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. We establish existence of solutions by applying the vanishing viscosity method, and we prove stability by a doubling of variables type argument.

Introduction oduction

1.1. The model and the assumptions. Our goal in this paper is to investigate the wellposedness of a predator-prey model extending the model for a vole population structured in age we introduced in [START_REF] Coclite | A PDE model for the spatial dynamics of a voles population structured in age[END_REF]. To this end we couple the latter equation to the hyperbolic equation for predators proposed in [START_REF] Colombo | Hyperbolic predators vs. parabolic prey[END_REF] in which the drift depends nonlocally on the density of preys, so that the predators tend to move toward the regions in which preys are more abundant. The system we consider writes as follows odel_new odel_new

(1.1)                        ∂ t u + div x (uν(φ)) = (b(φ) -β)u, (t, x) ∈ (0, T ) × R 2 ,
∂ t ρ + ∂ a ρ + div x (ρχ 1 (a)v(x)Y θ (φ -R)) = µ∆ x ρ -d(t, a, x)ρ -p(a, u)ρ, (t, a, x) ∈ (0, T ) 2 × R 2 , ρ(t, 0, x) = A (φ) ∞ 0 ρ(t, a, x)χ 3 (a) da ω(t, x), (t, x) ∈ (0, T ) × R 2 , ρ(0, a, x) = ρ 0 (a, x), (a, x) ∈ (0, T ) × R 2 , u(0, x) = u 0 (x),

x ∈ R 2 ,
where u = u(t, x) and φ = φ(t, x) represent the respective density of predators and preys at (t, x).

Since the prey population is also structured on age its dynamics is better described by ρ = ρ(t, a, x), which is the density of preys of age a at (t, x). More precisely, the relation between φ and ρ is given by eq:defnu eq:defnu

(1.2) φ(t, x) = ∞ 0 ρ(t, a, x)χ 2 (a) da,
where χ 2 (a) is an approximation of the indicator function of the interval (σ, T ), where T is the target time of our observation and 0 < σ 1. The parameter σ does not play a role in the modeling, but allows to avoid technical difficulties in our analysis. In the first equation, the function b(φ) represents the reproduction rate of predators depending on preys' availability, while β > 0, the predators' mortality rate, is assumed to be constant. As in [START_REF] Colombo | Hyperbolic predators vs. parabolic prey[END_REF] the flux of u is driven to the direction of higher preys' concentration by a nonlinear, nonlocal velocity ν of the form

ν(φ) = κ ∇(φ * η) 1 + ∇(φ * η) 2
, where κ > 0 is the maximal speed of predators and η is a positive smooth mollifier with R 2 η dx = 1 so that the convolution (φ(t) * η)(x) represents an average of the density of preys in a neighborhood of x at time t.

The equation for the preys, introduced in [START_REF] Coclite | A PDE model for the spatial dynamics of a voles population structured in age[END_REF], is related to classical models for the dynamics of a population structured in age, see [START_REF] Colombo | Stability and optimization in structured population models on graphs[END_REF][START_REF] Murray | Mathematical Biology I. An Introduction[END_REF][START_REF] Webb | Population Models Structured by Age, Size, and Spatial Position[END_REF], but the choice of the coefficients and boundary conditions at a = 0 takes into account the data collections and ecological considerations in [START_REF] Berthier | Dispersal, landscape and travelling waves in cyclic vole populations[END_REF][START_REF] Delattre | Le campagnol terrestre: prévention et contrôle des populations[END_REF][START_REF] Giraudoux | Population dynamics of fosserial water vole (arvicola terrestris scherman) : a land use and a landscape perspective[END_REF][START_REF] Halliez | Historical agricultural changes and the expansion of a water vole population in an alpine valley[END_REF][START_REF] Saucy | Juvenile dispersal in the vole arvicola terrestris during rainy nights: A preliminary report[END_REF]. We recall here the essential assumptions on the form of the coefficients.

We introduce constants 0 < A 1 < A 2 so that a vole is young (baby) if its age a is in (0, A 1 ), juvenile if its age is in (A 1 , A 2 ) and adult otherwise. The three age classes differ as babies do not reproduce, adults' mortality rate is lower and juveniles exhibit a significant spatial dynamic during dispersals.

Dispersal is a characteristic phenomenon of vole populations, correlated to overcrowding. Whenever the density of voles φ rises above a threshold value R > 0, representing a fraction of the capacity of the environment, the juvenile individuals leave their original colony and disperse over relatively large distances (0.5 to 5 km) with velocity v(x). We fix θ > 0 and we consider an approximation of the Heaviside function, Y θ , defined as

Y (ξ) =    1, if ξ ≥ 0, 0, if ξ ≤ -1, Y (ξ) ≥ 0, Y θ (ξ) = Y ξ θ .
From Y θ we costruct the approximations of the indicator functions of the intervals (σ, T ), (A 1 , A 2 ), and (A 1 , T )

χ 1 (a) = Y θ (a -A 1 )Y θ (A 2 -a), χ 2 (a) = Y θ (a -σ)Y θ (T -a), χ 3 (a) = Y θ (a -A 1 )Y θ (T -a).
The mortality rate of voles splits into two terms: p = p(a, u) represents the mortality due to the presence of the specific predator whose density is u, while d = d(t, a, x) stands for all other casualties (sickness, starvation, generic predation, etc).

The second-order term µ∆ x ρ represents short range spatial dynamics related to foraging activities.

Everywhere in the following θ and µ > 0 are fixed.

In the boundary condition at a = 0, the function ω = ω(t, x) is the reproduction rate of voles depending on time and position. Both these parameters are significant here, as the beginning and the end of the reproduction season are strongly connected to the average temperature over one week, see [START_REF] Giraudoux | Weather influences m. arvalis reproduction but not population dynamics in a 17-year time series[END_REF] and references therein. The function A(φ) describes the influence of the total density of voles on natality. Examples of non constant A are functions of the form function function

(1.3) A(φ) = αφ γ (β + φ) γ ,
for different choices of α, β and γ.

The fourth and fifth equations are the respective initial conditions at t = 0 for voles and predators. 

∈ C ∞ (R) ∩ W 1,∞ (R), b(•) ≥ 0, ass:b ass:b (1.4) v ∈ C ∞ (R 2 ) ∩ L 2 (R 2 ) ∩ L ∞ (R 2 ), div x (v) ∈ L 1 (R 2 ) ∩ W 2,∞ (R 2 ), v > 0, ass:v ass:v (1.5) d ∈ C ∞ ([0, ∞) × [0, ∞) × R 2 ) ∩ W 2,∞ ((0, ∞) × (0, ∞) × R 2 ), 0 < d * ≤ d(•, •, •) ≤ d * , ass:d ass:d (1.6) p ∈ C ∞ ([0, ∞) × R) ∩ W 2,∞ ((0, ∞) × R), 0 < p * ≤ p(•, •) ≤ p * , ass:p ass:p (1.7) A ∈ C ∞ (R) ∩ L ∞ (R), A(•) ≥ 0, A(0) = 0, |A (ξ)ξ|, |A (ξ)ξ| ≤ C 0 , ass:A ass:A (1.8) ω ∈ C ∞ ([0, ∞) × R 2 ) ∩ W 1,∞ ((0, ∞) × R 2 ), ω(•, •) ≥ 0,
ass:w ass:w

(1.9)

ρ 0 ∈ L 1 ((0, ∞) × R 2 ) ∩ L ∞ ((0, ∞) × R 2 ), ρ 0 ≥ 0, s:init.1 s:init.1 (1.10) sup x∈R 2 ρ 0 (•, x) L 1 (0,∞) , sup a>0 ρ 0 (a, •) L 1 (R 2 ) , R 2 T V (ρ 0 (•, x))dx ≤ C 0 , s:init.2 s:init.2
(1.11)

u 0 ∈ L 1 (R 2 ) ∩ BV (R 2 ) ∩ L ∞ (R 2 ), u 0 ≥ 0, s:init.3 s:init.3
(1.12)

for some positive constants

d * , d * , p * , p * , C 0 .
For what the velocity of predators, ν, is concerned, we assume that the mollifier η satisfies sumption sumption

(1.13) ∇ x η ∈ (C 2 ∩ W 2,2 ∩ W 1,∞ )(R 2 , R 2 ).
1.3. Main result. Our main result is the wellposedness of entropy weak solutions for system (1.1), stated in Theorem 1.1. We adopt the following definitions of weak solution and entropy solution.

solution Definition 1.1. We say that the pair (u, ρ) is a weak solution of (1.1) if the following holds for every T > 0.

def:1

(D.1) ρ ≥ 0, ρ ∈ L ∞ (0, T ; L 1 ((0, ∞) × R 2 )) ∩ L ∞ ((0, T ) × (0, ∞) × R 2 ) ∩ L 2 ((0, T ) × (0, ∞); H 2 (R 2 )). def:2 (D.2) u ∈ L 1 ((0, T ) × R 2 ) ∩ BV ((0, T ) × R 2 ). def:3 (D.3) For almost every (t, x) ∈ (0, T ) × R 2 , ρ(t, •, x) ∈ BV (0, ∞) and ρ(t, 0 + , x) = A (φ) ∞ 0 ρ(t, a, x)χ 3 (a)da ω(t, x),
where ρ(t, 0 + , x) is the trace of ρ(t, •, x) at a = 0.

def:4

(D.4) For every test function ξ ∈ C ∞ c (R 4 ) ∞ 0 ∞ 0 R 2 (ρ∂ t ξ + ρ∂ a ξ + ρχ 1 (a)v • ∇ x ξY θ (φ -R) + µρ∆ x ξ -dρξ -pρξ) dx da dt + ∞ 0 ∞ 0 R 2 A (φ) ρ(t, a, x)χ 3 (a)ω(t, x)ξ(t, 0, x)dx da dt + ∞ 0 R 2 ρ 0 (a, x)ξ(0, a, x)dx da = 0, ∞ 0 ∞ 0 R 2 (u∂ t ξ + uν(φ) • ∇ x ξ + (b(φ) -β)uξ) dx da dt + ∞ 0 R 2 u 0 (x)ξ(0, a, x)dx da = 0. solution Definition 1.2.
We say that a weak solution (u, ρ) is an entropy solution of (1.1) if for any nonnegative test function ξ ∈ C ∞ (R 4 ) with compact support and for any constant c ∈ R there hold ) and (u 2,0 , ρ 2,0 ), then there exists a positive constant C such that the following estimate holds for almost every t ≥ 0

∞ 0 ∞ 0 R 2 (|ρ -c| (∂ t ξ + ∂ a ξ) -div x (|ρ -c|χ 1 vY θ (φ -R)) ξ +µ∆ x |ρ -c|ξ -sign (ρ -c) (d + p)ρξ) dx da dt + ∞ 0 R 2 |ρ(t, 0 + , x) -c|ξ(t, 0, x)dx dt + ∞ 0 R 2 |ρ 0 (a, x) -c|ξ(0, a, x) dx da ≥ ∞ 0 ∞ 0 R 2 c sign (ρ -c) χ 1 (a)div x (v(x)Y θ (φ -R)) ξ dx da dt ropy_rho ropy_rho (1.14) and ∞ 0 ∞ 0 R 2 (|u -c|∂ t ξ + |u -c|ν(φ) • ∇ x ξ + sign (u -c) (b(φ) -β)uξ) dx da dt + ∞ 0 R 2 |u 0 (x) -c|ξ(0, a, x) dx da ≥ ∞ 0 ∞ 0 R 2 c sign (u -c) div x (ν(φ)) ξ dx da dt.
u 1 (t, •) -u 2 (t, •) L 1 (R 2 ) + ρ 1 (t, •, •) -ρ 2 (t, •, •) L 1 ((0,∞)×R 2 ) ≤ Ce Ce Ct ρ 1,0 -ρ 2,0 L 1 ((0,∞)×R 2 ) + Ce Ce Ct u 1,0 -u 2,0 L 1 ((R 2 )
.

eq:stab eq:stab

(1.16)

The fixed point argument used in [START_REF] Colombo | Hyperbolic predators vs. parabolic prey[END_REF] to prove existence and stability for a predator-prey system does not apply to our system in a straightforward way because it requires extremely fine information on the coefficients appearing in the a priori estimates for both predators' and preys' equations. This is not easy to obtain in our case, as the equation we use for preys comes from a specific population model and its analytical study is rather technical.

