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Abstract

This paper is an attempt to set a justification for making use of some dicrepancy

indexes, starting from the classical Maximum Likelihood definition, and adapting

the corresponding basic principle of inference to situations where minimization of

those indexes between a model and some extension of the empirical measure of the

data appears as its natural extension. This leads to the so called generalized boot-

strap setting for which minimum divergence inference seems to replace Maximum

Likelihood one.

1 Motivation and context

Divergences between probability measures are widely used in Statistics and Data Sci-
ence in order to perform inference under models of various kinds, parametric or semi
parametric, or even in non parametric settings. The corresponding methods extend the
likelihood paradigm and insert inference in some minimum ”distance” framing, which
provides a convenient description for the properties of the resulting estimators and tests,
under the model or under misspecification. Furthermore they pave the way to a large
number of competitive methods, which allows for trade-off between efficiency and robust-
ness, among others. Many families of such divergences have been proposed, some of them
stemming from classical statistics (such as the Chi-square), while others have their origin
in other fields such as Information theory. Some measures of discrepancy involve regularity
of the corresponding probability measures while others seem to be restricted to measures
on finite or countable spaces, at least when using them as inferential tools, henceforth
in situations when the elements of a model have to be confronted with a dataset. The
choice of a specific discrepancy measure in specific context is somehow arbitrary in many
cases, although the resulting conclusion of the inference might differ accordingly, above
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all under misspecification; however the need for such approaches is clear when aiming at
robustness.

This paper considers a specific class of divergences, which contains most of the classical
inferential tools, and which is indexed by a single scalar parameter. This class of diver-
gences belongs to the Csiszar-Ali-Silvey-Arimoto family of divergences (see [15]), and is
usually referred to as the power divergence class, which has been considered By Cressie
and Read [19]; however this denomination is also shared by other discrepancy measures
of some different nature [3]; see [11] for a comprehensive description of those various in-
ferential tools with a discussion on their relations. We will use the acronym CR for the
class of divergences under consideration in this paper.

We have tried to set a justification for those discrepancy indexes, starting from the
classical Maximum Likelihood definition, and adapting the corresponding basic principle
of inference to situations where those indexes appear as its natural extension. This leads
to the so called generalized bootstrap setting for which minimum divergence inference
seems to replace Maximum Likelihood one.

The discussion held in this paper pertains to parametric estimation in a model PΘ

whose elements Pθ are probability measures defined on the same finite space Y :=
{d1, .., dK}, and θ ∈ Θ an index space; we assume identifiability, namely different val-
ues of θ induce different probability laws Pθ’s. Also all the entries of Pθ will be positive
for all θ in Θ.

1.1 Notation

1.1.1 Divergences

We consider regular divergence functions ϕ which are non negative convex functions with
values in R+ which belong to C2 (R) and satisfy ϕ (1) = ϕ′ (1) = 0 and ϕ′′ (1) = 1; see
[15] and [9] for properties and extensions . An important class of such functions is defined
through the power divergence functions

ϕγ (x) :=
xγ − γx+ γ − 1

γ (γ − 1)
(1.1)

defined for all real γ 6= 0, 1 with ϕ0 (x) := − log x + x − 1 (the likelihood divergence
function) and ϕ1 (x) := x log x − x + 1 (the Kullback-Leibler divergence function). This
class is usually referred to as the Cressie-Read family of divergence functions (see [19]). It
is a very simple class of functions (with the limits in γ → 0, 1) which allows to represent
nearly all commonly used statistical criterions. Parametric inference in commonly met
situations including continuous models or some non regular models can be performed
with them; see[6]. The L1 divergence function ϕ (x) := |x− 1| is not captured by the CR
family of functions. When undefined the function ϕ is declared to assume value +∞.
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Associated with a divergence function ϕ is the divergence pseudo-distance between a
probability measure and a finite signed measure; see [11].

For P := (p1, .., pK) and Q := (q1, .., qK) in SK , the simplex of all probability measures
on Y , define, whenever Q and P have non null entries

φ (Q,P ) :=
K∑

k=1

pkϕ

(
qk
pk

)
.

Indexing this pseudo-distance by γ and using ϕγ as divergence function yields the likeli-

hood divergence φ0 (Q,P ) := −
∑
pk log

(
qk
pk

)
, the Kullback-Leibler divergence φ1 (Q,P ) :=

∑
qk log

(
qk
pk

)
, the Hellinger divergence φ1/2 (Q,P ) :=

1
2

∑
pk

(√(
qk
pk

)
− 1

)2

, the mod-

ified (or Neyman) χ2 divergence φ−1 (Q,P ) := 1
2

∑
pk

((
qk
pk

)
− 1
)2 ((

qk
pk

))−1

. The χ2

divergence φ2 (Q,P ) := 1
2

∑
pk

((
qk
pk

)
− 1
)2

is defined between signed measures; see [5]

for definitions in more general setting, and [6] for the advantage to extend the definition
to possibly signed measures in the context of parametric inference for non regular mod-
els. Also the present discussion which is restricted to finite spaces Y can be extended to
general spaces.

