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ABSTRACT

Managing epidemics requires to investigate potential impact of risk and protective factors on epidemi-
ological links. Here we focus on links defined by inferred probabilities (transmission links in Equine
Influenza, similarity measures of COVID-19 dynamics between different countries). The specific
nature of these epidemiological data (zero-inflated, correlated, continuous and bounded) does not
allow to use classical supervised methods like linear regression or decision tree to identify impacting
factors on the response variable. In this article we propose a by block-permutation-based method-
ology (i) to identify factors (discrete or continuous) that are potentially significant, (ii) to define a
performance indicator to quantify the percentage of correlation explained by the significant factors
subset. The methodology is illustrated on simulated data and on the above-mentioned epidemics.

Keywords Permutation Tests; Spearman’s correlation; Performance Indicator; Covid-19; Equine Influenza

1 Introduction

Effective strategies for the management of infectious diseases are of importance to prevent health crisis, as recently
confirmed with the COVID-19 pandemic. Assessing the influence of social, biological and environmental factors in the
spread of epidemics is the main purpose for levers identification to prevent and control any epidemics. Epidemiological
links, e.g. probabilities of transmission, (i) have an intrinsic correlation structure and (ii) are usually estimated, making
their relationship with different factors challenging. Here, we focus on epidemiological links defined by proportions
and we aim to provide a statistical methodology to reduce the bias of estimation when explaining epidemiological links
(hereafter, the response variable) by various potentially impacting1 factors.

Many statistical methods can be used to identify the correlation between factors and response. Parametric prediction
models can identify the set of factors impacting the response through statistical tests. When the response is normally
distributed, or when data are transformed to make it fit a Gaussian distribution (Weisberg, 2005), the linear regression
model (Hastie et al., 2009) predicts response values and identifies influencing factors. When the response variable
follows another usual distribution (Binomial, Poisson . . . ), the generalized linear models (GLM) described in Nelder
and Wedderburn (1972) can similarly be considered. When the distribution of the response variable cannot be found,
non-parametric predictive models (Hastie et al., 2009) may be a solution. However, non-parametric models do not
provide direct testing procedure to identify impacting factors.

1Note that if a factor impacts the response, it is then correlated with the response.
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In the case of zero-inflated data, Estabrooks et al. (2004) introduce the so-called resampling methods for balancing
classes. These methods are mainly used for categorical responses. For a continuous response, the model is often
defined as a mixture of two processes: the first process generating zeros, the second process being governed by
usual distributions; see for instance the definition of the zero-inflated Poisson, zero-inflated Beta or even zero-inflated
Binomial distribution in Stasinopoulos et al. (2007). For such zero-inflated models, the influencing factors can also be
identified via statistical tests.

The above-mentioned parametric models are defined for independent and identically distributed (iid) realizations. In
many cases, proportions data are not independent as they sum to a fixed value (often one) and knowing their sum we
can determine one proportion from the sum of the remainder.

In statistics, these data are referred to compositional data. Aitchison (1982) describe the mathematical framework of
compositional data. Douma and Weedon (2019) propose a classification of the compositional data according to the
nature of the response (proportions arising from counts vs from continuous measurements). Regarding the case of a
zero-inflated continuous response, the Beta regression is a solution when the proportions work in pairs. The percentage
of male and female for a given species is an example. When the observed categories are greater than two, the Dirichlet’s
regression is required. Tang and Chen (2019) propose the adaptation of the zero-inflated Dirichlet regression (ZIDR)
model for microbiome compositional data.

Parametric methods provide statistical tests to quantify the significance of a factor which depend on the type of factors
(discrete vs continuous). The statistical test provided by the linear model can treat all types of factors. ANOVA
concerns discrete factors with more than 2 levels. The GLM (including zero-inflated data) and the ZIDR can treat
continuous and discrete factors with only 2 levels.

In this article, we investigate the relationship between zero-inflated, non-Gaussian, correlated proportion data and
several factors of any type. In epidemics caused by infectious diseases, several factors describing the environment, the
habitat or the individuals influence the spread in hosts populations. Each potential source-receiver pair is described
by different factors characterizing each of the two individuals or their interaction. The objective is to quantify the
correlation between these factors and the probability that the related source-receiver pair is a real transmission. New
statistical methods arise to infer transmission pathways from high throughput sequencing data; see e.g. Alamil et al.
(2019) who developed a statistical learning approach for human, animal and plant diseases and Hughes et al. (2012)
who inferred the transmission links in equine influenza. Epidemiological links can also be formalized by similarity
measures between epidemic dynamics. Soubeyrand et al. (2020b) inferred the probability at a given time that a focal
country follows the mortality trajectory of a benchmark country and applied the methodology to COVID-19 epidemics
in Soubeyrand et al. (2020a).

