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Adaptive nonlinear output feedback for transient stabilization and
voltage regulation of power generators with unknown parameters
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SUMMARY

This work presents a nonlinear adaptive output feedback excitation control, designed for a synchronous
generator modeled by a standard third order model on the basis of the physically available
measurements of relative angular speed, active and reactive electric power and terminal voltage.
The power angle, which is a crucial variable for the excitation control, as well as mechanical power
and the impedance of the transmission line connecting the generator to an infinity bus, are not
assumed to be available for feedback. The feedback control achieves transient stabilization and
voltage regulation when faults occur to the turbines or the transmission lines, such that parameters
(mechanical power and line impedance) may permanently take any (unknown) value. The controller
recovers by adaptation the unknown values and simultaneously generates trajectories to be followed
by the states, that converge to the new equilibrium point.

KEY WORDS: non-linear control; adaptive control; power system stabilization; power generators

1. Introduction

Power system stabilization has been dealt with for many years by both control and power
systems communities. For the latter, the goal is to have stable, reliable and robust electrical
energy production and distribution. On the other hand, control system teams develop quite
more complicated systems which may be difficult to implement. Our goal here is to present new
control methods for power system stabilization, which are closer to physical considerations.
These new control methods, mainly based on modern nonlinear techniques, may improve power
systems stabilization since classical controllers found in most power plants have limitations in
performance and in operation region.

On the other hand, the theoretical interest of these systems becomes evident as we remark
that power generators are described by nonlinear equations with unknown time varying
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parameters. There is no full state measurement, and they are underactuated systems. All these
features make the problem quite difficult and interesting from a theoretical point of view. Its
classical solution is presented in [10] and [2] using robust linear techniques that are widespread
in most power plants. Modern linear robust and adaptive control techniques applied to this
problem, may be seen in [7], [8] and [3]. Recently, feedback linearization ( [11], [6] and [20])
as well as nonlinear adaptive techniques ([1] and [21]) were proposed to design stabilizing
controllers with the purpose of enlarging the stability region of the operating condition.

The nonlinear feedback control algorithms so far proposed in the literature make use of
power angle and mechanical power measurements, which are physically not available. These
algorithms have also the difficulty of determining the faulted equilibrium value which is
compatible with the required terminal voltage once the fault (mechanical or electrical failure)
has occurred. This is our motivation to propose a nonlinear scheme based only on actually
measured outputs. First, in Section 2, following the lines of our previous works [4], [12] and
[5], we make use of the standard third order model used in [21] (see [2] and [19]) to show
that the terminal voltage, the relative angular speed and the active electric power (which are
actually measurable and available for feedback) are state variables in the physical region of
the state space. We then develop an adaptive feedback linearization of the system achieving
exponential stability of the closed loop system, as presented in Section 3. To do so, for a
given set of unknown parameters, we recover, by adaptation, the new equilibrium point of the
system and generate, on-line, a trajectory that drives the generator toward this point. This
task becomes complicated as we have a nonlinear and nonlinearly-parametrized system with
unknown time-varying parameters, without full state measurement. Tracking in such systems
is a difficult task, and has been recently studied for the SISO case in [14]. We conclude the
paper with simulations (Section 4) that show the good behavior of the adaptive controller in
the presence of transmission line and turbine faults.

2. Dynamical Model

The power generator is represented by the standard model presented in [2] (also used in
[6], [19], [20] and [21]) that may be decomposed in a mechanical and an electrical parts. The
advantage of such a model is that although being of low order, it expresses well the behavior
of large systems. This fact (model reduction) is well developed in [18] where a mathematical
approach leads to the same conclusions of standard physical simplifications. In practice, this
may be seen as the Thevenin equivalent of a large network.

Let’s first consider the simplified mechanical model expressed in per unit as

b = w
D Ws
7ﬁw+ ﬁ(Pm *Pe) (1)

w

where: §(rad) is the power angle of the generator relative to the angle of the infinite bus
rotating at synchronous speed ws; w(rad/s) is the angular speed of the generator relative to
the synchronous speed w; i.e. w = wy, — ws with w, being the generator angular speed; H(s)
is the per unit inertia constant; D(p.u.) is the per unit damping constant; P, (p.u.) is the per
unit mechanical input power; P,(p.u.) is the per unit active electric power delivered by the
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generator to the infinite bus. Note that the expression w?/w, is simplified as w?/w, ~ ws in
the right-hand side of (1). The active and reactive (Q(p.u)) powers are given by