The conjugate divergence function of ϕ is defined through

ϕ̃ (x) := xϕ

(
1

x

)
(1.2)

and the corresponding divergence pseudo-distance φ̃ (P,Q) is

φ̃ (P,Q) :=

K∑

k=1

qkϕ̃

(
pk
qk

)

which satisfies
φ̃ (P,Q) = φ (Q,P )

whenever defined, and equals +∞ otherwise. When ϕ = ϕγ then ϕ̃ = ϕ1−γ as follows
by substitution. Pairs (ϕγ, ϕ1−γ) are therefore conjugate pairs. Inside the Cressie-Read
family, the Hellinger divergence function is self-conjugate.

For P = Pθ and Q ∈ SK we denote φ (Q,P ) by φ (Q, θ) (resp φ (θ,Q), or φ (θ′, θ) , etc
according to the context).

1.1.2 Weights

For a given real valued random variable W denote

M(t) := logE exp tW (1.3)
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its cumulant generating function which we assume to be finite in a non void neighborhood
of 0 . The Fenchel Legendre transform ofM (also called the Chernoff function) is defined
through

ϕW (x) =M∗(x) := sup
t
tx−M(t). (1.4)

The function x → ϕW (x) is non negative, is C∞ and convex. We also assume that EW = 1
together with V arW = 1 which implies ϕW (1) =

(
ϕW
)′
(1) = 0 and

(
ϕW
)′′

(1) = 1.
Hence ϕW (x) is a divergence function with corresponding divergence pseudo-distance φW .

Associated with ϕW is the conjugate divergence φ̃W with divergence function ϕ̃W , which

therefore satisfies φW (Q,P ) = φ̃W (P,Q) whenever neither P nor Q have null entries.
It is of interest to note that the classical power divergences ϕγ can be represented

through (1.4) for γ ≤ 1 or γ ≥ 2. A first proof of this lays in the fact that when W
has a distribution in a Natural Exponential Family (NEF) with power variance function
α = 2 − γ, then the Legendre transform ϕW of its cumulant generating function M is
indeed of the form (1.1). See [14] and [2] for NEF’s and power variance functions, and [8]
for relation to the bootstrap. A general result of a different nature , including the former
ones, can be seen in [10], Theorem 20. Correspondence between the various values of γ
and the distribution of the respective weights can be found in [10], Example 39, and it
can be summarized as presented now.

For γ < 0 the rv W is constructed as follows: Let Z be an auxiliary rv with density

fZ and support [0,∞) of a stable law with parameter triplet
(
− γ

1−γ
, 0, (1−γ)

−γ//(1−γ)

γ

)
in

terms of the ”form B notation” on p 12 in [22], and

fW (y) :=
exp (−y/(1− γ))

exp(1/γ)
fZ(y)1[0,∞)(y).

For γ = 0 then W has a standard exponential distribution E(1) on [0,∞).
For γ ∈ (0, 1) thenW has a compound Gamma-Poisson distribution C (POI(θ), GAM(α, β))

where θ = 1/γ, α = 1/(1− γ) and β = γ/(1− γ).
For γ = 1 then W has a Poisson distribution with parameter 1, POI(1).
For γ = 2 then W has normal distribution with expectation and variance equal to 1.
For γ > 2 then the rvW is constructed as follows: Let Z be an auxiliary rv with density

fZ and support (−∞,∞) of a stable law with parameter triplet
(

γ
γ−1

, 0, (γ−1)−γ//(γ−1)

γ

)
in

terms of the ”form B notation” on p 12 in [22], and

fW (y) :=
exp (y/(γ − 1))

exp(1/γ)
fZ(−y) ,y ∈ R.
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2 Maximum likelihood under finitely supported dis-

tributions and simple sampling

2.1 Standard derivation

Let X1, ...Xn be a set of n independent random variables with common probability mea-
sure PθT and consider the Maximum Likelihood estimator of θT . A common way to
define the ML paradigm is as follows: For any θ consider independent random variables
(X1,θ, ...Xn,θ) with probability measure Pθ , thus sampled in the same way as the Xi’s,
but under some alternative θ. Define θML as the value of the parameter θ for which the
probability that, up to a permutation of the order of the Xi,θ’s, the probability that
(X1,θ, ...Xn,θ) coincides with X1, ...Xn is maximal, conditionally on the observed sample
X1, ...Xn. In formula, let σ denote a random permutation of the indexes {1, 2, ..., n} and
θML is defined through

θML := argmax
θ

1

n!