The objective is now to investigate the impact of environmental, economical, climatic, . . . , factors on epidemiological
links. In both cases, data contains receivers and sources and the response variable represents inferred probabilities. The
response is continuous and bounded by 0 and 1 with many zeros. The sum of probabilities by receiver block is less than
or equal to one. The number of categories is equal to the number of sources. Usually, the number of potential sources
are greater than two. Motivated by equine influenza and COVID-19 epidemics, our methodology aims (i) to identify
factors (discrete or continuous) that are potentially significant and which can describe the pair of source-receiver or
respectively the source and the receiver, (ii) to define a performance indicator to quantify the proportion of correlation
explained by the significant factors subset.

The structure of the data and the objectives generate constraints on statistical modeling. The response takes values
between 0 and 1 (inclusive) and is zero-inflated. Consequently, classical transformations to make it fit a Gaussian
distribution can not be applied. In addition, the realizations are dependent due to the constraint on the sum of
probabilities. Hence, linear regression which assumes a normal distribution is not appropriate. The beta regression
described in Stasinopoulos et al. (2007) can be used to solve the non-normality constraint but the dependency structure
is not taken into account. The ZIDR described in Douma and Weedon (2019) could be a solution to this dependency
constraint. However, this method is not implemented for zero-inflated response and assumes that factors are fixed within
categories. In our cases, a categories represents a block of receivers and each pair source-receiver has an own factor
value. Consequently, factor varies within categories. For these four methods, a performance indicator can be defined
thanks to a quality criterion like R2, RMSE or others. Table 1 summarizes the abilities of each method to match with
our data constraints.

In this article, we propose a model-free approach, based on permutation tests, to identify influencing factors. Permu-
tations tests (Pesarin and Salmaso (2010)) are widely used in biology; for instance Segal et al. (2018) propose a fast
approximation of small p-values in permutation tests and Shih and Fay (1999) introduce a class of permutations tests for
stratified survival data. Here, the permutations are constrained by the dependence structure. The test statistic depends

2
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Table 1: Model comparison to match our constraints.

Methods
Response Factor

Dependency
[0, 1] Zero-inflated Varies within Tests

categories Discrete Continuous

Linear
3 3a 3regression

Beta
3 3 3 3b 3regression

Dirichlet
3 3 3b 3 3regression

Regression
3 3 3tree

a ANOVA and ANCOVA
b Limited to 2 levels

on factor’s type. If the factor is discrete, then the statistic is defined as the mean of the response by factors level. If the
factor is continuous, then the statistic is the Spearman’s correlation (see e.g. Hauke and Kossowski (2011)). The sign of
the statistic value gives the factor effect. Factors with a significant correlation are then used to define a performance
indicator. This indicator is an original proposition based on the Spearman’s correlation. It quantifies the percentage of
correlation explained by the selected set of factors. Figure 1 presents each step of the procedure.

Figure 1: Procedure to identify correlation sign, significant correlation and to compute a performance indicator.

The remainder of this article is as follows. Framework and notations are set in Section 2. Section 3 introduces a
procedure based on permutation tests to identify the factors correlated to the response and the performance indicator.
The method is then illustrated on simulations (Section 4) and equine influenza and COVID-19 epidemics (Section 5).

3
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2 Framework and notations

This section presents the framework of the method, linking epidemiological terminology and statistics and setting the
structure of the response variable and factors.

Most of infectious diseases are transmitted by viruses intra or inter hosts populations. In epidemiology, a source refers
to the person, animal, plant, . . . , from which an infectious agent passes to the host. The receiver contracts the disease
from a source. Hereafter, we consider that we have nr receivers and ns sources.

2.1 Response variable

Let Zij be a random variable associated with the receiver i ∈ {1, . . . , nr} and the source j ∈ {1, . . . , ns}. This variable
defines the epidemiological link, i.e. the response variable. We assume that

• Zij is continuous,

• zij ∈ [0, 1],

• the distribution of Zij is zero-inflated,

• the sum of realizations for a fixed receiver cannot exceed 1 i.e.:
ns∑
j=1

zij ≤ 1 (1)

For our epidemics, the number of strictly positive response values represents 10 to 30 percent of the dataset.

2.2 Set of factors

Usually, diseases are more likely to occur in some individuals of a population than others because of factors that may not
be distributed randomly in the population. Hence, as noted earlier, most of epidemiological studies aim at identifying
the risk and protective factors that place some individuals at greater and lesser risk than others. Here, factors describe a
source-receiver pair or its interaction.