In Section 2 we introduce a sequence of parabolic approximations of problem (1.1), for which we prove suitable a priori estimates. Then we apply the compensated compactness lemma by Panov, see [START_REF] Panov | Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux[END_REF], to show the strong compactness of the sequence for voles, while the strong convergence of the sequence of predators is ensured by Helly's theorem. Lemma 2.14 establishes the existence of an entropy solution in the sense of Definition 1.2. The uniqueness and stability of such solutions are proved in Section 3 using a doubling of variables type argument.

Existence exist

The existence argument is based on the compactness analysis of a sequence of solutions to approximating problems defined as follows. For any given ε > 0, we let (ρ ε = ρ ε (t, a, x), u ε = u ε (t, x)) be a solution of the problem odel_eps odel_eps

(2.1)

                             ∂ t u ε + div x (u ε ν(φ ε )) = (b(φ ε ) -β)u ε + ε∆ x u ε , (t, x) ∈ (0, T ) × R 2 , ∂ t ρ ε + ∂ a ρ ε + div x (ρ ε χ 1 (a)v(x)Y θ (φ ε -R)) = µ∆ x ρ ε -d(t, a, x)ρ ε -p(a, u ε )ρ ε + ε∂ a (χ(a)∂ a ρ ε ), (t, a, x) ∈ (0, T ) 2 × R 2 , ρ ε (t, 0, x) = A (|φ ε |) ∞ 0 |ρ ε (t, a, x)|χ 3 (a)da ω(t, x), (t, x) ∈ (0, T ) × R 2 , ρ ε (0, a, x) = ρ 0,ε (a, x), (a, x) ∈ (0, T ) 2 × R 2 , u ε (0, x) = u 0,ε (x), x ∈ R 2 ,
where

φ ε (t, x) = ∞ 0 ρ ε (t, a, x)χ 2 (a)da, def:pe def:pe (2.2) χ(a) ∈ C ∞ ([0, +∞), [0, 1]) satisfies χ(0) = 0, and {(ρ 0,ε , u 0,ε )} ε is a family of approximations of the initial condition (ρ 0 , u 0 ) such that it-v-eps it-v-eps (2.3) 
ρ 0,ε ∈ C ∞ ((0, ∞) × R 2 ), u 0,ε ∈ C ∞ (R 2 ), ε > 0, ρ 0,ε → ρ 0 , a.e. and in L p ((0, ∞) × R 2 ), 1 ≤ p < ∞, as ε → 0, u 0,ε → u 0 , a.e. and in L p (R 2 ), 1 ≤ p < ∞, as ε → 0, ρ 0,ε ≥ 0, ρ 0,ε L 1 ((0,∞)×R 2 ) ≤ C, ε ≥ 0, sup x∈R 2 ρ 0,ε (•, x) L 1 (R) , sup a≥0 ρ 0,ε (a, •) L 1 (R 2 ) , ∂ a ρ 0,ε L 1 ((0,∞)×R 2 ) ≤ C, ε ≥ 0, u 0,ε L 1 (R 2 ) , ∇ x u 0,ε L 1 (R 2 ) , ε ∆ x u 0,ε L 1 (R 2 ) ≤ C, u 0,ε ≥ 0, ε > 0.
2.1. A priori estimates. In this section we establish the a priori estimates on (u ε , ρ ε ) which are necessary to pass to the limit as ε → 0 in (2.1).

From now on we use the notation C for all the positive constants independent on ε appearing in the text or in the statements of our results, while in proofs we write c to indicate any positive constant non depending on ε, and c T for quantities of the form ce ct , t ∈ (0, T ). The proof of the following preliminary Lemma is postposed to Section 4 (see also [START_REF] Colombo | Hyperbolic predators vs. parabolic prey[END_REF]Lemma 4.1]).

lem:eta Lemma 2.1. Let η be such that sumption sumption

(2.4) ∇ x η ∈ (C 2 ∩ W 2,2 ∩ W 1,∞ )(R 2 , R 2 ).
Then the map ν :

L 1 (R 2 ; R) → C ∞ (R) ∩ W 1,∞ (R 2 ; R 2 ) satisfies ν(φ) L ∞ (R 2 ;R 2 ) ≤ K φ L 1 (R 2 ,R) ,
ass:nu1 ass:nu1

(2.5)

div x (ν(φ)) L 2 (R 2 ,R) ≤ K φ L 1 (R 2 ;R) ,
ass:nu2 ass:nu2

(2.6)

∇ x ν(φ) L ∞ (R 2 ,R 2×2 ) ≤ K φ L 1 (R 2 ;R) ,
ass:nu3 ass:nu3

(2.7)

ν(φ 1 ) -ν(φ 2 ) L ∞ (R 2 ,R 2 ) ≤ K φ 1 -φ 2 L 1 (R 2 ,R) ,
ass:nu4 ass:nu4

(2.8)

∇ x (div x (ν(φ))) L 2 (R 2 ,R 2 ) ≤ K 1 + K φ L 1 (R 2 ,R) φ L 1 (R 2 ,R) ,
ass:nu5 ass:nu5

(2.9)

div x (ν(φ 1 ) -ν(φ 2 )) L 2 (R 2 ,R) ≤ K 1 + K φ 2 L 1 (R 2 ,R) φ 1 -φ 2 L 1 (R 2 ,R) ,
ass:nu6 ass:nu6

(2.10)

where K is a positive constant.

Lemma 2.2 (Nonnegativity of ρ ε , φ ε , u ε ). We have that lem:pos lem:pos

(2.11) ρ ε ≥ 0, φ ε ≥ 0, u ε ≥ 0.
Proof. Consider the function

x → η(x ) = -x1 (-∞,0) (x ).
and observe that

η (x ) = -1 (-∞,0) (x ), η(x ) = x η (x ).
From (2.1) we obtain

d dt ∞ 0 R 2 η(ρ ε )dx da = ∞ 0 R 2 η (ρ ε )∂ t ρ ε dx da = - ∞ 0 R 2 η (ρ ε )∂ a ρ ε dx da - ∞ 0 R 2 div x (ρ ε χ 1 vY θ ) η (ρ ε )dx da + µ ∞ 0 R 2 η (ρ ε )∆ x ρ ε dx da - ∞ 0 R 2 η (ρ ε )(d + p)ρ ε dx da + ε ∞ 0 R 2 η (ρ ε )∂ a (χ(a)∂ a ρ ε )ρ ε dx da = R 2 η(ρ ε (t, 0, x)) =0 dx + ∞ 0 R 2 ρ ε χ 1 (v • ∇ x ρ ε )Y θ η (ρ ε )dx da =0 -µ ∞ 0 R 2 η (ρ ε ) (∇ x ρ ε ) 2 dx da ≤0 - ∞ 0 R 2 (d + p)η(ρ ε )dx da ≤0 + ε ∞ 0 R 2 ∂ a η (ρ ε )χ(a)∂ a ρ ε dx da -ε ∞ 0 R 2 η (ρ ε )χ(a)(∂ a ρ ε ) 2 ≤0 dx da ≤ -ε R 2 η (ρ ε (t, 0, x)) =0 χ(0) =0 ∂ a ρ ε (t, 0, x)dx = 0.
Thus, integrating on (0, t) we obtain η(ρ ε (t, a, x)) = 0 which implies that ρ ε ≥ 0, and then φ ε ≥ 0.

From (2.1) we obtain

d dt R 2 η(u ε )dx = R 2 η (u ε )∂ t u ε dx = - R 2 η (u ε )div x (u ε ν(φ ε )) dx =0 + R 2 η (u ε ) (b(φ) -β) ≤c u ε dx + ε R 2 η (u ε )∆ x u ε dx ≤0 ≤ c R 2 η(u ε )dx.
Integrating on (0, t) and applying Gronwall Lemma we obtain η(u ε (t, x)) = 0, so that u ε ≥ 0.

_eps_new Remark 2.1. We can remove the absolute value in the boundary condition for ρ ε in (2.1).

of rho

Lemma 2.3 (L 1 estimate on ρ ε ). For all t ≥ 0, we have that

ρ ε (t, •, •) L 1 ((0,∞)×R 2 ) ≤ e Ct C.
eq:re1 eq:re1

(2.12)

Proof. Due to the nonnegativity of ρ ε and the boundedness of d, p we have

d dt ∞ 0 R 2 |ρ ε |dx da = d dt ∞ 0 R 2 ρ ε dx da = - ∞ 0 R 2 ∂ a ρ ε dx da - ∞ 0 R 2 div x (ρ ε χ 1 vY θ ) dx da + µ ∞ 0 R 2 ∆ x ρ ε dx da =0 - ∞ 0 R 2 ρ ε (d + p) ≤c dx da + ε ∞ 0 R 2 ∂ a (χ(a)∂ a ρ ε ) dx da =0 ≤ R 2 ρ ε (t, 0, x)dx + c ∞ 0 R 2 ρ ε dx da = R 2 A (φ ε ) ∞ 0 ρ ε (t, a, x)χ 3 (a)da ω(t, x)dx + c ∞ 0 R 2 ρ ε dx da ≤c ∞ 0 R 2 ρ ε dx da.
Integrating on (0, t) we get (2.12) thanks to the Gronwall Lemma and the assumptions in (2.3) .

m:L2 rho Lemma 2.4 (L 2 estimate on ρ ε ). For any t ≥ 0, we have

ρ ε (t, •, •) L 2 ((0,∞)×R 2 ) , ∇ x ρ ε L 2 ((0,t)×(0,∞)×R 2 ) , √ ε χ∂ a ρ ε L 2 ((0,t)×(0,∞)×R 2 ) ≤ e Ct C.
eq:re2 eq:re2

(2.13)

Proof. We recall the equation of ρ ε

∂ t ρ ε + ∂ a ρ ε + div x (ρ ε χ 1 (a)v(x)Y θ (φ ε -R)) =µ∆ x ρ ε -d(t, a, x)ρ ε -p(a, u ε )ρ ε + ε∂ a (χ(a)∂ a ρ ε ).
eq:re eq:re

