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Appendix A: Why within-block permutations?

Here, we consider a degenerate case to show the huge loss of power when classical per-

mutations are done instead of within-block permutations. The notations are the same as

the ones presented in the main text. Consider ntnc realizations of a factor X such that

x
1,1

> x
1,2

> . . . > x
nt,nc and ntnc realizations of the response variable Z such that for a

fixed target (or receiver) i:

z
i
1  . . .  z

i
nc
, (A1)

ncX

j=1

1zij>0 = c, c  nc, (A2)

ncX

j=1

z
i
j =

i

nt
. (A3)

This toy example can mimic real cases. For instance, consider a situation where the spread of

a plant pathogen follows the wind flow, e.g. from West to East, and target and contributing
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nodes are located along this gradient as illustrated in Figure A1. The response are the

probabilities of transmission and the factor is the distance between hosts. The closer the

contributor to the target, the higher the probability of transmission (Equation (A1)). Only a

given number of hosts are potential contributors (Equation (A2)). Equation (A3) can result

from an external contributor that transmits the virus from East to West by another path

like underground river. See e.g.,1 for the definition of penalization to favor transmissions at

short (geographic or genetic) distances.

Figure A1: Schematic representation of plant locations.

In this context, the factor x highly impacts the response z, so that the power of the

test, 1� � = 1� P(H0|H1) is equal to one when performing within-block permutations and

much lower than one from classical permutations. Indeed, for b a permutation by block

of receivers, P(H0|H1) = P(T b � T ) = 0 because no within-block permutation can give a

Spearman correlation greater than the non-permuted sample (i.e. T
b
< T , 8b), while for

⇡ a permutation without block constraint, P(H0|H1) = P(T ⇡ � T ) >> 0 because some

permutation can give a Spearman correlation greater than the non-permuted sample.

For the sake of illustration, we take nt = 10, nc = 20 and c = 5 with 1000 simulated

responses. The response is computed as follows, 8i 2 {1, . . . , nt}:

1. Generate c realizations of the random variable Y ⇠ U([0; 1]) and order them so that

y1  . . .  yc;

2. Compute the simulated response: (zi1, . . . , z
i
nc
) = i

nt
Pc

k=1 yk
(0, . . . , 0, y1, . . . , yc).

The factor x is equal to ntnc, ntnc � 1, . . . , 2, 1. The estimated powers are 1 with within-

block-permutation and 0.05 with classical permutation.

Hence, within-block permutations may be crucial to identify factors that are correlated

to the response variable.
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Appendix B: �x,y calculation

The quantity �x,y comes from the optimal Spearman’s correlation when the rank of two

vectors y0 = (y01, . . . , y
0
n) 2 Rn

+ and x0 = (x0
1, . . . , x

0
n) 2 Rn are equal except on a given set of

indices. In our context, this set corresponds to the zeros of the response.3 gives some formu-

las for the Spearman’s correlation, and5 details the calculation of the Spearman’s correlation

when the vectors y0 and x0 have consecutive ties. In the calculation below, we use the same

reasoning as those presented in the two aforementioned articles to obtain the desired upper

bound.

Let yi = Ry0i
denote the rank of y

0
i within y0, xi = Rx0

i
the rank of x

0
i within x0,

I0 = {i|y0i = 0} the set of indices for which y
0
i = 0 and n0 = #{I0} the number of such

indices.

Assume that the ranks are equal xi = yi for all i /2 I0 and set yi =
n0+1
2 for all i 2 I0,

such that
Pn

i=1 xi =
Pn

i=1 yi (the assumption of equal ranks for all i /2 I0 implies that the

Spearman’s correlation takes its maximum value given I0). Then, the Spearman’s correlation

of y0 and x0, which is equal to the Pearson correlation of y and x, satisfies:

r
2
s(x,y) = r

2(x,y)

=
dCov

2
(x,y)

b�2
xb�2

y

,

with

dCov(x,y) =
1

n� 1

nX

i=1

(xi � x̄)(yi � ȳ)