V.E,
P, = g 2
, X, sin(d) (2)
V, V2
Q X, q cos(d) X, (3)

where: E,(p.u.) is the quadrature’s EMF; V;(p.u.) is the voltage at the infinite bus; X45(p.u.) A
Xr+ %XL + X, is the total reactance which takes into account X4(p.u.), the generator direct
axis reactance, X, (p.u.), the transmission line reactance, and X (p.u.), the reactance of the
transformer. The quadrature EMF, E,, and the transient quadrature EMF, E,’l, are related by

 Xay o, Xg- X

Fo=x P 5,

Vscos(0) (4)

while the dynamics of E; (representing the electrical part of the generator) are given by

dE, 1

— = — (K —FE
i Tdo( cuf 2) (5)

in which: X (p.u.) A X143 X1 +X) with X} (p.u.) denoting the generator direct axis transient
reactance; uy(p.u.) is the input to the (SCR) amplifier of the generator; K, is the gain of the
excitation amplifier; Tyo(s) is the direct axis short circuit time constant. Substituting (2) into
(1) and (4) into (5), we obtain the state space model

0 = w
D . s Xq— X
w = ¢ + % <Pm - )K‘Iis E, sin(6) + XFITX;:‘@ sin(d) cos((i))
. 1 Xds Xq— Xé
By = - (Kcuf - X—&sE; + TVS cos(d) (6)

in which (6, w, E;) is the state and wuy is the control input. Since P, is measurable while £,
is not, it is convenient to express the state space model using (4, w, P,) as states which are
equivalent states as long as the power angle  remains in the open set 0 < § < 7.

In the following, we take into account the notation

!

ds T
d0
de

L
TdO_

where T}, is the direct axis transient short circuit time constant. Differentiating (2) with
respect to time, and using (1)-(5), we obtain
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0 = w
D Wg
= —_Ww — PE - Pm
w Hw H( )
. 1 1 (Vs | Vs .
P, = —T—L;OPE + T_éo {de sin(0)[Koup + Ty (Xq — X&)X—éswsm(é)]
+ TyyPewcot(d)} (7)

which is valid provided that 0 < § < 7. Note that when § is near 0 or near « the effect of the
input uy on the overall dynamics is greatly reduced.
The generator terminal voltage is given by

szquj(%+6) + i X4V,els

V/E‘jw — i
! Jde
where
X
Xo= X+ 5
Xris = Xd + Xs

so that its modulus is

Vi (X2E? + V2X3 + 2X,X4E,Vscos()) 2

- de

or in the new state variables

1
2

Pecotw)) ®)

Vi = Xs2Pe2 X(%V? 2)(s)(d
ET A\ V2sin2(0) T X2, X

which is the output of the system to be regulated to its reference value V4, = 1(p.u.)

We must remark in this model that mechanical power, power angle and line impedance are
not available for measurement. Actually, this is the main blocking point for nonlinear control
of power generators.

We avoid this problem using the relation (see [4]):

_ Q2 VQVE (@2 + POV V)

X

Q* + P2
to express the line impedance, and the relation:
Vs X4V X2
d = arccot (Xspe (— X, +4[VE - V2 Pg>> (10)

to express the power angle. With respect to the mechanical power, we will present an adaptive
scheme to recover its value. Note that in equation (9), we use X; as the impedance of the
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line up to the point of the network where the voltage is equal to V. Errors in the infinity bus
voltage will be expressed as a different value of line impedance, leading to an equivalent result
for the controller.

One must also remark that (10) is a one-to-one function from § to V; (as V; is positive). As
a consequence, (V;,w, P,), which are measurable and are available for feedback action, is an
equivalent state for the models (6) and (7).

3. Nonlinear Adaptive Controller

The operating conditions (dg,wo, Peo) of the synchronous generator model (7) are given by

Wy = 0
Po = P,
Vs .
—P, + —K.ugsin(d) = 0 (11)

de

Note that while wy = 0, Py = P,, are not affected by u¢, from the third equation above
we see that there are two operating conditions d5,6,, 0 < d, < §, F < 4, < 7 for constant
inputs uy > (PmXas)/(K:V5); (05,0, Py,) is an asymptotically stable equilibrium point while
(64,0, P,,) is an unstable equilibrium point. The stable operating condition (ds, 0, Pp,) and the
corresponding excitation constant input

Pdes
K, = —
Uro Vissin(ds)

are chosen so that the modulus of the generator terminal voltage

1
_de

Vi (X2K2uby + VX3 + 2X, XK ugoVscos(35)) 2
is equal to the prescribed value V4.

The objective of the control system is to keep all states and outputs bounded and
asymptotically bring outputs/states to their reference values. These objectives may be
summarized as:

0<d<180 {w'l [ 0 '|
lw] <wm < oo, lim P, =1 Py,
IP.| < oo H""[VtJ [VtJ

where wpy is a limit value for the angular velocity that is specified by the constructor.