(2.14)
We multiply (2.14) by ρ ε and have

d dt ∞ 0 R 2 ρ 2 ε 2 dx da = ∞ 0 R 2 ρ ε ∂ t ρ ε dx da = - ∞ 0 R 2 ρ ε ∂ a ρ ε dx da - ∞ 0 R 2 ρ ε div x (ρ ε χ 1 vY θ ) dx da + µ ∞ 0 R 2 ρ ε ∆ x ρ ε dx da - ∞ 0 R 2 ρ 2 ε (d + p) ≤c dx da + ε ∞ 0 R 2 ρ ε ∂ a (χ(a)∂ a ρ ε ) dx da ≤ R 2 ρ ε (t, 0, x) 2 2 dx - µ 2 ∞ 0 R 2 |∇ x ρ ε | 2 dx da + c ∞ 0 R 2 (ρ ε χ 1 vY θ ) 2 dx da + c ∞ 0 R 2 ρ 2 ε dx da -ε ∞ 0 R 2 χ(a) (∂ a ρ ε ) 2 dx da ≤ 1 2 R 2 A 2 (φ ε ) ∞ 0 ρ ε (t, a, x)χ 3 (a)da 2 ω 2 (t, x)dx + c ∞ 0 R 2 ρ 2 ε dx da - µ 2 ∞ 0 R 2 |∇ x ρ ε | 2 dx da -ε ∞ 0 R 2 χ(a) (∂ a ρ ε ) 2 dx da ≤c ∞ 0 R 2 ρ 2 ε dx da - µ 2 ∞ 0 R 2 |∇ x ρ ε | 2 dx da -ε ∞ 0 R 2 χ(a) (∂ a ρ ε ) 2 dx da.
Integrating over (0, t) and using the Gronwall Lemma we gain

ρ ε (t, •, •) 2 L 2 ((0,∞)×R 2 ) + e ct µ t 0 ∞ 0 R 2 e -cs |∇ x ρ ε | 2 dx da ds + e ct 2ε t 0 ∞ 0 R 2 e -cs χ(a) (∂ a ρ ε ) 2 dx da ds ≤ e ct ρ 0,ε (•, •) 2 L 2 ((0,∞)×R 2 ) .
We obtain (2.13) by using the fact that

χ∂ a ρ ε 2 L 2 ((0,t)×(0,∞)×R 2 ) ≤ χ L ∞ (0,∞) t 0 ∞ 0 R 2 χ(a)(∂ a ρ ε ) 2 dx da ds ≤ t 0 ∞ 0 R 2 χ(a)(∂ a ρ ε ) 2 dx da ds.
We consider the class of functions def:psi def:psi

(2.15) ψ ε (t, x) = ∞ 0 ρ ε (t, a, x)ξ(a)da, for ξ ∈ C ∞ c ((0, ∞)) such that q:suppxi q:suppxi (2.16) supp (ξ) ⊂ (0, T ).
In particular any of the functions χ i , i = 1, 2, 3, can play the role of ξ, so that the estimates obtained for ψ ε apply to φ ε . Thanks to the definition of ψ ε in (2.15) and the results in (2.12), (2.13), the following inequalities hold for every t ≥ 0

ψ ε (t, •) L 1 (R 2 ) ≤ e Ct C, :nonloc1 :nonloc1
(2.17)

ψ ε (t, •) L 2 (R 2 ) , ∇ x ψ ε L 2 ((0,t)×R 2 ) ≤ e Ct C.
:nonloc2 :nonloc2

(2.18) imate re Lemma 2.5 (H 2 estimate on ρ ε ). For any t ≥ 0, we have

∇ x ρ ε (t, •, •) L 2 ((0,∞)×R 2 ) , D 2 x ρ ε L 2 ((0,∞)×(0,t)×R 2 ) , ε χ(a)(∇ x ∂ a ρ ε ) 2 L 1 ((0,∞)×(0,t)×R 2 ) ≤ e Ct C,
eq:re3 eq:re3

(2.19)

Proof. In the proofs, we will use the following remark

Y θ (φ ε -R)φ ε , Y θ (φ ε -R)φ ε ≤ C. con:Y con:Y (2.20) We multiply (2.14) by -∆ x ρ ε then d dt ∞ 0 R 2 |∇ x ρ ε | 2 2 dx da = ∞ 0 R 2 ∇ x ρ ε • ∂ t ∇ x ρ ε dx da = - ∞ 0 R 2 ∆ x ρ ε ∂ t ρ ε dx da = -µ ∞ 0 R 2 |D 2 x ρ ε | 2 dx da + ∞ 0 R 2 ∆ x ρ ε div x (ρ ε χ 1 vY θ ) dx da + ∞ 0 R 2 ∆ x ρ ε ∂ a ρ ε dx da + ∞ 0 R 2 ρ ε (-d -p) ≤c ∆ x ρ ε dx da -ε ∞ 0 R 2 ∂ a (χ(a)∂ a ρ ε )∆ x ρ ε dx da ≤ - µ 2 ∞ 0 R 2 |D 2 x ρ ε | 2 dx da + ∞ 0 R 2 (div x (ρ ε χ 1 vY θ )) 2 dx da + R 2 |∇ x ρ ε (t, 0, x)| 2 2 dx + c ∞ 0 R 2 ρ 2 ε dx da -ε ∞ 0 R 2 χ(a)|∇ x ∂ a ρ ε | 2 dx da ≤ - µ 2 ∞ 0 R 2 |D 2 x ρ ε | 2 dx da -ε ∞ 0 R 2 χ(a)|∇ x ∂ a ρ ε | 2 dx da + c ∞ 0 R 2 ρ 2 ε dx da + c R 2 ∞ 0 ∇ x ρ ε .vχ 1 Y θ da 2 dx + c R 2 ∞ 0 ρ ε χ 1 daY θ 2 ≤c, since (2.20) (v.∇ x φ ε ) 2 dx + c R 2 ∞ 0 ρ ε χ 1 Y θ div x (v) da 2 dx + c R 2 |A (φ ε )| 2 ∞ 0 ρ ε (t, a, x)χ 3 (a)da 2 ≤c, since (1.8) |∇ x φ ε | 2 ω 2 (t, x)dx + c R 2 A (φ ε ) ∞ 0 |∇ x ρ ε (t, a, x)|χ 3 (a)da ω(t, x) 2 dx + c R 2 A (φ ε ) ∞ 0 ρ ε (t, a, x)χ 3 (a)da|∇ x ω(t, x)| 2 dx ≤ - µ 2 ∞ 0 R 2 |D 2 x ρ ε | 2 dx da -ε ∞ 0 R 2 χ(a)|∇ x ∂ a ρ ε | 2 dx da + c ∞ 0 R 2 ρ 2 ε dx da + c ∞ 0 R 2 |∇ x ρ ε | 2 dx da + c R 2 |∇ x φ ε | 2 dx.
Integrating over (0, t), using the Gronwall Lemma, and estimates (2.13), (2.18) we gain (2.19).

Lemma 2.6 ( L ∞ estimate on u ε ). For every t ≥ 0, we have

fty of u fty of u (2.21) u ε (t, •) L ∞ (R 2 ) ≤ Ce Ct .
Proof. Let C be a positive constant that will be fixed later. We define

u ε (t, x) = e -Ct u ε (t, x),
and we consider the associated problem

   ∂ t u ε + div x (u ε ν(φ ε )) = (b(φ ε ) -β -C)u ε + ε∆ x u ε , u ε (0, x) = u 0,ε (x).
We claim that for any given T > 0 there exist a sufficiently large constant k > 0 and a suitable C such that u ε (t, x) ≤ k for any t ≤ T and x ∈ R 2 , provided u 0,ε (x) ≤ k for all x ∈ R 2 .

Consider the function

x → η(x ) = (x -k)1 (k,∞) (x ),
and observe that

η (x ) = 1 (k,∞) (x ), x η (x ) = η(x ) + kη (x ).
We have

d dt R 2 η(u ε )dx = R 2 η (u ε )∂ t u ε dx = - R 2 η (u ε )div x (u ε ν(φ ε )) dx + R 2 η (u ε )(b(φ ε ) -β -C)u ε dx + ε R 2 η (u ε )∆ x u ε dx ≤0 ≤ - R 2 η (u ε )div x ((u ε -k)ν(φ ε )) dx =0 -k R 2 η (u ε )div x (ν(φ ε )) dx + R 2 (η(u ε ) + kη (u ε ))(b(φ ε ) -β -C) dx ≤ R 2 η(u ε )(b(φ ε ) -β -C) dx -k R 2 η (u ε )(C + β + div x (ν(φ ε )) -b(φ ε )) dx.
From the inequality div x (ν(φ ε )) L ∞ ≤ 2 ∇ν(φ ε ) L ∞ and the estimates in (2.7) and (2.17), it follows that for C large enough

C + β -b(φ ε ) ≥ 0, C + β + div x (ν(φ ε )) -b(φ ε ) ≥ 0, thus, d dt R 2 η(u ε )dx ≤ 0.
Integrating over (0, t) we obtain

0 ≤ R 2 η(u ε (t, x)) dx ≤ R 2 η(u 0,ε (x)) dx = 0, which means u ε ≤ k. The inequality (2.21) follows.
te for u Lemma 2.7. For all t ≥ 0, the following estimates on u ε hold

u ε (t, •) L 1 (R 2 ) ≤ e Ct C,
eq:u1 eq:u1

(2.22)

u ε (t, •) L 2 (R 2 ) , ∇ x u ε L 2 ((0,t)×R 2 ) ≤ e Ct C,
eq:u2 eq:u2

(2.23)

∇ x u ε (t, •) L 2 (R 2 ) , ∆ x u ε L 2 ((0,t)×R 2 ) ≤ e Ct C.
eq:u3 eq:u3

(2.24)

Proof. We recall the equation of u ε eq:ue eq:ue

(2.25) ∂ t u ε + div x (u ε ν(φ ε )) = (b(φ ε ) -β)u ε + ε∆ x u ε .
(2.22). Using the nonnegativity of u ε we have

d dt R 2 |u ε |dx = d dt R 2 u ε dx = ε R 2 ∆ x u ε dx - R 2 div x (u ε ν(φ ε )) dx =0 + R 2 (b(φ ε ) -β) ≤c u ε dx ≤ c R 2 u ε dx.
Then, applying the Gronwall Lemma we gain

u ε (t, •) L 1 (R 2 ) ≤ u 0,ε (•) L 1 (R 2 ) e ct .
(2.23). We multiply (2.25) by u ε to obtain

d dt R 2 u 2 ε 2 dx = R 2 u ε ∂ t u ε dx = - R 2 div x (u ε ν(φ ε )) u ε dx + R 2 (b(φ ε ) -β)u 2 ε dx + ε R 2 ∆ x u ε u ε dx ≤ R 2 u ε ν(φ ε ).∇u ε dx + c R 2 u 2 ε dx -ε R 2 |∇ x u ε | 2 dx ≤ R 2 ∇ x u 2 ε 2 .ν(φ ε )dx + c R 2 u 2 ε dx -ε R 2 |∇ x u ε | 2 dx ≤ R 2 u 2 ε 2 div x (ν(φ ε )) dx + c R 2 u 2 ε dx -ε R 2 |∇ x u ε | 2 dx ≤ c T R 2 |u ε |dx + c R 2 u 2 ε dx -ε R 2 |∇ x u ε | 2 dx.
Integrating over (0, t) and then using the Gronwall Lemma we get

u ε (t, •) 2 L 2 (R 2 ) + 2ε e ct t 0 e -cs ∇ x u ε (s, •) 2 L 2 (R 2 ) ds ≤ e ct u ε (0, •) 2 L 2 (R 2 ) + ce ct .
(2.24). We multiply (2.25) by -∆ x u ε to obtain

d dt R 2 |∇ x u ε | 2 2 dx = R 2 ∇ x u ε • ∂ t ∇ x u ε dx = - R 2 ∆ x u ε ∂ t u ε dx = R 2 ∆ x u ε div x (u ε ν(φ ε )) dx - R 2 ∆ x u ε (b(φ ε ) -β)u ε dx -ε R 2 |∆ x u ε | 2 dx = - R 2 ∇ x u ε ∇ x (∇ x u ε .ν(φ) + u ε div x (ν(φ))) dx + R 2 (b(φ) -β)|∇ x u ε | 2 dx + R 2 b (φ)∇ x φ.∇ x u ε u ε dx -ε R 2 |∆ x u ε | 2 dx ≤ -ε R 2 |∆ x u ε | 2 dx + c R 2 |∇ x u ε | 2 dx + c T R 2 |∇ x ψ ε | 2 dx + R 2 ∇ x |∇ x u ε | 2 2 .ν(φ)dx + R 2 |∇ x u| 2 |∇ x ν(φ)| ≤c T dx + R 2 |∇ x u| 2 |div x (ν(φ)) | ≤c T dx + R 2 |∇ x u ε |u ε |∇ x div x (ν(φ)) |dx ≤ -ε R 2 |∆ x u ε | 2 dx + c T R 2 |∇ x u ε | 2 dx + c T R 2 |∇ x ψ ε | 2 dx + c T R 2 |∇ x div x (ν(φ)) | 2 dx.
Integrating over (0, t) and using the estimates in (2.9) and (2.18) we gain