=
1

n� 1

"
nX

i=1

xiyi � nx̄ȳ

#

=
1

n� 1

"
y0

n0X

i=1

xi +
nX

i=n0+1

y
2
i �

1

n

nX

i=1

xi

nX

i=1

yi

#

=
1

n� 1

2

4y0
n0X

i=1

yi +
nX

i=n0+1

y
2
i �

1

n

 
nX

i=1

yi

!2
3

5

=
1

n� 1

"
n0X

i=1

y
2
i +

nX

i=n0+1

y
2
i � nȳ2

#

=
1

n� 1

"
nX

i=1

y
2
i � nȳ2

#

= b�2
y,
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and

b�2
x =

1

n� 1

"
nX

i=1

x
2
i � nx̄2

#

=
1

n� 1

"
n0X

i=1

x
2
i +

nX

i=n0+1

y
2
i � nȳ2

#

=
1

n� 1

"
nX

i=n0+1

y
2
i +

n0X

i=1

y
2
i � nȳ2 +

n0X

i=1

x
2
i �

n0X

i=1

y
2
i

#

= b�2
y +

1

n� 1

"
n0X

i=1

(x2
i � y

2
i )

#
.

Hence,

1

r2s(x,y)
=

�
b�2
y +

1
n�1 [

Pn0

i=1(x
2
i � y

2
i )]

�
b�2
y

b�4
y

=
b�2
yb�2

y

b�4
y

+
(
Pn0

i=1(x
2
i � y

2
i )) b�2

y

(n� 1)b�4
y

= 1 +

Pn0

i=1(x
2
i � y

2
i )

(n� 1)b�2
y

,

and

r
2
s(x,y) =

1

1 +�x,y
,

where �x,y =
Pn0

i=1(x
2
i�y2i )

(n�1)b�2
y

.

Consequently, under the same hypothesis for the vector y 2 Rn
+ we have:

r
2
s(x,y) 

1

1 +�x,y
, r

2
s(x,y)(1 +�x,y)  1,

for all vector x 2 Rn.

In addition, if y is such that yi 6= yj for all (i, j) /2 I
2
0 , i 6= j, and x is such that xi 6= xj

for all (i, j) 2 {1, . . . , n}2, i 6= j, the quantity �x,y can be defined in a simple way:

b�2
y =

1

n� 1

"
nX

i=1

y
2
i � nȳ2

#

=
1

n� 1

"
n0X

i=1
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2
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i
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4
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and

n0X

i=1

(x2
i � y

2
i ) =

n0X

i=1

x
2
i � n0y

2
0

=
n0X

i=1

i
2 � n0(n0 + 1)2

4

=
1

12
[n0(n0 + 1)(n0 � 1)] ,

lead to the following expression,

�x,y =
n0(n0 + 1)(n0 � 1)

n(n+ 1)(n� 1)� n0(n0 + 1)(n0 � 1)

=
n0(n2

0 � 1)

n(n2 � 1)� n0(n2
0 � 1)

.
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Appendix C: Comparison of ranking methods with cross

validation

The objective of the cross validation step is to compare our methodology, called multitest-

based multivariate analysis (MMA), to linear regression (LM), rank-based linear regression

(LMRank) and decision tree (Tree) in its ability to adequately rank the weights of the

contributors for any target. For the linear regression, the least-squares error is minimized

on each training data set. For the linear regression based on ranks, the L2 norm used in the

linear regression is replaced by a pseudo-norm defined in4, which is a function of the ranks

of the residuals. For both LM and LMRank, the model is:

Z = �0X+ ✏,

where ✏ ⇠ N (0, �2). Note that these model assumptions are not satisfied by proportion

data, which are not normally distributed and not independent, but here we only use the

predictions of the response variables provided by the regression (i.e., the fitted values). The

decision tree learns on the training set with the CART algorithm2 and, like for the regres-

sions, we use the predictions of the response variables provided by the tree in what follows.

We use two indicators to compare the four methodologies. The first one is the perfor-

mance indicator introduced in Equation (3) of the article, that we rewrite here as follows

I(MX�̂, z) = I�̂(X, z). Thus, the performance indicator is equal to I(ẑ, z) where ẑ is either

MX� for the multitest-based multivariate analysis (MMA) or the prediction of the response

variable for LM, LMRank and Tree.