One must remark that parameters may, and will, abruptly change in time. For instance, the
parameter P, may abruptly change to an unknown faulted value P, due to turbine failures,
so that (V;,,0, P,,,) may not belong to the region of attraction of the faulted equilibrium point
(Vir, 0, Ppy). The state feedback control should be designed so that typical turbine failures do
not cause instabilities and consequently loss of synchronism and inability to achieve voltage
regulation.
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A reduction from P, to (P,,)s of the mechanical power generated by the turbine, changes
the operating condition: the new operating condition (4)¢ is the solution of
P, sin(0
(Pu)s , sin@)s _
P, sin(ds)
and since (Py,) r is typically unknown, the corresponding new stable operating condition (ds) s is
also unknown. The control system must recover this new operation point, generate a trajectory
towards it, and drive the system to this trajectory.
To develop the control, the model (7) is rewritten as:

0 = w
D Ws
- 2%
“ 7o 7Y
. 1 Xy — X)V2
P, = — P+ _—"— Ve sm(é)KCuf—l—Mwsm%é)+Pewc0t(6)

thlo ‘ XdeT’ deXz’is

(12)

in which 6(t) is a possibly time-varying disturbance; the parameter 6 is assumed to be unknown
and to belong to the known compact set [0,,,6] where the lower and upper bounds 6,6y
are known.

Let 6,(t) be a (at least) C? reference signal (toward the new equilibrium point) to be tracked.
In order to build this trajectory (d,) toward the equilibrium value of the power angle (d5), we
use equation (13) where we replace V; by its reference value V;,; Vj is considered as 1(p.u.);
X is the impedance of the line up to the point of the network where the voltage is equal to
Vs, and is calculated by (9); X is a known constant and finally P, is replaced by P, that is
the estimation of P,,. The resulting expression is:

Vs Vs / X7
0, = arccot ((Xslgm> ( ngXd +4/Vid = V2 P2>> (13)

As arccot(z) is a one-to-one smooth function, one may compute the correct §, for each set
of arguments. Remark that as P, goes to Pp,, d, goes to Js.
In order to estimate P, we define (& is an estimation of w):

P, = P,-DP,
We = (w—)

One must not confound this new defined @&, with variable @ that we will define later. We
may then write:

]Sm = _ﬁm:_'yﬂ:‘je

: D Wg N
b o= 2o - By
w 79 g )

and then, using also the second equation of (7), we conclude that:
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D Wy ~
~€ = *_Ne 2 Pm
. et
or in a more concise form
- Wy D ~
We H ~H We

which eigenvalues are:

1 =D ++/D?—-4Huw;
2 H

We may then see that a suitable choice of «; will give an exponentially stable estimation.
Actually, any ~; > 0 will meet this requirement, in particular a 0 < 4 g% that will give

two negative real roots.
Next, we define:

o(t) = o(t) — d,.(t)
where, taking the time derivative, we obtain:
§=w—b.(t)

As we want that the error system be a stable linear system, we state w* as the desired value
for w (taking A\; > 0):

W= —\d + 5,
and then we may define:
J}éwfw*:w-l—)\lgf&«
Taking the time derivatives of both equations leads to:

5 = —Ao+B (14)

D o 00t — P — N2+ M 6,

w

|

!

|

£
+
|

Following the same technique, we define (Ay > 0,k > 0) the reference signal for P. that
linearizes our system:

L H D o e~ 1w\ ) s
ﬂ-jl{ﬁwM5+Mw&+kw+5+1k(ﬁ)w}+9

where 6 is an estimate of § and
P.=P,— P!
Rewriting the second equation of (14):
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L Wso Ws ~ o~ 1. rws\2 -
w = ﬁﬁ(t)—ﬁPe—/\zw—(s—Zk (ﬁ) w

and taking the derivative of P}:

. H D [ - ~ .
Pe* = w_g{ﬁ (m)\15+5r>

1 Ws 2 D Wg 9T . .
+<M+Argﬁ(ﬁ)><—ﬁw+iﬂwn—ﬂg—M5+Mw—a>

+(1=A%) (—/\16~+&)} . gsgr

equation (12) can finally be rewritten as (6 =6 — 6)

§ = “MO+D
5= boam 2B E(2) a2
YT o w 1\H) YT H
=~ 1 Vs . (Xd*Xl)Vf .
P, = 7T—r/mPe + msm(&)[(cuf + TX‘;Swst((S) + P.w cot(9)
H

D ~
- —{(—A§+1+/\1E> (=\i6 + @)

Ws

D kw2 [ D ox .\~ we
<ﬁ+)\1+)\2+z(ﬁ) ) <ﬁ&))\1(5+)\1u)ﬁpp6r>}

<2+)\1+)\2+E(&)2>éé

+

H 4 \H
D kjws\2\> D. H:
- (== (= Sy S 1
( H+Arhh+4(H)>0+ b+ 0 (15)

We can see from equation (15) that in order to compute our control signal we need the
derivatives of 4,.. To do so, we must remember that:

S s, dPy,
" 4p, dt
;o & AP,  dé, d*P,

dp2 dt  4p, dt?