∇ x u ε (t, •) L 2 (R 2 ) + ε ∆ x u ε (•, •) L 2 ((0,t)×R 2 ) ≤ ce ct . phi_e 3
Lemma 2.8. For every t ≥ 0, the following estimates on ψ ε hold (2.26)

∇ x ψ ε (t, •) L 2 (R 2 ) , D 2 x ψ ε L 2 ((0,t)×R 2 ) ≤ e Ct C,
D 2 x ψ ε (t, •) L 2 (R 2 ) , D 3 x ψ ε L 2 ((0,t)×R 2 ) ≤ e Ct C, onloc2.2 onloc2.2
(2.27)

ψ ε (t, •) L ∞ (R 2 ) ≤ e Ct C, onloc2.3 onloc2.3
(2.28)

D 3 x ψ ε (t, •) L 2 (R 2 ) , D 4 x ψ ε L 2 ((0,t)×R 2 ) ≤ e Ct C, onloc2.4 onloc2.4
(2.29)

∂ t ψ ε (t, •) L 1 (R 2 ) , ∂ t ψ ε (t, •) L 2 (R 2 ) , ∇ x ψ ε (t, •) L ∞ (R 2 ) ≤ e Ct C.
onloc2.5 onloc2.5

(2.30)

Proof. We multiply by ξ(a) the equation for ρ ε in system (2.1) then, integrating with respect to a, we get

∂ t ψ ε -µ∆ x ψ ε + div x ∞ 0 ρ ε χ 1 ξda vY θ = - ∞ 0 (d + p(a, u ε ))ρ ε ξda + ∞ 0 ρ ε (1 + εχ )ξ + εχξ da.
eq:psi eq:psi

(2.31)

(2.26). We multiply (2.31) by -∆ x ψ ε d dt R 2 |∇ x ψ ε | 2 2 dx = R 2 ∇ x ψ ε • ∂ t ∇ x ψ ε dx = - R 2 ∆ x ψ ε ∂ t ψ ε dx = -µ R 2 |D 2 x ψ ε | 2 dx + R 2 ∆ x ψ ε div x ∞ 0 ρ ε χ 1 ξda vY θ dx + R 2 ∞ 0 ρ ε ξ (d + p) ≤c ∆ x ψ ε da dx - R 2 ∞ 0 ρ ε (1 + εχ )ξ + εχξ ≤c ∆ x ψ ε da dx ≤ - µ 2 R 2 |D 2 x ψ ε | 2 dx + c R 2 div x ∞ 0 ρ ε χ 1 ξda vY θ 2 dx + c R 2 ψ 2 ε dx + c ∞ 0 R 2 ρ 2 ε dx da ≤ - µ 2 R 2 |D 2 x ψ ε | 2 dx + c R 2 ∇ x ∞ 0 ρ ε χ 1 ξda 2 |v| 2 Y 2 θ ≤c dx + c R 2 ∞ 0 ρ ε χ 1 ξda 2 |div x (v) | 2 Y 2 θ ≤c dx + c R 2 ∞ 0 ρ ε χ 1 ξda 2 (Y θ ) 2 |v| 2 ≤c (see (2.16)) |∇ x φ ε | 2 dx + c R 2 ψ 2 ε dx + c ∞ 0 R 2 ρ 2 ε dx da.
Since the functions

φ ε , (t, x) → ∞ 0 ρ ε χ 1 ξda
have the same structure as ψ ε , using the Gronwall Lemma and estimates (2.13), (2.18) we get (2.26).

(2.27). We multiply (2.31) by D 4

x ψ ε to have

d dt R 2 |∆ x ψ ε | 2 2 dx = R 2 ∆ x ψ ε • ∂ t ∆ x ψ ε dx = R 2 D 4 x ψ ε ∂ t ψ ε dx =µ R 2 ∆ x ψ ε D 4 x ψ ε dx - R 2 D 4 x ψ ε div x ∞ 0 ρ ε χ 1 ξda vY θ dx + R 2 ∞ 0 ρ ε ξ(-d -p(a, u ε ))D 4 x ψ ε da dx + R 2 ∞ 0 ρ ε (1 + εχ )ξ + εχξ D 4 x ψ ε da dx = -µ R 2 |D 3 x ψ ε | 2 dx + R 2 D 3 x ψ ε • ∇ x div x ∞ 0 ρ ε χ 1 ξda vY θ dx - R 2 ∇ x ∞ 0 ρ ε ξ (-d -p(a, u ε )) da • D 3 x ψ ε dx + R 2 ∞ 0 ∇ x ρ ε (1 + εχ )ξ + εχξ ≤c .D 3 x ψ ε da dx ≤ - µ 2 R 2 |D 3 x ψ ε | 2 dx + c R 2 ∇ x div x ∞ 0 ρ ε χ 1 ξda vY θ 2 dx + c R 2 ∇ x ∞ 0 ρ ε ξ (-d -p(a, u ε )) da 2 dx + c ∞ 0 R 2 |∇ x ρ ε | 2 dx da ≤ - µ 2 R 2 |D 3 x ψ ε | 2 dx + c R 2 D 2 x ∞ 0 ρ ε χ 1 ξda 2 |v| 2 Y 2 θ ≤c dx + c R 2 ∞ 0 ρ ε χ 1 ξda 2 |D 2 x v| 2 Y 2 θ ≤c dx + c R 2 ∞ 0 ρ ε χ 1 ξda 2 |v| 2 (Y θ ) 2 ≤c, see (2.16) |∇ x φ ε | 4 dx + c R 2 ∞ 0 ρ ε χ 1 ξda 2 |v| 2 (Y θ ) 2 ≤c, see (2.16) |D 2 x φ ε | 2 dx + c R 2 ∇ x ∞ 0 ρ ε χ 1 ξda 2 |∇ x v| 2 Y 2 θ ≤c dx + c R 2 ∞ 0 ρ ε χ 1 ξda 2 |∇ x v| 2 (Y θ ) 2 ≤c, see (2.16) |∇ x φ ε | 2 dx + c R 2 ∇ x ∞ 0 ρ ε χ 1 ξda 2 |v| 2 (Y θ ) 2 ≤c |∇ x φ ε | 2 dx + c R 2    ∞ 0 ρ ε ξ |∇ x d| ≤c da    2 dx + c R 2 ∞ 0 ∇ x ρ ε ξ (d + p(a, u ε )) ≤c da 2 dx + c R 2 ∞ 0 ρ ε ∂ u p(a, u ε ) ≤c ∇ x u ε ξda 2 dx + c ∞ 0 R 2 |∇ x ρ ε | 2 dx da ≤ - µ 2 R 2 |D 3 x ψ ε | 2 dx + c R 2 D 2 x ∞ 0 ρ ε χ 1 ξda 2 dx + c R 2 ∞ 0 ρ ε χ 1 ξda 2 dx + c R 2 ∇ x ∞ 0 ρ ε χ 1 ξda 2 dx + c R 2 |∇ x φ ε | 2 dx + c R 2 |∇ x φ ε | 4 dx + c R 2 |D 2 x φ ε | 2 dx + c R 2 ∇ x ∞ 0 ρ ε χ 1 ξda 4 dx + c R 2 ψ 2 ε dx+ + c R 2 |∇ x ψ ε | 2 dx + c R 2 ψ 4 ε dx + c R 2 |∇ x u ε | 4 dx + c ∞ 0 R 2 |∇ x ρ ε | 2 dx da,
Integrating over (0, t) we get

D 2 x ψ ε (t, •) 2 L 2 (R 2 ) + µ D 3 x ψ ε 2 L 2 ((0,t)×R 2 ) ≤ D 2 x ψ ε (0, •) 2 L 2 (R 2 ) + c t 0 ∞ 0 ρ ε χ 1 ξda (s) 2 H 2 (R 2 ) ds + c t 0 φ ε (s, •) 2 H 2 (R 2 ) ds + c t 0 ∇ x ∞ 0 ρ ε χ 1 ξda (s) 4 L 4 (R 2 ) ds + c t 0 ∇ x φ ε (s, •) 4 L 4 (R 2 ) ds + c t 0 ψ ε (s, •) 2 L 2 (R 2 ) ds + c t 0 ∇ x ρ ε (s, •, •) 2 L 2 ((0,∞)×R 2 ) ds + c t 0 ∇ x ψ ε (s, •) 2 L 2 (R 2 ) ds + c t 0 R 2 ψ ε (s, •) 4 L 4 (R 2 ) ds + c t 0 ∇ x u ε (s, •) 4 L 4 (R 2 ) ds + c t 0 ∇ x ρ ε (s, •, •) 2 L 2 ((0,∞)×R 2 ) ds.
Using (2.13), (2.18), (2.26), (2.24) and the embedding H 1 (R 2 ) ⊂ L 4 (R 2 ) we gain (2.27).