We denote by X = (x1, . . . ,xd) ∈Mnrns×d the set of d factors that describes all pairs of source-receiver. Thus, any
pair (i, j) is described by

(
x
(i,j)
1 , . . . , x

(i,j)
d

)
. Often in practice, factors provide information about the receiver i and

the source j separately, but not about the pair (i, j). In this case, we define x(i,j)k by the distance (difference) between
the receiver and the source:

x
(i,j)
k = |xik − x

j
k|, ∀k ∈ {1, . . . , d}. (2)

3 Identification and quantification of impacting factors

We propose a general methodology to identify factors that are correlated to the response. First, we introduce a
permutation-based approach to identify the most significant factors. Then, we build an optimal performance indicator
that quantifies the proportion of correlation explained by the selected factors.

3.1 A permutation-based approach to identify influencing factors

The specific characteristics of our response variable make the use of classical correlation tests (see e.g. Hollander
et al. (2013) for Spearman test) impossible. Indeed, the response has numerous ties (zeros). Kendall (1945) proposes
a solution to treat ties in ranking problems. When the ties are numerous, some hypothesis on the moments have
to be satisfied. This verification could be laborious. Furthermore, the response is dependent by block of receivers
(cf Equation(1) and classical correlation tests do not take into account such dependence structure. Consequently,
by-block-permutation tests are a good alternative to take into account the constraints.

Let xk ∈ Rnsnr , k = 1, . . . , d, be the observations of the factor to be tested. We use the Conditional Monte Carlo
(CMC) algorithm described in Pesarin and Salmaso (2010) to test H0: “the response is not correlated with the factor”
versus H1: “the response is correlated with the factor”. We denote T the statistics of test, which depends on the type of

4
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the factor and is defined below, and λT (z) = P(T ≥ T ∗) the p-value.

A conditional Monte Carlo algorithm for block-permutation test:

1. Compute the statistic T ∗ on the original data set (xk, z).

2. Randomly permute the response by block of receivers and define a new response vector denoted zπ
1

.

Compute the statistic Tπ
1

on the permuted dataset (xk, z
π1

).

3. Do B independent repetitions of step 2.

4. Estimate the p-value by λ̂T (z) = 1
B

∑B
l=1 1{Tπl≥T∗}.

Note that block permutations are required to get the most powerful the test (see Appendix A.1.).

For a discrete factor x2 with Q levels, we have Q(Q−1)
2 statistics defined by:

T = Tq,q̃ =

 1

nrns

nr∑
i=1

ns∑
j=1

zij
(
1{x(i,j)=q} − 1{x(i,j)=q̃}

)2

, (3)

where q and q̃ are two different levels of x. The related p-values are

λ̂Tq,q̃ (z) =
1

B

B∑
l=1

1{Tπlq,q̃≥Tq,q̃}
.

Note that if the discrete factor has more than two levels, the problem becomes a multiple comparisons problem. A factor
is considered as significant if one level is different from the one other, i.e. there exist (q, q̃), such that λ̂Tq,q̃ (z) < α,
what is conventionally used in ANOVA, see e.g. Saporta (2006). Note that a Bonferroni correction (Abdi (2007)) can
be applied to control the occurrence of false positives.

For a continuous factor x, the statistics T is defined from the non-parametric Spearman’s correlation, rs(x, z), because
its relation with the response is often not linear and the response variable is not normally distributed. The Spearman’s
correlation is defined as the Pearson’s correlation between the rank variables (Spearman (1904)). Hence, we define

T = r2s(x, z) = ρ2(Rx, Rz), (4)

where Rx is the random variable that represents the rank of x such that Rx(i,j) is the rank of x(i,j) in(
x(1,1), . . . , x(ns,nr)

)
; Rz is the random variable that represents the rank of z and ρ is the Pearson correlation.

3.2 A performance indicator to quantify the part of the correlation explained

In the previous section, only factors that are individually correlated to the response can be detected. However, the
multivariate aspect is not taken into account. Here we deal with this multivariate aspect by developing a performance
indicator that takes into account all discrete and continuous factors previously selected. Our indicator is defined as the
ratio between the Spearman correlation and the optimal Spearman correlation, i.e. the maximum correlation given the
large number of zeros: Iβ(X, z) = r2(Xβ, z)/r2opt(Xβ, z).

Performance indicator:

Iβ(X, z) = r2s(MXβ, z)(1 + ∆MXβ,z), (5)

where the elements of MX ∈M(nsnr) × p are defined by:

MX

(
x
(i,j)
k

)
=


x
(i,j)
k −minxk

maxxk
−minxk

, if xk is a continuous factor(
1{x(i,j)

k =q2}
, . . . ,1{x(i,j)

k =qQk−1}

)
, if xk is a discrete factor

2For sake of clarity, we omit here the subscript k.

