive Controller and Main Result

In this section we present the calculation of the adaptive controller as in [5].
Our main result is then to prove the global exponential stability of the whole
system, with parameter exponential convergence.

The model (6) is rewritten substituting P, by 6(¢) which is a possibly
time-varying disturbance: this parameter is assumed to be unknown and to
belong to the compact set [, y]: where the lower and upper bounds 6,,,, 6/
are known.

Let f(#,z) be a C? reference signal to be tracked. Define (A\; > 0)

o(t) = o(t) — f(8,x)
w* ==\ + f(6,2)
HD=w—w =w+ b — f(6,2)
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so that the first two equations in (6) are rewritten as

5= -Mb+0
B .D Wy N % )
b= 2w+ 2 (0) = P) = X0+ M — f(d,2)

Define (Ay > 0,k > 0) the reference signal for P, as

. H D ~ . - L= 1 rwe\2 A
Pl = o {—ﬁw—A§5+A1w—f(0,x) + Ao + 6 + Zk (ﬁ) w} +6
while § is an estimate of § = P,, and P, = P, — P’ so that (6) may be
rewritten as (6 = 60 — 6)

S: —)qg-l-w
S= b @ — 2P —E(&)2 Ysg
“T o E T a\'
L 1 V; . (Xd_X,)VSQ .
Pe = —mpe + mS'Ln((S)KCUf + TXZSCUSWQ((S) + Pew COt((S)
H -
- { (—)\f +1+ )\1—> (—A\i0 +@)

D k Wg 2 D 27 ~ Ws )
+<_E+>\1+>\2+4(H)>(—Hw—Al(S‘F}\lw_ﬁPe_f(6=$)>}
D k Ws 2\ . “
= <—ﬁ+/\1+>\2+4(H) )9—9

- <_§+A1+A2+i(°;;) >9+—f(9 0+ 162

Defining A3 > 0, we then propose the control law

_ Téons
U= UK, sin(0)
1 (Xd_Xfi) 2 2
=—pP ——— ¢ d) — P, t(d
oo T Xan X, V. wsin®(0) w cot(d)

H D N
—{( A§+1+/\1E> (=10 + @)

+
ws\ 2 i
+<__+/\1+>‘2+4(F)><_Hw_/\§+>\lw__P f( x))}
D k rws\2\ » &
(——+/\1+>\2 T (= >0+9
k( D k w2\’ D s -
—Z<—H+/\1+A2+Z(ﬁ)> Po— —f0.2) = -f(6.2) = NaPe+ 32
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then, the closed loop system becomes

S

Il

|
>~
=
S
+
&

-k () o 5

H
D k (ws
@—A3P5—<—E+>\1+A2+Z(%

D k rws\2\° -
(—E+/\1+A2+4(H)> P 9)

The adaptation law is (v is a positive adaptation gain)

— 7 Proj ( (— S P Y 2 (%)2> +w%> ,é) (10)

where Proj(y, ) is the smooth projection algorithm introduced in [11]

&
Il
|
(=%}
|
>

B
&
|

Proj(y,6) = v, if p(8) <0
Proj(y,6) =y, if p() >0 and (gradp(8),y) <0
Proj(y,0) = [1 — p(8)|grad p(d)|], otherwise
(11)
with
0 _ 0 N\2 _ (O —Om
L S
€2 + 2¢( 7o)
for € an arbitrary positive constant which guarantees in particular that:
D) O —e<O(t) <Bpr+e
ii) \PTOJ( 0)| < ly|
iii) (8 — 0)Proj(y,8) > (6 — 6)y
Consider the function
1 - .
W= @+ + B’ (12)

whose time derivative, according to (9), is

W = =202 — M\id® — AsP. + 0% -1 (” ) @?

_ <_2+>\1+/\2+§(w5)2 éﬁe—g (—%+/\1+A2+E(&)2>2ﬁe2

H
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Completing the squares, we obtain the inequality
; ) ~2 52, 25
w S —>\15 — )\gw — >\3Pe + EG (13)

which guarantees arbitrary Lo, robustness from the parameter error 6 to the
tracking errors 4, @, P.. N
The projection algorithms (11) guarantee that 6 is bounded, and, by

virtue of (12) and (13), that 6, & and P, are bounded. Therefore, § is bounded.
Integrating (13), we have for every t > o > 0

t . . 9 rt_
—/ (M82 + Xoi® + Ny B.)dr + - 62dr > W (t) — W (to)
t0 to

Since W (t) > 0 and, by virtue of the projection algorithm (11),

0(t) <Onr — O + €

it follows that

t
/ (M6% + Xao@?)dr < W (to) + %(GM — O + €)% (t — to)
t0

which, if W(ts) = 0 (i.e. to is a time before the occurrence of the fault),
implies arbitrary Lo attenuation (by a factor k) of the errors $ and @ caused
by the fault. To analyze the asymptotic behavior of the adaptive control, we
consider the function