(2.28). Directly follows from (2.18), (2.26), (2.27) and the embedding

H 2 (R 2 ) ⊂ L ∞ (R 2 ).
(2.29). We multiply (2.31) by

-D 6 x ψ ε d dt R 2 |D 3 x ψ ε | 2 2 dx = R 2 D 3 x ψ ε • ∂ t D 3 x ψ ε dx = - R 2 D 6 x ψ ε ∂ t ψ ε dx = -µ R 2 ∆ x ψ ε D 6 x ψ ε dx + R 2 D 6 x ψ ε div x ∞ 0 ρ ε χ 1 ξda vY θ dx - R 2 ∞ 0 ρ ε ξ (-d -p(a, u ε )) D 6 x ψ ε da dx - R 2 ∞ 0 ρ ε (1 + εχ )ξ + εχξ ≤c D 6 x ψ ε da dx = -µ R 2 |D 4 x ψ ε | 2 dx + R 2 D 4 x ψ ε ∆ x div x ∞ 0 ρ ε χ 1 ξda vY θ dx - R 2 ∆ x ∞ 0 ρ ε ξ (-d -p(a, u ε )) da D 4 x ψ ε dx - R 2 ∆ x ∞ 0 ρ ε (1 + εχ )ξ + εχξ da D 4 x ψ ε dx ≤ - µ 2 R 2 |D 4 x ψ ε | 2 dx + c R 2 ∆ x div x ∞ 0 ρ ε χ 1 ξda vY θ 2 dx + c R 2 ∆ x ∞ 0 ρ ε dξda 2 dx + c R 2 ∆ x ∞ 0 ρ ε p(a, u ε )ξda 2 dx + c R 2 ∞ 0 |∆ x ρ ε | 2 da dx ≤ - µ 2 R 2 |D 4 x ψ ε | 2 dx + c R 2 D 3 x ∞ 0 ρ ε χ 1 ξda 2 |v| 2 Y 2 θ ≤c dx + c R 2 D 2 x ∞ 0 ρ ε χ 1 ξda 2 |∇ x v| 2 Y 2 θ ≤c dx + c R 2 ∇ x ∞ 0 ρ ε χ 1 ξda 2 |D 2 x v| 2 Y 2 θ ≤c dx + c R 2 ∞ 0 ρ ε χ 1 ξda 2 |D 3 x v| 2 Y 2 θ ≤c dx + c R 2 D 2 x ∞ 0 ρ ε χ 1 ξda 2 |v| 2 (Y θ ) 2 ≤c |∇ x φ ε | 2 dx + c R 2 ∞ 0 ρ ε χ 1 ξda 2 |D 2 x v| 2 (Y θ ) 2 ≤c |∇ x φ ε | 2 dx + c R 2 ∇ x ∞ 0 ρ ε χ 1 ξda 2 |∇ x v| 2 (Y θ ) 2 ≤c |∇ x φ ε | 2 dx + c R 2 ∇ x ∞ 0 ρ ε χ 1 ξda 2 |v| 2 (Y θ ) 2 ≤c |∇ x φ ε | 4 dx + c R 2 ∇ x ∞ 0 ρ ε χ 1 ξda 2 |v| 2 (Y θ ) 2 ≤c |D 2 x φ ε | 2 dx + c R 2 ∞ 0 ρ ε χ 1 ξda 2 |∇ x v| 2 (Y θ ) 2 ≤c |∇ x φ ε | 4 dx + c R 2 ∞ 0 ρ ε χ 1 ξda 2 |∇ x v| 2 (Y θ ) 2 ≤c |D 2 x φ ε | 2 dx + c R 2 ∞ 0 ρ ε χ 1 ξda 2 |v| 2 (Y θ ) 2 ≤c |∇ x φ ε | 6 dx + c R 2 ∞ 0 ρ ε χ 1 ξda 2 |v| 2 (Y θ ) 2 ≤c |D 2 x φ ε | 2 |∇ x φ ε | 2 dx + c R 2 ∞ 0 ρ ε χ 1 ξda 2 |v| 2 (Y θ ) 2 ≤c |D 3 x φ ε | 2 dx + c R 2 |∇ x d| 2 ≤c •|∇ x ψ ε | 2 dx + c R 2 d 2 ≤c |∆ x ψ ε | 2 dx + c R 2 |∆ x d| 2 ≤c |ψ ε | 2 dx + c R 2 ∞ 0 ∇ x ρ ε • ∇ x u ε ξ ∂ u p(a, u ε ) ≤c da 2 dx + c R 2 ∞ 0 ∆ x ρ ε ξ p(a, u ε )da 2 dx + c R 2 ∞ 0 ρ ε ξ ≤c T ∂ 2 uu p(a, u ε ) ≤c |∇ x u ε | 2 da 2 dx + c R 2 ∞ 0 ρ ε ξ ≤c T ∂ u p(a, u ε ) ≤c ∆ x u ε da 2 dx + c R 2 ∞ 0 |∆ x ρ ε | 2 da dx ≤ - µ 2 R 2 |D 4 x ψ ε | 2 dx + c R 2 D 3 x ∞ 0 ρ ε χ 1 ξda 2 dx + c R 2 D 2 x ∞ 0 ρ ε χ 1 ξda 2 dx + c R 2 ∇ x ∞ 0 ρ ε χ 1 ξda 2 dx + c R 2 ∞ 0 ρ ε χ 1 ξda 2 dx + c R 2 D 2 x ∞ 0 ρ ε χ 1 ξda 4 dx + c R 2 ∇ x ∞ 0 ρ ε χ 1 ξda 4 dx + c R 2 |D 3 x φ ε | 2 dx + c R 2 |D 2 x φ ε | 2 dx + c R 2 |D 2 x φ ε | 4 dx + c R 2 |∇ x φ ε | 2 dx + c R 2 |∇ x φ ε | 4 dx + c R 2 |∇ x φ ε | 6 dx + c R 2 |∇ x φ ε | 8 dx + c R 2 ψ 2 ε dx + c R 2 |∇ x ψ ε | 2 dx + c R 2 |D 2 x ψ ε | 2 dx + c R 2 |∇ x ψ ε | 4 dx + c T R 2 |∇ x u ε | 4 dx + c T R 2 |∆ x u ε | 2 dx + c R 2 ∞ 0 |∆ x ρ ε | 2 da dx.
We integrate over (0, t) and using the estimates (2.19), (2.18), (2.26), (2.27), (2.24), together with the embedding H 1 (R 2 ) ⊂ L p (R 2 ) for very 1 ≤ p < ∞ give us

D 3 x ψ ε (t, •) 2 L 2 (R 2 ) + µ D 4 x ψ ε 2 L 2 ((0,t)×R 2 ) ≤ ce ct .
( 

(R 2 ) ⊂ L ∞ (R 2 ).
n:nonloc Lemma 2.9 (Estimates on the trace of ρ ε at a = 0). Define ρ 0 ε (t, x) = ρ ε (t, 0, x). For every t ≥ 0 the following estimates hold

ρ 0 ε (t, •) L 1 (R 2 ) , D 2 x ρ 0 ε L 1 ((0,t)×R 2 ) , ∂ t ρ 0 ε L 1 ((0,t)×R 2 ) ≤ e Ct C, ρ 0 ε (t, •) L 2 (R 2 ) , ∇ x ρ 0 ε (t, •) L 2 (R 2 ) ≤ e Ct C, ∇ x ρ 0 ε L 2 ((0,t)×R 2 ) , D 2 x ρ 0 ε L 2 ((0,t)×R 2 ) , ∂ t ρ 0 ε L 2 ((0,t)×R 2 ) ≤ e Ct C, ρ 0 ε (t, •) L ∞ (R 2 ) ≤ e Ct C.
Proof. Directly deduce from the definition of ρ ε at a = 0, using Lemma 2.8, the estimates in (2.17),

(2.18), and the assumptions on A(φ) in (1.8).

linftyro Lemma 2.10 (L ∞ estimate on ρ ε ). We have that linftyro linftyro

(2.32) ρ ε (t, •, •) L ∞ ((0,∞)×R 2 ) ≤ Ce Ct ,
for every t ≥ 0.

Proof. Let M be a positive constant that will be fixed later. Define

ρ ε (t, a, x) = e -M t ρ ε (t, a, x). ρ ε satisfies the problem deleps-o deleps-o (2.33)          ∂ t ρ ε + M ρ ε + ∂ a ρ ε + div x (ρ ε χ 1 (a)vY θ (φ ε -R)) = µ∆ x ρ ε + ε∂ a (χ(a)∂ a ρ ε ) -(d + p)ρ ε , ρ ε (t, 0, x) = A (φ ε ) ∞ 0 ρ ε (t, a, x)χ 3 (a)da ω(t, x), ρ ε (0, a, x) = ρ 0,ε (a, x).
Moreover, for any given T > 0 there exists a sufficiently large constant B > 0 such that for any t ≤ T and x ∈ R 2 (2.3), (2.11), and (2.9) imply eq:ore eq:ore

(2.34) 0 ≤ ρ ε (t, 0, x), ρ 0,ε (a, x) ≤ B.
Consider

η(ξ) = (ξ -B)1 (B,∞) (ξ),
and observe that

η (ξ) = 1 (B,∞) (ξ), ξη (ξ) = η(ξ) + Bη (ξ).
From the equation (2.33) we have

d dt ∞ 0 R 2 η(ρ ε )dx da = ∞ 0 R 2 η (ρ ε )∂ t ρ ε dx da = -M ∞ 0 R 2 η (ρ ε )ρ ε dx da - ∞ 0 R 2 η (ρ ε )∂ a ρ ε dx da - ∞ 0 R 2 div x (ρ ε χ 1 vY θ ) η (ρ ε )dx da + µ ∞ 0 R 2 η (ρ ε )∆ x ρ ε dx da - ∞ 0 R 2 η (ρ ε )(d + p)ρ ε dx da ≤0 +ε ∞ 0 R 2 η (ρ ε )∂ a (χ(a)∂ a ρ ε )dx da = -M ∞ 0 R 2 η(ρ ε )dx da ≤0 -M B ∞ 0 R 2 η (ρ ε )dx da + R 2 η(ρ ε (t, 0, x))dx - ∞ 0 R 2 div x ((ρ ε -B)χ 1 vY θ ) η (ρ ε )dx da -B ∞ 0 R 2 div x (χ 1 vY θ ) η (ρ ε )dx da -µ ∞ 0 R 2 η (ρ ε )χ(a) (∇ x ρ ε ) 2 dx da ≤0 -ε R 2 η (ρ ε (t, 0, x))∂ a ρ ε (t, 0, x)dx -ε ∞ 0 R 2 η (ρ ε )(∂ a ρ ε ) 2 dadx ≤0 ≤ R 2 η(ρ ε (t, 0, x))dx + ∞ 0 R 2 (ρ ε -B)χ 1 (v • ∇ x ρ ε )Y θ η (ρ ε )dx da =0 -B ∞ 0 R 2 (M + div x (χ 1 vY θ ))η (ρ ε )dx da -ε R 2 η (ρ ε (t, 0, x))∂ a ρ ε (t, 0, x)dx.
Thanks to (2.9), (2.34), and (2.30) we have for M large enough

η(ρ ε (t, 0, x)) = 0, η (ρ ε (t, 0, x)) = 0, M + div x (χ 1 vY θ ) ≥ 0, which imply d dt ∞ 0 R 2 η(ρ ε )dx da ≤ 0.
Thus, we integrate over (0, t) we obtain 0

≤ ∞ 0 R 2 η(ρ ε (t, a, x))dx da ≤ ∞ 0 R 2 η(ρ 0,ε (a, x))dx da = 0, and 
η(ρ ε (t, a, x)) = 0.
As a consequence we have that ρ ε ≤ B.

m:l1ro_a

Lemma 2.11 (L 1 estimate on ∂ a ρ ε ). We have that

∂ a ρ ε (t, •, •) L 1 ((0,∞)×R 2 ) ≤ Ce Ct
for every t ≥ 0 and a suitable constant C independent on ε.

