

The type IX secretion system is required for virulence of the fish pathogen Flavobacterium psychrophilum

Paul Barbier, Tatiana Rochat, Haitham H Mohammed, Gregory D Wiens, Jean-François Bernardet, David Halpern, Éric Duchaud, Mark J Mcbride

► To cite this version:

Paul Barbier, Tatiana Rochat, Haitham H
 Mohammed, Gregory D Wiens, Jean-François Bernardet, et al.. The type IX secretion system is required for virul
ence of the fish pathogen Flavobacterium psychrophilum. Applied and Environmental Microbiology, 2020, 86 (16), 10.1128/AEM.00799-20. hal-02936624

HAL Id: hal-02936624 https://hal.science/hal-02936624

Submitted on 11 Sep 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

0
(

Accepted Manuscript Posted Online

Applied and Environmental Microbiology

AEM

2 3 4 5	Title: The type IX secretion Flavobacterium psychroph	on system is required for virulence of the fish pathogen <i>ilum</i> .	
6 7	Authors: Paul Barbier ¹ , Tatiana Rochat ² , Haitham H. Mohammed ^{1, 3} , Gregory D. Wiens ⁴ , Jean-		
8	François Bernardet ² , David	Halpern ⁵ , Eric Duchaud ² , and Mark J. McBride ¹ *	
9	Author affiliations:		
10 11 12	¹ Department of Biological S WI 53201	Sciences, University of Wisconsin-Milwaukee, P. O. Box 413, Milwaukee,	
12 13 14	² Université Paris-Saclay, IN	IRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France.	
15 16 17	³ Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt		
17 18 19 20	⁴ National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, Kearneysville, WV 25430		
21 22 23	⁵ Université Paris-Saclay, IN France.	IRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas,	
24	Paul Barbier and Tatiana Ro	ochat contributed equally to this work. Order of these authors was	
25	determined alphabetically.		
26			
27	* Corresponding author:	Mark J. McBride	
28		Telephone: (414) 229-5844	
29		Fax: (414) 229-3926	
30		mcbride@uwm.edu	
31			

32 33 Running Title: Type IX secretion and F. psychrophilum virulence

1ta	
Ime	
/Iron	ogy
ŝ	biol
and	Aicro
<u>eo</u>	~
ddt	

34	ABSTRACT: Flavobacterium psychrophilum causes bacterial cold-water disease in wild
35	and aquaculture-reared fish, and is a major problem for salmonid aquaculture. The mechanisms
36	responsible for cold-water disease are not known. It was recently demonstrated that the related
37	fish pathogen, Flavobacterium columnare, requires a functional type IX protein secretion system
38	(T9SS) to cause disease. T9SSs secrete cell-surface adhesins, gliding motility proteins,
39	peptidases, and other enzymes, any of which may be virulence factors. The F. psychrophilum
40	genome has genes predicted to encode components of a T9SS. Here, we used a SacB-mediated
41	gene deletion technique recently adapted for use in the <i>Bacteroidetes</i> to delete a core <i>F</i> .
42	<i>psychrophilum</i> T9SS gene, <i>gldN</i> . The $\Delta gldN$ mutant cells were deficient for secretion of many
43	proteins in comparison to wild-type cells. Complementation of the mutant with wild-type gldN
44	on a plasmid restored secretion. Compared to wild-type and complemented strains, the $\Delta gldN$
45	mutant was deficient in adhesion, gliding motility, and in extracellular proteolytic and hemolytic
46	activities. The $\Delta gldN$ mutant exhibited reduced virulence in rainbow trout and complementation
47	restored virulence, suggesting that the T9SS plays an important role in the disease.
48	IMPORTANCE: Bacterial cold-water disease, caused by <i>F. psychrophilum</i> , is a major
49	problem for salmonid aquaculture. Little is known regarding the virulence factors involved in
50	this disease, and control measures are inadequate. A targeted gene deletion method was adapted
51	to F. psychrophilum and used to demonstrate the importance of the T9SS in virulence. Proteins

secreted by this system are likely virulence factors, and targets for the development of control

53 measures.

55	mortality for aquaculture-reared salmonids, such as rainbow trout (Oncorhynchus mykiss) (1-3).
56	Ayu (Plecoglossus altivelis), European eel (Anguilla anguilla), and other fish are also impacted
57	by this pathogen (2-5). F. psychrophilum infections cause bacterial cold-water disease (BCWD),
58	which often results in erosion of the tail, destruction of tissues near the dorsal fin (saddleback
59	lesion), and systemic spread to internal organs such as the spleen and kidney. In young fish
60	mortality may occur rapidly and without obvious surface lesions, a condition sometimes referred
61	to as rainbow trout fry syndrome. F. psychrophilum infections are a challenge to sustainable
62	aquaculture of salmonids, and result in large economic losses (6). The mechanisms used by F .
63	psychrophilum to cause disease are poorly understood and methods to prevent or control
64	outbreaks are inadequate.
65	Antibiotic treatments have been the primary method to control outbreaks of BCWD (2,
66	7). The expense of such treatments, the danger of development of resistant strains, and the
67	potential spread of antibiotic resistance genes to other bacteria make this a poor solution.
68	Vaccine development has been complicated by the need to protect young fry that may not have
69	fully developed immune systems, uncertainties regarding the most protective antigens, and the
70	need to efficiently administer the vaccine to large numbers of fish (6). Bacteriophages are
71	promising tools to control outbreaks, but additional studies are needed to determine if this
72	approach will be broadly successful (8). Rainbow trout lines resistant to F. psychrophilum have
73	also been developed and used to control the disease (9-11). Improved understanding of the
74	mechanisms used by F. psychrophilum to cause disease could aid the continued development of
75	these and other measures to prevent or control BCWD outbreaks.

The fish pathogen Flavobacterium psychrophilum is a major cause of disease and

76	Previous studies identified F. psychrophilum genes and proteins that may be involved in
77	disease. Peptidases, and other secreted enzymes, and cell-surface adhesins are suspected to be
78	involved (1, 2, 12, 13). F. psychrophilum gliding motility, which allows cells to crawl over
79	surfaces, has also been suggested as a potential virulence factor (7, 14). Genome analyses suggest
80	that F. psychrophilum uses the type IX secretion system (T9SS) to secrete many proteins to the
81	cell surface and beyond (15, 16). T9SSs are common in, but apparently confined to, members of
82	the phylum Bacteroidetes (16-20). T9SSs secrete cell-surface adhesins, and soluble or cell-
83	associated peptidases, nucleases, and other hydrolytic enzymes. T9SSs also secrete motility
84	adhesins to the cell surface and are thus required for gliding motility (21-23). These adhesins are
85	propelled along the cell surface by the rest of the gliding motility machinery, resulting in cell
86	movement (24). Core components of the T9SS include the cytoplasmic membrane proteins GldL
87	and GldM, the periplasmic protein GldN, the lipoprotein GldK, and the outer membrane protein
88	SprA (25-29). These proteins are thought to form an envelope spanning complex that secretes
89	proteins through the outer membrane SprA channel (22, 25, 27). GldL and GldM have been
90	proposed to harvest the proton gradient across the cytoplasmic membrane to power both secretion
91	and gliding (22, 27). Additional proteins involved in secretion are associated with these core
92	components (18-20).
93	Proteins secreted by the T9SS have N-terminal signal peptides that facilitate their export