5
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with p =
∑d
k=1(Qk − 1) and Qk = 2 if xk is a continuous factor and Qk is equal to the number of significant levels if

xk is a discrete factor. Note that MX

(
x
(i,j)
k

)
∈ [0, 1]. The indicator Iβ(X, z) varies in [0, 1] and the closer I is to one

the larger the set of factors X is correlated to the response variable. We then have to estimate the set of parameters β
which maximizes the indicator.

We propose a two-step optimization procedure realized with a genetic algorithm described in Mebane Jr et al. (2011):
first we minimize ∆MXβ,z, then for such set of parameters β∗, we estimate

β̂ = arg max
β∈Rd

r2s(MXβ, z)(1 + ∆MXβ∗,z), (6)

where ∆x,y, ∀(x,y) ∈ Rn × Rn, is defined by

∆x,y =

∑
i∈I0(R2

xi −R
2
yi)

(n− 1)σ̂2
Ry

(7)

with σ̂2
Ry

is the variance of Ry and I0 = {i|yi = 0} (see Appendix A.2 for details).

R codes to implement the methods have been incorporated into the package ZIprop, which is available at https:
//gitlab.paca.inrae.fr/meribaud/ziprop.

4 Simulation studies

In this section, we define a simulated model to investigate the performance of the proposed method.

4.1 Simulated model

The simulated response has to satisfy the constraints described in subsection 2.1. It has to be less than or equal to one
(Equation (1)). We consider that the response is exactly equal to one (

∑ns
j=1 z

i
j = 1, ∀j ∈ {1, . . . , ns}). However, the

simulation method and the result could also be applied to the case "less than". The method used to simulate the response
and the factors is described below:

1. Set ns > 1, nr > 2, m ∈ {0.1, . . . , 0.3}, d > 1 and β ∈ Rd.
2. Randomly select n0 = dm× nsnre indices in {1, . . . , nsnr}, I0 gives the set of indices.
3. ∀(i, j) ∈ {1, . . . , nr} × {1, . . . , ns} compute the simulated response:{

zij is a realization of the random variable Y ∼ B(0.1, 0.9) if i /∈ I0
zij = 0 if i ∈ I0

For a given receiver i ∈ {1, . . . , nr}:
a. ∃j ∈ {1, . . . , ns} such that zij 6= 0

b.
∑ns
j=1 z

i
j = 1.

4. Generate the matrix X = (x1, . . . ,xd) ∈ Mnsnr×d. xk, k ∈ {1, . . . , d}, is a nsnr-uplet of the random
variable: {

X ∼ U(0, 1) if xk is a continuous factor
X ∼ U{0,1} if xk is a discrete factor.

where rank((Xβ)(i,j)) = rank(zij) ∀zij 6= 0, (i, j) ∈ {1, . . . , nr} × {1, . . . , ns}.

4.2 Permutation tests and performance indicator

We now test the effect of each factor and compute the performance indicator for different models, setting the number of
sources ns = 20, the number of receivers nr = 22, the percentage of non-zeros data m ∈ {0.1, 0.15, 0.2, 0.25} and the
number of factors p = 20. The first p/2 factors are continuous and the last p/2 factors are discrete and the vector β is
defined by: {

βk is a realization of U(5, 10), if k = {1, . . . , 5, 11, . . . , 15},
βk = 0, otherwise.

6
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Figure 2: P-values of permutations tests for each factor with m ∈ {0.1, 0.15, 0.2, 0.25}. The factors Xk are continuous
and Fk are discrete, k = {1, . . . , 10}. The data are simulated 100 times for each value of m.

Table 2: Estimated p-value (type I errors) of the permutation tests with 100 repetitions.

m X6 X7 X8 X9 X10 F6 F7 F8 F9 F10

0.1 0.07 0.05 0.07 0.07 0.06 0.02 0.05 0.03 0.04 0.01
0.15 0.05 0.06 0.02 0.03 0.06 0.04 0.02 0.02 0.05 0.08
0.2 0.05 0.02 0.04 0.03 0.00 0.06 0.06 0.05 0.05 0.04
0.25 0.06 0.07 0.09 0.02 0.08 0.05 0.04 0.03 0.02 0.08

Figure 2 shows the p-values associated with each factor and for different values of m. The figures shows that the
m value does not impact the result. The factors X1:5 and F1:5 are correlated to the response while X6:10 and F6:10

are not. In most cases the permutation tests have correctly identify the factors i.e. the p-values of X1:5 and F1:5

are below the significant level α and the p-values of X6:10 and F6:10 are above α. The estimated type I errors of
the test with different value ofm are given in Table 2. The estimated p-values are closed to the significant level α = 0.05.

