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Abstract9

Classical supervised methods like linear regression and decision trees are not com-10

pletely adapted for identifying impacting factors on a response variable corresponding11

to zero-inflated proportion data (ZIPD) that are dependent, continuous and bounded.12

In this article we propose a within-block permutation-based methodology to identify13

factors (discrete or continuous) that are significantly correlated with ZIPD, we propose14

a performance indicator quantifying the percentage of correlation explained by the sub-15

set of significant factors, and we show how to predict the ranks of the response variables16

conditionally on the observation of these factors. The methodology is illustrated on17

simulated data and on two real data sets dealing with epidemiology. In the first data18

set, ZIPD correspond to probabilities of transmission of Influenza between horses. In19

the second data set, ZIPD correspond to probabilities that geographic entities (e.g.,20

states and countries) have the same COVID-19 mortality dynamics.21

Keywords: COVID-19; Equine Influenza; Performance Indicator; Permutation Test;22

Ranking; Spearman’s correlation.23

1 Introduction24

Proportion data are encountered in many fields such as biology, epidemiology and market-25

ing. A common objective is the identification of external factors impacting these data. In26
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marketing, a typical study could be the identification of factors impacting the proportions27

of products sold to di↵erent age groups of customers. In biology, an analogous study could28

be the analysis of proportions of cures with certain drugs by age groups. In epidemiology,29

one may be interested in identifying the external factors impacting the transmission of a30

virus within a host population when the knowledge about the transmissions (i.e., who in-31

fected whom) is uncertain (hence, in this case, the probability of transmission from host A32

to host B can be viewed as a proportion datum). In these typical examples, the ‘age groups33

and products’, the ‘age groups and drugs’ or the ‘hosts’ can be viewed as the nodes of a34

network whose edges are weighted by the aforementioned proportions measuring the links35

between age groups and products / drugs or the links between hosts. The edges from the36

‘contributing nodes’ (i.e., the source hosts transmitting the virus, the products or the drugs)37

toward a specific ‘target node’ (i.e., a recipient host or an age group) correspond to a vector38

of proportions whose sum is equal to one (or eventually lower than one if some contributing39

nodes are unobserved). Note that in the epidemiological example, recipient hosts can also40

be source hosts and vice versa (i.e., a host can be both a target and a contributing node).41

The network vision of data is illustrated by two schematic configurations shown in Figure 1,42

which includes notations that are introduced in Section 2, and our general objective in this43

paper is to unravel which factor(s) characterizing the pairs of nodes explain the network44

edges.45

In this article, we are specifically interested in epidemiological applications. As recently46

illustrated with the COVID-19 pandemic, grounding strategies for the management of infec-47

tious diseases on accurate knowledge about risk factors is paramount for e↵ectively prevent-48

ing a health crisis. Indeed, assessing the influence of social, biological and environmental49

factors in the spread of epidemics contributes to identifying mechanisms for controlling the50

disease dynamics. The spread of epidemics can be understood by quantifying epidemiologi-51

cal links between hosts or, more generally, nodes. Typical examples of epidemiological links52

that we have in mind are: probabilities of disease transmission between individuals1, and53

similarity measures of disease dynamics in several geographic entities2. Such measures of54

epidemiological links (i) have an intrinsic correlation structure and (ii) are usually estimated55

(i.e., uncertain). These features make the investigation of the relationship between epidemi-56

ological links and risk factors challenging because dependencies and overdispersion may lead57

to biased results if ignored3;4. Here, we focus on epidemiological links defined as proportions58

and we aim to provide a statistical methodology for explaining these epidemiological links59

(hereafter, the response variable) by multiple potentially impacting factors.60

Many statistical methods can be used to identify the correlation between factors and a61

response variable. Parametric prediction models can identify the set of factors impacting62

the response through statistical tests. When the response is normally distributed, or when63
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data are transformed to make it fit a Gaussian distribution5, the linear regression model664

predicts response values and identifies influencing factors. When the response variable follows65

other frequently used distributions (e.g., binomial or Poisson), the generalized linear models766

(GLM) can be considered. When one prefers to avoid making a distributional assumption for67

the response variable, non-parametric predictive models6 may be a solution. However, non-68

parametric models do not standardly provide direct testing procedure to identify impacting69

factors.70

In the exploration of the link between factors and a response variable, we are particularly71

interested in zero-inflated response variables (i.e., random variables with a positive mass at72

zero, or, in other words, variables presenting an excess of zeros). In classification problems73

(i.e., problems with categorical response variables), excess of any class can be handled by74

balancing classes using resampling methods8. In regression problems (i.e., problems with75

quantitative response variables), zero-inflation is typically handled by defining a model as a76

mixture of two processes: the first process generating only zeros, the second process being77

governed by a usual distribution such as the zero-inflated Poisson, zero-inflated binomial78

and zero-inflated beta distributions9. For such zero-inflated models, generally assuming79

independence between observations, the influencing factors can be identified with statistical80

tests10.81

The above-mentioned parametric models are defined for independent and identically dis-82

tributed (i.i.d.) realizations. However, proportion data are not independent since they sum83

to a fixed value equal to or lower than one. Such data are often referred to as compositional84

data11, that have been classified with respect to the nature of the response12 (proportions85

arising from counts versus from continuous measurements). Regarding the case of a zero-86

and/or one-inflated continuous response, the zero- and/or one-inflated beta regression is a87

solution when the proportions work in pairs (e.g., the proportions of males and females for a88

given species). When the number of observed categories is greater than two, the Dirichlet’s89

regression can be used. For instance, an adaptation of the zero-inflated Dirichlet regression90

(ZIDR) model was proposed for microbiome compositional data13.91

Statistical tests are generally associated with the parametric approaches mentioned above92

for quantifying the significance of a factor (the test generally depends on the type of factors:93

discrete versus continuous). The statistical test accompanying the linear model can treat all94

types of factors. ANOVA can handle discrete factors with more than two levels. The GLM95

(including zero-inflated data) and the ZIDR can treat continuous factors as well as discrete96

factors with only two levels, even if this restriction is minor since a factor with multiple levels97

can be treated as several factors with two levels each.98

Here we investigate the relationship between zero-inflated, non-Gaussian, correlated pro-99

portion data and several factors of any type. In the epidemiological contexts that we are100
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interested in, this objective translates into the investigation of the impact of individual,101

environmental, economical, climatic... factors on epidemiological links. The structure of102

the data and the objectives generate constraints on the statistical approach to be used.103

The response takes values between 0 and 1 (inclusive) and is generally zero-inflated (the104

zero-inflation makes classical transformations yielding normally-distributed variables inap-105

plicable). Moreover, the realizations are mutually dependent due to the constraint over the106

sum of probabilities for a given target. Furthermore, factor values for a given target node107

not only depend on the characteristics of this node but also on the characteristics of the108

contributing nodes and the target-contributor interaction. Common methods do not match109

all of these constraints, as illustrated by Table 1.110

Therefore, we propose a model-free (or more precisely a distribution-free) approach based111

on permutation tests aiming (i) to identify factors (discrete or continuous; characterizing the112

target, the contributor or the target-contributor pair) that are significant, (ii) to quantify via113

a performance indicator the percentage of correlation explained by the subset of significant114

factors, and (iii) to predict the ranks of proportions from the significant factors. To take115

into account the dependence of proportion data linking the contributing nodes to any target116

node, we define a test grounded on the principle of within-block permutations14;15;16. In117

this test, permutations are constrained by the dependence structure of data by shu✏ing118

proportion data only within each ‘contributors–target’ block (for any target). In addition,119

the test deals with both factor types, continuous and discrete, by adapting the test statistic,120

which is based on Spearman’s correlation if the factor is continuous, and on a di↵erence in121

mean ranks if it is discrete. The test is applied for each factor separately, but significant122

factors are then jointly used to compute a performance indicator quantifying the percentage123

of correlation explained by the selected set of factors. The zero-inflation is not explicitly124

handled in the test itself (permutation procedures are nevertheless considered as versatile125

for variables clumping at zero because they do not require distributional assumptions17),126

but it is accounted for in the performance indicator whose range is robust to the proportion127

of zeros (and more generally to the proportion of ties). Supporting Information, Figure S1,128

gives a general picture about the workflow of the methodology briefly described above.129