Ll o, om2 115
V_2(6 + o +Pe)+279

The projection estimation algorithm (11) is designed so that the time
derivative of V satisfies

V < —M62 = Mi? — AP (14)
Integrating (14), we have

t
limy o0 / (M82 + X\oi? + A B.Y)dr < V(0) = V(oo) < o0
t0

From the boundedness of 5, & and Iée, and Barbalat’s Lemma (see [9], [8])
it follows that

o(t)
P

e (1)
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We may now rewrite the closed loop system following the normal form:

which leads to:

Co[-a 0 07
=] -1 -2+ c) -5 T+ | % |0 (15)
0 572 — ()\3 + %c%) —c1

6=—7[0% -]

where ¢; and ¢», as ¢3 on next equation, are constants. And then computing:
2
— ws

T
00" = 2

+c=c3>0

We then may show by persistency of excitation that # and 6 will be
globally (for the model validity region) exponentially stable, then all error
signals go exponentially to zero, for all C® f(#,z). This is also valid then
for the particular case where f(6,2) = 6, where ¢, is given by equation (8).
But, since 4, is a one-to-one smooth function of 6, it will converge to the
correct equilibrium value §; as 9 converges to 0, i.e. the reference trajectory
will converge to the unknown equilibrium point and then lim;_, o, (§ —d5) = 0.

4 Simulation results

In this section some simulation results are given with reference to the eight-
machine power system network reported in [4] with the following data:

ws = 314.159 rad/s D =5 p.u. H =8s
Ty = 6.95 K, =1 X, = 1.863 p.u.
X! =0257 pu. X7 =0.127 pu. X, = 0.4853 p.u.

The operating point is §; = 72°, P,, = 0.9 p.u., wy = 0 to which corre-
sponds V; = 1 p.u., with V; =1 p.u..

It was considered a fast reduction of the mechanical input power, and
simulated according to the following sequences

1. The system is in pre-faulted state.
2. At t = 0.5s the mechanical input power begins to decrease.
3. At t = 1.5s the mechanical input power is 50% of the initial value.
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(1) (1)
80 T 04 T

Fig.1. al) Real § (-), Calculated § (-.), 6, (- -) a2) Pm (-),0 (--) a3) Pn (-), Pe
(--) bl) w b2) Vi b3) Control signal

The simulations were carried out using as control parameters
Ai=20 1<i<3
vy=1 k=0.1

Fig. 1.al) shows that the calculated power angle matches perfectly the real
one. It also shows that the trajectory for the power angle (d,) goes smoothly
to its final value, and that d follows it perfectly.

In Fig. 1.a2) one may see that the estimation of the mechanical power
is accurate, it may be very fast if we change the parameters, and specially
if larger errors are accepted for the state and output variables. This may be
understood by looking at equation (10).

The electrical power is also correctly driven to the mechanical one as
we see in Fig. 1.a3). The same may be observed in Fig. 1.b1) for the rotor
velocity.

Fig. 1.b2) shows how the output voltage drops during the fault, and goes
to its correct value when the system is driven to the correct equilibrium point.
If estimation was not correct, there would be a steady state error.

Finally, one can see in Fig. 1.b3) that the control signal is very smooth
and is kept inside the prescribed bounds.

Note that during all time, errors are very small. They can be made even
smaller by increasing the parameter k.



Adaptive Nonlinear Control of Synchronous Generators 11

5 Conclusions

In a previous work we have computed the zero dynamics of the system with
respect to the terminal voltage having then obtained a highly nonlinear sec-
ond order dynamics. Based on typical values, we show here that there is one
stable and one unstable points, and then, an attraction region for the stable
one. This is a motivation to be concerned with all the state vector and not
only with the output voltage since, even keeping it regulated to its reference
value one may find instability for the whole system. It is also a motivation
for the nonlinear control as the system may always be driven to an unsta-
ble point where a linear control, specially one designed using the linearized
system around the stable point, will not be able to stabilize it.

Finally, using the same controller as in previous works, we prove the ex-
ponential stability of the closed loop system. We also prove that the estimate
of the parameter converges exponentially to its true value. The system may
be driven arbitrarily fast to the new equilibrium point. The only restriction
will be the magnitude of the control signal and the accepted error signal.

Our present research includes the problem of transmission line failure.
We have also started the procedure to do practical implementations to verify
ours simulations. The multi-machine problem will then be the next step.
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