The second indicator, say CR which stands for contributor ranking indicator, assesses

whether the target-contributor pairs that have strictly positive probabilities are ranked as

likely pairs by the method under consideration. For a fixed target i and any of the four

methods, let Ei = {j 2 {1, . . . , nc} : zij > 0} be the set of target-contributor pairs that have

strictly positive probabilities, Ni = card(Ei), R̂i
j be the predicted rank of the pair (i, j) for

j 2 {1, . . . , nc} (the larger the predicted value for the response variable, the larger the rank),

Ji = {j 2 {1, . . . , nc} : R̂i
j 2 {nc �Ni, . . . , nc}} be the set of contributors ranked among the

top Ni contributors by the predictor under consideration, and CRi be the proportion of the

Ni contributors with positive transmission probabilities for target i that are ranked among

the top Ni contributors by the predictor under consideration:

CRi =
1

Ni

X

`2Ji

1(` 2 Ei).
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Table C1 gives examples of CRi computations for a set of 10 contributors, among which

only the first three have positive probabilities z
i
j. CRi quantifies, for target i, the quality

of identification of the contributors with the highest ranks. The order of the contributors

among the group of contributors with the highest ranks does not matter (and the order of

the contributors outside this group does not matter as well). The contributor ranking (CR)

indicator is defined as the average over the nt targets of CRis:

CR =
1

nt

ntX

i=1

CRi.

Table C1: An illustrative example for the computation of the indicator CRi with 10 possible

contributors. First row: response variables (probabilities) for each target-contributor pair.

Second row: true ranks based on the probabilities. Three last rows: three di↵erent predicted

rankings. Last column: value of the indicator CRi.

1 2 3 4 5 6 7 8 9 10 CRi

z
i
j 0.3 0.2 0.4 0 0 0 0 0 0 0

Rzij
9 8 10 4 4 4 4 4 4 4 1

R̂
i
j 9 10 8 3 7 3 3 6 3 3 1

R̂
i
j 7 10 8 3 9 3 3 6 3 3 2/3

R̂
i
j 6 4 7 4 9 10 4 8 4 4 0

To sum up, the performance indicator I evaluates the method ability to globally order

probabilities. The contributor ranking indicator CR focuses on the positive probabilities for

each target. It is very useful in the context of our applications since, the higher the indicator,

the more able the method to identify the main contributors for each target.
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Appendix D: Exploration of the significance of factors

related to sex

Here, we investigate eventual confounding e↵ects related to the significant e↵ects of “Same Sex”

and “Trans Sex” factors on the transmission probability. Even if our permutation tests do

not require balanced classes, we firstly explore whether the trend for higher probabilities

of F!F transmissions coincides with an excess of female horses. Actually, the number of

females is about the half of the number of males (Figure D1, left). Therefore, under com-

plete (uniform) randomness, we would expect about two times more M!F transmissions

than F!F transmissions (and two times more M!M than F!M). When we only consider

the occurrences of “Trans Sex” corresponding to positive probabilities (without accounting

for null probabilities), we clearly see the excess of F!F and F!M transmissions compared

to their expected values under complete randomness (Figure D1, right). To complete this

observation, transmission probabilities were inferred to be positive for only 19% of all the

possible M!F pairs (0.7 times less than expected under complete randomness), 53% for

F!F (1.8 times more than expected under complete randomness); see Table D1. Hence,

gender distribution is not likely to be involved in the significant e↵ect of the factors related

to sex.

F M

Sex

0
5

1
0

1
5

0 1

Same_Sex
(proba>0)

0
2
0

4
0

6
0

8
0

1
0
0

F−>F F−>M M−>F M−>M

Trans_Sex
(proba>0)

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

Figure D1: Left: gender distribution (female and male) in the equine influenza study. Center

and right: distributions of the variables “Same Sex” and “Trans Sex” corresponding to pairs

associated with positive transmission probabilities.