Proteins secreted by the T9SS have N-terminal signal peptides that facilitate their export
across the cytoplasmic membrane by the Sec system, and C-terminal domains (CTDs) that target
them to the T9SS for secretion across the outer membrane (18-20). Most characterized T9SS
CTDs belong to either the TIGRFAM protein domain family TIGR04183 (type A CTDs) or to
TIGR04131/pfam13585 (type B CTDs) (30, 31). Type A CTDs are typically removed during or
after secretion (32), but removal of type B CTDs has not been carefully examined. Some proteins

AEM

99	secreted by T9SS are secreted in soluble form, whereas others become covalently attached to the
100	cell surface (17, 33-35). Genome analyses can be used to identify genes predicted to encode
101	proteins with type A CTDs or type B CTDs, thus facilitating discovery of proteins secreted by
102	T9SSs (30, 34). Many Bacteroidetes are predicted to secrete dozens to hundreds of proteins using
103	this system, and T9SS-mediated secretion of many of these proteins has been biochemically
104	verified (34, 36, 37).
105	Recent experiments demonstrate that T9SSs are required for virulence of the human
106	pathogens Porphyromonas gingivalis and Prevotella melanogenica, the fish pathogen
107	Flavobacterium columnare, and the bird pathogen Riemerella anatipestifer (17, 21, 38-41). In
108	each case, disruption of a gene encoding a core component of the T9SS resulted in secretion
109	defects and loss of virulence. Proteins secreted by the T9SSs of each of these organisms are thus
110	potential virulence factors. The role of core components of the F. psychrophilum T9SS in
111	virulence has not been directly explored, but mutations in $gldD$ and $gldG$ that disrupted gliding
112	motility and virulence also impacted the T9SS (14).
113	Methods to genetically manipulate F. psychrophilum have been developed (42, 43). These
114	include replicative plasmids, transposons, and methods to make site directed insertions or
115	deletions by homologous recombination. Genetic manipulations remain challenging however, at
116	least in part because of the low frequencies of gene transfer into F. psychrophilum (42). This is
117	especially challenging for the gene deletion approach described above, which requires multiple
118	rounds of gene transfer (43). Another method to construct gene deletions was recently developed
119	for F. columnare (44), and modified for use in many other Bacteroidetes (45). This method
120	involves cloning regions upstream and downstream of the target gene into a plasmid that cannot
121	replicate in members of the Bacteroidetes. The plasmid is introduced into the bacterium and gene
	5

5

Applied and Environmental Microbiology Applied and Environmental

Microbioloav

122 deletion occurs as a result of two recombination events between the regions on the plasmid and 123 the identical sequences on the chromosome. The plasmid carries an antibiotic resistance gene that 124 allows selection for the first recombination (integrating the plasmid into the chromosome) and 125 sacB, which confers sensitivity to sucrose, allowing selection for the second recombination (45, 126 46). Here we describe the use of this system to construct an F. psychrophilum gldN deletion 127 mutant, and demonstrate the importance of the T9SS for F. psychrophilum virulence. 128

129 RESULTS

130

131 The F. psychrophilum T9SS and predicted T9SS-secreted proteins. Analysis of the F. 132 psychrophilum strain OSU THCO2-90 genome (47) revealed each of the T9SS components 133 (Table S1), as previously reported for other F. psychrophilum strains (15-17). Most known 134 proteins that are secreted by T9SSs have CTDs that belong to either TIGRFAM protein family 135 TIGR04183 (type A CTDs) or TIGR04131/pfam13585 (type B CTDs). We examined the 2344 136 predicted F. psychrophilum strain OSU THCO2-90 proteins and identified 49 proteins predicted 137 to be secreted by the T9SS. Thirty-nine of these had type A CTDs (Table 1) and ten had type B 138 CTDs (Table 2). This probably underestimates the number of T9SS-secreted proteins, because 139 some proteins secreted by T9SSs have novel CTDs that are not easily assigned to either the type 140 A or type B CTD families (33). Included in the 49 predicted secreted proteins are nine predicted 141 peptidases, two predicted nucleases, one predicted lipase, one predicted glycoside hydrolase, and 142 28 potential adhesins, any of which may contribute to virulence. The 28 potential adhesins 143 include 17 that contain leucine-rich repeats (LRR) and are encoded by tandemly organized genes 144 (Table 1). These LRR proteins are similar to Bacteroides forsythus BspA and Treponema

145	denticola LrrA, which are proposed to be involved in attachment to host cells (48, 49). One of
146	the non-LRR adhesins, SprB, is involved in gliding motility in related bacteria (50).
147	Flavobacterium johnsoniae SprB is propelled along the cell surface, resulting in cell movement
148	(24, 50). SprB-mediated gliding of F. psychrophilum cells over and through fish mucus and
149	tissues may be important for virulence. The 49 predicted T9SS-secreted proteins are highly
150	conserved in other F. psychrophilum strains. Orthologs of each protein were present in the three
151	additional F. psychrophilum strains that we examined, JIP 02/86, CSF-259-93, and the type
152	strain ATCC 49418 ^T (12, 13, 51).
153	Previous studies of F. johnsoniae revealed general features of T9SS-secreted proteins
154	(30) that we examined here for F. psychrophilum. As with F. johnsoniae, F. psychrophilum
155	proteins with type B CTDs were typically much larger than those with type A CTDs (Tables 1
156	and 2). The median sizes of proteins with type A CTDs and type B CTDs were 46.0 kDa and
157	179.5 kDa respectively, and the largest proteins with type A CTDs and type B CTDs were 142.1
158	kDa and 366.8 kDa respectively. As for F. johnsoniae, many F. psychrophilum proteins with
159	type A CTDs are predicted or known to have enzymatic functions, whereas this was not the case
160	for any proteins with type B CTDs (Tables 1 and 2). Instead, many of the type B CTD proteins
161	are suspected to be cell surface adhesins, at least one of which (SprB) is likely involved in
162	gliding motility.
163	F. johnsoniae proteins with type B CTDs require the assistance of additional outer
164	membrane proteins that belong to the PorP/SprF protein domain family TIGR03519 for secretion
165	by the T9SS (30, 52). In many cases these PorP/SprF-like proteins are specific for individual
166	secreted proteins. F. johnsoniae SprB, for example, requires co-expression with SprF for its

167 secretion. PorP/SprF-like proteins are often encoded by the genes immediately downstream of