Finally, for each repetition, the performance indicator is computed for the k factors with the lowest p-values, k varying
from 2 to 20. We only report the results for m = 0.2 as results do not depend on m. The left panel of Figure 3 shows
the performance indicator w.r.t the number of significant factors. We can see that the indicator increases until the
maximum value around one is reached. The optimal number of selected factors is ten (red line). The indicator is robust
in the sense that adding more factors than the optimal number does not affect the performance. This robustness is
possible with the estimation of the value of β (see right panel of Figure 3).

In conclusion, our permutation-based approach is a powerful method to identify factors of any type (discrete or
continuous) correlated to the response regardless the zero-inflated feature of the data. The indicator is efficient to
quantify the part of correlation explained by a set of factors. The value of the indicator increases until all the correlated
factor are taking into account in the set. In addition, the indicator is robust to the inclusion of non-correlated factor
thanks to the estimation of β. Note that a low estimated value of β does not necessarily imply that the factor is not
correlated to the response. That is why permutation tests are strongly recommended.

7
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Figure 3: Left: Performance indicator versus the number of factors. Right: Estimated β for each factor. The data are
simulated 100 times.

5 Applications

5.1 Equine Influenza

The proportion data for the Equine Influenza in New Market in 2003 represent the transmission links within race horses
(hosts). Hughes et al. (2012) inferred the transmission links between 48 hosts: they estimated the probability that each
source infects each receiver. In this context, they got many zero probabilities as only a few number of sources may
infect each receiver. In addition, the sum of probabilities by receiver is equals to one. We further have factors like age,
sex of horses or training yard. The aim is to identify factors that are positively or negatively correlated with these
probabilities.

Three factors are qualitative and one is continuous:

1. "Yard": 1 if the receiver and source are trained in the same yard and 0 otherwise,

2. "Sex": "0" if the receiver and source have the same sex "1" otherwise,

3. "Age": 0 if the receiver and source are the same age, 1 for one year difference and +2 for more than one year,

4. "distanceYard": distance between training yards for receiver and source.

The factor "Age" has 3 modalities, thus 3 p-values have to be computed. The permutation tests are applied to each
factor with 1000 permutations. Results presented in Table 3 show that factors "Yard", "Sex" and "distanceYard" are
clearly correlated to the response when "Age" is not.

The statistics of "Yard" and "distanceYard" are negatives, this means that horses trained in the same yard or in a nearby
yard have a higher probability of transmitting the disease between them and conversely. This conclusion is really
intuitive because horses within training area have more contacts. The statistics of factor "Sex" is also negative and this
means that the virus better circulates between horses with the same sex.

Table 3: P-values and statistics associated with permutation tests for each factor.

Factor p-value T ∗

Yard ("0" - "1") 0 -0.046
Sex ("0" - "1") 0.002 -0.017
Age
"0" - "1" 0.511 0.005
"0" - "+2" 0.813 -0.002
"1" - "+2" 0.2810 -0.006
distanceYard 0 -0.223

8
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Finally, the multivariate analysis is applied to the tree factors "Yard", "Sex" and "distanceYard". The optimal indicator
obtained is Iβ̂(X, Z) = 0.28 with β̂ = (9.68, 2.21,−8.90). This result shows that a weak correlation exists between
these three factors and the transmission links. In addition the two factors related to the yards are certainly correlated.

In conclusion, yards and sex of horses are clearly correlated to the probabilities of transmission. The correlation between
yards and transmission is the result of regular contacts between horses that are trained and kept close to each other. The
correlation between sex and transmission is more complicated to explain. These factors explain only a little part of the
entire correlation and some other factors like groom or transportation would be interesting. Unfortunately, they are not
available in this data set.

5.2 Covid-19 (US vs EU)

For the current Covid-19 pandemic, Soubeyrand et al. (2020b) propose a data-driven method based on a mixture model
to predict the mortality curve of a focal country using predictive countries. These predictive countries are ahead in
terms of death rate compared to the focal country. For any focal country, the mixture model estimates the probability of
"following" the same curve than each predictive country. Soubeyrand et al. (2020a) applied this method with US states
as focal countries and EU countries as predictive ones. Figure 4 provides an example of such curves and probabilities.
They also consider a parametric estimator based on the past of the focal country as a potential predictor. Consequently,
the sum of probabilities by focal country is less than one. Lot of zero probabilities are observed because many pairs (US
state - EU country) are not similar in terms of curve evolution. The aim is then to disentangle the correlation between
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Netherlands, delay: 62.8d, p=0
Switzerland, delay: 59.9d, p=0
Romania, delay: −16.4d, p=0
Portugal, delay: 37.2d, p=0.26
Germany, delay: 18d, p=0.22
Denmark, delay: 15.2d, p=0
Bulgaria, delay: −44.7d, p=0
Austria, delay: −11.8d, p=0
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Figure 4: The red line represents the Covid-19 mortality curve of the North Carolina. The selected predictive countries
(in green) are Portugal And Germany with respectively a probability of 0.26 and 0.22. The parametric predictor has a
probability equals to 0.51. The 6th of June, the North Carolina noticed 992 deaths.

outbreak development and 29 continuous macro factors related to economy, demography, health, healthcare system and
climate (see Table 5 in Appendix A.3). The response corresponds to probabilities obtained on June, 6th. In order to
construct the data base, the factors related to a specific pair (US state - EU country) are computed from Equation (2).