Secondly, we explore the eventual existence of confounding factors among those we have

considered. As shown by Figure D2, “Same Sex” and “Trans Sex” are not correlated with

“Same Yard” and “Dist Yard”, and “Trans Sex” is only slightly correlated with “Di↵ Age”.

The absence of link between the two yard variables and the two gender variables is confirmed
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Table D1: Statistics about “Trans Sex” modalities for the equine influenza study. Line 1:

Transmission probabilities inferred to be positive for all the possible source-receptor pairs

with respect to each modality of the “Trans Sex” variable. Lines 2 and 3: Risk ratio and

odds ratio, respectively, for each “Trans Sex” modality between the observed situation and

the hypothetical case of completely random transmissions.

Statistic F!F F!M M!F M!M

% of positive proba. 53 33 19 28

Risk ratio 1.8 1.2 0.7 1.0

Odds ratio 2.9 1.3 0.4 0.9

by Figure D3 and Table D2. Hence, there seems to be no confounding factors in the data

set, and the significance of gender-related factors has to be explained by external processes

(e.g., the indirect contacts between hosts via groom, jockey or transport, the behavior of

horses in herds, or di↵erent immune responses depending on the sex).

Table D2: Result of the independence chi-squared test applied to qualitative factors consid-

ered in the equine influenza study.

Factors �
2-test statistic p-value

Same Yard : Same Sex 0.04 0.85

Same Yard : Trans Sex 1.76 0.62

Same Yard : Di↵ Age 4.3 0.12

Same Sex : Trans Sex 650 < 2.2e�16
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Figure D3: Distribution of the variable “Dist Yard” by modality of the variable “Same Sex”

and “Trans Sex” in the equine influenza study.
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Figure S1: Workflow of the within-block permutation-based methodology.
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(a) P-value, m = 0.1
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(b) P-value, m = 0.15
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(c) P-value, m = 0.2
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(d) P-value, m = 0.25
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Figure S2: P-values of two-tailed permutation tests for each factor with m 2
{0.1, 0.15, 0.2, 0.25}. The factors xk are continuous for k = {1, . . . , 10} and discrete for

k = {11, . . . , 20}. The data are simulated 1000 times for each value of m.

13



(a) P-value
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(b) Performance indicator
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(c) Estimated coe�cient
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(d) Relative importance
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Figure S3: Factor significance and importance in the simulation study when the standard

deviation of the noise is set to ⌘ = 5. a) P-values of two-tailed permutation tests for each

factor (the red line indicates the 0.05 value). b) Distribution of the performance indicator for

varying number of included factors (factors are successively incorporated by first including

those with lowest p-values). The horizontal red line gives the median value of the performance

indicator computed with the true value of � (0.88). c) Distribution of estimated coe�cients

(i.e., the components of �̂) for each factor. d) Distribution of the relative importance ẽk

of each factor; the red cross gives the expected relative importance given the simulation

scheme described in Section 2.4. The distributions are drawn with m = 0.25 and from 1000

repetitions for a) and 100 repetitions for b), c) and d).
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(a) P-value
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(b) Performance indicator
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(c) Estimated coe�cient

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

Continuous factors Discrete factors

−10

−5

0

5

10

(d) Relative importance
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Figure S4: Factor significance and importance in the simulation study when the standard

deviation of the noise is set to ⌘ = 15. a) P-values of two-tailed permutation tests for each

factor (the red line indicates the 0.05 value). b) Distribution of the performance indicator for

varying number of included factors (factors are successively incorporated by first including

those with lowest p-values). The horizontal red line gives the median value of the performance

indicator computed with the true value of � (0.51). c) Distribution of estimated coe�cients

(i.e., the components of �̂) for each factor. d) Distribution of the relative importance ẽk

of each factor; the red cross gives the expected relative importance given the simulation

scheme described in Section 2.4. The distributions are drawn with m = 0.25 and from 1000

repetitions for a) and 100 repetitions for b), c) and d).