- a5, dP,, _d2s, d*P,,  ds, d°P,,

0, = —= +2— + —= (16)
dp3 di dp2 dt*  4p,, dt?

These computations may be seen in the Appendix, leading to:
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do,

5p = Y —— e
b,
- d2s dd, wg [~ =~ dé, D dé, w
5, = —— D — 2 (0-P,) — D 59
71dp2w‘+%dp H( ) 71dP H +%dP
d3s dZ(S Ws [~ =~ d2(5 D d%8, w
é. = "3, + 2 f0—P,) — 2y — =&, + 2 ]
’yldpgw + %dp2 H( ) 71dp%H + %dPQ H
D_Z_ zws dér&) __dd. Duw, (5_ ~ ) dé, Dwse
"wr T H ) gp, T ap, B %dP H?

where d%gL, Z—QP{% and dP;’ are given by (26), (28) and (30) in the Appendix.

Because some of the terms of ST and ST are not available for feedback, we define new variables

5m and 5m that will be used for our control law. These variables are defined such that:

§p =8y = 0
L ds, w
Or — Opu = i)
dP H
o & 2 ~ ~
I d?6, wse db, Dwso

71{“3%? *71@ e

Defining (A3 > 0), we may compute the control signal that will linearize the last equation
of (15):

_ Téons
YT K. sm(®)
1 (Xd_Xrlz) 2 a2
= —p 1% ~dy 0) — P, t(d
oo T XX, “wsin®(0) w cot(d)
H D ~
+ w—s{<>ﬁ+1+>\1ﬁ> (—\6 + D)

D k fws\?2 D
+ <—ﬁ+/\1+/\2+4(H)>< ﬁw—/\6+)\1w—ﬁP 5 )}

k( D kErws\2\” = - .. D H -
- —(——+/\1+)\2+ (‘”)) Po— AP+ 25— 2, — 26
H w, W,

Remark here the use of §,, as the feedback available variable. Now, defining the new

constant:
a D k (ws)
C]( H+)\1+/\2+4 H
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10

we may rewrite the previous equations as:

Téons
l = —& " 1
s VK, 5in(0) " (17)
1 (Xa = X3) o o AL A
= P, — ——-%V, 0) — P.wcot(d 0+6
b0 " X Xh e wsin®(6) wcot(d) + 10 +
H D - D - W, .
+ w—g{(—/\? +1+/\1ﬁ> (A0 +@) + ¢ (—Ew—)\$5+/\]w— P —5m>}
2
k do, 25\ ~  ~ w,. D. H:
_Z (C]_’Y]C]dﬁm _271dﬁ%> PE_A3Pe+ﬁw_w—36ru_w_36ru
and:
< 1 (Xg— X)DVE
P, = - P, e Ttal s B} P, t(5 18
" + Xan X' wsin®(d) + Pew cot(d) (18)
H D ~ D ~ o ws .
w_s{<>\$ +1+>\1ﬁ> (— M0+ @) + ¢ <ﬁw,\$6+>\1w EPe 67«)}
A A ~ D . H - V. T X4
—c10—0—c10+ =6, + —8, + ——sin(0) K, —L—_=_
“ “e Ot Gt Xt sin(0) Keq—= sin(3) %0

Substituting (17) in (18) one will find:

b 1 ()(d—)(’)‘/vs2 .«
H

D ~ D 0y -
——{(—A?-l—l-}-)\]ﬁ) (M0 +©) + ¢ (—ﬁw—/\ftﬂ—)\]&— %Pe —5r>}

Ws

~ X ~ D . H -
7(319 — 0 — (319 + —(ST + —6T
w w

! (Xa= X)) o
Yo, X, e (0) — Rt ()
a D S+ D T - Ws ..
+w—s{<—>\$ +1+>\1ﬁ> (=\M0+@) + ¢ (—ﬁw—/\$6+>\1w— ﬁpe _5m>}
2
. 2k dé d2s N _ w D. -
0+6—— — T _9 T P, — AP, + =20 — — 0y — — Oy
+c10 + 4 (C] Yici P " dP%) 3bPe + 7% o o

that may be rewritten as:

2
~ k dd d?s ~ ~ W dd a6, \ ~
P, =—— — 2 | P.—\P. + 20— — -2 16
(Cl Yic€1 b Y1 dP%) 3l + Hw (Cl V1€ b "1 dP,%)

Then, the closed loop system becomes
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S = —)\15+w
5 = 757/\5)7&]37@(&)2 + 229
- Mo A \H) YT H
~ k db, d?s, ~
Pe = =3 (C]_%C]dﬁm_ ]dP,%> Fe
w ) a6, \ ~
P+ 20— |1 — e — — 16 19
3 (1 Y1Ci P ]dP2> ( )

The adaptation law is (v is a positive adaptation gain)

: ~ dé a6 w A
6 = vProj —P, c T2 — | +5=1,6 20
Y 7(( ( -Nn 1dP %dP,%) H) > (20)

where Proj(y, f) is the smooth projection algorithm introduced in [16]

Proj(y,0) = if p(f) <0
Proj(y,0) = if p(6) >0 and (gradp(8),y) <0
Proj(y, é) = [1- p(é)\grad p(é)\] otherwise

with

(6 Gata)? — (fuztm)

€2 +26(0M+9m)

p(0) =
for € an arbitrary positive constant, which guarantees in particular that:

D) b —e<O(t) <Oy +e
i) \PTOJ( 0)| < ly| )
iii) (6~ 6)Proj(y,0) > (0 — O)y

We may remark that if E and w were the errors from the state to an equilibrium point, the
adaptation law would be equivalent to a gradient approach. But this analysis, globally, is not
true since these two errors signals are not the state errors. Only in a small region around the

equilibrium point this would be valid.
To compute this adaptation law, let’s consider the function:

1~ . o~
W= 5(52 + &% + P2) (22)
whose time derivative, according to (19), is
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. ~ ~, s~ Kk fws\2
1 W R W W 2 +a%9 -7 (%) &
2
k dfsr d26r 2 d(s'r- d26r ~~
~1 <C1 —ma - 2m dﬁ%) Py — <C1 -7 - 2m ) 0P,
Completing the squares, we obtain the inequality
. ~ - -~ 2 ~
W < —A62 — Mo — \3P? + Eoz (23)

which guarantees arbitrary L., robustness from the parameter error 6 to the tracking errors
d,w, P, (see [9] Section 5.4).
The projection algorithms (21) guarantee that 6 is bounded, and, by virtue of (22) and (23),

that &, @ and P, are bounded. Therefore, § is bounded. Integrating (23), we have for every
t>1>0

t _ " 9 [t
—/ (M2 4+ Mo? + X3 P?)dr + E/ 62dr > W (t) — W (to)
S

to

Since W (t) > 0 and, by virtue of the projection algorithm (21),

0(t) <Op — O + €
it follows that

t
~ . ~ 2
/ (A16% + Xa? + A3 P2)dr < W (tg) + E(QM — 0 + €)% (t — to)
to g

which, if W(tg) = 0 (i.e. top is a time before the occurrence of the fault), implies arbitrary
Lo attenuation (by a factor k) of the errors §, @ and P, caused by the fault. To analyze the
asymptotic behavior of the adaptive control, we consider the function

1~ . ~. 11~
V==(4+&>+P?)+--6°
2 ’ 2y
Its time derivative is:

S N 2y ~2 y D2 ~&~7ﬁ EZ~2 1~.~
Vo= N - NP4+ 520 4(H) @+ 68
2
s 25\ ~~ k& s 425\ ~
- 4 — e —— — 29 —— | 0P, — = | ¢ — e —— — 2y —— | P2
(ﬁ s %dp,a) ] ((’1 neup dP%) ¢

Then, using the adaptation law, we may find (remember that (6 = —0)):

2
. N kw2 k ds 26\ ~
_ 2 ~2 2 _ M [Zs ~2 _ o T 2
Vi=—h0" = i = M By 4(H) v 4<C] ", 2%(113,%) 5
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The projection estimation algorithm (21) is designed so that the time derivative of V satisfies

V < =102 — Ao — Ay P2 (24)
Integrating (24), we have
t

lim (A% + Xo@® + A3 P2)dr < V(0) — V(o0) < o0

t—o0 to

From the boundedness of &,& and :156, and Barbalat’s Lemma (see [15], [13] and [17]) it
follows that

[ e ]H
lim w(t) =0
“llew]

We may now rewrite the closed loop system following the normal form:

i = Az+079
§ = —AQF
which leads to:
-\ 1 0
Ws 2 Ws
£ —1 *(A2+§(7)) —H =
w k D k(w22
0 H —</\3+z(—ﬁ+/\l+)‘2+z(ﬁ))>
0
+ Vs , ]
(BN n ek (5))
~ we we )2 ~
0 = *7{0 T (ﬁ*A1*A2*§(ﬁ))}T
(25)

And then computing (for a constant ¢,):

2 2
T Wi D k rws\2\" A
(919 H2+<_E+)\]+/\2+Z(ﬁ)> =y >0

we then may show by persistency of excitation (see [13] , [17] and [15]) that Z and 8 will be
globally exponentially stable, and then all error signals go exponentially to zero, for all (at
least) C3 6,(P,,, z).