AEM

168

169	OSU THCO2-90 has seven <i>porP/sprF</i> like genes (Tables S1 and S2), and six of these lie
170	immediately downstream of genes encoding type B CTD proteins. This synteny suggests that, as
171	for F. johnsoniae, these six F. psychrophilum type B CTD proteins may each require their
172	cognate PorP/SprF-like proteins for secretion. The remaining four type B CTD proteins may use
173	the 'orphan' PorP/SprF protein, THC0290_0614, although other possibilities exist. Three of the
174	F. psychrophilum porP/sprF genes lie immediately upstream of, and are transcribed in the same
175	direction as, genes encoding predicted peptidoglycan-binding proteins related to P. gingivalis
176	PG1058, which is required for T9SS function (53). These proteins share similarity to the C-
177	terminal peptidoglycan-binding domain of Escherichia coli OmpA (54, 55). The secreted type B
178	CTD proteins, PorP/SprF-like proteins, and PG1058-like proteins may form cell-surface
179	complexes, as predicted for similar F. johnsoniae proteins (30).
180	sacB-mediated deletion of the F. psychrophilum T9SS gene gldN. To investigate the
181	role of the T9SS in <i>F. psychrophilum</i> virulence, we deleted <i>gldN</i> , which is essential for T9SS
182	function in related bacteria (17, 21, 56). Regions upstream and downstream of gldN of
183	approximately three-kbp in size were amplified by PCR, inserted into the sacB-containing
184	suicide vector pYT313 (45) and introduced into F. psychrophilum strain OSU THCO2-90 by
185	conjugation. Selection for erythromycin resistance resulted in 123 colonies. These had the
186	plasmid inserted in the genome by homologous recombination either upstream or downstream of
187	gldN. Three colonies were streaked for isolation, and then grown in broth culture without
188	selection to allow a second recombination event, resulting in loss of the inserted plasmid. These
189	cultures were selected for sucrose resistance, and hundreds of colonies lacking the plasmid were
190	
	obtained. Plasmid loss was expected to result in approximately equal numbers of wild-type

those encoding their cognate type B CTD-containing secreted proteins. F. psychrophilum strain

AFM

191 colonies and *gldN* deletion mutant colonies, depending on whether the second recombination 192 occurred on the same side of *gldN* as the first recombination or on the opposite side, respectively. 193 PCR analyses using primers flanking *gldN* were used to identify deletion mutants. Of eleven 194 independent sucrose resistant colonies examined, seven had *gldN* deleted, and the remaining four 195 had *gldN* intact and were thus wild type. One representative mutant colony (FpT13), which we 196 refer to as $\Delta gldN$, was selected for further analysis.

197 GldN is required for gliding motility and formation of spreading colonies. GldN is 198 required for gliding motility in related bacteria (21, 56-58). Cells of wild-type F. psychrophilum 199 moved over agar by gliding, whereas cells of the $\Delta gldN$ mutant did not (Fig. 1, and Movie S1). 200 Complementation of the $\Delta gldN$ mutant by introduction of pBFp4, which carries gldN, restored 201 gliding motility. As a result of the gliding movements, cells of the wild-type and complemented 202 strains formed thin spreading colonies on 5% TYES medium (TYES diluted 20-fold) that was 203 solidified with agar (10 g/l), whereas cells of the $\Delta gldN$ mutant formed nonspreading colonies 204 (Fig. 2). In our experiments, the wild type formed spreading colonies on TYES agar media in 205 which all components except the agar had been diluted at least 2-fold, and all of the strains 206 formed nonspreading colonies on full-strength TYES agar (data not shown). This is consistent 207 with previous results that demonstrated that spreading F. psychrophilum colonies were only 208 observed on nutrient-poor media or media prepared with decreased amounts of agar (59).

209The gldN deletion mutant appears to be deficient in protein secretion. Cell-free210culture fluid from wild-type, mutant and complemented strains were examined by SDS-PAGE211for soluble secreted proteins. The $\Delta gldN$ mutant cells released much less protein than did wild-212type or complemented cells (Fig. 3), suggesting a protein secretion defect. Samples of cell-free213culture fluid were examined by liquid chromatography-tandem mass spectrometry (LC-MS/MS).

214	The number of spectral counts of predicted secreted proteins detected are shown in Table 3. In
215	most cases, the $\Delta gldN$ mutant had far fewer spectral counts than did the wild-type or
216	complemented strains, corroborating a secretion defect in the mutant. The exceptions were
217	primarily the secreted leucine-rich repeat (LRR) proteins. All predicted LRR proteins had type A
218	T9SS CTDs, and requirement of GldN for their secretion was expected. However, LRR proteins
219	were detected in the cell-free spent culture fluid of both wild-type and mutant cells, and in some
220	cases higher amounts were detected for the culture fluid of the $\Delta gldN$ mutant. We do not know
221	the reason for this observation, but the $\Delta gldN$ mutant did not appear to have a general
222	permeability defect, as revealed by Fig. 3 and by the full LC-MS/MS data set that includes all
223	proteins detected in the cell-free spent medium (Dataset S1), which had very few spectra
224	corresponding to ribosomal proteins or other abundant cytoplasmic proteins.
225	Deletion of <i>gldN</i> results in decreased extracellular proteolytic activity. <i>F</i> .
226	<i>psychrophilum</i> secretes many peptidases (14). We examined wild-type, $\Delta gldN$ mutant, and
227	complemented strains of F. psychrophilum for extracellular proteolytic activity on TYESG agar
228	supplemented with casein (Fig. 4A). Wild-type and complemented strains formed clearing zones
229	around the cell growth, indicating digestion of casein, whereas the $\Delta gldN$ mutant did not.
230	Extracellular proteolytic activity in cell-free spent culture medium from each strain was
231	quantified using an azocasein-based assay (Fig. 4B). For wild-type and complemented strains,
232	high levels of soluble extracellular proteolytic activities that increased over time through late
233	exponential and early stationary phases of growth were detected. In contrast, extracellular
234	proteolytic activities for the $\Delta gldN$ mutant were low and failed to increase over time. In vitro cell
234 235	growth kinetics in TYESG broth cultures were not affected by $gldN$ deletion (Fig. 4B). TYESG

237

238

239

240

241

242

signs of tissue erosion (60, 61).

The *gldN* deletion mutant is deficient in hemolytic activity and hemoglobin

the lack of requirement for high levels of secreted peptidases for growth in this medium. In

contrast, the lack of peptidase secretion may impair growth of $\Delta gldN$ mutant cells within the

host. Wild-type F. psychrophilum produces peptidases (some apparently strain dependent) that

digest collagen, fibrinogen, elastin and fish muscle tissue, and fish with BCWD often present

243 utilization. Hemoglobin is the most abundant reservoir of iron in vertebrates, and represents an 244 attractive nutrient source for pathogenic bacteria (62). F. psychrophilum infections in young 245 rainbow trout result in hemorrhagic septicemia. This bacterium lyses rainbow trout erythrocytes 246 and uses hemoglobin as an iron source for growth (63, 64). Wild-type cells grown on TYESG 247 agar supplemented with rainbow trout blood exhibited hemolytic activity whereas cells of the 248 $\Delta gldN$ mutant did not (Fig. 5). Hemolysis by the wild-type strain was accompanied by brown 249 coloration of the colonies, which was not observed for the $\Delta gldN$ mutant. The introduction of 250 gldN on pBFp4 into the $\Delta gldN$ mutant restored the phenotypic properties associated with the 251 wild-type strain, indicating that hemolysis and the brown coloration are dependent on a 252 functional T9SS. Dark colony pigmentation on blood agar occurs for other pathogenic bacteria 253 and may result from binding of hemoglobin or heme to the surface of bacterial cells. In P. 254 gingivalis, hemoglobin released following lysis of erythrocytes is digested by gingipain proteases 255 that are secreted by the T9SS. The released heme accounts for the black pigmentation of P. 256 gingivalis colonies and contributes to oxidative stress resistance (65). To evaluate the role of the 257 F. psychrophilum T9SS in hemoglobin utilization, wild-type and mutant strains were grown to 258 stationary phase in TYESG broth supplemented with 0.5 µM hemoglobin. Residual free heme 259 and hemoglobin were measured using a porphyrin detection method that relies on growth

260 stimulation of a heme-auxotrophic bacterial reporter strain (66). Stationary phase wild-type 261 cultures resulted in minimal growth stimulation of the reporter, indicating little if any residual 262 porphyrin in the medium (Fig. 6). In contrast, uninoculated medium, or stationary phase cultures 263 of the $\Delta gldN$ mutant, stimulated growth of the reporter, indicating that little if any heme 264 porphyrin was used by the $\Delta gldN$ mutant cells. Hemoglobin consumption was restored to the 265 $\Delta gldN$ mutant by introduction of gldN on pBFp4. The results indicate that a functional T9SS is 266 required for efficient hemoglobin utilization by F. psychrophilum. This may in part involve 267 secretion of peptidases that cleave hemoglobin, releasing heme. The brown color of wild-type 268 colonies (Fig. 5) suggests that released heme was captured by the cells. Heme was likely 269 imported into wild-type F. psychrophilum cells, because it was absent in the medium after 270 growth.