In what follows, Section 2 sets the framework and notations and presents the procedure130

based on permutation tests to identify the factors correlated to the response as well as the131

performance indicator. The method is then applied to simulations (Section 3) and to real132

data dealing with Equine Influenza and COVID-19 epidemics (Sections 4 and 5).133
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Table 1: Comparison of models in their ability to match the constraints considered in this

article.

Methods

Response Factor

Dependency
Distribution [0, 1] Zero Tests

free inflated Discrete Continuous

Linear regression
6 3a 3

Beta regression
9 3 3 3 3

Dirichlet regression
18 3 3 3 3 3

Decision tree
19 3 3 3

a
ANOVA and ANCOVA

2 Identification and quantification of impacting factors134

2.1 Framework and notations135

Hereafter, let nt be the number of target nodes, nc the number of contributing nodes and d the

number of factors. The response variable Z
i
j is a random variable measuring the (directed)

epidemiological link between target i 2 {1, . . . , nt} and contributor j 2 {1, . . . , nc}, as

illustrated in Figure 1. The higher the value, the stronger the link and the weaker the other

links. We assume that Zi
j is continuous, Zi

j 2 [0, 1] and, for any target node, the sum over

all contributors cannot exceed 1, i.e.:

ncX

j=1

Z
i
j  1, 8i 2 {1, . . . , nt}. (1)

In addition, in typical applications we will consider that the distribution of Zi
j is zero-inflated.136

The factors characterize any target-contributor pair (i.e., the two nodes and their inter-137

action), as illustrated in Figure 1. We denote by X = (x1, . . . ,xd) 2 Rntnc⇥d the set of d138

factors (d 2 N⇤). Thus, any pair (i, j) is described by
⇣
x
(i,j)
1 , . . . , x

(i,j)
d

⌘
.139

In practice, factors are often grounded on information separately collected from the target140

node i and the contributing node j. In this case, x
(i,j)
k is defined from any application141

taking as arguments the values of a variable observed from the contributor and target nodes.142

Intuitive examples include the geographical distance measured from the spatial coordinates143

of the contributor and the target, the absolute di↵erence between the ages of the contributor144

and the target, etc. Further examples provided in the application sections lead to discrete,145

continuous and even categorial factors.146
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Figure 1: Typical configurations of epidemiological networks of interest and links to factors.

Left: Probabilistic transmission network; Arrows indicate probable transmissions (with as-

sociated probabilities given by numbers above the arrows); Host C is a contributor (i.e.,

probable source of infection), host B is a target (i.e., an infection receptor) and hosts A,

D and E are both contributors and targets (thus, nt = nc = 4); E.g., A infected B with

probability Z
B
A = 0.36. Right: Similarity network; Arrows indicate probabilities that targets

(namely host units B, D and E; nt = 3) have the same features as (e.g., ‘follow the mortality

dynamics of’) contributors (namely hosts units A and C; nc = 2); E.g., B follows the mor-

tality dynamics of A with probability Z
B
A = 0.57. Notes: The objective of our approach is

to assess the link between an epidemiological network and multiple factors that characterize

pairs of host units, as illustrated on the right-hand side where Factor 1 seems to better re-

flect the similarity network than Factor 2 does (the numbers above the arrows for the panels

representing Factors 1 and 2 are the values taken by these undirected factors); In the main

text, probabilities Zi
j are indexed by host indices instead of host names; The sum of inward

probabilities for a given target is lower than 1 if some contributors are unobserved.

2.2 A within-block permutation-based approach to identify influ-147

encing factors148

The specific characteristics of our response variable make impossible the use of classical149

correlation tests such as Spearman’s test20, because the response has numerous ties (zeros).150

Solutions to treat ties in ranking problems were proposed21, but for cases with numerous ties,151

some hypotheses on the moments have to be satisfied and checking them may be laborious.152

Furthermore, the response is dependent within each target–contributors block (see Equation153

(1)) and classical correlation tests do not take into account such a dependence structure.154

Within-block permutation tests, grounded on the assumption of exchangeability of data155

within blocks14;15;16, appear to be a possible alternative to take into account these constraints.156

Let xk 2 Rntnc , k = 1, . . . , d, be the observations of the factor to be tested and let157
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z 2 Rntnc be the observations of the response, whose element (i, j) denoted by z
i
j is the158

observed value of Zi
j. We adapt the Conditional Monte Carlo (CMC) algorithm22 for block-159

permutation to test the correlation between the response and the factor. We denote by Tk160

the test statistic, which is dependent on the type factor, and by �k(z) the p-value. The161

CMC algorithm for block-permutation test adapted to data that we consider in this article162

consists of the following steps:163

1. Compute the statistic Tk on the original data set (xk, z);164

2. Do B independent repetitions of what follows: randomly permute the response by block165

of type target–contributors, set the new response vector denoted z
b, b = 1, . . . , B, and166

compute the statistic T
b
k on the permuted data set (xk, z

b);167

3. Estimate the p-value by b�k(z) =
1
B

PB
b=1 1{T b

k�Tk}.168

Remarks: The Tk statistic must be positive to calculate the p-value using the CMC algo-169

rithm. The permutation by block of type target–contributors is carried out by permuting170

the components of the vector (zi1, . . . , z
i
nc
) for each target node i (the permuted response z

b
171

hence satisfies mutual dependencies between its components summarized in the system of nt172

constraints given by Equation (1), and keeps eventual heterogeneity in the distribution char-173

acteristics of (zi1, . . . , z
i
nc
) between targets). Block permutations are required to minimize174

the second species risk of the test (see Supporting Information, Appendix A).175

For a continuous factor x, by omitting the subscript k, the statistic T is the non-176

parametric Spearman’s correlation23 between x and z, say rs(x, z), i.e. it is defined as177

the Pearson correlation between the rank variables rs(x, z) = ⇢(Rx, Rz), where ⇢ is the Pear-178

son correlation, Rx (resp. Rz) is the random vector that gives the ranks of the elements of179

x (resp. z). Hence, we define the following tests:180

H0: “the response and factor ranks are not correlated” versus181

(i) H1: “the response and factor ranks are correlated” and the test statistic is T = r
2
s(x, z);182

(ii) H1: “the response and factor ranks are positively correlated” and T = rs(x, z);183

(iii) H1: “the response and factor ranks are negatively correlated” and T = �rs(x, z).184

For a discrete factor x (still omitting the subscript k) with Q levels, the test hypotheses

are H0: “level-by-level mean ranks are equal” versus H1: “mean ranks are di↵erent for at

least two levels” and the statistic corresponds to the one defined in the H-test24:

T = (ntnc � 1)

PQ
q=1 nq

�
R̄z·q � R̄z

�2
Pnt

i=1

Pnc

j=1(Rzij
� R̄z)2

, (2)
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where Rzij
denote the rank of the element (i, j) of z, R̄z = 1

ntnc

Pnt

i=1

Pnc

j=1 Rzij
, nq =185

Pnt

i=1

Pnc

j=1 1q(x(i,j)), R̄z·q = 1
nq

Pnt

i=1

Pnc

j=1 Rzij
1q(x(i,j)) and 1q(x(i,j)) = 1 if x

(i,j) = q,186

1q(x(i,j)) = 0 otherwise. If the p-value of the factor being considered is less than the signifi-187

cance level, post-hoc tests can be constructed to test the impact of factor levels. Let q and q̃188

be two levels, we can then make the following tests H0: “there is no di↵erence between the189

two mean ranks” versus190

(i) H1: “there is a di↵erence between the two mean ranks” and the statistic is T =191

(R̄z.q � R̄z.eq)
2;192

(ii) H1: “the mean ranks of level q is lower than the mean ranks of eq” and T = R̄z.eq � R̄z.q ;193

(iii) H1: “the mean ranks of level q is greater than the mean ranks of q̃” and T = R̄z.q�R̄z.eq .194

Notes: Here, the statistics are the di↵erences in mean ranks25. In addition, if the dis-195

crete factor has more than two levels, the problem becomes a multiple comparison prob-196

lem. A correction can be applied accordingly to control the occurrence of false positives,197

e.g., the Bonferroni correction which consists in multiplying the p-values by the number198

of comparisons, or the less conservative and sharper improved Bonferroni correction called199

Benjamini-Hochberg correction26;27. As an illustration, we provide both the Bonferroni and200

the Benjamini-Hochberg corrected p-values for the post-hoc tests performed in the applica-201

tion dealing with Equine Influenza.202

2.3 A performance indicator to quantify the monotonous depen-203

dency204

To take into account the multivariate aspect of the correlation, we develop a performance205

indicator that simultaneously accounts for all discrete and continuous factors previously206

identified. The indicator can be viewed as a surrogate for the coe�cient of determination207

used in linear regression, representing the monotonous relationship between a single linear208

combination of all factors and the response. It varies in [0, 1]; the closer to 1, the stronger209

the correlation between the ranks of the best combination of the set of factors X (which210

corresponds to the term MX�̂ defined below) and the ranks of the response variable z. To211

ensure that the performance indicator can e↵ectively reach the maximum value 1, it is defined212

as the ratio between the Spearman correlation and its actual upper bound. The upper bound213

is computed analytically by following the reasoning proposed by Kendall21 for treating ties214

in ranking problems. The reasoning adapted to our problem consists in identifying the215

situation where the Spearman correlation is maximum for given z and MX�̂ ignoring the216

actual pairing between these sets of variables. This situation occurs when the ranks of217
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the (i, j)-th components of MX�̂ and z are equal for any (i, j) such that z
i
j 6= 0. Under218

this assumption, the computation of the Spearman correlation simplifies and one obtains219

an explicit expression for the upper bound. In what follows, we derive the expression of220

the performance indicator; details on the computation of the upper bound of the Spearman221

correlation are provided in Supporting Information, Appendix B.222

The performance indicator is built from the following function of �:

I�(X, z) = r
2
s(MX�, z)(1 +�MX�,z), (3)

where (1 + �x,y)�1 is the upper bound of r
2
s(x, z) and �x,y =

P
i2I0(R

2
xi
�R

2
yi)

(n� 1)�̂2
Ry

for all

(x,y) 2 Rn⇥Rn, �̂2
Ry

being the variance of Ry and I0 = {i|yi = 0}, and where the elements

of the design matrix MX 2 Rntnc⇥d0 are defined by:

MX(`, k) =

8
><

>:

x
(i,j)
k �min{xk}

max{xk}�min{xk}
, if xk is a continuous factor

⇣
1q(x

(i,j)
k )

⌘

q=1,...,Qk�1
, if xk is a discrete factor,

` = (i � 1)nc + j and k are the indices of the rows and the columns of the design matrix,223

respectively, min{xk} (resp. max{xk}) is the minimum (resp. maximum) element of the224

vector xk, d0 =
Pd

k=1(Qk � 1), with Qk = 2 if xk is a continuous factor and Qk is equal to225

the number of levels if xk is a discrete factor.226

We then have to estimate the set of parameters � which maximizes the Spearman corre-

lation r
2
s(MX�, z) (to obtain the best combination of the set of factors X with the form

MX�, as evoked above). The values of the components of � associated with the fac-

tors identified as insignificant are set to zero, and the optimization is carried out with

respect to the remaining subset of parameters (of dimension d
00  d

0) using a genetic

algorithm implemented in the R package rgenoud28 (the genoud function in this pack-

age combines an evolutionary search algorithm with a derivative-based Newton or quasi-

Newton method to solve optimization problems). Hence, we estimate � as follows: �̂ =

argmax�2Rd00 r
2
s(MX�, z). The solution of this maximization is obviously not unique (if �0 is

a solution, a�0 is also a solution for all real value a 6= 0), but this is not an issue in the pro-

posed framework since only the rank are taken into account and I�0(X, z) = Ia�0(X, z),
8a 6= 0. In practice, since the maximizer can only be identified up to a scale factor,

each component of � is constrained within the interval [�10, 10], and the genetic algo-

rithm is stopped if the value of the objective function r
2
s(MX�, z) has not increased in the

last 50 iterations (with a tolerance level equal to 0.001) or if the maximum number of

iterations (set to 200) has been reached. This is specified in the genoud function by set-

ting the following options: Domains = matrix(c(-10,10),byrow=TRUE,nrow=d00,ncol=2),

9



max.generations = 200, hard.generation.limit = TRUE, wait.generations = 50 and

solution.tolerance = 0.001. Finally, we calculate the performance indicator by pluging-

in �̂:

I�̂(X, z) = r
2
s(MX�̂, z)(1 +�MX�̂,z

).

2.4 Relative importance of factors227

The optimal parameter vector �̂ must not be directly used for assessing the e↵ect sizes of228

factors since it is not unique as explained in Section 2.3 (if �0 is a solution of the maximiza-229

tion, a�0 is also a solution for all real value a 6= 0). Nevertheless, the components of �̂ can230

be used to compare the relative importance of factors in explaining, through MX�̂, the links231

between targets and contributors summarized by z. Thus, we define the relative importance232

of factor k 2 {1, . . . , d} (or the level q of factor k for discrete factors) with respect to the233

average factor:234

ẽk,q =
ek,q

1
d0

Pd0

k0=1

PQk�1
q=1 ek0,q

, (4)

where ek,q = |�̂(k)| and q = 1 if factor k is continuous (�̂(k) being the component of �̂235

corresponding to the continuous factor k) and ek,q = |�̂(k,q)| if factor k is discrete (�̂(k,q)
236

being the component of �̂ corresponding to the q-th level of the discrete factor k, q 2237