∑

σ∈S

Pθ
((
Xσ(1),θ , ..., Xσ(n),θ

)
= (X1, ...Xn)

∣∣ (X1, ...Xn)
)

(2.1)

where the summation is extended on all equally probable permutations of {1, 2, ..., n} .
Denote

Pn :=
1

n

n∑

i=1

δXi

and

Pn,θ :=
1

n

n∑

i=1

δXi,θ

the empirical measures pertaining respectively to (X1, ...Xn) and (X1,θ, ...Xn,θ)
An alternative expression for θML is

θML := argmax
θ
Pθ (Pn,θ = Pn|Pn) . (2.2)

An explicit enumeration of the above expression Pθ (Pn,θ = Pn|Pn) involves the quan-
tities

nj := card {i : Xi = dj}
for j = 1, ..., K and yields

Pθ (Pn,θ = Pn,X |Pn,X) =

K∏

j=1

nj !Pθ (dj)
nj

n!
(2.3)
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as follows from the classical multinomial distribution. Optimizing on θ in (2.3) yields

θML = argmax
θ

K∑

j=1

nj
n

logPθ (dj)

= argmax
θ

1

n

n∑

i=1

logPθ (Xi) .

Consider now the Kullback-Leibler distance between Pθ and Pn which is non commutative
and defined through

KL (Pn, θ) :=

k∑

j=1

ϕ

(
nj/n

Pθ (j)

)
Pθ (dj)

=

k∑

j=1

(nj/n) log
nj/n

Pθ (dj)
(2.4)

where
ϕ1(x) := x log x− x+ 1 (2.5)

which is the Kullback-Leibler divergence function. Minimizing the Kullback-Leibler dis-
tance KL (Pn, θ) upon θ yields

θKL = argmin
θ
KL (Pn, θ)

= argmin
θ

−
K∑

j=1

nj
n

logPθ (dj)

= argmax
θ

K∑

j=1

nj
n

logPθ (dj)

= θML.

Introduce the conjugate divergence function ϕ̃ = ϕ0 of ϕ1 , inducing the modified
Kullback-Leibler, or so-called Likelihood divergence pseudo-distanceKLm which therefore
satisfies

KLm (θ, Pn) = KL (Pn, θ) .

We have seen that minimizing the Kullback-Leibler divergence KL (Pn, θ) amounts to
minimizing the Likelihood divergence KLm (θ, Pn) and produces the ML estimate of θT .
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2.2 Asymptotic derivation

We assume that
lim
n→∞

Pn = PθT a.s.

This holds for example when the Xi’s are drawn as an iid sample with common law PθT
which we may assume in the present context. From an asymptotic standpoint, Kullback-
Leibler divergence is related to the way Pn keeps away from Pθ when θ is not equal to
the true value of the parameter θT generating the observations Xi’s and is closely related
with the type of sampling of the Xi’s. In the present case, when i.i.d. sampling of the
Xi,θ’s under Pθ are performed, Sanov Large Deviation theorem leads to

lim
n→∞

1

n
logPθ (Pn,θ = Pn|Pn) = −KL (θT , θ) . (2.6)

This result can easily be obtained from (2.3) using Stirling formula to handle the factorial
terms and the law of large numbers which states that for all j’s, nj/n tends to PθT (dj)
as n tends to infinity. Comparing with (2.4) we note that the MLE θML is a proxy of
the minimizer of the natural estimator θT of KL (θT , θ) in θ, substituting the unknown
measure generating the Xi’s by its empirical counterpart Pn . Alternatively as will be
used in the sequel, θML minimizes upon θ the Likelihood divergence KLm (θ, θT ) between
Pθ and PθT substituting the unknown measure PθT generating the Xi’s by its empirical
counterpart Pn . Summarizing we have obtained:

The ML estimate can be obtained from a LDP statement as given in (2.6), optimizing
in θ in the estimator of the LDP rate where the plug-in method of the empirical measure
of the data is used instead of the unknown measure PθT . Alternatively it holds

θML := argmin
θ
K̂Lm (θ, θT ) (2.7)

with
K̂Lm (θ, θT ) := KLm (θ, Pn) .

This principle will be kept throughout this paper: the estimator is defined as maximiz-
ing the probability that the simulated empirical measure be close to the empirical measure
as observed on the sample, conditionally on it, following the same sampling scheme. This
yields a maximum likelihood estimator, and its properties are then obtained when ran-
domness is introduced as resulting from the sampling scheme.

3 Bootstrap and weighted sampling

The sampling scheme which we consider is commonly used in connection with the boot-
strap and is referred to as the weighted or generalized bootstrap, sometimes called wild
bootstrap, first introduced by Newton and Mason [16].
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Let X1, ..., Xn with common distribution PθT on Y := {d1, .., dK} .
Consider a collection W1, ...,Wn of independent copies of W , whose distribution sat-

isfies the conditions stated in Section 1. The weighted empirical measure PW
n is defined

through

PW
n :=

1

n

n∑

i=1

WiδXi
.