Figure 5 shows the p-values obtained for each factor. We identify 14 impacting factors: “hospibed”, “smokers”,
“lung”, “healthexp”, “urbanpop”, “fertility”, “avghumidity”, “pop_male_65_up”, “gdp_capita”, “physicians_per_1K”,
“nurses_per_1K”, “pop_female_0_14”, “gdp2019" and "obesity”. Figure 6 shows the boxplots of the Spearman’s
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Figure 5: P-value for each factor. The red line is the significance level α = 0.05.

correlation for the fourteen selected factors. Four of them have a positive correlation, that is counter-intuitive. Indeed,
the response is the probability that a US curve follows a EU curve, then higher is the probability, more x(i,j) has to be
low. Consequently, the Spearman’s correlation has to be negative. These four factors are "avghumidity", "obesity",
"pop_male_65_up" and "physicians_per_1K". This method catches correlations between factors and probabilities, that
might not be a causality link. Hence, these negative values might come from indirect links.

Then, we applied the multivariate analysis to the ten positively impacting factors. The optimal indicator is Iβ̂(X, Z) =

0.71 (0.81 with all factors, see Appendix A.4 for more details). Estimated parameters β̂ are given in Table 4. The
indicator value shows that a link exists between the probability and these factors.

Table 4: β̂ corresponding to Iβ̂(X, Z) = 0.71.

Factor β̂

"hospibed" −5.05
"smokers" −9.94
"lung" −5.58
"healthexp" −2.75
"gdp_capita" −2.06
"fertility" 0.37
"urbanpop" −0.62
"nurses_per_1K" −0.34
"gdp2019" −1.3
"pop_female_0_14" 5.73

Finally, a cross-validation step is realized to ensure the robustness of the methodology. The sample is divided in 100
training (90%) and test (10%) samples. The indicator is optimized on the training sample to obtain the set of parameters
β̂train. The indicator is then computed on the test sample. Figure 7 shows the stability of the indicator optimized in
the training sample. The indicators computed from the test samples shows larger variations but remains good in mean.
Iβ̂train(Xtest, Ztest).
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Figure 6: Spearman’s correlations calculated on each factor. The red line is y = 0.

Figure 8 shows the stability of the estimated parameters. In conclusion, the factors "hospibed", "smokers", "healthexp",

Iβ
^(Xtrain,ztrain) Iβ

^(Xtest,ztest)

0
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0
.2

0
.4

0
.6

0
.8

1
.0

Cross−validation

Figure 7: Boxplot of Iβ̂train(Xtest, Ztest). The red line represents Iβ̂(X, Z) computed from all the observations.

"fertility", "gdp_capita", "lung", "urbanpop" and "nurses_per_1K" impact the similarity measure between US states and
EU countries.
In Appendix A.5, the previous cross-validation step is realized with the linear regression and the regression tree. The

results show that the two other classical methods are not robust compared with our methodology.
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Appendix

A.1. Why permutations by block?

In this subsection, a degenerate case is presented to show the huge loss of power when classical permutations are done
instead of permutations by blocks.
The notations are the same as the ones presented in the paper. Let nsnr realizations of a factor X such that x11 > x12 >
. . . > xnrns and nsnr realizations of the response Z such that for a fixed receiver i:

zi1 ≤ . . . ≤ zins (8)
ns∑
j=1

1zij>0 = c, c ≤ ns (9)

ns∑
j=1

zij =
i

nr
(10)

This simulated case can be representative of a real case. For example, in plant epidemics when the spread follows wind
gradients, e.g. from East to West and sources and receivers are placed as illustrated in Figure 9. The response are
the probabilities of transmission and the factor is the distance between hosts. The closer is a source to a receiver, the
higher is the probability of transmission (Equation (8)). Only a given number of hosts are potential sources (Equation
(9)). The Equation (10) can comes from an external source that transmits the virus from West to East by another path
like underground river. This example is reductive but in Alamil et al. (2019) the authors add a penalization to favor
short-distance (geographic or genetic) transmissions.

Figure 9: Schematic representation of the position of the trees.