Proof. Differentiating the equation in (2.14) with respect to a we get

∂ 2 ta ρ ε + ∂ 2 aa ρ ε + div x (∂ a ρ ε χ 1 vY θ ) + div x ρ ε χ 1 vY θ = µ∆ x ∂ a ρ ε + ε∂ 2 aa (χ(a)∂ a ρ ε ) -(∂ a d + ∂ a p(a, u ε ))ρ ε -(d + p)∂ a ρ ε .
eq:rea eq:rea

(2.35) Then d dt ∞ 0 R 2 |∂ a ρ ε |dx da = ∞ 0 R 2 ∂ 2 ta ρ ε sign (∂ a ρ ε ) dx da = ∞ 0 R 2 (ε∂ 2 aa (χ(a)∂ a ρ ε ) -∂ 2 aa ρ ε )sign (∂ a ρ ε ) dx da +µ ∞ 0 R 2 ∆ x ∂ a ρ ε sign (∂ a ρ ε ) dx da ≤0 - ∞ 0 R 2 div x (∂ a ρ ε χ 1 vY θ ) sign (∂ a ρ ε ) dx da =0 - ∞ 0 R 2 ∇ x ρ ε • vχ 1 Y θ sign (∂ a ρ ε ) dx da - ∞ 0 R 2 ρ ε χ 1 div x (v) Y θ sign (∂ a ρ ε ) dx da - ∞ 0 R 2 ρ ε χ 1 v • ∇ x φ ε Y θ sign (∂ a ρ ε ) dx da - ∞ 0 R 2 (∂ a d + ∂ a (p(a, u ε ))) ≤c ρ ε sign (∂ a ρ ε ) dx da - ∞ 0 R 2 (d + p)|∂ a ρ ε |dx da ≤0 ≤ R 2 |ε∂ a (χ(0)∂ a ρ ε (t, 0, x)) -∂ a ρ ε (t, 0, x)|dx + c ∇ x ρ ε (t, •, •) L 2 ((0,∞)×R 2 ) v L 2 (R 2 ) + c ρ ε (t, •, •) L 2 ((0,∞)×R 2 ) div x (v) L 2 (R 2 ) + c ρ ε (t, •, •) L 2 ((0,∞)×R 2 ) ∇ x φ ε (t, •) L 2 (R 2 ) + c ρ ε (t, •, •) L 1 ((0,∞)×R 2 ) .
Since 

ε∂ a (χ(0)∂ a ρ ε (t, 0, x)) -∂ a ρ ε (t, 0, x) = ∂ t ρ 0 ε -µ∆ x ρ 0 ε + dρ 0 ε ,

BV in x

Lemma 2.12 (BV estimate w.r.t. x on u ε ). For every t ≥ 0 the following estimate holds

∇ x u ε (t, •) L 1 (R 2 ) ≤ Ce Ct .
:BV in x :BV in x

(2.36)

Proof. From the equation of u ε in (2.25) we have the equation

∂ t ∇ x u ε + ∇ x (∇u ε • ν(φ ε ) + u ε div x (ν(φ ε ))) = (b(φ ε ) -β)∇ x u ε + b (φ ε )∇ x φ ε u ε + ε∇ x ∆ x u ε .
We define

sign (∇ x u ε ) = (sign (∂ x 1 (u ε )) , sign (∂ x 2 (u ε ))),
where x = (x 1 , x 2 ). Then, using the L ∞ bounds on ∇ x φ ε and ν(φ ε ) in (2.30), (2.5), we get

d dt R 2 |∇ x u ε |dx = R 2 sign(∇ x u ε )∂ t ∇ x u ε dx = - R 2 ∇ x (∇ x u ε • ν(φ ε )) sign(∇ x u ε )dx =0 - R 2 ∇ x (u ε div x (ν(φ ε ))) sign(∇ x u ε )dx + ε R 2 ∇ x ∆ x u ε sign(∇ x u ε )dx ≤0 + R 2 b (φ ε )∇ x φ ε ≤c T u ε sign(∇ x u ε )dx + R 2 (b(φ ε ) -β) ≤c |∇ x u ε |dx ≤ R 2 |∇ x u ε ||div x (ν(φ ε )) | dx - R 2 u ε ∇ x (div x (ν(φ ε ))) sign (∇ x u ε ) dx + c T R 2 u ε dx + c R 2 |∇ x u ε |dx ≤c R 2 |∇ x u ε |dx + c T R 2 |u ε |dx + c R 2 u 2 ε dx + c R 2 |∇ x u ε | 2 dx + R 2 |div x (ν(φ ε )) | 2 dx + R 2 |∇ x (div x (ν(φ ε )))| 2 dx.
We obtain the desired inequality (2.36) integrating over (0, t), using the Gronwall Lemma and the estimates in (2.6) and (2.9) and Lemma 2.7.

BV in t

Lemma 2.13 (BV estimate w.r.t. t on u ε ). For every t ≥ 0, the following estimate holds

∂ t u ε (t, •) L 1 (R 2 ) ≤ Ce Ct .
:BV in t :BV in t

(2.37)

Proof. From the definition of ν(φ) in (1.2) we compute

∂ t ν(φ ε ) = κ ∂ t φ ε * ∇ x η 1 + φ ε * ∇ x η 2 3/2 ,
then from (2.30) we have

∂ t ν(φ ε ) L ∞ (R 2 ;R 2 ) ≤ κ ∇ x η L ∞ (R 2 ;R 2 ) ∂ t φ ε L 1 (R 2 ,R) ≤ Ce Ct .
Similarly, explicit computations give us eq:divnu eq:divnu

(2.38) div x (ν(φ ε )) = κ φ ε * ∆ x η 1 + φ ε * ∇ x η 2 3/2 ,
and

∂ t div x (ν(φ ε )) = κ ∂ t φ ε * ∆ x η 1 + φ ε * ∇ x η 2 3/2 -3κ(φ ε * ∆ x η) φ ε * ∇ x η 1 + φ ε * ∇ x η 2 ∂ t φ ε * ∇ x η 1 + φ ε * ∇ x η 2 2 .
Therefore, from (2.17), (2.30), we obtain

∂ t div x (ν(φ ε )) L 2 (R 2 ;R) ≤ κ ∂ t φ ε * ∆ x η L 2 (R 2 ;R) + 3κ φ ε * ∆ x η L ∞ (R 2 ;R) ∂ t φ ε * ∇ x η L 2 (R 2 ;R 2 ) ≤ κ ∂ t φ ε L 1 (R 2 ;R) ∆ x η L 2 (R 2 ;R) + 3 ∆ x η L ∞ (R 2 ;R) ∇ x η L 2 (R 2 ;R 2 ) φ ε L 1 (R 2 ;R) ≤ Ce Ct .
The estimates above allow us to prove (2.37). From the equation (2.25) for u ε we have

∂ 2 tt u ε + div x (∂ t u ε ν(φ ε )) + div x (u ε ∂ t ν(φ ε )) = (b(φ ε ) -β)∂ t u ε + b (φ ε )∂ t φ ε u ε + ε∆ x ∂ t u ε , then we consider d dt R 2 |∂ t u ε | dx = - R 2 div x (∂ t u ε ν(φ ε )) sign (∂ t u ε ) dx =0 +ε R 2 ∆ x ∂ t u ε sign (∂ t u ε ) dx ≤0 - R 2 (∇u ε ∂ t ν(φ ε ) ≤c T +u ε ∂ t div x (ν(φ ε )))sign (∂ t u ε ) dx + R 2 (b(φ ε ) -β) ≤c |∂ t u ε |dx + R 2 b (φ ε )∂ t φ ε u ε sign (∂ t u ε ) dx ≤c T R 2 |∇ x u ε |dx + c R 2 u 2 ε dx + R 2 |∂ t div x (ν(φ ε )) | 2 dx + c T R 2 |∂ t φ ε |dx + c R 2 |∂ t u ε |dx.
Integrating on (0, t) we obtain (2.37) thanks to (2.23), (2.30) and (2.36) and the Gronwall Lemma.

We are now ready to prove the compactness of the families {ρ ε } ε and {u ε } ε , and the first part of Theorem 1.1, establishing the existence of entropy solutions for the system (1.1).

em:exist Lemma 2.14 (Strong compactness of {ρ ε } ε and {u ε } ε ). There exists a couple of functions (u, ρ) and a sequence {ε k } k∈N ∈ (0, ∞), ε k → 0, such that, for every T > 0

ρ ε k → ρ, a.e. in (0, T ) × (0, ∞) × R 2 and in L p loc ((0, ∞) × (0, ∞) × R 2 ), 1 ≤ p < ∞, ρ(•, •, •) ≥ 0, ρ(t, •, x) ∈ BV (0, ∞), for a.e. (t, x) ∈ (0, ∞) × R 2 , ρ ∈ L ∞ (0, T ; L 1 ((0, ∞) × R 2 )) ∩ L ∞ ((0, T ) × (0, ∞) × R 2 ) ∩ L 2 ((0, T ) × (0, ∞); H 2 (R 2 )), ence rho ence rho (2.39) and u ε k h → u a.e. in (0, T ) × R 2 and in L p loc ((0, ∞) × R 2 ), 1 ≤ p < ∞, u(•, •) ≥ 0, u ∈ L ∞ ((0, T ) × R 2 ) ∩ BV ((0, T ) × R 2 ).
rgence u rgence u

(2.40)

Proof. Rewrite equation of ρ ε in (2.14)

∂ t ρ ε + div (a,x) ρ 2 ε /2 ρ 2 ε /2 = (ρ ε -1)∂ a ρ ε + ρ ε div x (ρ ε ) -div x (ρ ε χ 1 (a)vY θ (φ ε -R)) + µ∆ x ρ ε + ε∂ a (χ(a)∂ a ρ ε ) -(d + p)ρ ε . q:convex q:convex (2.41) Let η ∈ C 2 (R 2 ) be a convex entropy with flux Q ∈ C 2 (R; R 2 ) such that Q (ρ) = ρη (ρ) ρη (ρ) .
Multiplying both sides of (2.41) by η (ρ ε ) we get

∂ t η(ρ ε ) + div (a,x) (Q(ρ ε )) = η (ρ ε ) (ρ ε -1)∂ a ρ ε + ρ ε div x (ρ ε ) -div x (ρ ε χ 1 (a)vY θ (φ ε -R)) + µ∆ x ρ ε -(d + p)ρ ε L 1,ε + ∂ a (εη (ρ ε )χ(a)∂ a ρ ε ) L 2,ε -εη (ρ ε )χ(a)(∂ a ρ ε ) 2 L 3,ε
.

eq:entr eq:entr

(2.42)

For every K ⊂⊂ (0, ∞) × (0, ∞) × R 2 , thanks to Lemmas 2.3, 2.4, 2.5, 2.8, 2.10, 2.11 and the estimates in (2.17), (2.18), we have

L 1,ε L 1 (K) ≤ η (ρ ε ) L ∞ (K) ( ρ ε L ∞ (K) + 1) ∂ a ρ ε L 1 (K) + ρ ε L 2 (K) ∇ x ρ ε L 2 (K) + c ρ ε L 2 (K) ∇ x φ ε L 2 (K) + c φ ε L 2 (K) ρ ε L 2 (K) + c φ ε L 2 (K) ∇ x ρ ε L 2 (K) + c ∆ x ρ ε L 2 (K) + d L ∞ (K) ρ ε L 1 (K) ≤ c, εη (ρ ε )χ(a)∂ a ρ ε L 2 (K) ≤ε η (ρ ε ) L ∞ (K) χ(a)∂ a ρ ε L 2 (K) ≤ c √ ε → 0, L 3,ε L 1 (K) ≤ε η (ρ ε ) L ∞ (K) χ(a)∂ a ρ 2 ε L 1 (K) ≤ c.
Applying the Murat Lemma in [START_REF] Murat | L'injection du cône positif de H -1 dans W -1, q est compacte pour tout q < 2[END_REF] to get

{∂ t η(ρ ε ) + div (a,x) (Q(ρ ε ))} ε is compact in H -1 loc ((0, ∞) × (0, ∞) × R 2 ),
this implies the strong compactness of {ρ ε } ε .

Thanks to Lemmas 2.21, 2.13, 2.12,

{u ε } ε is bounded in L ∞ ((0, T ) × R 2 ) ∩ BV ((0, T ) × R 2 ) so that
Helly's Theorem applies.

Lemma 2.15. The couple of functions (u, ρ) introduced in Lemma 2.14 is an entropy solution of (1.1)

in the sense of Definition 1.2.

Proof. It is clear that the couple (u, ρ) is a weak solution of (1.1) in the sense of Definition 1.1 thanks to the strong convergence results in Lemma 2.14. In particular, the fact that ρ is a weak solution comes directly from [START_REF] Panov | Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux[END_REF]Th. 5].