This empirical measure need not be a probability measure, since its mass may not equal
1. Also it might not be positive, since the weights may take negative values. Therefore PW

n

can be identified with a random point in RK . The measure PW
n converges almost surely

to P when the weights Wi’s satisfy the hypotheses stated in Section 1. Indeed general
results pertaining to this sampling procedure state that under regularity, functionals of
the measure PW

n are asymptotically distributed as are the same functionals of Pn when
the Xi’s are i.i.d. Therefore the weighted sampling procedure mimics the i.i.d. sampling
fluctuation in a two steps procedure: choose n values of Xi such that they asymptotically
fit to P , which means

lim
n→∞

1

n

n∑

i=1

δXi
= PθT

a.s. and then play the Wi’s on each of the xi’s. Then get PW
n , a proxy to the random

empirical measure Pn .
We also consider the normalized weighted empirical measure

PW
n :=

n∑

i=1

ZiδXi

where

Zi :=
Wi∑n
j=1Wj

whenever
∑n

j=1Wj 6= 0, and

PW
n = ∞

when
∑n

j=1Wj = 0, where PW
n = ∞ means PW

n (dk) = ∞ for all dk in Y .

3.1 A conditional Sanov type result for the weighted empirical

measure

We now state a conditional Sanov type result for the family of random measures PW
n . It

follows readily from a companion result pertaining to PW
n and enjoys a simple form when
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the weights Wi are associated to power divergences, as defined in Section 1.1.2. We quote
the following results, referring to [10].

Consider a set Ω in RK such that

clΩ = cl(IntΩ) (3.1)

which amounts to a regularity assumption (obviously met when Ω is an open set), which
allows for the replacement of the usual lim inf and lim sup by standard limits in usual
LDP statements. We denote by PW the probability measure of the random family of iid
weights Wi.

It then holds

Proposition 3.1. (Theorem 9 in [10])The weighted empirical measure PW
n satisfies a

conditional Large Deviation Principle in RK namely, denoting P the a.s. limit of Pn,

lim
n→∞

1

n
logPW

(
PW
n ∈ Ω

∣∣Xn
1

)
= −φW (Ω, P )

where φW (Ω, P ) := infQ∈Ω φ
W (Q,P ) .

As a direct consequence of the former result, it holds, for any Ω ⊂ SK satisfying (3.1),
where SK designates the simplex of all pm’s on Y

Theorem 3.1. (Theorem 12 in [10])The normalized weighted empirical measure PW
n

satisfies a conditional Large Deviation Principle in SK

lim
n→∞

1

n
logPW

(
PW
n ∈ Ω

∣∣Xn
1

)
= − inf

m6=0
φW (mΩ, P ) . (3.2)

A flavour of the proofs of Proposition 3.1 and Theorem 3.1 is presented in the Ap-
pendix; see [10] for a detailed treatment. Note that the mapping Q→ infm6=0 φ

W (mQ,P )
is indeed a divergence in the simplex SK for all pm P defined on Y with positive entries.

We will be interested in the pm’s in Ω which minimize the RHS in the above display.
The case when φW is a power divergence, namely φW = φγ for some real γ ∈ (−∞, 1] ∪
[2,∞) enjoys a special property with respect to the pm’s Q achieving the infimum (upon
Q in Ω) in (3.2). It holds

Proposition 3.2. (Lemma 14 in [10])Assume that φW is a power divergence. Then

Q ∈ arg inf

{
inf
m6=0

φW (mQ,P ) , Q ∈ Ω

}

and
Q ∈ arg inf

{
φW (Q,P ) , Q ∈ Ω

}

are equivalent statements.
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Indeed Proposition 3.2 holds as a consequence of the following results, to be used later
on.

Lemma 3.1. For Q and P two pm’s such that the involved expressions are finite, it holds
(i) For γ ∈ (0, 1) it holds infm6=0 φγ(mQ,P ) = (1− γ)φγ (Q,P ) .

(ii) For γ < 0 and γ > 1 it holds infm6=0 φγ(mQ,P ) =
1
γ

[
1− (1 + γ(γ − 1)φγ(Q,P ))

−1/(γ−1)
]
.

(iii) infm6=0 φ1(mQ,P ) = 1− exp (−KL(Q,P )) = 1− exp(−φ1(Q,P )).
(iv)infm6=0 φ0(mQ,P ) = KLm(Q,P ) = φ0(Q,P )

The weighted empirical measure PW
n has been used in the weighted bootstrap (or

wild bootstrap) context, although it is not a pm. However, conditionally upon the sample
points, its produces statistical estimators T (PW

n ) whose conditional weak behavior con-
verges to the same limit as does T (Pn) when normalized on the classical CLT range; see
eg Newton and Mason [16]. Large deviation theorem for the weighted empirical measure
PW
n has been obtained by [1]; for other contributions in line with those, see [17] and [21].

Normalizing the weights produces families of exchangeable weights Zi, and the normal-
ized weighted empirical measure PW

n is the cornerstone for the so-called non parametric
Bayesian bootstrap, initiated by [20], and further developed by [18] among others. Note
however that in this context the rv’s Wi’s are chosen as distributed as standard exponen-
tial variables. The link with spacings from a uniform distribution and the corresponding
reproducibility of the Dirichlet distributions are the basic ingredients which justify the
non parametric bootstrap approach; in the present context, the choice of the distribution
of the Wi’s is a natural extension of this paradigm, at least when those Wi’s are positive
rv’s.