{1, . . . , Qk � 1}).238

Remarks: (a) ẽk is unchanged if one substitutes a�̂ for �̂ (a 6= 0). (b) The operator MX239

in the regression MX�̂ homogenizes the amplitudes of variation of the factors and, therefore,240

of the coe�cients in �̂ which are hence comparable. (c) The relative importance of factors241

measured by Equation (4) has to be understood in terms of factor contributions to the242

regressionMX�̂ explaining z. Hence, these contributions might be subject to nonlinear e↵ects243

of factors or correlation between factors. One may alternatively compute a marginal indicator244

of the importance of each factor by calculating for example the performance indicator I�̂(X, z)245

where X is reduced to the factor of interest. Such a proposal however requires additional246

computation of the optima �̂ for every factor considered individually.247

2.5 Rank prediction248

If one ignores the value of z, ranks of contributors can be predicted for any target by the249

ranks R̂z of MX�̂. In other words, the first contributor to a given target is predicted to250

be the contributor with the largest component of the sub-vector of MX�̂ restricted to the251

target under focus, the second contributor corresponds the second largest component, and so252

on. In the applications, we compare this ranking with rank predictions obtained from linear253

regression and decision tree (for which ranks are computed directly from the predictions254
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of proportions provided by these models) and with the rank-based estimation for linear255

models29, which uses a distance based on a dispersion function30 instead of the Euclidean256

distance. Note that the four rank-prediction approaches are implemented with the same set257

of factors identified by the tests presented in Section 2.2.258

We use cross-validation to compare the robustness and the quality of the performance259

indicator and the ranking obtained from our multitest-based multivariate analysis (MMA),260

the linear regression model (LM), the rank-based linear regression model (LMRank) and the261

decision tree (Tree). Target hosts are randomly divided into a train sample (80% of targets)262

and a test sample (20% of targets). Tests for factor identification are applied to the global263

sample (union of train and test samples), while indicators are computed separately for each264

sub-sample. This procedure is independently repeated 100 times.265

We consider two indicators: the performance indicator defined in the previous subsec-266

tion and the contributor ranking indicator (CR). The CR indicator, defined in Supporting267

Information, Appendix C, is the average over the targets of the proportion of the Ni con-268

tributors with positive transmission probabilities for target i that are ranked among the top269

Ni contributors by the predictor under consideration (MMA, LM, LMRank or Tree).270

3 Simulation study271

We carry out a simulation study to investigate the performance of the proposed method.272

All R codes to implement the methods have been incorporated into the package ZIprop,273

freely available on R CRAN (https://cran.r-project.org/package=ZIprop) and GitLab274

(https://gitlab.paca.inrae.fr/meribaud/ziprop).275

3.1 Simulated data276

We simulate data under the constraints described in Section 2.1. The algorithm applied to277

simulate the factors and the response is described below:278

1. Set values for nc > 1, nt > 2, m 2 [1/nc, 1] (the proportion of non-zero values for the279

responses zij), d > 1, � 2 Rd0 and ⌘ > 0.280

2. Generate the matrix X = (x1, . . . ,xd) 2 Rntnc⇥d such that the components of the ntnc-281

tuple xk, k 2 {1, . . . , d}, are independently drawn from the continuous (resp. discrete)282

uniform distribution U(0, 1) (resp. U({0, 1})) if xk is a continuous (resp. discrete)283

factor.284

3. Generate the un-constrained response vector z̃ 2 Rntnc from the Gaussian distribution285

N(X�, ⌘2I) with mean vector X� and diagonal variance matrix ⌘
2
I where diagonal286
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elements are equal to ⌘
2; subtract the minimum value of z̃ to each element of z̃ to get287

only non-negative elements: z̃ z̃�min z̃ ; set to zero the n0 = d(1�m)ncnte lowest288

elements in z̃ excluding its maximal elements for each target i 2 {1, . . . , nt}, i.e., the289

n0 lowest elements in z̃� {z̃ij : z̃ij = maxj0{z̃ij0}} (d·e is the ceiling function).290

4. Compute the elements z
i
j of the response vector z by scaling z̃

i
j for each target i 2291

{1, . . . , nt}: zij =
z̃ijPnc

j0=1
z̃i
j0
. Therefore, the response is simulated in such a way that for292

any target i, 9j 2 {1, . . . , nc} such that zij > 0, and
Pnc

j=1 z
i
j = 1.293

We test the e↵ect of each factor and compute the performance indicator setting nc = 20,

nt = 22, d = 20, and the proportion of non-zero data m 2 {0.1, 0.15, 0.2, 0.25}. The first

(resp. last) half of factors are continuous (resp. discrete) and � 2 Rd0 (d0 = d since discrete

factors have only two levels) satisfies:

� = (�1, �2, �3,��4,��5, 0, 0, 0, 0, 0, �1, �2, �3,��4,��5, 0, 0, 0, 0, 0) (5)

where �k, k = {1, . . . , 5}, are independently drawn from the following uniform distributions:294

295

�1, �5 ⇠ U(8, 10), �2, �4 ⇠ U(12, 14) and �3 ⇠ U(16, 18). (6)

The first 10 components of � correspond to the continuous factors, the 10 following com-296

ponents of � correspond to the first level of the discrete factors with two levels (the second297

level having a null e↵ect). In addition, the standard deviation of the noise is set to ⌘ = 10298

that gives a median performance indicator of 0.69 between z and X� for 100 runs. The main299

characteristics of the simulation setting are given in Table 2.300

In the simulation algorithm proposed above, the link between X� and z is non-linear due301

to the step where some values in z̃ are set to zero (Stage 3 of the algorithm) and the step where302

z̃ are scaled to obtain a vector of probabilities for each target (Stage 4). To increase the non-303

linearity in an additional simulation study, we modify Stage 3 in the algorithm by generating304

z̃ in the Gaussian distribution N(f(X)�, ⌘2I), where f transforms four of the continuous fac-305

tors included in X, two with an expected e↵ect on the response and two without e↵ect given306

the form of � specified above: f(X) = (x2
1, exp(x2),

p
x3,x4,x5,x

2
6, exp (x7),

p
x8,x9, . . . ,xd).307

3.2 Estimated errors of permutation tests308

We assess the performance of the two-tailed permutation test for continuous and discrete309

factors and di↵erent proportions m of non-zero data. Figure 2.a shows the distribution of310

p-values for each factor for m = 0.25 (we get similar results for the other values of m, see311

Supporting Information, Figure S2). The factors X1:5 and X11:15 are generally identified as312

correlated to the response while X6:10 and X16:20 are not. The estimated type I errors of the313
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Table 2: Main specifications of the simulation study.

Object Value

Number of Targets (nt) 22

Number of Contributors (nc) 20

Number of factors (d) 20

Type of factors Continuous (10) and discrete (10)

Response variable (Zi
j) Simulated proportion

Number of observations (nt ⇥ nc) 440

test at the risk level 0.05 are given in the top part of Table 3 for di↵erent values of m, and314

show that the test is relatively well calibrated. The type II errors (bottom part of Table 3)315

are very small for discrete factors whatever the value of m. In contrast, they are larger316

for continuous factors (in particular those with relatively small e↵ect) and decrease with m.317

We carried out the same analysis for the one-tailed permutation tests and we obtained very318

similar results as shown by Supporting Information, Tables S1 to S4.319

Remark: Type II errors can be relatively large for continuous factors with weak e↵ect (it320

is around 0.6 when 10% of response values are non-zero), clearly showing a potential limit of321

the proposed methodology. However, the large type II errors observed with small m might322

be an artifact resulting from the simulation scheme. Indeed, by setting to zero the n0 lowest323

elements in z̃ to build z (see Stage 3 of the simulation algorithm), one simply deletes a part324

of the information contained in the linear relationship between X� and the initial value of z̃.325