It is important to remark a very interesting feature of the proposed controller: all states go
exponentially to the faulted equilibrium point that is completely unknown. Actually, all states
go exponentially to trajectories that go themselves exponentially to the unknown equilibrium
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point. We must also remark that both convergencies are simultaneous. To detail this feature,
note that ¢ will converge to the trajectory 4, but, since 4, is a one-to-one smooth function
of P, it will converge exponentially to the correct equilibrium value §; as P, converges
exponentially to P,,. This means that the reference trajectory (4,) will converge exponentially
to the unknown equilibrium point (ds), and this convergence will be simultaneous to the
convergence of the power angle () to the trajectory (d,), what implies that lim;_, o (§ —d5) = 0
exponentially. We must remark that the same happens to the other states (w and P.). They
converge to their reference trajectories [w*, P¥], and these trajectories converge to the faulted
(unknown for P,) equilibrium points of w and P, as &(t) and P.(t) converge to zero.

Remark

We must observe that there are two adapted values for the mechanical power. The reason is
that even if both results finally recover the same value, they are not used for the same purpose,
neither as equivalent variables. Note that P, is the estimation of the unknown parameter P,,,
replacing it in the process of building the trajectories. It was designed purposely as an estimator
and its behavior can be defined as desired, such that it can respect the restrictions imposed for
our trajectories, mainly with respect to being at least C3. Furthermore, its time derivatives,
that are needed for the controller, are available. As a consequence, P, is very well behaved,
going smoothly to the correct value of P,.

On the other hand, # was designed as the control adaptation. Even if it finally recovers
the correct value of P, (faster than P,, in some cases), it is not as well behaved, nor its
time derivatives are available. As a control variable, it was expected to be swift. That is what
assures the awareness of the control signal, being able to act very fast to assure the stability
of the power generator.

4. Simulation Results

In this section we present simulations of the proposed controller, using the following data:

ws = 314.159 rad/s D =5pu H =8s
Ty = 6.9s K.=1 X4 =1.863 p.u.
X! =0.257 p.u. Xr=0127pu. X =0.4853 p.u.

The operating point is d5 = 72°, P,, = 0.9 p.u., wg = 0 to which corresponds V; = 1 p.u.,
with Vi, =1 p.u..

The goal of the first simulation was to verify the effect of a severe fault on the turbine. It
was considered a fast reduction of the mechanical input power, and the simulation was done
according to the following sequence:

1. The system is in pre-faulted state.

2. At t = 0.5s the mechanical input power begins to decrease.

3. At t = 5.5s the mechanical input power is 50% of the initial value.
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The simulations were carried out using as control parameters:

y=01 k=001 7 =32

80

0.8 4

0.6 1

Figure 1. a) § (-), 0, (--) b)w «¢) P. (--), Pn (-)

Fig. 1.a) shows that the trajectory for the power angle (J,) goes smoothly to its final
value(ds), and that ¢ matches it almost perfectly, being driven to its faulted unknown
equilibrium point.

In Fig. 1.b) we see that the rotor velocity is correctly and smoothly driven to its equilibrium
value, as well as the electrical power, driven to its trajectory that finally recovers the unknown
equilibrium value as we may remark in Fig. 1.c)

Fig. 2.1a) shows how the output voltage drops during the fault, and goes to its correct value
when the system is driven to the correct equilibrium point. If the estimation were not correct,
there would be a steady state error.

One can see in Fig. 2.1b) that the control signal is very smooth and is kept inside the
prescribed bounds. R

We may see in Fig. 2.2a) the adapted value, 6, (dashed line) of the mechanical power (full
line). It is accurate and swift, such that the correct value is adapted almost at once. We may
remark that it recovers the correct value faster than the estimator does, as we may see in Fig.
2.2b) where it is plotted the estimated P,, (dashed line) and the mechanical power (full line).
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10 15 20 2

10 15 2 25

Figure 2. 1a) V; 1b) Control signal 2a) 6 (-.) P, (-) 2b)ﬁm (-), Pm ()

On the other hand, the estimated value ﬁm is very smooth, respecting the restrictions on the
derivatives imposed for our tracked trajectory.