In this context, the factor x has a huge impact on the response z, then we are under the alternative hypothesis H1. Let’s
see how this data set structure impacts the power of permutation tests. Let 1 − β be the power of the test and π a
permutation by block of receiver:

1− β = 1− P(H0|H1)

= 1− P(Tπ ≥ T ∗), P(Tπ ≥ T ∗) = 0

= 1

where T is the squared Spearman’s correlation. Let πn a permutation without block constraint:

1− β =1− P(H0|H1)

= 1− P(Tπn ≥ T ∗), P(Tπn ≥ T ∗) >> 0

<< 1

In order to illustrate it, let’s take nr = 10, ns = 20 and c = 5 with 1000 simulated responses. The response is computed
as follows, ∀i ∈ {1, . . . , nr}:

13



PREPRINT - FACTOR IDENTIFICATION - SEPTEMBER 11, 2020

1. Generate c realizations of the random variable Y ∼ U([0; 1]) written y1 ≤ . . . ≤ yc

2. Compute the simulated response: (zi1, . . . , z
i
ns) = i

nr
∑c
k=1 yk

(0, . . . , 0, yc, . . . , y1)

The factor x is equal to nsnr, nsnr − 1, . . . , 2, 1.

The estimate power of the permutations tests by blocks is 1 and 0.05 without block (at α = 0.05). In conclusion, the
permutation by block are crucial to identify factors that are correlated the response variable.

A.2. Calculation of ∆x,y

This parameter comes from the optimal Spearman’s correlation when the rank of two vectors y0 ∈ Rn+ and x0 ∈ Rn
are equal except on a given set of indices. In our context, this set correspond to the zeros of the response. Du Bois
(1939) gives some formulas for the Spearman’s correlation. Kendall (1945) details the calculation of the Spearman’s
correlation when the vectors y0 and x0 have consecutive ties. Here, the elements of calculation are close but it is not
exactly the same context.

Let yi = Ry0i , xi = Rx0
i
, I0 = {i|y0i = 0} with n0 = #{I0}. The rank vectors are assume to be equal xi = yi for all

i /∈ I0. We have yi = n0+1
2 for all i ∈ I0 then

∑n
i=1 xi =

∑n
i=1 yi.

The Spearman’s correlation of y0 and x0 is equal to the Pearson correlation of y and x:

r̂2s(x,y) = r̂2(x,y)

=
Ĉov

2
(x,y)

σ̂2
xσ̂

2
y

Ĉov(x,y) =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ)

=
1

n− 1

[
n∑
i=1

xiyi − nx̄ȳ

]

=
1

n− 1

[
y0

n0∑
i=1

xi +

n∑
i=n0+1

y2i −
1

n

n∑
i=1

xi

n∑
i=1

yi

]

=
1

n− 1

y0 n0∑
i=1

yi +

n∑
i=n0+1

y2i −
1

n

(
n∑
i=1

yi

)2


=
1

n− 1

[
n0∑
i=1

y2i +

n∑
i=n0+1

y2i − nȳ2

]

=
1

n− 1

[
n∑
i=1

y2i − nȳ2

]
= σ̂2

y
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xx2 =
1

n− 1

[
n∑
i=1

x2i − nx̄2

]

=
1

n− 1

[
n0∑
i=1

x2i +

n∑
i=n0+1

y2i − nȳ2

]

=
1

n− 1

[
n∑

i=n0+1

y2i +

n0∑
i=1

y2i − nȳ2 +

n0∑
i=1

x2i −
n0∑
i=1

y2i

]

= σ̂2
y +

1

n− 1

[
n0∑
i=1

(x2i − y2i )

]

1

r̂2s(x,y)
=

(
σ̂2
y + 1

n−1
[∑n0

i=1(x2i − y2i )
])
σ̂2
y

σ̂4
y

=
σ̂2
yσ̂

2
y

σ̂4
y

+

(∑n0

i=1(x2i − y2i )
)
σ̂2
y

(n− 1)σ̂4
y

= 1 +

∑n0

i=1(x2i − y2i )

(n− 1)σ̂2
y

r̂2s(x,y) =
1

1 + ∆x,y

where ∆x,y =
∑n0
i=1(x

2
i−y

2
i )

(n−1)σ̂2
y

.
Consequently, under the same hypothesis for the vector y ∈ Rn+ we have:

r̂2s(x,y) ≤ 1

1 + ∆x,y
⇔ r̂2s(x,y)(1 + ∆x,y) ≤ 1

for all vector x ∈ Rn.

In addition, if y is such that yi 6= yj for all (i, j) /∈ I20 , i 6= j and x is such that xi 6= xj for all (i, j) ∈ {1, . . . , n}2,
i 6= j the parameter ∆x,y could be define in a simple way.