In other words, one gets zij = 0 for components of X� in a large range of values (i.e., small326

and intermediate values). In contrast, in real cases, zij = 0 means that (i, j) is not likely to327

be a target-contributor pair, and if X� is consistent with z, its component corresponding to328

z
i
j = 0 should tend be only small, not intermediate, and should therefore reinforce the power329

of the test. Further investigations are however required to test this artifact assumption.330

3.3 Assessment of the performance indicator331

For each repetition performed for m = 0.25 (yielding the largest test power for continuous332

variables), the performance indicator is computed for the k factors with the lowest p-values,333

k varying from 2 to 20. Figure 2.b shows the distribution of the performance indicator with334

respect to k. The indicator increases until it reaches a plateau at the value one (which is335

its maximum value) approximately when k = 10 (vertical line), which corresponds to the336

actual number of factors having a significant e↵ect. The indicator is robust in the sense that337

13



(a) P-value

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

Continuous factors Discrete factors

0

0.2

0.4

0.6

0.8

1

(b) Performance indicator

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of factors

0.2

0.4

0.6

0.8

1

(c) Estimated coe�cient

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

Continuous factors Discrete factors

−10

−5

0

5

10

(d) Relative importance

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

Continuous factors Discrete factors

0

1

2

3

4

5

Figure 2: Factor significance and importance in the simulation study. a) P-values of two-

tailed permutation tests for each factor (the red line indicates the 0.05 value). b) Distribution

of the performance indicator for varying number of included factors (factors are successively

incorporated by first including those with lowest p-values). The horizontal red line gives

the median value of the performance indicator computed with the true value of � (0.69).

c) Distribution of estimated coe�cients (i.e., the components of �̂) for each factor. d)

Distribution of the relative importance ẽk of each factor; the red cross gives the expected

relative importance given the simulation scheme described in Section 2.4. The distributions

are drawn with m = 0.25 and from 1000 repetitions for a) and 100 repetitions for b), c) and

d).

adding more factors than the actual number of factors with significant e↵ects does not a↵ect338

the performance.339

3.4 Assessment of the relative importance of factors340

Figure 2.c shows that estimated coe�cients for non-significant factors are close to zero, while341

they take values that are clearly positive or negative for significant factors in agreement with342

the specifications given by Equations (5)–(6). In addition, we note that the amplitudes of343

the estimated coe�cients are not correct, as expected, since the coe�cients were constrained344

between -10 and +10 in the optimization process whereas they were simulated between -14345

and +18; see Equations (5)–(6)). However, the relative values of coe�cients are estimated346
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Table 3: Estimated type I and type II errors of the two-tailed permutation tests based on

1000 repetitions in the simulation study (m is the proportion of non-zero values for the

response).

Type I Continuous factors Discrete factors

m x6 x7 x8 x9 x10 x16 x17 x18 x19 x20

0.1 0.043 0.044 0.046 0.036 0.047 0.046 0.047 0.049 0.063 0.052

0.15 0.046 0.049 0.051 0.042 0.040 0.054 0.043 0.054 0.054 0.054

0.2 0.057 0.043 0.043 0.056 0.039 0.051 0.034 0.055 0.052 0.045

0.25 0.058 0.043 0.049 0.046 0.050 0.041 0.044 0.055 0.052 0.049

Type II Continuous factors Discrete factors

m x1 x2 x3 x4 x5 x11 x12 x13 x14 x15

0.1 0.607 0.293 0.097 0.321 0.616 0.147 0.008 0.000 0.004 0.159

0.15 0.492 0.214 0.044 0.223 0.522 0.093 0.002 0.000 0.001 0.086

0.2 0.449 0.176 0.037 0.189 0.460 0.063 0.001 0.000 0.001 0.066

0.25 0.433 0.147 0.021 0.151 0.447 0.046 0.000 0.000 0.001 0.041

satisfactorily as deduced from Figure 2.d, which shows that the relative importance ẽk of347

each factor k is approximately distributed around its expected value.348

Very similar results are obtained when the standard deviation of the noise ⌘ is decreased349

to ⌘ = 5 or increased to ⌘ = 15, even if the largest standard deviation leads to wider350

distributions of the relative importance (and higher p-values for factors with non-zero e↵ects,351

i.e., larger type II errors); see Supporting Information, Figures S3-S4, which are analogous352

to Figure 2.353

Similar results are also obtained when we include additional non-linearity with the trans-354

formation function f (see Supporting Information, Figure S5) the sum
Pnc

j=1 z
i
j is drawn from355

a uniform distribution between 0.5 and 1 (which mimics the non observation of some con-356

tributors), instead of fixing
Pnc

j=1 z
i
j to the value 1 as described in stage 4 of the simulation357

algorithm detailed in Section 3.1 (see Supporting Information, Figure S6).358

In addition, Supporting Information, Figure S7, shows that the estimates of non-zero359

coe�cients are pushed towards the limits of the range, because of the non-identifiability360

evoked at the end of Section 2.3, when we consider wider constraining intervals for the361

optimization of �.362
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3.5 Assessment of the rank prediction with cross-validation363

The methodology proposed in this article (MMA) is compared in terms of ranking per-364

formance for the simulated data with the three other methods (LM, LMRank and Tree)365

introduced in Section 2.5. The prediction methods are applied to the set of factors selected366

by the permutation tests. Figure 3.a shows the good performance of the multitest-based367

multivariate analysis (MMA). The linear models (LM and LMRank) have relatively similar368

e�ciency, whereas the decision tree (Tree) is clearly less e�cient when it is applied to the test369

samples. Similar results are obtained when one includes the transformation function f to370

increase the non-linearity (see Figure 3.b), and when one considers the contributor ranking371

indicator (CR) instead of the performance indicator except for LMRank that is less e�cient372

than MMA and LM based on this criterion (see Supporting Information, Figure S8).373

4 Application I: Equine Influenza374

We consider an Equine Influenza outbreak in 2003 in race horses from di↵erent training yards375

in Newmarket. Genomic data collected during this outbreak from 48 horses were studied to376

explore the virus transmissions across the observed horse population31. Intra-host sequences377

were obtained for each horse and these sequences were used to estimate the probabilities378

of disease transmission between hosts using the BadTrIP software32; 33,chap. 3. BadTrip was379

run in BEAST234 using two independent MCMC chains of 5 million steps. We used the380

dates of first positive swabs as epidemiological data in BadTrIP and allowed the horses to381

be infected for 9 days except for the first horse A01, which was allowed to be infected for382

15 days to provide overlap in the infection periods of the first horses in the transmission383

chain. The estimated transmission probabilities (shown in Supporting Information, Figure384

S9) are used in the present study as response proportion data; see Table 4. Many of the385

estimated transmission probabilities are equal to zero, which means that, for each target,386

BadTrIP identified only a small number of potential contributors. In what follows, we use387

four discrete factors and one continuous factor computed from the observed variables ‘age’,388

‘sex’ and ‘training yard’ described in Table 5.389

Some of these factors are missing for some target-contributor pairs (see Table 5 and390

Supporting Information, Table S5). Hence, the tests for assessing the e↵ect of a given factor391

on the transmission probability are applied on the subset of complete data for this factor.392

Permutation tests are applied factor by factor on subsets without missing values (if any).393

The data set used for this study is available on a public archive repository35. Remark: A394

non-completely random structure of missing values could generate biased results, but we did395

not observe clear signs of such a structure in this case study. We simply observed that the396

age and sex variables were systematically missing for one of the yards with several infected397
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Figure 3: Boxplots of the performance indicator calculated from the training and test sam-

ples for MMA, LM, LMRank and Tree: a) in the simulation study without the non-linear

transformation f ; b) in the simulation study with the non-linear transformation f , c) in the

Equine Influenza application; d) in the COVID-19 application (the performance indicator

could not be computed for LMRank in this case because this method only predicts null

probabilities, which result on a null variance of the ranks and, therefore, an undefined value

for the performance indicator).
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Table 4: Main specifications of the equine influenza application. Note that the number of

observations is nt ⇥ (nc � 1) and not nt ⇥ nc because we do not account for auto-infection

(i.e. for pairs where the contributor-horse is also the target-horse).