271

The gldN deletion mutant is deficient in adhesion, biofilm formation, and cell

272 sedimentation. Wild-type F. psychrophilum cells adhere readily to polystyrene (67). Cells of the 273 $\Delta gldN$ mutant were partially deficient in adhesion to polystyrene compared to wild-type cells or 274 to cells of the complemented mutant (Fig. 7A). Adhesion of cells to a surface is the first step in 275 biofilm formation, and F. psychrophilum is known to form biofilms on polystyrene (68, 69). The 276 $\Delta gldN$ mutant was deficient in biofilm formation compared to the wild-type and complemented 277 strains (Fig. 7B). F. psychrophilum cells also interact with each other, causing them to sediment 278 from suspension (14). Wild-type and complemented $\Delta gldN$ mutant cells readily sedimented from 279 suspension, whereas the $\Delta gldN$ mutant cells did not (Fig. 7C). The results indicate that the T9SS 280 is involved in efficient adhesion, biofilm formation, and sedimentation, as was also suggested by 281 analysis of F. psychrophilum gldD and gldG mutants (14). The many predicted adhesins

282

283

284

285 complemented strains were examined for virulence using a rainbow trout injection challenge (70). At the dose examined $(2.8 \times 10^6 \text{ CFU/fish})$ intramuscular injection of the $\Delta gldN$ mutant 286 287 caused no mortalities, whereas exposure to similar doses of the wild-type and complemented 288 strains resulted in greater than 60% mortalities within 10 d of challenge (Fig. 8). The 289 complemented strain was less virulent than the wild type. F. psychrophilum was isolated from all 290 mortalities examined: wild-type (n=13/13 fish), and $\Delta gldN$ complemented with pBFp4 (n=11/11 291 fish). 292 The effect of gldN deletion on the virulence of F. psychrophilum was also investigated 293 using an immersion model that more closely mimics the natural route of infection. Fish were 294 bathed for 24 h in water containing wild-type, $\Delta gldN$ mutant or complemented strains at final concentrations of $\sim 2 \times 10^7$ CFU/ml (Fig. 9A). Virulence was compared between the three strains 295 296 by recording the mortality rates and by determining the F. psychrophilum bacterial loads in 297 external (gills) and internal (spleen) organs. Five days after the immersion challenge, 93% of fish 298 infected with the wild-type strain had died (Fig. 9B). In contrast, the cumulative mortality of fish 299 exposed to the $\Delta gldN$ mutant was less than 2%, and was similar to that of the non-infected 300 control group. Complementation with pBFp4 restored virulence to the $\Delta gldN$ mutant, resulting in

demonstrated to be secreted by the T9SS (Tables 1-3) may explain some of the defects in these

GldN is required for virulence in rainbow trout. Wild-type, $\Delta gldN$ mutant, and

processes, which each require adhesion, in the $\Delta gldN$ mutant cells.

301 cumulative mortality similar to that caused by the wild type. The increased time-to-death

302 observed for fish exposed to the complemented strain compared to the wild-type strain may be a 303 result of the increased copy number of *gldN* or of an effect of the *gldN* deletion on expression of

- 303 result of the increased copy number of gldN or of an effect of the gldN deletion on expression of
- 304 nearby genes. Six of each group of 42 fish were arbitrarily sampled for the presence of F.

psychrophilum 6 h and 30 h after the end of the immersion challenge. At 30 h, F. psychrophilum 305 306 was detected at high levels in the gills (average, 6×10^3 CFU per gill arch) and spleen (4×10^4 307 CFU per spleen) of all fish exposed to the wild-type strain (Fig. 9C). Strikingly, the bacterium 308 was detected in the organs of only five out of 24 fish exposed to the $\Delta gldN$ mutant, and bacterial 309 loads were significantly lower compared to fish exposed to the wild type. Bacterial loads in the 310 spleen and gills of fish exposed to the complemented mutant were similar to those of fish 311 exposed to the wild type. Together, the results indicate that a functional T9SS is required for full 312 virulence of F. psychrophilum in rainbow trout.

313 DISCUSSION

314 F. psychrophilum is an important pathogen of aquaculture-reared salmonids and ayu and 315 results in large economic losses for the aquaculture industry worldwide. Genetic manipulation to 316 identify F. psychrophilum virulence factors has been hampered by the lack of efficient genetic 317 tools. Here we demonstrate the usefulness of a *sacB*-mediated gene deletion system to construct 318 mutations in F. psychrophilum, and we use this approach to demonstrate that the T9SS is 319 required for virulence.

320 A gene deletion procedure was previously developed for F. psychrophilum strain OSU 321 THCO2-90 (43). This double recombination procedure was similar to the one described here, but 322 relied on an introduced restriction enzyme site for counter-selection against strains carrying the 323 integrated plasmid. While the procedure allowed mutant construction, it was inefficient, 324 presumably because of the multiple rounds of gene transfer required to introduce the integrative 325 plasmid and later introduce the restriction enzyme-encoding plasmid. Here we used a procedure 326 that was demonstrated to allow efficient targeted mutagenesis of other members of the genus

327 Flavobacterium and phylum Bacteroidetes (44, 45). This procedure, adapted to F.

328 psychrophilum, required a single gene transfer event, relied on sacB-mediated sucrose sensitivity 329 for counterselection, and resulted in many F. psychrophilum gene deletion colonies. This 330 approach allows efficient targeted mutagenesis of F. psychrophilum strain OSU THCO2-90. 331 However, many other F. psychrophilum strains have resisted gene transfer (42), and additional 332 research is needed before similar studies will be possible for a diverse collection of F. 333 psychrophilum strains. 334 Genome analysis revealed F. psychrophilum OSU THCO2-90 genes encoding T9SS 335 components. Forty-nine proteins predicted to be secreted by this system were also identified, 336 including predicted peptidases, nucleases, adhesins, and motility proteins, any of which could 337 contribute to virulence. Each of the predicted secreted proteins were conserved across the genomes of the four F. psychrophilum strains analyzed (OSU THCO2-90, ATCC 49418^T, JIP 338 339 02/86, and CSF-259-93), and many of them were identified as secreted proteins by proteomic 340 analyses (Table 3). Many of the proteins secreted by the F. psychrophilum T9SS were previously 341 identified as predicted virulence factors in the initial genome analysis of strain JIP 02/86 (12). Of 342 the 13 peptidases identified as potential virulence factors in that study, seven have type A CTDs 343 (FP0082, FP0086, FP0231, FP0232, FP0280, FP0281, and FP1763). Two additional peptidase-344 encoding genes appear disrupted in strain JIP 02/86 (FP1776/FP1777 and FP1024/FP1023), 345 whereas strain OSU THCO2-90 has full length orthologous genes (THC0290_0931 and 346 THC0290 1343, respectively) encoding predicted peptidases with type A CTDs (Tables 1 and 347 3). Duchaud et al (12) also identified genes encoding 27 predicted adhesins, including 15 348 tandemly arrayed genes that encode proteins with LRRs that were similar to B. forsythus BspA 349 and T. denticola LrrA (48, 49). F. psychrophilum OSU THCO2-90 has 17 tandemly arrayed 350 genes encoding LRR proteins that are similar to those of strain JIP 02/86 (Table 1). Each of these