σ̂2
y =

1

n− 1

[
n∑
i=1

y2i − nȳ2

]

=
1

n− 1

[
n0∑
i=1

(
n0 + 1

2

)2

+

n∑
i=n0+1

i2 − n
(
n+ 1

2

)2
]

=
1

n− 1

[
n0(n0 + 1)2

4
+
n(2n+ 1)(n+ 1)

6
− n0(2n0 + 1)(n0 + 1)

6
− n(n+ 1)2

4

]
=

1

12(n− 1)
[n(n+ 1)(n− 1)− n0(n0 + 1)(n0 − 1)]

n0∑
i=1

(x2i − y2i ) =

n0∑
i=1

x2i − n0y20

=

n0∑
i=nxm+1

i2 − n0(n0 + 1)2

4

=
1

12
[n0(n0 + 1)(n0 − 1)]
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∆x,y =
n0(n0 + 1)(n0 − 1)

n(n+ 1)(n− 1)− n0(n0 + 1)(n0 − 1)

=
n0(n20 − 1)

n(n2 − 1)− n0(n20 − 1)

16



PREPRINT - FACTOR IDENTIFICATION - SEPTEMBER 11, 2020

A.3. Description of factors for Covid-19 application

Table 5: Explanatory factors for the Covid-19 application.

Category Variable Description Unit

Economy
gdp2019 Gross domestic product in 2019 M$
gdp_capita Gross domestic product per capita in 2019 $
healthexp Health expenditure M$

Demography

pop Total population units
density Population density units per km2

urbanpop Percentage of population living in urban areas %
popmale Percentage of male %
pop_tot_0_14 Percentage of population in the age group 0-14

(male, female, total)
%

pop_tot_15_64 Percentage of population in the age group 15-64
(male, female, total)

%

pop_tot_65_up Percentage of population in the age group 65 or
more (male, female, total)

%

mediange Median age years
life_expectancy Life expectancy at birth years

Health

lung Death rate for lung diseases per 100,000 people units
fertility Average number of children per woman units
obesity Percentage of obese people within the popoulation %
smokers Percentage of smokers within the population %

Healthcare System
hospibed Number of hospital beds per 1,000 people units
physicians_per_1K Number of physicians per 1,000 people units
nurses_per_1K Number of nurses per 1,000 people units

Climate

tmin Average minimum temperature in the first semester ◦C
tmax Average maximum temperature in the first semester ◦C
prec Average precipitation in the first semester mm
avghumidity Average relative humidity %
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A.4. Covid-19 indicator with all factors

In this subsection the multivariate analysis is applied to the fourteen factors left, even if the Spearman’s correlation
is positive. The optimal indicator obtained is Iβ̂(X, Z) = 0.81. The table 6 gives all the value of β̂ for the selected
factors, these values cannot be interpreted because the factors are certainly correlated between them. The indicator
value shows that a link exists between the probability and these factors. In section 5.2 the value of the indicator was
0.71, adding these four factors implies a slight increase in the indicator.

Table 6: Value of β̂ that correspond to Iβ̂(X, Z) = 0.81.

Factor β̂

"hospibed" 5.62
"smokers" 9.72
"lung" 7.02
"healthexp" −3.60
"avghumidity" −6.07
"gdp_capita" −1.21
"obesity" −8.05
"fertility" 1.79
"pop_male_65_up" 1.85
"urbanpop" 6
"physicians_per_1K" 0.18
"nurses_per_1K" 0.27
"gdp2019" 4.41
"pop_female_0_14" −3.25

A.5. Covid-19 : cross validation to compare multivariate analysis, linear regression and regression tree

In this subsection our methodology is compared to the linear regressions and the decision tree. The factors are selected
with the by block-permutation tests procedure. The sample is divided in 100 training (90%) and test (10%) samples.
The least square error is minimized on the training set for the additive linear regression. The model is:

Z = β′X + ε

where ε ∼ N (0, σ2). Note that this model assumptions are not satisfied by these data (which are not normality
distributed and not independent). However, only the estimated parameters are used. The regression tree learns on the
training set with the CART algorithm (Breiman et al. (1984)). For these two models, the R-squared (R2) is evaluated on
the training set and the Q-squared (Q2) is computed on the test set.

We compared R2 with Iβ̂train(Xtrain, Ztrain) on the training set and Q2 with Iβ̂train(Xtest, Ztest) on the test set. The
figure 10 shows that the indicator I remains acceptable when the Q2 slumps on the test sets. In addition, the indicator is
better than the two R2 evaluated on the training sets. These results confirm that classical models are not appropriate in
our context.
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Figure 10: Boxplot of Iβ̂train(Xtest, Ztest) calculated on the 100 test samples. The red line represents Iβ̂(X, Z)
calculated on all the observations.
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