Object Value

Targets/Contributors Horses

Number of Targets/Contributors (nt/nc) 48

Type of factors Variables related to horses and their environment

Number of factors (d) 5

Response variable (Zi
j) Transmission probabilities

Number of observations (nt ⇥ (nc � 1) pairs) 2256

Table 5: Explanatory factors for the equine influenza application.

Factor Description Number of NA (%)

Same Yard
1 if the target and contributor are trained in the same yard

0 (0%)
0 otherwise

Same Sex
1 if the target and contributor have the same sex

0 otherwise 1606 (71%)

Di↵ Age

0 if the target and contributor have the same age

1554 (69%)1 for a one-year di↵erence

2 for more than one year

Dist Yard
geographic distance (in km) between

0 (0%)
the training yards of the target and the contributor

Trans Sex

“F!F” if a female infected another female

1606 (71%)
“M!F” if a male infected a female

“F!M” if a female infected a male

“M!M” if a male infected another male

horses but nothing else in particular characterizes this yard based on the available data.398

Factors Same Yard, Same Sex, Dist Yard and Trans Sex are significantly correlated to399
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Table 6: Test results for the equine influenza application. Top: Statistic (T ), p-value (pv)

and Spearman’s correlation (rs; for the continuous factor only) associated with the two-

sided permutation tests performed for the five factors. Bottom: Statistic (T ), p-value (pv),

Hochberg-corrected p-value (pv⇤; for discrete factors with more than 2 levels) associated with

the post-hoc permutation tests applied to significant discrete factors. Lines with a significant

p-value are highlighted in gray.

Factor T pv rs

Same Yard 0.05 0

Same Sex 0.007 0.031

Di↵ Age 0.001 0.8

Dist Yard 0.05 0 �0.22
Trans Sex 0.042 0

Factor Factor level T pv pv⇤

Same Yard 0 - 1 -444 0

Same Sex 0 - 1 -24.77 0.04

Trans Sex F!F - F! M 65 0 0.01

F!F - M!F 111 0 0

F!F - M!M 80 0 0

F!M - M!F 46.2 0.01 0.02

F!M - M!M 15 0.33 0.33

M!F - M!M -31.1 0.04 0.08

the transmission probability whereas Di↵ Age is not; see Table 6. Among these factors,400

Same Yard, Same Sex and two modalities of Trans Sex have the largest and comparable401

relative importance with respect to the average factor; see Figure 4. The post-hoc statistic402

of Same Yard (T in the bottom part of Table 6) and the Pearson correlation of Dist Yard (rs403

in the top part of Table 6) being negative, horses trained in the same yard or in nearby yards404

have a higher chance to be linked by a transmission. This is a clearly intuitive result certainly405

due to higher contact rate in shared training areas. The statistics of post-hoc univariate tests406

for factor Same Sex is also negative, which means that the virus better circulates between407

horses with the same sex. Moreover, the post-hoc tests on the Trans Sex modalities show408

that only the di↵erence between “F!M - M!M” (and “M!F - M!M” when one considers409

the corrected p-values) are not significant. The results on the p-values and the sign of the410

statistics show that transmissions between females are favored compared to all other possible411
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combinations (F!F transmissions have positive probabilities 1.8 times more than expected412

under complete randomness; see Table D.1 in Supporting Information, Appendix D.413

In addition, there is more intersex transmission when females are the sources (F!M),414

than when males are the sources (M!F). Supporting Information, Appendix D, shows that415

the significance of gender-related factors is neither confounded with the e↵ect of the other416

available factors nor a consequence of heterogeneous sex frequencies.417

The performance indicator is calculated on the table containing the four selected factors,418

discarding the transmissions containing one or more missing values (NA). The performance419

indicator takes the value I�̂(X, Z) = 0.21 using the four selected factors. This relatively low420

value, which indicates that there is a moderate correlation between the combination of the421

four factors and the transmissions, can actually be viewed as quite large given the fact that422

we only consider very basic factors to predict the transmissions.423

To investigate the robustness and the quality of our approach in this case study, we apply424

cross-validation and perform the comparison with the three benchmark methods presented in425

Section 2.5. For this comparison we use the four factors selected with the permutation tests.426

The decision tree seems to outperform the multivariate analysis on the training samples but427

this is not confirmed on the test samples; see Figure 3.c. Both methods tend to be more428

e�cient than the two linear models, possibly because of the highly discrete nature of the429

factors: three factors among four are discrete and the continuous factor (Dist Yard) takes430

only 37 di↵erent values out of 650 observations. Similar conclusions are drawn when the431

ranking performance is measured with the CR indicator; see Supporting Information, Figure432

S10. Remark. In an additional simulation study, we fixed all the coe�cients of the continuous433

factors at zero to see whether the performance of the decision tree is improved when only434

discrete factors have an impact on the response variable. No significant improvement of the435

decision tree performance was observed (compare Figure 3.a and Supporting Information,436

Figure S11) and further investigations are required to understand the reason why the decision437

tree is relatively e�cient in the influenza case study.438

5 Application II: COVID-19439

A recent article proposed a data-driven method to predict the mortality curve of a target440

country with a mixture of the mortality curves of countries that are ahead of time in terms441

of mortality rate2. The mixture is more exactly formed by the mortality curves of contribut-442

ing countries as well as an additional parametric predictor, and the method is essentially443

grounded on the estimation of the mixture probabilities. Real-time predictions based on444

this method are available for more than 100 countries via the following web application:445

http://covid19-forecast.biosp.org/.446
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Figure 4: Relative importance of significant factors for the Equine influenza (left) and

COVID-19 (right) applications. Diagonal values give the relative importance ẽk of each fac-

tor k with respect to the average factor as defined by Equation (4). Non-diagonal values give

the relative importance of any factor with respect to any other factor, i.e. ẽk/ẽk0 = ek/ek0 ;

large values are highlighted with brownish colors.

Here, we use the estimated mixture probabilities as proportion data. Targets are states447

from the USA and provinces from Canada; contributors are members of the European Eco-448

nomic Area (EEA) and the European Free Trade Association (EFTA). We only consider449

geographic entities with at least 5,000,000 inhabitants (leading to 23 targets and 21 con-450

tributors) and the first epidemic wave by using data up to June 6, 2020. Mortality data451

used to estimate the mixture probabilities were collected from the Johns Hopkins Uni-452

versity Center For Systems Science and Engineering36 and The Covid Tracking Project453

(https://covidtracking.com). The choice of considering Northern American targets and454

European contributors was made because Europe was on average ahead of time in terms of455

mortality rate, at least during the first COVID-19 epidemic wave.456

To explain the mixture probabilities (i.e., the similarity between targets and contributors457

in terms of mortality dynamics), we consider 29 variables related to economy, demography,458

health, healthcare system and climate; see Table 7 and Supporting Information, Table S6.459

More precisely, our objective is to identify factors negatively correlated with the response, i.e.,460

the lower the distance between two geographic entities with respect to a given variable, the461

higher the mixture probability. Consequently, we use the univariate test (iii) for continuous462

factors, which are computed for each target-contributor pair by x
(i,j)
k = |xi

k � x
j
k|. The data463

set used for this study is available on a public archive repository37.464

21

https://covidtracking.com


Table 7: Main specifications of the Covid-19 application.