3.2 Maximum Likelihood for the generalized bootstrap

We will consider maximum likelihood in the same spirit as developed in Section 2.2, here in
the context of the normalized weighted empirical measure; it amounts to justify minimum
divergence estimators as appropriate MLE’s under such bootstrap procedure.

We thus consider the same statistical model PΘ and keep in mind the ML principle as
seen as resulting from a maximization of the conditional probability of getting simulated
observations close to the initially observed data. Similarly as in Section 2 fix an arbitrary
θ and simulate X1,θ, .., Xn,θ with distribution Pθ. Define accordingly PW

n,θ and PW
n,θ making

use of iid rv’s W1, ..,Wn . Now the event PW
n,θ(k) = nk/n has probability 0 in most

cases (for example when W has a continuous distribution), and therefore we are led to
consider events of the form PW

n,θ ∈ Vε (Pn) for some neighborhood of Pn in SK ,where
ε := maxk |Q(k)− Pn(k)| ;Q ∈ Vε (Pn) .

For such a configuration consider

PW
(
Pw
n,θ ∈ Vε (Pn)

∣∣X1,θ, .., Xn,θ, X1, .., Xn

)
(3.3)
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where the Xi,θ are randomly drawn iid under Pθ. Obviously for θ far away from θT the
sample (X1,θ, .., Xn,θ) is realized ”far away ” from (X1, .., Xn), which has been generated
under the truth, namely PθT , and the probability in (3.3) is small, whatever the weights,
for small ε.

We will now consider (3.3) asymptotically on n, since, in contrast with the first deriva-
tion of the standard MLE in Section 2.1, we cannot perform the same calculation for each
n, which was based on multinomial counts. Note that we obtained a justification for the
usual MLE through the asymptotic Sanov LDP, leading to the KL divergence and finally
back to the MLE through an approximation step of this latest.

We first state

Theorem 3.2. With the above notation the following conditioned LDP result holds, for
some α < 1 < β

− inf
m6=0

φW (mVαǫ(PθT ), θ) ≤ lim
n→∞

1

n
logPW

(
PW
n,θ ∈ Vǫ(Pn)|X1,θ, ..., Xn,θ, X1, .., Xn

)
(3.4)

≤ − inf
m6=0

φW (mVβǫ(PθT ), θ)

where φW (Vcǫ(θT ), θ) = infµ∈Vcǫ(PθT
)) φ

W (µ, θ).

The above result follows from Theorem 3.2 together with the a.s. convergence of Pn
to PθT in SK .

From the above result it appears that as ε→ 0 , by continuity it holds

lim
ε→0

lim
n→∞

1

n
logPW

(
PW
n,θ ∈ Vǫ(Pn)|X1,θ, ..., Xn,θ, X1, .., Xn

)
= − inf

m6=0
φW (mPθT , θ). (3.5)

The ML principle amounts to maximize PW
(
PW
n,θ ∈ Vǫ(Pn)|X1,θ, ..., Xn,θ, X1, .., Xn

)
upon

θ. Whenever Θ is a compact set we may insert this optimization in (3.4) which yields,
following (3.5)

lim
ε→0

lim
n→∞

1

n
log sup

θ
PW

(
PW
n,θ ∈ Vǫ(Pn)|X1,θ, ..., Xn,θ, X1, .., Xn

)
= − inf

θ∈Θ
inf
m6=0

φW (mPθT , θ).

By Proposition 3.2 the argument of the infimum upon θ in the RHS of the above
display coincides with the corresponding argument of φW (θT , θ), which obviously gets θT .
This justifies to consider a proxy of this minimization problem as a ”ML” estimator based
on normalized weighted data.

Since
φW (θT , θ) = φ̃W (θ, θT )

11



the ML estimator is obtained as in the conventional case by plug in the LDP rate. Obvi-
ously the ”best” plug in consists in the substitution of PθT by Pn, the empirical measure
of the sample, since Pn achieves the best rate of convergence to PθT when confronted to
any bootstrapped version, which adds ”noise” to the sampling. We may therefore call

θWML := arg inf
θ∈Θ

φ̃W (θ, Pn) := arg inf
θ∈Θ

K∑

k=1

Pn(dk)ϕ̃

(
Pθ(dk)

Pn(dk)

)

= arg inf
θ∈Θ

K∑

k=1

Pθ(dk)ϕ

(
Pn(dk)

Pθ(dk)

)

the MLE for the bootstrap sampling; here φ̃W (with divergence function ϕ̃) is the conju-
gate divergence of φW (with divergence function ϕ) .Since φW = φγ for some γ, it holds

φ̃W = φ1−γ.
The resulting inferential procedures are considered for general support spaces Y in [6]

for parametric models, and for various semi parametric models in [7] and [4].