352

353	(12), with strain OSU THCO2-90 orthologs indicated in parentheses, include the type A CTD
354	protein FP1830 (THC0290_0878), and the type B CTD proteins FP2413 (THC0290_2338),
355	FP0016 (THC0290_0025; SprB), and FP0595 (THC0290_1616).
356	GldN was originally identified as an F. johnsoniae gliding motility protein (57), and was
357	later shown to be a core component of the F. johnsoniae and P. gingivalis T9SSs (17, 56). gldN
358	is required for T9SS-mediated secretion in F. johnsoniae, F. columnare, and P. gingivalis (17,
359	21, 56). Similarly, as shown here, F. psychrophilum gldN was required for both gliding motility
360	and T9SS function. The gldN mutant was nonmotile, and appeared to be deficient in secretion of
361	many proteins, including predicted peptidases, hemolysins, and adhesins. Deletion of gldN
362	greatly reduced the extracellular proteolytic and hemolytic activities of cells, and also reduced
363	their adhesiveness and ability to form biofilms. Motility, adhesion, proteolysis, hemolysis, and
364	ability to form biofilms have all been suggested to play roles in BCWD (1, 2, 7, 12, 13, 71). The
365	only correlation observed between virulence (estimated by LD50 using intramuscular injection
366	challenge) and these phenotypic traits in a recent study of 26 F. psychrophilum isolates was that
367	the avirulent strain studied was deficient in colony spreading and exoproteolytic activity (7),
368	suggesting a probable T9SS deficiency. Adhesins may allow initial attachment, and motility
369	could facilitate penetration of tissues and spread of the infection. Secreted peptidases and
370	hemolysins may digest host tissues and proteins, providing nutrients to the bacterium and/or
371	destroying host defenses. The $\Delta gldN$ mutant was completely deficient in virulence in rainbow
372	trout infected by injection or immersion. An <i>in vivo</i> adhesion defect of the $\Delta gldN$ mutant is
373	suggested by the reduced recovery of F. psychrophilum cells from gill tissue 6 h after exposure

have type A CTDs (as do the strain JIP 02/86 LRR proteins), and are thus predicted to be

secreted by the T9SS. Other previously predicted T9SS-secreted adhesins of strain JIP 02/86

16

375

376

377

ied and Environmental

Microbiology

378 fish pathogens. 379 The results reported here are consistent with those obtained by Pérez-Pascual et al. (14) 380 who examined transposon-induced motility mutants of F. psychrophilum for virulence. In that 381 study, mutations in the motility genes gldD and gldG were linked to T9SS defects, resulting in 382 reduction in extracellular proteolytic activity, adhesiveness, and virulence (14). GldD and GldG 383 are not core T9SS components, and are absent from nonmotile bacteria that have T9SSs, such as 384 P. gingivalis (16). However, recent studies of F. johnsoniae indicate that the gliding motility and 385 T9SS machineries are intertwined (23), and suggest an explanation for the phenotypes of the F. 386 psychrophilum gldD and gldG mutants. In F. johnsoniae, absence of motility protein GldJ results 387 in apparent instability of the T9SS protein GldK, and thus in loss of protein secretion (23). 388 Further, mutations in some other motility genes (including gldD and gldG) result in apparent 389 instability of GldJ protein (72), and thus in loss of GldK and of T9SS function (23). The apparent 390 interconnections between the motility and T9SS machineries may explain how mutations in the 391 F. psychrophilum motility genes gldD and gldG perturb T9SS function. 392 Our results may also help to explain the lack of virulence of rifampicin resistant F. 393 *psychrophilum* mutants that have been isolated and examined as vaccine candidates (73). The 394 most attenuated of these strains were deficient in motility (74). Given the link between gliding 395 motility and the T9SS described above, the mutants may have also been compromised for protein 396 secretion, which could have contributed to the attenuated phenotype.

by immersion (Fig. 9C). Loss of secretion of enzymes, adhesins, and motility proteins, may

demonstrated to be critical for F. columnare to cause columnaris disease (21), suggesting

similarities between at least some aspects of the virulence strategies employed by these related

together result in the avirulent phenotype of the mutant. The T9SS was also recently

ō	
Jen	
onme	≥
	0
Ē	.0
and	licro
<u>6</u>	Σ
do	

397	The proteomic analysis of spent cell-free culture fluid confirmed our predictions
398	regarding secretion of many proteins that carried type A or type B CTDs, but also revealed some
399	unexpected results. Numerous LRR proteins, each of which had type A CTDs, were predicted to
400	be secreted by the T9SS, but surprisingly, many of these were found at similar, or for some
401	higher, levels in the cell-free culture fluid of the $\Delta gldN$ mutant. The LRR proteins were predicted
402	to be cell-surface proteins (12). We do not know why similar amounts of LRR proteins were
403	found in the cell-free spent culture fluids of wild-type and $\Delta gldN$ mutant cells. Perhaps the LRR
404	proteins were not actually secreted in soluble form, but instead were present on the surface of, or
405	inside of, extracellular outer membrane vesicles released by wild type and mutant cells
406	respectively. Our proteomic results for secretion of LRR proteins by wild type and $\Delta gldN$ mutant
407	cells differ from those obtained in a similar study of wild type, <i>gldD</i> , and <i>gldG</i> mutant cells (14).
408	The gldD and gldG mutants secreted much smaller amounts of LRR proteins than did wild type
409	cells. We do not know the reasons for this difference. As discussed above, GldD and GldG, are
410	not thought to be components of the T9SS, but they impact its function. Mutations in $gldD$ and
411	gldG may thus affect the functioning of the T9SS differently than mutations in gldN, which
412	encodes a core component of the system.
413	The 49 proteins with type A and type B CTDs that are predicted to be secreted by the F .
414	psychrophilum T9SS probably underestimate the actual number of proteins secreted by this
415	system, since some T9SS-secreted proteins from related bacteria have novel CTDs (33).
416	Supporting this, deletion of gldN appeared to disrupt secretion of many proteins that lacked
417	obvious T9SS CTDs (Dataset S1). Included among these proteins are 14 predicted peptidases
418	that may contribute to virulence. Analysis of the C-terminal regions of seven proteins that lacked
419	obvious type A or type B CTDs but that appeared to be secreted by the T9SS as indicated by