Object Value

Targets States from the USA and provinces from Canada

Number of Targets (nt) 23

Contributors Members of the European Economic Area

Number of contributors (nc) 21

Type of factors Variables related to economy, demography, health,

healthcare system and climate

Number of factors (d) 29

Response variable (Zi
j) Mixture probabilities

Number of missing values 0

Number of observations (nt ⇥ nc) 483

Figure 5 shows the p-values obtained for each factor and the Spearman’s correlation for465

significant factors. We identified eleven impacting factors whose definitions are provided in466

Supporting Information, Table S6: hospibed, smokers, lung, healthexp, gdp capita, fertility,467

urbanpop, nurses per 1K, gdp2019, pop female 0 14, and pop tot 0 14. The figure shows468

that Spearman’s correlation is negative for significant factors. This result is consistent with469

our objective: to identify the significant factors negatively correlated to the response (since470

we expect that the similarity of the mortality dynamics of two countries decreases when the471

di↵erence in the factor values for the two countries increases).472

Then, we applied the multivariate analysis based on the eleven significant factors. The473

factors smokers (percentage of smokers within the population), pop tot 0 14 (percentage474

of population in the age group 0-14) and lung (death rate for lung diseases per 100,000475

people) have the largest relative importance in the linear combination of factors explaining476

the mortality dynamics similarity; see Figure 4. Hence, small deviations of these factors477

strongly favor the similarity of mortality curves. In addition, the performance indicator is478

equal to I�̂(X, Z) = 0.73, which shows that a high monotonous dependency exists between479

the mixture probabilities and these factors. This is confirmed by Supporting Information,480

Figure S12, which illustrates the relative good match between predicted ranks based on481

selected factors and mixture probabilities interpreted as probabilities of similarity.482

Figure 3.d and Supporting Information, Figure S13, show the high performance of the483

MMAwith respect to LM and Tree (we could not provide, for this case study, the performance484

of LMRank as explained in the caption of Figure 3). The performance indicator is quite485

variable when it is computed from the test samples. In comparison the CR indicator is486
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Permutation test results

Figure 5: Comparison of the p-values (black dots) for the univariate tests (iii) associated to

each factor and the significance level ↵ = 0.05 (horizontal line). The Spearman correlation

is given by the framed value for factors with a p-value below the threshold.

less variable. However, in both cases, MMA remains globally more e�cient than the other487

methods.488

6 Discussion489

For exploring the relationships between zero-inflated proportion data (ZIPD) and poten-490

tially impacting factors, we developed permutation tests explicitly taking into account the491

dependence structure in the proportions. These tests being uni-dimensional (i.e., each fac-492

tor being treated separately), we propose a posterior analysis simultaneously handling the493

multiple factors. This posterior analysis is grounded on a performance indicator quantifying494

the percentage of correlation explained by the subset of significant factors and enables the495

ranking of proportions based on the observation of the factors. Ranking the proportions as496

we proposed is particularly useful in epidemiology because it especially allows the identi-497

fication of the most likely sources of infection for a given recipient host simply from host498

characteristics.499

Based on the simulation study, the uni-dimensional tests are well calibrated with respect500

to type I error in the situations under consideration and, overall, type II error is satisfactory501
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and generally lower for discrete factors than for continuous factors. These results are con-502

sistent with the generally-observed reliability of permutation tests. The main assumption503

of permutation tests (that are distribution-free) is the exchangeability of data under the504

null hypothesis. However, this assumption can be violated when the dependence structure505

is known and especially in the case of block permutations16. This structure must be taken506

into account during permutations otherwise the tests lose power (see Supporting Informa-507

tion, Appendix A). This is why we test the null hypothesis only on a subset of all possible508

permutations.509

The performance indicator, allowing a simultaneous treatment of all the factors, was510

shown to provide a relevant and parsimonious description of the strength of the link between511

ZIPD and multiple factors. Indeed, a plateau in terms of performance is reached when all512

the significant factors are added. We also observed a relative robustness in the performance513

using training and test sets in a cross-validation framework applied to the simulation and514

real studies. Cross-validation was also used to compare the performance of our multivariate515

analysis with respect to the linear regression model, the rank-based linear regression model516

and the decision tree. Contrasted results were obtained across the three studies, but the517

multitest-based multivariate analysis appeared as a versatile approach adapted to continuous,518

discrete and mixed factors.519

We have challenged our approach in various settings. However, several particularities of520

the data not tested in the simulation study could be considered to deepen the conditions521

of validity of the tests and of the performance indicator in particular (for example, partic-522

ularities concerning the collinearity or dependence between the factors, the proportion and523

the structure of missing values, and the number of modalities of discrete factors). The code524

accompanying this article will facilitate the exploration of the limitations of our approach.525

Methodological perspectives Target/contributor pairs containing missing values (NA)526

are handled di↵erently for the permutation tests and for the calculation of the indicator (see527

application on equine influenza in Section 4). Since the permutation tests are applied factor528

by factor, the pairs containing a NA for a factor are removed only for the test associated to this529

factor. In contrast, for the calculation of the performance indicator, which simultaneously530

handles the factors, any pair containing a NA for any selected factor is ignored. A more subtle531

treatment of NA, in particular for the calculation of the indicator, deserves to be explored.532

If the zero-inflation in the response variable is accounted for in the performance indicator533

using a scaling term (see Equation (3)), it is not specifically addressed in the permutation534

tests because these tests are valid despite the zero-inflation and, in practice, work relatively535

well. Nevertheless, balancing techniques8 such as those evoked in the introduction might be536

adapted to the dependency structure38 and applied to eventually improve the performance537
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of the approach. Other approaches grounded on distinct treatments of zeros and non-zeros538

values and a resulting modification of the test statistics may also be considered to explicitly539

handle the zero-inflation in the permutation test39;40;41.540

A non-negligible computational cost in our approach is due to the optimization of � with541

a genetic algorithm (the dimension of the optimization domain is equal to the number of542

significant factors retained with the uni-dimensional tests). This cost might be reduced with543

linear algebra and analysis tools42.544

The method that we propose only provides a point estimate of the performance indicator545

I�̂(X, z) (that depends on X and �̂ via the term MX�̂) and point predictors of the ranks546

of z (i.e., R̂z) within each target-contributors block using MX�̂ (see Sections 2.3–2.5). The547

robustness of these estimates can be approached by the cross-validation technique that we548

use in this manuscript. A more advanced evaluation of their uncertainty could be developed549

in further study by propagating two sources of uncertainty: (i) the uncertainty resulting550

from the test outputs that lead the components of � to be set to zero or to be optimized551

in the maximization of r
2
s(MX�, z), (ii) the uncertainty associated to the maximization552

of r2s(MX�, z) given the components of � set to zero. If a method can be developed to553

account for both sources of uncertainty, one would be able to assess the uncertainty of554