Obviously we can also plug in the normalized weighted empirical measure, which also
is a proxy of PθT for each run of the weights. This produces a bootstrap estimate of θT
through

θWB := arg inf
θ∈Θ

φ̃W (θ,PW
n ) := arg inf

θ∈Θ

K∑

k=1

PW
n (dk)ϕ̃

(
Pθ(dk)

PW
n (dk)

)

= arg inf
θ∈Θ

K∑

k=1

Pθ(dk)ϕ

(
PW
n (dk)

Pθ(dk)

)

where

PW
n (dk) =

∑n
i=1Wiδdk(Xi)∑n

i=1Wi

assuming n large enough such that the denominator is not zero. Whenever W has positive
probability to assume value 0, these estimators are defined for large n in order thatPW

n (dk)
be positive for all k. Since E(W ) = 1, this occurs for large samples.

When Y is not a finite space then an equivalent construction can be developed based
on the variational form of the divergence; see [6].

Example 3.1. A-In the case when W is a rv with standard exponential distribution,
then the normalized weighted empirical measure PW

n is a realization of the a posteriori
distribution for the non informative prior on the non parametric distribution of X. See
[20]. In this case ϕ(x) = − log x+x−1 and ϕ̃(x) = x log x−x+1; the resulting estimator
is the minimum Kullback-Leibler one.
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B-When W has a standard Poisson distribution then the couple (ϕ, ϕ̃) is reverse wrt
the above one, and the resulting estimator is the minimum modified Kullback-Leibler one.
which takes the usual weighted form of the classical MLE

θ
POI(1)
B := arg sup

θ

K∑

k=1

(∑n
i=1Wi1k(Xi)∑n

i=1Wi

)
logPθ(k)

which is defined for n large enough so that
∑n

i=1Wi 6= 0. Also in this case θWML coincides
with the standard MLE.

C-In case whenW has an Inverse Gaussian distribution IG(1,1) then ϕ(x) = ϕ−1(x) =
1
2
(x− 1)2 /x for x > 0 and the ML estimator minimizes the Pearson Chi-square diver-

gence with generator function ϕ2(x) =
1
2
(x− 1)2 which is defined on R.

D-When W follows a normal distribution with expectation and variance 1, then the
resulting divergence is the Pearson Chi-square divergence ϕ2(x) and the resulting estimator
minimizes the Neyman Chi-square divergence with ϕ(x) = ϕ−1(x).

E-When W has a Compound Poisson Gamma distribution C (POI(2),Γ(2, 1)) distri-

bution then the corresponding divergence is ϕ1/2(x) = 2 (
√
x− 1)

2
which is self conjugate,

whence the ML estimator is the minimum Hellinger distance one.

4 Optimal weighting

4.1 Comparing bootstrapped statistics

Let φW be a power divergence defined by some weight W through (1.4). We assume that
θT is known and we measure the divergence between PW

n and PθT as a bootstrapped
version of the corresponding distance between Pn and PθT , where the distance is suited
to the distribution of the weights. We compare the decay to 0 of this same distance with
the corresponding decay substituting PW

n by PV
n for some competing family of weights

(V1, .., Vn) . Both rv’s W and V are assumed to have distributions such that the Legendre
transform of their cumulant generating functions belong to the Cressie Read family of
divergences. The divergence φW is associated to the generator ϕγ and, respectively, V is
associated to a generator ϕγ′ by the corresponding formula (1.4). For brevity we restrict

the discussion to rv’s W and V which are associated to divergence functions ϕγ and ϕγ′
with γ ∈ (0, 1), as other cases are similar, making use of the corresponding formulas from
Lemma 3.1.

The bootstrap distance between PθT and the bootstrapped dataset will be defined

as φ̃γ
(
θT ,P

W
n

)
.

Looking at case (i) in Proposition 3.2 we denote by ϕ the generator of the divergence
Q → infm6=0 φγ(mQ,P ) and ψ the generator of the divergence Q → infm6=0 φγ′(mQ,P )
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from which

ϕ(x) =
xγ − γx+ γ − 1

γ

ψ(x) =
xγ

′ − γ′x+ γ′ − 1

γ′
.

Also for clearness we denote

Φ(Q,P ) := inf
m6=0

φγ(mQ,P )

and
Ψ (Q,P ) := inf

m6=0
φγ′(mQ,P )

For γ ∈ (0, 1) due to Proposition 3.2 (i) and Lemma 3.1, for Q and P in SK with non

null entries, we define the conjugate divergence Φ̃(Q,P ) := Φ(P,Q) and the generator of

Q→ Φ̃(Q,P ) writes
ϕ̃(x) := (γ − 1)ϕ1−γ(x)

we will denote accordingly ψ̃(x) := (γ′ − 1)ϕ1−γ′(x) the generator of Ψ̃(Q,P ) , the
conjugate divergence of Ψ (Q,P ) .

In order to simplify the notation , for any event A, PW
Xn

1
(A) denotes the probability

of A conditioned upon (X1, .., Xn) .