420	Dataset S1, and by the results of a previous study (14) revealed two putative adhesins
421	(THC0290_0754 and THC0290_2201) and one probable peptidase (THC0290_0500) that exhibit
422	some similarity to T9SS CTDs (Fig. S1). These may represent a novel T9SS CTD type, or may
423	indicate that the sequence constraints delineating CTD domains may need to be relaxed to avoid
424	false negatives. Identification of additional proteins secreted by the T9SS will not be surprising
425	given our current limited understanding of the functioning of this system. An alternative
426	potential explanation for the apparent T9SS-mediated secretion of some non-CTD proteins is that
427	deletion of gldN, which is expected to result in the failure of numerous cell-surface proteins to
428	reach their destination, could have pleotropic effects on the cell surface that perturb other protein
429	secretion systems. F. psychrophilum has multiple predicted type I secretion systems (12) that
430	could have been affected in this way.
431	Our analyses of F. psychrophilum motility proteins SprC and SprD identified some
432	unexpected features that were not immediately obvious from earlier studies. F. johnsoniae SprC
433	was not previously recognized as a potential T9SS-secreted protein (30, 52). F. psychrophilum
434	SprC also fell below the trusted cutoff for inclusion in type B CTD family TIGR04131, but it had
435	a conserved region (pfam13585; Table 2) that is found in all type B CTDs. The regions
436	recognized by TIGR04131 and pfam13585 are nearly identical (19). Further, sprD, which is
437	immediately downstream of <i>sprC</i> , encodes a protein with a PorP/SprF-like region (TIGR03519;
438	Table S2), suggesting that it may interact with SprC and facilitate its secretion by the T9SS.

439 Similar conserved regions are found in SprC (pfam13585) and SprD (TIGR03519) proteins of F.

440 columnare and other related bacteria. sprC, sprD, sprB, and sprF appear to form an operon in F.

- 441 psychrophilum and in many other Bacteroidetes, and SprC and SprD support SprB-mediated
- 442 gliding motility (30, 52). As mentioned above, SprB also requires its cognate PorP/SprF-like

Microbiology

protein (SprF) for its secretion (30). The results presented here enhance our understanding of the
possible interactions between these four common *Bacteroidetes* gliding motility proteins, and
their relationships to the T9SS.

446 The F. psychrophilum T9SS is important for virulence, but which of the many secreted 447 proteins contribute to BCWD remains unclear. The roles of the individual secreted proteins can 448 now be examined systematically using the gene deletion approach described above. Since this 449 deletion technique does not leave antibiotic resistance genes or other foreign DNA in the mutant, 450 it can be used iteratively to generate strains lacking many genes. This is important given the 451 many potential secreted virulence factors, and should allow questions of redundancy to be 452 addressed. Construction of mutants lacking one or more critical secreted virulence factors may 453 reveal the most important mechanisms employed by F. psychrophilum to cause disease, and 454 could suggest control measures. Such mutants may function as attenuated vaccine strains that 455 interact with fish and generate a protective immune response, but fail to cause disease. Since 456 T9SSs are involved in diseases caused by many related animal and human pathogens (17, 21, 38-457 41), improved understanding of F. psychrophilum virulence may have impacts beyond fish 458 health and sustainable aquaculture.

459

MATERIALS AND METHODS

460 **Bacterial strains, plasmids, and growth conditions.** *F. psychrophilum* strain OSU

461 THCO2-90 (47, 75), was the wild-type strain used in this study. *F. psychrophilum* cultures were

462 grown at 18°C in tryptone yeast extract salts (TYES) medium (76, 77), which contains per l, 4 g

463 tryptone, 0.4 g yeast extract, 0.5 g MgSO₄·7H₂O, and 0.5 g CaCl₂·2H₂O, pH adjusted to 7.2. For

some experiments TYESG, which contains per l, 4 g tryptone, 0.4 g yeast extract, 0.5 g

 $465 \qquad MgSO_4 \cdot 7H_2O, \ 0.2 \ g \ CaCl_2 \cdot 2H_2O, \ and \ 0.5 \ g \ D-glucose, \ pH \ adjusted \ to \ 7.2, \ was \ used. \ TYESG$

466	differs from TYES only by the addition of glucose and by the reduced amount of CaCl ₂ . For
467	solid media, agar was used at 15 g/l unless indicated otherwise. For most experiments, F .
468	psychrophilum was recovered from -80°C freezer tubes onto TYES agar and incubated 72 hours
469	at 18°C. Strains were streaked on fresh agar, incubated 72 hours at 18°C, and then used to
470	inoculate 20 ml TYES broth cultures, which were incubated for 24 to 48 h at 18°C with shaking
471	at 200 rpm. Extracellular proteolytic activity on solid medium was visualized using TYESG agar
472	supplemented with 7.5 g casein (Sigma-Aldrich Ref. C8654) per l or 10 g hemoglobin (Hb;
473	Sigma-Aldrich Ref. 08449) per l. Hemolysis and colony pigmentation were visualized on
474	TYESG agar supplemented with 50 ml rainbow trout blood per l. Blood was collected by caudal
475	venipuncture of anesthetized rainbow trout and immediately mixed with heparin at a final
476	concentration of 250 IU/ml (Heparine Choay® 25000 IU/5 ml injectable solution, Sanofi
477	Aventis) at 4°C. Colony spreading was examined on 5% TYES (TYES with all components
478	diluted 20-fold) solidified with 10 g agar per l.
479	Bacteroides thetaiotaomicron VPI-5482 ^T (78) was grown in Difco TM M17 medium
480	#218561 (Becton Dickinson, Sparks, MD), supplemented with (per l) 5 g glucose, 0.5 g cysteine,
481	and 6 g agar, and is referred to here as M17-glu. E. coli strains were grown in lysogeny broth
482	(LB) at 37°C (79). Strains and plasmids used in this study are listed in Table 4 and primers are
483	listed in Table 5. Antibiotics were used at the following concentrations when needed: ampicillin,
484	100 μg/ml; erythromycin, 10 μg/ml.
485	Conjugative transfer of plasmids into F. psychrophilum. Plasmids were transferred
486	from <i>E. coli</i> S17-1 λ - <i>pir</i> into <i>F. psychrophilum</i> strains by conjugation. Briefly, <i>E. coli</i> strains
487	were incubated overnight with shaking in LB at 37°C. F. psychrophilum strains were incubated
488	30 h with shaking in TYES broth at 18°C. Cells were collected by centrifugation at $3220 \times g$ for

25 min, washed twice with 1 ml TYES and suspended in 500 µl TYES. The suspensions of *E. coli* and *F. psychrophilum* cells were mixed, spotted on TYES agar and incubated at 18°C for 48
hours. The cells were removed from the plate with a scraper and suspended in 2 ml TYES. 100µl aliquots were spread on TYES agar containing 10 µg erythromycin per ml and incubated at
18°C for 5 to 7 days.