Note that during all time, the errors are very small. They can be made even smaller by
increasing the parameter k. The choice of parameters is mainly based on the limitation of the
control signal, as well as the desired bounds for states and outputs.

We present now the effect of faults on the transmission line. It was considered a large
increment of line impedance, followed by a almost as large reduction. This is equivalent to the
lost of part of the transmission lines, followed by a partial recover. Simulations were carried
out following the sequence:

1. The system is in pre-faulted state.

2. At t = 1s part of the power lines falls. This is reflected by an increment of line impedance
in 33%. Note that the change is instantaneous.

3. At t = 5s part of the lines are recovered. This is seen as a reduction of 25% of the initial
value of the line impedance.

The control parameters used for the simulations in this case are:
A1=2 A =10 A3 =100

y=01 k=001 7 =22

Int. J. Robust Nonlinear Control 20; :
Prepared using rncauth.cls



17

78 T

0.9 L >

0.8 b
0.7 b
0.6 b

Figure 3. a) § (-), 0, (--) b)w «¢) P. (--), Pn (-)

Fig. 3.a) shows that the trajectory (dashed line) for the power angle (d,) goes smoothly to
its final value (d5), and that § (full line) is able to track this trajectory, such that it is driven
to its faulted equilibrium point.

In Fig. 3.b) and 3.c) we may see the other two states, the rotor velocity and the electrical
power, being disturbed by the faults and then driven to their correct values by the controller.
The same is verified in Fig. 4.1a) for the output voltage.

One can see in Fig. 4.1b) that the control signal is very fast, acting at once to keep the
stability of our system. It is able to keep all signals inside the prescribed bounds, and to drive
them to their correct values. Contrariwise the previous simulation where, as a mechanical fault,
the perturbation was quite slow, here we see an electrical fault, then a much faster one, asking
for a sharp response from the controller.

We may observe in Fig. 4.2a) the control adaptation variable f (dashed line) and the
mechanical power (full line). In Fig. 4.2b), it is presented the estimation P,, (dashed line)

of the mechanical power P, (full line). One may then remark that both variables recover the

same ﬁna} value, but while P, keeps unchanged, 6 changes in time. This shows the difference
between 6, as control variable, and P,, as estimated value.

Finally, in Fig. 4.2c), one may see that the correct value for the transmission line impedance
is computed by our technique. The value is recovered very fast, such that the system may be
driven to its correct equilibrium point. This computation is filtered in order to respect physical
limitations on the control signal magnitude.
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Figure 4. 1a)V; 1b)Control signal 2a)d (-.), P, (-) 2b)ﬁm (--), P (-) 2¢)Xs(-), Computed X;(- -)

5. Conclusion

In this paper, we have treated the problem of exponentially stabilizing a power generator
using available output measurement. The proposed controller may be implemented in practice
since only actually measured outputs are used for feedback. Usually, nonlinear controllers
found in literature need the mechanical power, the transmission line impedance and the power
angle, which make them not implementable. On the other hand, the linear controllers, usually
implemented in power plants, do not assure a large stability region, and are not able to stand
large perturbations.

To design the proposed controller, we have first developed techniques to compute the
unknown parameters such that the equilibrium point may be recovered after a fault or
parameters changes. We then design trajectories (one for each state) toward this new point
that are tracked by the states, driven by the controller. This is achieved by an adaptive
output feedback linearization scheme designed using backstepping techniques, that also assures
boundedness of all signals. The convergence of the trajectories to the equilibrium point is
simultaneous to the convergence of the states toward the trajectories and the generation of
these trajectories is made on-line by an exponentially stable adaptive estimator that recovers
the mechanical power value.

Finally we present simulation results that corroborate our claims. They show the good
behavior of all states, outputs and control signal even in the presence of severe faults on
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turbine and on transmission line.

As further developments, our main goal is to extend these results to the multi-machine case.
Actually, the single-machine study is a step toward the more general (and in practice the most
important) case of multiple interconnected generators undergoing interzone oscillations. Since,
in general, power plants are located very far from each others, centralized controllers that need
information from each machine in the system are not realistic. The scheme proposed in this
paper could be a starting point in the design of decentralized controllers.
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APPENDIX

. . 2 3 D 25 35 .
In the following, we will compute the terms ddg” , Z%”, Zﬁ‘z” , %, % and ’id;m in order to

build equation (16). ’
For the sake of simplicity, we first define:

Vs
a = —
Xs
Vs X
b = 4
de
such that we may rewrite (13) as:
a <b+ V2 - —m)
é, = arccot —
P,
Using:
darccot(z) 1
dx 1422

we compute

ds, - Pz N 26)
1+ -

A (N, + Ny) % Den

where:
1
Den = -— —
a? (76+VV,,2,‘*’:—72")
1+ 53
a <b+\/Vti _,,,>
Ny = - =
P2
1
Ny = —

Now, recalling that:
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4?5,  (dDen dN;  dN.
¢ :< o *(N1+N2)+Den*< BT )) (27)
b2 n P,  dP,

we first compute:

_paJy2 _ B2
AN a<b+ \ a2> 1

— = 2 = +
dP,, P, 0PV — T
ANy P,
dP, . 2y (3)
m a3 (V;%r. _ I;—é‘) 2
— 2
o’ (fbﬂ/vfif’:—%) 2 (fbﬂ/vt%f”—g)
_9 _ _
P3 N =
dDen i P, \/Vfr sz"
= = ——
de a? (7b+ ‘/127’71:7721)
1+ -

and then:
2
P p2
a<fb+\/vt%f%"> a® <fb+\/vt%f’fl—a"> 2(fb+\/‘4%fi—a">
N p2 - . B2 —2 p3 - _ B2
25, yva-Th ' Polva- T
iz =\ 2
m a2 (fbﬂ/vt%fﬁ)
1+ .
52
(oo B) A
2 _ + 1 _ P,

(28)

B Npy o« My % My + My % M

Here again we have split this equation such that M;, i = 1..5 as well as its derivatives are
defined as:
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M2 = -2 — - _
~ 2
P P \J Vi — 22
a <—b+\/1@2—%§> .
M3 = - — - _
Pm a ‘/;2 _ ]:7%1
1
M4 o= - —
a? <7b+\/‘/,2,‘*’:‘—721>
1+ -
P
a <b+\/V,52 I;’Z’) 1 I
M5 = 2 5 + — = B
P2 p 2
m aPu\[VE - = ‘13(‘/}2712—72")2

and:

P3 - ~ B2
dM, P, \/ va-Tg
= = -2 3
dP,, 52
o (oeyfvz- T
1+ —

= 2 =
. a® (—b+ 14%—’2—%) 6 <—b+\/V}%—I;—€?> ) 2 (—b+ V2 —
6

~ - 4 N = P2 —~ 3
i, E -G (e B (wome
p2
a b—l—\/VQP—Z‘) 5
dM. ( T 1 iz
2 = 2 — + -

~ P2 - =, 3
aPm\/I/;%—a—g" a3 (‘/t%*]:—?)(z)
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46, dM,
dpP3,

=

dP,,

*MQ*Mq-I-Ml*

Its complete expression being:
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2
a® (fbﬂ/\c%f‘:—*;) 2 (*bﬂ/Vfﬁi—?)
—9 _ —
P p PR
dM, YA
o~ = 2
dP, 2\ >
" a? | —by Va3
1+ =

CpaaJve o Pa ~
a< b+ V3 n,2> 3 3P
P} aP2 Wg_i_rjn 5 (VtQ B

The third derivative of §, with respect to I?’m is then given by:

Mo

=

m

* M3+ M1 My %

dMs

=

+ dMy

m

=

* My + My *

dMs
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—6 _ _ _ 2
p4 P _ 5
o5 - wPi v (v )
dP'r?;‘), (1,2 (7b+ ‘427‘7‘{;_721>
T+ 7
— 2 —
( b+1/V, m) ( b+1/V2 — ’”)
2 tr tr
+ x| —2 —
52 \° 2 P% P 9 P
—by[VE-Tn m \/ Vir
14 -
7
<—b+\/Vt2—’3—§"> ~
T 1 Py,
17 7 s e NE
g aPu Vi W (2o 5)
2
(o %) a(oif B)\ (e B)
2| -2 _ - _ —
P,l Pm \/‘427’71:7722” 7%1 a \/Vt%‘,
_ —
( b4/ V2 — 525—)
1+ 7
— 2
. a? <b+\/Vt2 P—m) 6 ( b+\/vh—>
+ — | |6 =, +
< b+1/V27—2> m 1/‘/# m
1+ -
LB ((E)
+ D2 B 3 B D B
() (-5 o Vi -

Now one may remark in (16) that we need the second and third derivatives of P,,. These
derivatives are not available, as they would imply the exact knowledge of P,,. To avoid this
problem we first remember:

~

APy, ~
0 T M1We

dt
and remarking that:
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one may compute:

and:

d3
dt3

gﬁ:>

Prepared using rncauth.cls

25

D

H

~ W~
—71—we+71ﬁ0

D _

We

H

~ o~ Duwg

g m)—% 0
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