By Theorem 3.1

lim
n→∞

1

n
logPW

Xn
1

(
φ̃γ
(
θT ,P

V
n

)
> t
)
= − inf

{
Ψ (Q, θT ) , Q : φ̃γ (θT , Q) > t

}
. (4.1)

We prove

Proposition 4.1. For γ ∈ (0, 1) and any γ′ /∈ (1, 2), for any positive t,

lim
n→∞

1

n
logPW

Xn
1

(
φ̃γ
(
θT ,P

W
n

)
> t
)
= −t(1 − γ) ((i))

while

lim
n→∞

1

n
logPW

Xn
1

(
φ̃γ
(
θT ,P

V
n

)
> t
)
≥ −t(1− γ). ((ii))

Proof: By Theorem 3.1, since Φ (Q, θ) = (1− γ)φγ(Q, θ), it holds for any t > 0

lim
n→∞

1

n
logPW

Xn
1

(
φ̃γ
(
θT ,P

W
n

)
> t
)

= − inf
{
Φ (Q, θT ) , Q : φ̃γ (θT , Q) > t

}

= − inf {Φ (Q, θT ) , Q : φγ (Q, θT ) > t}
= − inf {Φ (Q, θT ) , Q : Φ (Q, θT ) > t(1− γ)}
= −t(1− γ)
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which proves (i).
Using (4.1), for any t > 0

lim
n→∞

1

n
logPW

Xn
1

(
φ̃γ
(
θT ,P

V
n

)
> t
)
= − inf {Ψ (Q, θT ) , Q : φγ (Q, θT ) > t}

= − inf {Ψ (Q, θT ) , Q : Φ (Q, θT ) > t(1− γ)}

from which (ii) holds whenever there exists some R in SK satisfying both

Φ (R, θT ) > t(1− γ)

and
Ψ (R, θT ) ≤ t(1− γ).

For K ≥ 2, let R := (r1, .., rK) such that ri = api for i = 1, .., K − 1 where
PθT := (p1, .., pK) ∈ SK with non null entries. Assume a < 1. Then a → Φ (R,P ) is
decreasing on (0, 1), lima→0 Φ (R,P ) = +∞ and lima→1 Φ (R,P ) = 0; thus there ex-
ists aϕ(t) such that for a ∈ (0, aϕ(t)) , it holds Φ (R,P ) > t(1 − γ). In the same way
there exists aψ(t) such that for a ∈ (aψ(t), 1) it holds Ψ (R,P ) < t(1 − γ). Hence for
a ∈ (min (aϕ(t), aψ(t)) ,max (aϕ(t), aψ(t))) , there exists some R which satisfies the claim.

To summarize the meaning of Proposition 4.1, one can say that it inlights the necessary
fit between the divergence and the law of the weights when exploring the asymptotic
behavior of the bootstrapped empirical measure. It can also be captured stating that
given a divergence φγ there exists an optimal bootstrap in the sense that the chances for

φ̃γ
(
θT ,P

W
n

)
to be large are minimal; the ”noise” caused by the weights is tampered down

when those are fitted to the divergence, hence in no way in an arbitrary way.

4.2 Bahadur efficiency of minimum divergence tests under gen-

eralized bootstrap

In [12] Efron and Tibshirani suggest the bootstrap as a valuable approach for testing,
based on bootstrapped samples. We show that bootstrap testing for parametric models
based on appropriate divergence statistics enjoys maximal Bahadur efficiency with respect
to any bootstrap test statistics.

The standard approach to Bahadur efficiency can be adapted for the present general-
ized Bootstrapped tests as follows.

Consider the test of some null hypothesis H0: θT = θ versus a simple hypothesis H1
θT = θ′.

We consider two competitive statistics for this problem. The first one is based on the
bootstrap estimate of φ̃W (θ, θT ) is defined through

Tn,X := Φ̃
(
θ,PW

n,X

)
= T

(
PW
n,X

)
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which allows to reject H0 for large values since limn→∞ Tn,X = 0 whenever H0 holds. In
the above display we have emphasized in PW

n,X the fact that we have used the rv Xi’s.
Let

Ln(t) := PW (Tn,X > t|X1, .., Xn).

We use PW to emphasize the fact that the hazard is due to the weights. Consider now
a set of rv Z1, .., Zn extracted from a sequence such that limn→∞ Pn,Z = Pθ′ a.s ; we have
denoted Pn,Z the empirical measure of (Z1, .., Zn) ; accordingly definePW ′

n,Z , the normalized
weighted empirical measure of the Zi ’s making use of weights (W ′

1, ..,W
′
n) which are iid

copies of (W1, ..,Wn), drawn independently from (W1, ..,Wn) . Define accordingly

Tn,Z := Φ̃
(
θ,PW ′

′

n,Z

)
= T

(
PW ′

′

n,Z

)
.

Define
Ln(Tn,Z) := PW (Tn,W > Tn,Z|X1, .., Xn)

which is a rv (as a function of Tn,Z) . It holds

lim
n→∞

Tn,Z = Φ̃ (θ, θ′) a.s

and therefore the Bahadur slope for the test with statistics Tn is Φ (θ′, θ) as follows from

lim
n→∞

1

n
logLn(Tn,Z) = − inf

{
Φ (Q, θT ) : Φ̃ (θ,Q) > Φ̃ (θ, θ′)

}

= − inf {Φ (Q, θT ) : Φ (Q, θ) > Φ (θ′, θ)}
= −Φ (θ′, θ)

if θT = θ. Under H0 the rate of decay of the p−value corresponding to a sampling
under H1 is captured through the divergence Φ (θ′, θ) .