494 Construction of the gldN deletion mutant. To delete F. psychrophilum gldN 495 (THC0290_0743), a 2,858-bp fragment spanning the last 387 bp of gldK (THC0290_0740), gldL 496 (THC0290_0741), gldM (THC0290_0742) and including the first 141 bp of gldN was amplified 497 using Phusion DNA polymerase (New England Biolabs, Ipswich, MA) and primers 2060 498 (introducing a BamHI site) and 2061 (introducing a SalI site). The fragment was digested with 499 BamHI and SalI and ligated into the suicide vector pYT313, which had been digested with the 500 same enzymes, to generate pBFp0. A 3,132-bp fragment spanning the final 153 bp of gldN, 501 THC0290_0744, THC0290_0745 and the first 1,220 bp of THC0290_0746 was amplified with 502 primers 2062 (introducing a SalI site) and 2063 (introducing an SphI site). The fragment was 503 digested with SalI and SphI and inserted into pBFp0 that had been digested with the same 504 enzymes, to generate the deletion construct pBFp1. pBFp1 was transferred by conjugation into F. 505 psychrophilum OSU THCO2-90, and colonies that had the plasmid integrated into the 506 chromosome by recombination were obtained by selecting for erythromycin resistance. Resistant 507 colonies were streaked for isolation on TYES agar containing erythromycin. An isolated colony 508 was used to inoculate 10 ml TYES broth without erythromycin, which was incubated for 30 h at 509 18°C to allow loss of the integrated plasmid. Recombinants that had lost the plasmid were 510 selected by plating on TYES containing 50 g/l sucrose, and incubating at 18°C. Isolated sucrose-511 resistant colonies were picked and streaked for isolation on TYES agar containing sucrose to

22

pplied and Environmental Microbiology

eliminate background cells that had not lost the plasmid. Colonies were screened by PCR using
primers 2076 and 2077, which flank *gldN* to identify the *gldN* deletion mutant. Streaking
colonies for isolation on selective media at both the plasmid integration (erythromycin selection)
and plasmid loss (sucrose selection) steps was critical to eliminate nonselected cells.

516 **Complementation of the** *gldN* **deletion mutant.** A plasmid carrying *F. psychrophilum* 517 *gldN* was constructed using shuttle vector pCP11 (80). Primers 2076 (introducing a KpnI site) 518 and 2077 (introducing an SphI site) were used to amplify a 1,161 bp product spanning *gldN*. The 519 product was digested with KpnI and SphI and ligated into pCP11, which had been digested with 520 the same enzymes, to generate pBFp4, which was transferred into *F. psychrophilum* by 521 product was digested with KpnI and SphI and PFP4.

521 conjugation.

522 Analysis of colony spreading and cell motility. F. psychrophilum wild-type, $\Delta gldN$ 523 mutant, and complemented strains were serially diluted and plated on 5% TYES (TYES diluted 524 20-fold) solidified with 10 g agar per l. The plates were incubated for 32 h at 18°C to obtain isolated colonies. Colonies were examined using a Photometrics Cool-SNAP_{cf}² camera mounted 525 526 on an Olympus IMT-2 phase-contrast microscope. Colonies were also obtained by spotting 5 μ l 527 of cells at OD_{600} of 1.5 on 5% TYES solidified with 10 g agar per l and incubating for 12 d at 528 18°C, and these were examined macroscopically using a Nikon D7200 camera. Motility of 529 individual cells on agar was examined by spotting cells on a pad of full-strength TYES solidified 530 with 10 g agar per l on a glass slide, allowing the spot to dry briefly, and covering it with an O₂-531 permeable Teflon membrane (Yellow Springs Instrument Co., Yellow Springs, OH) that 532 prevented dehydration and served as a coverslip. Cell movements over agar were observed using 533 an Olympus BH-2 phase-contrast microscope. Images were recorded using a Photometrics Cool-SNAP_{cf}² camera and analyzed using MetaMorph software (Molecular Devices, Downingtown, 534

AEM

Applied and Environmental Microbioloay 535 PA). Rainbow traces of cell movements were made using ImageJ version 1.45s

536 (http://rsb.info.nih.gov/ij/) and macro Color FootPrint (24).

537 Analysis of secreted proteins by SDS-PAGE and LC-MS/MS. F. psychrophilum wild-

538 type, $\Delta gldN$ mutant, and complemented mutant were grown in TYES broth at 18°C for

539 approximately 48 h. Growth was monitored with a Klett-Summerson colorimeter (Klett

540 Manufacturing Co., Inc. Long Island City, New York) and cultures were harvested in early

stationary phase when the Klett readings reached 160. Cultures were centrifuged at $16,873 \times g$

542 for 10 min at 4°C. The fluid was filtered with 0.45 µm pore size HT Tuffryn filters (PALL Life

543 Sciences). Proteins were precipitated by mixing 1 volume of trichloroacetic acid (TCA) with 9

volumes of cell-free spent culture fluid, incubating at -20°C for 1 h, and centrifuging for 45 min

545 at $12,210 \times g$ at $4^{\circ}C$. The pellet was washed with acetone ($0^{\circ}C$) and centrifuged for 10 min at

546 $12,210 \times g$ to collect the pellet, which was dried for 10 min at room temp. Proteins were

547 suspended in SDS-PAGE loading buffer, boiled for 10 min, and were separated by SDS-PAGE

548 (81) using a 12% polyacrylamide gel, and detected using the BioRad (Hercules, CA) silver stain

549 kit. Protein pellets (TCA-precipitated from cell-free spent culture fluid and acetone-washed as

above) were also analyzed directly by enzymatic digestion and nano-LC-MS/MS at the

551 University of WI-Madison Mass Spectrometry Facility as outlined on the website

552 (https://www.biotech.wisc.edu/services/massspec), and as described previously (21) except that

553 LC-MS/MS data were searched against proteins encoded by the F. psychrophilum strain OSU

554 THCO2-90 genome (47).

Analysis of proteolytic activity. Proteolytic activity was quantified using azocasein as a
substrate as previously described (82). Briefly, *F. psychrophilum* strains were grown in 25 ml
TYESG broth at 18°C and 200 rpm for 2 days. Two ml of cultures at OD₆₀₀ of 0.5, 1.0 and 2.0

558	were centrifuged, the supernatants filtered using 0.22 μm Millipore filters and stored at 4°C for
559	24 h. For protease activity assay, a solution of 20 g azocasein per l (Sigma-Aldrich) was prepared
560	in 0.1 M Tris-HCl pH 7.4. The cell-free supernatant (150 μ l) was mixed with 150 μ l azocasein
561	solution and incubated for 4 h at 25°C. The reaction was stopped by adding 750 μ l of TCA (50
562	g/l). The reaction mix was centrifuged at 20,000 \times g for 30 min and 150 μl of the supernatant
563	was mixed in a 96-well microplate well containing 150 μ l of 1 M NaCl. The OD _{440nm} was
564	measured using a Tecan Microplate Reader (Infinite 200 PRO) and the negative control OD_{440nm}
565	value was subtracted from this. One unit of proteolytic activity was defined as an increase in
566	absorbance of 0.001 under the conditions of the assay. All cultures were performed in triplicate
567	and an average of the three experiments was used as the measure of proteolytic activity over the
568	growth curve.
569	Hemoglobin utilization. The ability to use hemoglobin as a heme source was
570	investigated by measuring the residual porphyrin (heme, hemoglobin or protoporphyrin IX)
571	remaining after growth of F. psychrophilum to stationary phase in TYESG broth supplemented
572	with 0.5 μ M hemoglobin (Sigma-Aldrich Ref. H2500), using the heme-protoporphyrin IX-screen
573	method (66). This method is a bacterial-growth-based assay that exploits the heme auxotrophy of
574	B. thetaiotaomicron. Briefly, a vertical gel set-up with 0.8-cm spacers was filled with M17-glu
575	medium containing 8×10^5 B. thetaiotaomicron CFU/ml. Stationary phase F. psychrophilum
576	cultures in TYESG broth (with or without 0.5 μ M hemoglobin) were heat-inactivated by
577	incubation at 37°C for 3 h. The cultures (100 μ l volumes) were loaded in wells of the <i>B</i> .
578	thetaiotaomicron-containing gel and sterile TYESG broth containing 0.5 μ M hemoglobin was
579	used as a positive control. The gel was overlaid with a 5 ml agar plug (12 g/l). B.
580	thetaiotaomicron growth stimulation was visualized as dense growth around wells after

Applied and Environmental Microbiology

581 overnight incubation at 37°C. The surface area of growth stimulation, which correlates with 582 heme concentration in the sample, was determined using ImageJ (V1.45 s; Wayne Rasband, 583 National Institute of Health, USA). The results corresponded to three independent F.