15



(a) P-value
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(b) Performance indicator
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(c) Estimated coe�cient
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(d) Relative importance
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Figure S5: Factor significance and importance in the simulation study when the standard

deviation of the noise is set to ⌘ = 10 and factors are transformed with the non-linear

function f . a) P-values of two-tailed permutation tests for each factor (the red line indicates

the 0.05 value). b) Distribution of the performance indicator for varying number of included

factors (factors are successively incorporated by first including those with lowest p-values).

The horizontal red line gives the median value of the performance indicator computed with

the true value of � (0.69). c) Distribution of estimated coe�cients (i.e., the components

of �̂) for each factor. d) Distribution of the relative importance ẽk of each factor; the red

cross gives the expected relative importance given the simulation scheme described in Section

2.4. The distributions are drawn with m = 0.25 and from 1000 repetitions for a) and 100

repetitions for b), c) and d).
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(a) P-value
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(b) Performance indicator
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(c) Estimated coe�cient
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(d) Relative importance
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Figure S6: Factor significance and importance in the simulation study when the standard

deviation of the noise is set to ⌘ = 10, and each sum
Pnc

j=1 z
i
j is drawn from a uniform

distribution between 0.5 and 1 (which mimics the non observation of some contributors),

instead of fixing
Pnc

j=1 z
i
j to the value 1 as described in stage 4 of the simulation algorithm

detailed in Section 3.1. a) P-values of two-tailed permutation tests for each factor (the

red line indicates the 0.05 value). b) Distribution of the performance indicator for varying

number of included factors (factors are successively incorporated by first including those

with lowest p-values). The horizontal red line gives the median value of the performance

indicator computed with the true value of �. c) Distribution of estimated coe�cients (i.e., the

components of �̂) for each factor. d) Distribution of the relative importance ẽk of each factor;

the red cross gives the expected relative importance given the simulation scheme described

in Section 2.4. The distributions are drawn with m = 0.25 and from 1000 repetitions for a)

and 100 repetitions for b), c) and d).

17



(a) Estimated coe�cient, without additional non-linearity
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(b) Estimated coe�cient, with additional non-linearity
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Figure S7: Distributions of estimated coe�cients (appearing in �) for each factor when the

coe�cients are optimized within the interval [-100;100] instead of [-10,10] that was used

to produce Figure 3 in the article. The distributions are drawn from 100 repetitions for

m = 0.25. The top panel corresponds to the case without additional non-linearity, the

bottom one to the case with additional non-linearity; the non-linear case refers to the use of

the transformation function f specified in the main text, Section 3.1.
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Figure S8: Boxplots of the contributor ranking indicator calculated from the training and

test samples for MMA, LM, LMRank and Tree in the simulation study without additional

non-linearity (top panels) and with additional non-linearity (bottom panels); the non-linear

case refers to the use of the transformation function f specified in the main text, Section

3.1.
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Figure S9: Transmission tree for the Equine Influenza outbreak inferred with BadTrIP.

Blue ellipses: hosts; arrows: transmission links; values accompanying arrows: transmission

probabilities.

20



MMA LM LMRank Tree

0
.0

0
.4

0
.8

CR (train)

MMA LM LMRank Tree

0
.0

0
.4

0
.8

CR (test)

Figure S10: Boxplots of the contributor ranking indicator calculated from the training and

test samples for MMA, LM, LMRank and Tree in the equine influenza study.
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Figure S11: Boxplots of the performance indicator calculated from the training and test

samples for MMA, LM, LMRank and Tree in the simulation study without the non-linear

transformation f and where the coe�cients of all continuous factors have been fixed at 0

(the performance indicator could not be computed for LMRank because this method only

predicts null probabilities, which result on a null variance of the ranks and, therefore, an

undefined value for the performance indicator).
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Figure S12: Mixture probabilities z
i
j interpreted as probabilities of similarity (left) and

predicted ranks coinciding with the ranks of the linear combination of selected factors MX�̂

(right). In both panels, only arrows corresponding to z
i
j > 0.01 are plotted. Most of the

contributor-target links on the left are well ranked based on the factor combination MX�̂.