Consider now a competitive test statistics S
(
PW
n,X

)
and evaluate its Bahadur slope.

Similarly as above it holds, assuming continuity of the functional S on SK

lim
n→∞

1

n
logPW

(
S
(
PW
n,X

)
> S

(
PW

′

n,Z

)∣∣∣X1, .., Xn

)
= − inf {Φ (Q, θT ) : S(Q) > S (θ′)}

≥ −Φ (θ′, θT )

as follows from the continuity of Q → Φ (Q, θT ) . Hence the Bahadur slope of the test
based on S

(
PW
n,X

)
is larger or equal Φ (θ′, θ) .

We have proved that the chances under H0 for the statistics Tn,X to exceed a value
obtained under H1 are (asymptotically) less that the corresponding chances associated
with any other statistics based on the same bootstrapped sample; as such it is most
specific on this scale with respect to any competing ones. Namely

Proposition 4.2. Under the weighted sampling the test statistics T
(
PW
n,X

)
is most effi-

cient among all tests which are empirical versions of continuous functionals on SK .
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5 Appendix

5.0.1 A heuristic derivation of the conditional LDP for the normalized weighted

empirical measure

The following sketch of proof gives the core argument which yields to Proposition 3.1.We
look at the probability of the event

PW
n ∈ V (R) (5.1)

for a given vector R in RK , where V (R) denotes a neighborhood of R, therefore defined
through

(Q ∈ V (R)) ⇐⇒ (Q(dl) ≈ R(dl); 1 ≤ l ≤ k)

We denote by P the distribution of the rv X so that Pn converges to P a.s.
Evaluating loosely the probability of the event defined in (5.1) yields, denoting PXn

1

the conditional distribution given (X1, .., Xn)

PXn
1

(
PW
n ∈ V (R)

)
= PXn

1

(
K⋂

l=1

(
1

n

n∑

i=1

WiδXi
(dl) ≈ R(dl)

))

= PXn
1

(
K⋂

l=1

(
1

n

nl∑

i=1

Wi,l ≈ R(dl)

))

=
K∏

l=1

PXn
1

(
1

nl

nl∑

i=1

Wi,l ≈
n

nl
R(dl)

)

=

K∏

l=1

PXn
1

(
1

nl

nl∑

i=1

Wi,l ≈
R(dl)

P (dl)

)

where we used repeatedly the fact that the r.v’sW are i.i.d. In the above display, from the
second line on, the r.v’s are independent copies ofW1 for all i and l. In the above displays
nl is the number of Xi’s which equal dl, and the Wi,l are the weights corresponding to
these Xi’s. Note that we used the convergence of nl/n to P (dl) in the last display.

Now for each l in {1, 2, .., K} by the Cramer LDP for the empirical mean, it holds

1

nl
logP

(
1

nl

nl∑

i=1

Wi,l ≈
R(dl)

P (dl)

)
≈ −ϕW

(
R(dl)

P (dl)

)

i.e.
1

n
logP

(
1

nl

nl∑

i=1

Wi,l ≈
R(l)

P (l)

)
≈ −R(dl)

P (dl)
ϕW

(
R(dl)

P (dl)

)
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as follows from the classical Cramer LDP, and therefore

1

n
logPXn

1

(
PW
n ∈ V (R)

)

≈
1

n
logPXn

1

(
K⋂

l=1

(
1

n

nl∑

i=1

Wi,l ≈ R(dl)

))

→ −
K∑

l=1

ϕW
(
R(dl)

P (dl)

)
P (dl) = −φW (R,P )

as n→ ∞ .
A precise derivation of Proposition 3.1 involves two arguments: firstly for a set Ω

⊂ RK a covering procedure by small balls allowing to use the above derivation locally,
and the regularity assumption (3.1) which allows to obtain proper limits in the standard
LDP statement.

The argument leading from Proposition 3.1 to Theorem 3.1 can be summarized now.
For some subset Ω in SK with non void interior it holds

(
PW
n ∈ Ω

)
=
⋃

m6=0

(
(
PW
n ∈ mΩ

)
∩
(

n∑

i=1

Wi = m

))

and
(
PW
n ∈ mΩ

)
⊂ (
∑n

i=1Wi = m) for all m 6= 0. Therefore

PXn
1

(
PW
n ∈ Ω

)
= PXn

1

(
⋃

m6=0

(
PW
n ∈ mΩ

)
)
.

Making use of Theorem 3.1

lim
n→∞

1

n
logPXn

1

(
PW
n ∈ Ω

)
= −φW

(
⋃

m6=0

mΩ, P

)
.

Now

φW

(
⋃

m6=0

mΩ, P

)
= inf

m6=0
inf
Q∈Ω

φW (mQ,P ) .

We have sketched the arguments leading to Theorem 3.1; see [10] for details.
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