We obtain (1.14) as in [2, Lemma 2.10], then we only have to verify that (1.15) holds. Let ξ ∈ C ∞ (R 4 ) be a nonnegative text function with compact support and c ∈ R be a constant. Multiplying the equation of u ε in (2.1) by sign(u ε -c) we have

∂ t |u ε -c| + div x (|u ε -c|ν(φ ε )) + c sign(u ε -c)div x (ν(φ ε )) ≤ sign(u ε -c)(b(φ ε ) -β)u ε + ε∆ x |u ε -c|. Then, ∞ 0 ∞ 0 R 2 (|u ε -c|∂ t ξ + |u ε -c|ν(φ ε ) • ∇ x ξ + sign(u ε -c)(b(φ ε ) -β)u ε ξ +ε|u ε -c|∆ x ξ -c sign(u ε -c)div x (ν(φ ε )) ξ) dx da dt + ∞ 0 R 2
|u ε,0 (x) -c|ξ(0, a, x)dx da ≥ 0.

By taking the limit for ε → 0, we get (1.15).

Uniqueness and stability tability

In this section we establish the inequality (1.16), which concludes the proof of Theorem 1.1. To this end we introduce the following preliminary lemma.

doubling Lemma 3.1. Let (u 1 , ρ 1 ) and (u 2 , ρ 2 ) be two entropy solutions of (1.1) obtained from the initial data (u 1,0 , ρ 1,0 ) and (u 2,0 , ρ 2,0 ) respectively. For every nonnegative test function

ξ ∈ C ∞ c (R 4 ) the following inequalities hold ∞ 0 ∞ 0 R 2 |ρ 1 -ρ 2 | (∂ t ξ + ∂ a ξ) -div x (|ρ 1 -ρ 2 |χ 1 v(Y θ (φ 1 -R) + Y θ (φ 2 -R))) ξ + µ∆ x |ρ 1 -ρ 2 |ξ -|ρ 1 -ρ 2 |dξ -|ρ 1 -ρ 2 |p(a, u 1 )ξ -sign (ρ 1 -ρ 2 ) (p(a, u 1 ) -p(a, u 2 ))ρ 2 ξ dx da dt + ∞ 0 R 2 |ρ 1 (t, 0 + , x) -ρ 2 (t, 0 + , x)|ξ(t, 0, x)dx dt + ∞ 0 R 2 |ρ 1,0 (a, x) -ρ 2,0 (a, x)|ξ(0, a, x) dx da ≥ ∞ 0 ∞ 0 R 2 sign (ρ 1 -ρ 2 ) χ 1 (ρ 2 div x (vY θ (φ 1 -R)) -ρ 1 div x (v(x)Y θ (φ 2 -R))) ξ dx da dt,
for rho for rho (3.1) where

φ i (t, x) := ∞ 0 ρ i (t, a, x)χ 2 (a)da, for i = 1, 2,
and

∞ 0 ∞ 0 R 2 |u 1 -u 2 |∂ t ξ -div x (|u 1 -u 2 |(ν(φ 1 ) + ν(φ 2 ))) ξ + |u 1 -u 2 |(b(φ 1 ) -β)ξ + sign (u 1 -u 2 ) (b(φ 1 ) -b(φ 2 ))u 2 ξ dx da dt + ∞ 0 R 2 |u 1,0 (x) -u 2,0 (x)|ξ(0, a, x) dx da ≥ ∞ 0 ∞ 0 R 2 sign (u 1 -u 2 ) (u 2 div x (ν(φ 1 )) -u 1 div x (ν(φ 2 ))) ξ dx da dt.
ng for u ng for u

(3.2)
Proof. We double the variables and write

ρ 1 = ρ 1 (t, a, x), ρ 2 = ρ 2 (s, b, y), φ 1 = φ 1 (t, x), φ 2 = φ 2 (s, y) u 1 = u 1 (t, x) u 2 = u 2 (s, y),
where x = (x 1 , x 2 ) and y = (y 1 , y 2 ).

Consider the test function

Ξ n (t, s, a, b, x, y) = ξ t + s 2 , a + b 2 , x + y 2 λ n s -t 2 λ n b -a 2 λ n y 1 -x 1 2 λ n y 2 -x 2 2 ,
where

λ n (u) = nλ(nu), λ ∈ C ∞ (R), λ ≥ 0, λ L 1 (R) = 1, supp (λ) ⊂ [-1, 1].
To prove inequality (3.1) we follow the doubling of variables argument appearing in [2, Lemma 3.1],

and use the regularity of p and the L ∞ bounds on u 1 , u 2 . Then we have only to verify (3.2). We write (1.15) for u 1 (t, x) using u 2 (s, y) as a constant and integrate over (s, y) 

(|u 1 -u 2 |∂ t Ξ n -div x (|u 1 -u 2 |ν(φ 1 )) Ξ n + sign (u 1 -u 2 ) (b(φ 1 ) -β)u 1 Ξ n ) dx
and we write (1.15) for u 2 (s, y) using u 1 (t, x) as a constant and integrate over (t, x) As n → ∞ we get (3.2).

(|u 1 -u 2 |∂ s Ξ n -div y (|u 1 -u 2 |ν(φ 2 )) Ξ n -sign (u 1 -u 2 ) (b(φ 2 ) -β)u 2 Ξ n ) dx
(|u 1 -u 2 |(∂ t Ξ n + ∂ s Ξ n ) -div x (|u 1 -u 2 |ν(φ 1 )) Ξ n -div y (|u 1 -u 2 |ν(φ 2 )) Ξ n +|u 1 -u 2 |(b(φ 1 ) -β)Ξ n + sign (u 1 -u 2 ) (b(φ 1 ) -b(φ 2 ))u 2 Ξ n ) dx
Lemma 3.2. For every t ≥ 0, the following inequality holds

φ 1 (t, •) -φ 2 (t, •) 2 L 2 (R 2 ) + µe Ct t 0 R 2 e -Cs |∇ x (φ 1 -φ 2 )| 2 dx ds ≤ Ce Ct ρ 1,0 -ρ 2,0 2 L 1 ((0,∞)×R 2 ) +Ce Ct t 0 ∞ 0 R 2 e -Cs (ρ 1 -ρ 2 ) 2 dx da ds + Ce Ct t 0 R 2 
e -Cs (u 1 -u 2 ) 2 dx ds.

q:stab.6 q:stab.6

(3.5)

In particular, we have that ine:new ine:new

(3.6) t 0 R 2 e -Cs |∇ x (φ 1 -φ 2 )| 2 dxds 1/2 ≤ Ce Ct ρ 1,0 -ρ 2,0 L 1 ((0,∞)×R 2 ) + Ce Ct t 0 ρ 1 (s, •, •) -ρ 2 (s, •, •) 2 L 1 ((0,∞)×R 2 ) ds 1/2 + Ce Ct t 0 u 1 (s, •) -u 2 (s, •) 2 L 1 (R 2 ) ds 1/2 . Proof. Since φ ε k satisfies ∂ t φ ε k -µ∆ x φ ε k +div x ∞ 0 ρ ε k χ 1 da vY θ (φ ε k -R) = ∞ 0 ρ ε k χ 2 (-d -p(a, u ε k )) da + ∞ 0 ρ ε k (1 + εχ )χ 2 + εχχ 2 da,
as k → ∞ we get the equation of φ. Then, subtracting the equation for φ 2 from the equation for φ 1 we obtain

∂ t (φ 1 -φ 2 ) -µ∆ x (φ 1 -φ 2 ) + div x ∞ 0 (ρ 1 -ρ 2 )χ 1 da vY θ (φ 1 -R) + div x ∞ 0 ρ 2 χ 1 da v(Y θ (φ 1 -R) -Y θ (φ 2 -R)) = ∞ 0 (ρ 1 -ρ 2 ) χ 2 -dχ 2 -p(a, u 1 )χ 2 da - ∞ 0 ρ 2 (p(a, u 1 ) -p(a, u 2 
)) χ 2 da.

q:stab.5 q:stab.5

Then d dt R 2 (φ 1 -φ 2 ) 2 2 dx + µ R 2 |∇ x (φ 1 -φ 2 )| 2 dx = R 2 (φ 1 -φ 2 ) ∞ 0 (ρ 1 -ρ 2 ) χ 2 -dχ 2 -p(a, u 1 )χ 2 da dx - R 2 (φ 1 -φ 2 ) ∞ 0 ρ 2 (p(a, u 1 ) -p(a, u 2 )) ≤ c|u 1 -u 2 | χ 2 da dx - R 2 (φ 1 -φ 2 )div x ∞ 0 (ρ 1 -ρ 2 )χ 1 da vY θ (φ 1 -R) dx - R 2 (φ 1 -φ 2 )div x ∞ 0 ρ 2 χ 1 da v(Y θ (φ 1 -R) -Y θ (φ 2 -R)) dx ≤ c R 2 (φ 1 -φ 2 ) 2 dx + ce ct R 2 (u 1 -u 2 ) 2 dx + ce ct ∞ 0 R 2 (ρ 1 -ρ 2 ) 2 dx da + µ 2 R 2 |∇ x (φ 1 -φ 2 )| 2 dx. (3.7) 
Using Gronwall Lemma we get

φ 1 (t, •) -φ 2 (t, •) 2 L 2 (R 2 ) + µe ct t 0 R 2 e -cs |∇ x (φ 1 -φ 2 )| 2 dx ds ≤ e ct φ 1,0 -φ 2,0 2 L 2 (R 2 ) + ce ct t 0 ∞ 0 R 2 e -cs (ρ 1 -ρ 2 ) 2 dx da ds + ce ct t 0 R 2 e -cs (u 1 -u 2 ) 2 dx ds.
Finally, we obtain (3.5) and (3.6) from the definition of φ 1 and φ 2 .

We are now ready to complete the proof of Theorem 1.1.