In addition, the four links with a bad rank on the right panel, namely Austria!Tennessee,

Romania!Tennessee, Switzerland!Arizona and Switzerland!Georgia correspond to low

probabilities of similarity.
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Figure S13: Boxplots of the contributor ranking indicator calculated from the training and

test samples for MMA, LM, LMRank and Tree in the COVID-19 study.
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Table S1: Estimated type I errors of the one-tailed (ii) permutation tests with 1000 repeti-

tions.

Continuous factors Discrete factors

m x6 x7 x8 x9 x10 x16 x17 x18 x19 x20

0.1 0.052 0.056 0.050 0.038 0.045 0.048 0.058 0.047 0.065 0.047

0.15 0.043 0.046 0.048 0.052 0.049 0.050 0.054 0.058 0.051 0.053

0.2 0.056 0.063 0.045 0.059 0.048 0.046 0.044 0.058 0.054 0.040

0.25 0.051 0.062 0.048 0.056 0.056 0.038 0.052 0.055 0.055 0.048

Table S2: Estimated type I errors of the one-tailed (iii) permutation tests with 1000 repeti-

tions.

Continuous factors Discrete factors

m x6 x7 x8 x9 x10 x16 x17 x18 x19 x20

0.1 0.050 0.047 0.048 0.037 0.053 0.048 0.058 0.047 0.065 0.047

0.15 0.051 0.046 0.044 0.042 0.036 0.050 0.054 0.058 0.051 0.053

0.2 0.048 0.053 0.047 0.054 0.038 0.046 0.044 0.058 0.054 0.040

0.25 0.068 0.044 0.044 0.044 0.051 0.038 0.052 0.055 0.055 0.048
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Table S3: Estimated type II errors of the one-tailed (ii) permutation tests with 1000 repeti-

tions.

Continuous factors Discrete factors

m x4 x5 x14 x15

0.1 0.219 0.480 0.003 0.094

0.15 0.147 0.387 0.001 0.048

0.2 0.113 0.352 0.000 0.037

0.25 0.095 0.320 0.001 0.027

Table S4: Estimated type II errors of the one-tailed (iii) permutation tests with 1000 repe-

titions.

Continuous factors Discrete factors

m x1 x2 x3 x11 x12 x13

0.1 0.490 0.194 0.043 0.096 0.001 0.000

0.15 0.380 0.129 0.019 0.056 0.001 0.000

0.2 0.336 0.097 0.016 0.029 0.000 0.000

0.25 0.304 0.088 0.007 0.017 0.000 0.000

Table S5: Description of equine influenza data. Left: Counts of hosts with non-missing

information for each observed variable. Right: counts of potential source-receptor pairs

without non-missing information for pairwise factors.

#

All 48

Yard 48

Age 27

Sex 26 (9 females, 17 males)

#pairs

All 2256

Same Yard 2256

Dist Yard 2256

Di↵ Age 702

Same Sex 650

Trans Sex 650
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Table S6: Explanatory factors for the Covid-19 application.

Category Variable Description Unit

Economy

gdp2019 Gross domestic product in 2019 M$

gdp capita Gross domestic product per capita in 2019 $

healthexp Health expenditure M$

Demography

pop Total population units

density Population density units per km
2

urbanpop Percentage of population living in urban ar-

eas

%

popmale Percentage of male %

pop tot 0 14 Percentage of population in the age group 0-

14 (male, female, total)

%

pop tot 15 64 Percentage of population in the age group 15-

64 (male, female, total)

%

pop tot 65 up Percentage of population in the age group 65

or more (male, female, total)

%

mediange Median age years

life expectancy Life expectancy at birth years

Health

lung Death rate for lung diseases per 100,000 peo-

ple

units

fertility Average number of children per woman units

obesity Percentage of obese people within the popou-

lation

%

smokers Percentage of smokers within the population %

Healthcare system

hospibed Number of hospital beds per 1,000 people units

physicians per 1K Number of physicians per 1,000 people units

nurses per 1K Number of nurses per 1,000 people units

Climate

tmin Average minimum temperature in the first

semester

�
C

tmax Average maximum temperature in the first

semester

�
C

prec Average precipitation in the first semester mm

avghumidity Average relative humidity %
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