MX�̂ and subsequently assess the uncertainty of the performance indicator estimate and the555

rank predictors. Practically, non-parametric bootstrap may allow us to derive an empirical556

distribution of MX�̂ and, therefore, empirical distributions of I�̂(X, z) and R̂z.557

The indicators that we use to evaluate the performance of the method in the simulation558

study and the applications, namely the performance indicator I and the contributor ranking559

indicator CR, reflect distinct properties of our approach: I measures the adequateness of the560

prediction of all proportion ranks whereas CR focuses on the rank prediction for proportions561

whose actual values are positive. Additional indicators could be envisioned. For instance, one562

could consider an indicator evaluating how much the target-contributor pair with the largest563

proportion is correctly ranked for any target (in other words, this indicator would assess the564

ability of the method(s) to identify, for any target, the most likely target-contributor pair).565

Interestingly, the uni-dimensional tests can be applied as a first stage for performing an566

initial factor selection, whatever the posterior multivariate analysis that is carried out. Here,567

in addition to our multivariate analysis, we considered relatively simple tools for the poste-568

rior analysis, namely linear regression and decision tree. We could consider more complex569

approaches with known ability to handle, e.g., non-linearity and interactions of high order,570

and optionally embedding an additional factor-selection stage to solve possible issues gener-571

ated by eventual dependence between factors selected with our unit tests. Thus, one could572

explore for example the use of neural networks43, multivariate adaptive regression splines44,573

random forest45 and boosted generalized linear models46;47.574
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In the two applications that we considered, the response variable (i.e., the transmission575

probability or the similarity probability) is actually estimated from external data and we576

only consider a point estimate of the probability for each pair. Thus, we deal with the577

first level of uncertainty, namely the fact that the transmission or the similarity is uncertain578

and therefore represented by a probability instead of a true/false variable. However, we579

do not handle the second level of uncertainty, namely the uncertainty of the probability580

estimates. This source of uncertainty could be handled as follows: Suppose that we have at581

disposal distributions of probabilities (e.g., posterior distributions obtained from a Bayesian582

approach) instead of point estimates, then we could propagate the uncertainty about the583

probabilities48 into our test by (i) sampling the probabilities from their distributions and584

(ii) applying the permutation to each sample of probabilities (at stage 2 of the conditional585

Monte-Carlo algorithm described in Section 2.2). Moreover, by sampling the probabilities586

from their distributions, we could obtain the distribution of the performance indicator given587

by Equation (3) instead of a single value. It has however to be noted that if the estimation588

of z is biased and hence the weights of network edges are misspecified, the method proposed589

in this article will certainly miss impacting factors and possibly lead to the identification of590

unimportant factors as significant.591

Epidemiological perspectives The study of Equine Influenza data confirmed the obvi-592

ous importance of direct contact between hosts for virus transmission: the more frequent593

contact between horses (same or nearby yard), the higher the probability of transmission.594

The interpretation of sex di↵erentiation in transmission potential is more complex. We have595

ruled out an issue of confounding e↵ect between sex and other variables available in the data596

set and an issue of sex balancing in the observed population of horses. Behavioral, immuno-597

logical, physiological or organizational factors should be explored to unravel the mechanisms598

explaining the excess of female-to-female transmissions and transmissions in which a female599

is the source of infection. Typically, boys were shown to more likely transmit H1N1 to boys600

and girls to girls probably as a result of assortative mixing among playmates49. Another po-601

tential explanation could stem from the tendency of horse owners to group horses according602

to gender, in an attempt to reduce aggressive interactions and the risk of injuries50. More603

generally, given the low value of the performance indicator (0.21), it would be interesting to604

introduce other factors in the analysis of transmissions by considering other equine influenza605

data sets, which would allow the results obtained in this article to receive further checks.606

Beyond this case study, estimating the probabilities that individuals are linked by trans-607

mission events during epidemics of infectious diseases or by progeny relationships in popu-608

lation dynamics has been the subject of numerous studies tackled, in particular, with joint609

models of epidemiological dynamics and evolutionary processes1;51;52;53;54;55;56 or with phy-610
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logeny, phylogeography and some forms of birth–death processes32;57;58;59;60;61;62. In many611

of these studies, it would be interesting to take matters further by exploring the statistical612

relationship between the inferred links (generally corresponding to ZIPD) and factors char-613

acterizing the individuals and the environment. Indeed, determining how factors favor the614

spread of pathogens or species is crucial to better understand the underlying dynamics63615

and to design adequate control or conservation strategies. In the phylogeography litera-616

ture, a framework grounded on randomization was proposed to test hypotheses about the617

e↵ect of environmental variables on pathogen spatial spread64, but this framework requires618

the spatio-temporal reconstruction of phylogenetic trees using a software such as BEAST.619

In contrast, the method that we propose can be applied to random transmission trees and620

random phylogenetic trees, whatever the way these trees are obtained.621

The study of COVID-19 data allowed us to correlate similarity in COVID-19 mortality622

curves with similarity in certain macroscopic factors related to demography, economy, popu-623

lation health and healthcare system. The high value of the performance indicator (0.73) and624

its relative robustness observed via cross-validation indicate that these factors can be used625

to predict with a certain accuracy the similarity between COVID-19 mortality dynamics in626

geographic entities of Northern America and Europe. Thus, these factors can be viewed as627

characteristics intrinsically measuring the preparedness and/or vulnerability of geographic628

entities. The unexplained part of the rank correlation between the mixture probabilities and629

the linear combinations of factor di↵erences could be due, in particular, to heterogeneous ini-630

tial conditions of the outbreaks and heterogeneous control measures. It would be interesting631

to include in the analysis explanatory variables reflecting these components of the epidemics.632

Furthermore, the analysis that we performed is based on mortality data up to June 6, 2020,633

which approximately correspond to the first wave of the COVID-19 epidemics in Northern634

America and Europe. It would be interesting to repeat this analysis across time to assess the635

temporal (in-)stability of our findings. Specifically, one could expect a change in significant636

factors between the first and the second (or subsequent) epidemic waves, especially because637

of heterogeneous levels of immunity after the first wave and heterogeneous impacts of the638

first wave on the awareness of populations.639
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ence. Journal de la Société Française de Statistique 2016; 157(1): 129–152.774

[57] Didelot X, Fraser C, Gardy J, Colijn C. Genomic infectious disease epidemiology in775

partially sampled and ongoing outbreaks. Molecular Biology and Evolution 2017; 34(4):776

997–1007.777

[58] Hall M, Woolhouse M, Rambaut A. Epidemic reconstruction in a phylogenetics frame-778

work: transmission trees as partitions of the node set. PLoS Computational Biology779

2015; 11: e1004613.780

[59] Leitner T, Romero-Severson E. Phylogenetic patterns recover known HIV epidemiolog-781

ical relationships and reveal common transmission of multiple variants. Nature Micro-782

biology 2018; 3: 983.783

[60] Pybus OG, Suchard MA, Lemey P, et al. Unifying the spatial epidemiology and molec-784

ular evolution of emerging epidemics. Proceedings of the National Academy of Sciences785

2012; 109: 15066–15071.786

[61] Rakotomalala M, Vrancken B, Pinel-Galzi A, et al. Comparing patterns and scales of787

plant virus phylogeography: Rice yellow mottle virus in Madagascar and in continental788

Africa. Virus Evolution 2019; 5: vez023.789

32
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