Proof. Our goal is to prove the inequality (1.16). We rewrite (3.1) and (3.2) as

∞ 0 ∞ 0 R 2 |ρ 1 -ρ 2 | (∂ t ξ n + ∂ a ξ n ) -|ρ 1 -ρ 2 |χ 1 (Y θ (φ 1 -R) + Y θ (φ 2 -R))v • ∇ x ξ n +µ|ρ 1 -ρ 2 |∆ x ξ n -|ρ 1 -ρ 2 |dξ n -|ρ 1 -ρ 2 |p(a, u 1 )ξ n -sign (ρ 1 -ρ 2 ) (p(a, u 1 ) -p(a, u 2 ))ρ 2 ξ n dx da dt + ∞ 0 R 2 |ρ 1 (t, 0 + , x) -ρ 2 (t, 0 + , x)|ξ n (t, 0, x)dx dt + ∞ 0 R 2 |ρ 1,0 (a, x) -ρ 2,0 (a, x)|ξ n (0, a, x) dx da ≥ ∞ 0 ∞ 0 R 2 sign (ρ 1 -ρ 2 ) χ 1 (ρ 2 div x (vY θ (φ 1 -R)) -ρ 1 div x (v(x)Y θ (φ 2 -R))) ξ n dx da dt, (3.8) 
and

∞ 0 ∞ 0 R 2 |u 1 -u 2 |∂ t ξ n + |u 1 -u 2 |(ν(φ 1 ) + ν(φ 2 )) • ∇ x ξ n + |u 1 -u 2 |(b(φ 1 ) -β)ξ n + sign (u 1 -u 2 ) (b(φ 1 ) -b(φ 2 ))u 2 ξ n dx da dt + ∞ 0 R 2 |u 1,0 (x) -u 2,0 (x)|ξ n (0, a, x) dx da ≥ ∞ 0 ∞ 0 R 2 sign (u 1 -u 2 ) (u 2 div x (ν(φ 1 )) -u 1 div x (ν(φ 2 ))) ξ n dx da dt, (3.9) 
where {ξ n } n is a sequence of nonnegative test functions approximating the characteristic function of the strip (-∞, t) × R × R 2 . Sending n → ∞, we have that Using (3.6), we have

u 1 (t, •) -u 2 (t, •) L 1 (R 2 ) ≤ u 1,0 -u 2,0 L 1 (R 2 ) - t 0 R 2 sign (u 1 -u 2 ) (u 2 div x (ν(φ 1 )) -u 1 div x (ν(φ 2 ))) dx ds + t 0 R 2 |u 1 -u 2 | b(φ 1 ) ≤c +sign (u 1 -u 2 ) (b(φ 1 ) -b(φ 2 )) ≤c|φ 1 -φ 2 | u 2 dx ds ≤ u 1,0 -u 2,0 L 1 (R 2 ) + t 0 R 2 |u 1 -u 2 |div x (ν(φ 1 )) dx ds - t 0 R 2 sign (u 1 -u 2 ) u 1 div x (ν(φ 1 ) -ν(φ 2 )) see (2.10) dx ds + c t 0 R 2 |u 1 -u 2 | dx ds + ce ct t 0 R 2 |φ 1 -φ 2 | dx ds ≤ u 1,0 -u 2,0 L 1 (R 2 ) + ce ct t 0 R 2 |u 1 -u 2 | dx ds + ce ct t 0 R 2 |div x (ν(φ 1 ) -ν(φ 2 )) | 2 dx 1/2 ds + c t 0 R 2 |u 1 -u 2 | dx ds + ce ct t 0 R 2 |φ 1 -φ 2 | dx ds ≤ u 1,0 -u 2,0 L 1 (R 2 ) + c(1 + e ct ) t 0 u 1 (s, •) -u 2 (s, •) L 1 (R 2 ) ds + ce ct t 0 ρ 1 (s, •, •) -ρ 2 (s, •, •) L 1 ((0,∞)×R 2 ) ds, and 
ρ 1 (t, •, •) -ρ 2 (t, •, •) L 1 ((0,∞)×R 2 ) ≤ ρ 1,0 -ρ 2,0 L 1 ((0,∞)×R 2 ) + t 0 R 2 |ρ 1 (s, 0 + , x) -ρ 2 (s, 0 + , x)|dx ds - t 0 ∞ 0 R 2 sign (ρ 1 -ρ 2 )
u 1 (t, •) -u 2 (t, •) 2 L 1 (R 2 ) + ρ 1 (t, •, •) -ρ 2 (t, •, •) 2 L 1 ((0,∞)×R 2 )
≤ u For completeness we sketch the proof of the other estimates.

(2.6). directly comes from the definition of ν in (1.2) and the expression of div x (ν(φ)) in (2.38).

(2.7). We compute ∇ x ν(φ) by using the fact that ∇ x (f ν)

= f ∇ x ν + ν ⊗ ∇ x f ∇ x ν(φ) = κ 1 1 + φ * ∇ x η 2 1/2 ∇ x (φ * ∇ x η) + κ(φ * ∇ x η) ⊗ ∇ x 1 1 + φ * ∇ x η 2 1/2 = κ φ * ∇ 2 x η 1 + φ * ∇ x η 2 1/2 -κ(φ * ∇ x η) ⊗ (φ * ∇ 2 x η)(φ * ∇ x η) 1 + φ * ∇ x η 2 3/2 ,
then (notice that to shorten the notations we write L ∞ for L ∞ (R 2 ; R 2×2 )

∇ x ν(φ) L ∞ ≤ κ φ * ∇ 2 x η L ∞ 1 + φ * ∇ x η 2 1/2 + κ φ * ∇ x η 1 + φ * ∇ x η 2 1/2 ⊗ φ * ∇ 2 x η 1 + φ * ∇ x η 2 1/2 φ * ∇ x η 1 + φ * ∇ x η 2 1/2 L ∞ ≤ κ φ * ∇ 2 x η L ∞ + κ φ * ∇ x η 1 + φ * ∇ x η 2 1/2 L ∞ φ * ∇ 2 x η L ∞ φ * ∇ x η 1 + φ * ∇ x η 2 1/2 L ∞ ≤ 2κ φ * ∇ 2 x η L ∞ ≤ 2κ ∇ 2 x η L ∞ φ L 1 (R 2 ;R) .
(2.9). We compute gradient of (2.38)

∇ x div x (ν(φ)) = κ φ * ∇∆ x η 1 + φ * ∇ x η 2 3/2 -3κ(φ * ∆ x η) φ * ∇ 2 x η 1 + φ * ∇ x η 2 2 φ * ∇ x η 1 + φ * ∇ x η 2 1/2 , then ∇ x div x (ν(φ)) L 2 (R 2 ;R 2 ) ≤ κ φ * ∇∆ x η L 2 (R 2 ;R 2 ) + 3κ φ * ∆ x η L 2 (R 2 ;R 2 ) φ * ∇ 2 x η L ∞ (R 2 ;R 2×2 ) ≤ κ φ L 1 (R 2 ;R) ∇∆ x η L 2 (R 2 ;R 2 ) + 3 ∆ x η L 2 (R 2 ;R) ∇ 2 x η L ∞ (R 2 ;R 2×2 ) φ L 1 (R 2 ;R) .
(2.10). We have that ≤ κ (φ 1 -φ 2 ) * ∆ x η L 2 (R 2 ;R) + 48 25

√ 5 κ φ 2 * ∆ x η L ∞ (R 2 ;R) (φ 1 -φ 2 ) * ∇ x η L 2 (R 2 ;R 2 ) ≤ κ φ 1 -φ 2 L 1 (R 2 ,R) ∆ x η L 2 (R 2 ;R) + 48 25 √ 5 ∇ x η L 2 (R 2 ,R 2 ) ∆ x η L ∞ (R 2 ;R) φ 2 L 1 (R 2 ,R) .
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umptions 1 . 2 .

 12 Assumptions. The coefficients b, v, d, p, A, ω and the initial data ρ 0 , u 0 of system (1.1) satisfy the following conditions: b

Theorem 1 . 1 .

 11 Assume (1.4)-(2.4), then the initial boundary value problem (1.1) admits a unique entropy solution (u, ρ) in the sense of Definition 1.2. Moreover, if (u 1 , ρ 1 ) and (u 2 , ρ 2 ) are the two entropy solutions of (1.1) having initial data (u 1,0 , ρ 1,0

onloc2.1 onloc2. 1

 1 

2 sign (ρ 1 - 2 |A(φ 1 2 sign (ρ 1 - 2 sign (ρ 1 - 2 A 2 |A (φ 1 ) 2 |ρ 1 - 2 sign (ρ 1 - 2 sign (ρ 1 - 0 u 1 0 ρ 1 R 2 |A (φ 1 )ce ct t 0 R 2 |Y θ (φ 1 -ce ct t 0 R 2 |∇ 2 + ce ct t 0 u 1 0 ρ 1 R 2 2 + ce ct t 0 u 1

 21212121221212121010121212201012201 χ 1 (a) (ρ 2 div x (vY θ (φ 1 -R)) -ρ 1 div x (vY θ (φ 2 -R))) dx da ds ρ 2 ) (p(a, u 1 ) -p(a, u 2 ))ρ 2 dx da ds ≤ ρ 1,0 -ρ 2,0 L 1 ((0,∞)×R 2 ) )ρ 1 -A(φ 2 )ρ 2 |χ 3 ω dx ds ρ 2 ) χ 1 (a) (ρ 2 div x (vY θ (φ 1 -R)) -ρ 1 div x (vY θ (φ 2 -R))) dx da ds ρ 2 ) (p(a, u 1 ) -p(a, u 2 ))ρ 2 dx da ds ≤ ρ 1,0 -ρ 2,0 L 1 ((0,∞)×R 2 ) (φ 1 ) |ρ 1 -ρ 2 | χ 3 ωdx da ds + -A (φ 2 )| ρ 2 χ 3 ωdx da ds + ρ 2 |χ 1 (a)div x (vY θ (φ 1 -R)) dx da ds ρ 2 ) χ 1 (a)ρ 1 div x (v) (Y θ (φ 1 -R) -Y θ (φ 2 -R)) dx da ds ρ 2 ) χ 1 (a)ρ 1 v • ∇ x (Y θ (φ 1 -R) -Y θ (φ 2 -R)) dx da ds + ce ct t (s, •) -u 2 (s, •) L 1 (R 2 ) ds ≤ ρ 1,0 -ρ 2,0 L 1 ((0,∞)×R 2 ) + c t (s, •, •) -ρ 2 (s, •, •) L 1 ((0,∞)×R 2 ) ds + ce ct t 0 -A (φ 2 )| dx ds + R) -Y θ (φ 2 -R)| dx ds + x (Y θ (φ 1 -R) -Y θ (φ 2 -R))| 2 dx ds 1/(s, •) -u 2 (s, •) L 1 (R 2 ) ds ≤ ρ 1,0 -ρ 2,0 L 1 ((0,∞)×R 2 ) + c(1 + e ct ) t (s, •, •) -ρ 2 (s, •, •) L 1 ((0,∞)×R 2 ) ds + ce ct t 0 |∇ x (φ 1 -φ 2 )| 2 dx ds 1/(s, •) -u 2 (s, •) L 1 (R 2 ) ds.

div x (ν(φ 1 ) 1 + 1 1 + φ 2 * ∇ x η 2 3

 11123 -ν(φ 2 )) = κ (φ 1 -φ 2 ) * ∆ x η 1 + φ 1 * ∇ x η 2 3/2 + κ(φ 2 * ∆ x η) φ 1 * ∇ x η 2 3/2 -Using the inequality |(1 + x 2 ) -3/2 -(1 + y 2 ) -3/2 | ≤ 48 25 √ 5 |x -y|, we obtain div x (ν(φ 1 ) -ν(φ 2 )) L 2 (R 2 ;R)

  .30). It follows from (2.17), (2.18), (2.26), (2.27), (2.29), (2.31) and the embedding H 2

  dy da db dt ds+ |u 1,0 (x) -u 2 |Ξ n (0, s, a, b, x, y)dx dy da db ds ≥ sign (u 1 -u 2 ) u 2 div x (ν(φ 1)) Ξ n dx dy da db dt ds,

	ntropy.1 ntropy.1

  -u 2 ) u 1 div x (ν(φ 2 )) Ξ n dx dy da db dt ds.

	+ sign (u 1 ntropy.2 ntropy.2 |u 1 -u 2,0 (y)|Ξ n (t, 0, a, b, x, y)dx dy da db dt ≥ -(3.4)	dy da db dt ds
	Summing (3.3) and (3.4) we have	

  1,0 -u 2,0 2 L 1 (R 2 ) + c(1 + e ct ) (s, •) -u 2 (s, •) 2 L 1 (R 2 ) ds + c(1 + e ct ) ρ 1,0 -ρ 2,0 2 L 1 ((0,∞)×R 2 ) + c(1 + e ct ) (s, •, •) -ρ 2 (s, •, •) 2 L 1 ((0,∞)×R 2 ) ds.Finally, we use the Gronwall Lemma to obtain the result (1.16).4. Proof of Lemma 2.1 This lemma is similar to [4, Lemma 4.1], in particular, (2.5) and (2.8) already appeared there.
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