584 psychrophilum cultures.

585 Adhesion, biofilm, and sedimentation assays. Adhesion to polystyrene, biofilm 586 formation on polystyrene, and cell sedimentation were determined as previously described (14) 587 except that cells were grown in TYES instead of TYESG for the adhesion assay, and in half-588 strength TYES instead of half-strength TYESG for the biofilm and sedimentation assays, as 589 outlined briefly below.

590 For the adhesion assay, cells were grown in TYES broth to $OD_{600} = 0.7$. One ml of each 591 culture was centrifuged at $11,000 \times g$ for 5 min, the supernatant was removed, and cell pellets 592 were suspended in 1 ml sterile distilled water. One hundred microliters of each strain suspension 593 was added to a 96-well microtiter polystyrene plate with flat bottom (NunclonTM Delta surface, 594 ThermoFisher Scientific, Waltham, MA) and sterile water was used as a negative control in non-595 inoculated wells. The plate was incubated at 18° C for 3 h without shaking. Subsequently, wells 596 were washed twice with sterile distilled water and the adherent cells were stained with 100 μ l of 597 crystal violet (10 g/l) for 30 min at room temperature. The wells were washed four times with 598 sterile distilled water, and 100 µl of absolute ethanol was added to each well to solubilize the 599 remaining crystal violet. Cell adhesion was determined by measuring OD₅₉₅ using a CLARIOstar 600 Microplate Reader (BMG Labtech, Ortenberg, Germany). The level of adhesion observed for 601 each strain was compared with the adhesion of the wild-type strain, which was set as 100. All 602 assays were performed in quadruplicate and repeated at least two times. The absorbance of the 603 negative control was subtracted from the absorbance of each strain.

605	exponential phase. The cultures were diluted 1:100 in half-strength TYES broth and 150 μl of
606	each diluted bacterial culture was deposited in wells of 96-well flat bottom polystyrene
607	microtiter plates. The plates were covered with aluminum foil and incubated in a humid
608	environment at 18°C under static conditions for 120 h. Biofilm development was evaluated in
609	four wells per strain, and wells containing sterile non-inoculated medium were used as negative
610	controls. The culture fluid was discarded, the wells were washed twice with 200 μ l of sterile
611	distilled water. 150 µl of crystal violet (10 g/l) was added to each well and incubated at room
612	temperature for 30 min. Unbound stain was removed by washing the wells four times with 200
613	μ l of sterile distilled water. Stain bound to biofilm cells was solubilized in 100 μ l of ethanol and
614	the absorbance (OD ₅₉₅ nm) was determined.
615	To measure bacterial cell sedimentation, cells were grown in half-strength TYES broth at
616	18°C, 200 rpm for 96 h. Tubes were allowed to stand static for 10 min before being
617	photographed.
618	Rainbow trout challenges. Two experimental infection models differing by the infection
619	route (injection or immersion), size of fish, and lines of fish were used. For the intramuscular
620	injection model, fish (27.5 g average mass) of the ARS-Fp-C line were used, which are
621	intermediate in resistance (83). Four groups of 20 fish (n=80) were anesthetized and challenged
622	with each F. psychrophilum strain by intramuscular injection at a point midway between the
623	insertion of the dorsal fin and the lateral line. Injection of 25 μl was performed using a 26 g
624	needle attached to an Eppendorf repeating syringe. All challenge fish were maintained using
625	flow-through spring water. Two groups of 20 fish were injected with sterile PBS, as a negative
626	control. CFU counts (triplicate dilution series) for wild type were 2.6 (\pm 0.8) \times 10 ⁶ , $\Delta gldN$

For biofilm formation, cells were grown in half-strength TYES broth to the mid-

27

Applied and Environmental Microbiology

AEM

627	mutant 2.7 (± 1.3) × 10 ⁶ and $\Delta gldN$ complemented mutant 2.8 (± 1.5) × 10 ⁶ CFU/fish. The water
628	temperature during challenge was 13.2°C. Mortalities were recorded daily and examined for
629	clinical signs of disease and for the presence of F. psychrophilum.
630	For the bath immersion challenge the rainbow trout (O. mykiss) homozygous line A36
631	was used as previously described (84, 85). The uniformity of genetic background in isogenic
632	lines and the high susceptibility of line A36 to F. psychrophilum infection makes this line useful
633	to examine bacterial virulence (14). Fish were reared at 10°C in dechlorinated recirculated water
634	until they reached 1.4 g, and were then transferred to continuous flow aquaria for infection
635	experiments. Bacteria used for infections were prepared as follows: wild type, $\Delta gldN$, and $\Delta gldN$
636	complemented with pBFp4 were grown in TYESG broth at 200 rpm and 18°C until late-
637	exponential phase ($OD_{600nm} = 1.3$). The bacterial cultures were directly diluted (200 fold) into 15
638	l of aquarium water. Bacteria were maintained in contact with fish ($n = 42$ per group) for 24 h by
639	stopping the water flow, and were subsequently removed by restoring flow. Sterile TYESG broth
640	was used for the control group. F. psychrophilum bacterial counts were determined at the
641	beginning and at the end of the immersion challenge by plating serial dilutions of water samples
642	on TYESG agar. Water was maintained at 10°C under continuous aeration during the
643	experiment. Virulence was evaluated according to i) fish mortality during twelve days post-
644	infection and ii) bacterial loads in organs. Six of each group of 42 fish were randomly chosen
645	and sacrificed 6 h and 30 h after the end of the immersion challenge to evaluate the F .
646	psychrophilum bacterial load in the spleen (whole organ) and gills (one gill arch). Organs were
647	mechanically disrupted in Lysing Matrix tubes containing 400 μ l of peptone (10 g/l water) and 1
648	mm ceramic beads (Mineralex SAS, Lyon, France). Samples were homogenized at 6.0 m s ⁻¹ for
649	two cycles of 20 s on a FastPrep-24 instrument (ThermoFisher Scientific, Waltham, MA). Serial

650	dilutions of the homogenized solution were plated on TYESG agar supplemented with fetal calf
651	serum (50 ml/l) and incubated for 3 d at 18°C. Two independent experiments were performed.
652	Statistical differences of bacterial loads between groups were analyzed using the Mann-Whitney
653	test; the Kaplan-Meier method was used to draw survival curves that were compared using the
654	Gehan-Breslow-Wilcoxon test with GraphPad Prism 8.1.2 (GraphPad Software, San Diego, CA,
655	USA).
656	Bioinformatic analyses. Genome sequences were analyzed for T9SS genes encoding
657	proteins that belong to appropriate TIGRFAM multiple-sequence alignment families (86). This
658	was accomplished using the Integrated Microbial Genomes (IMG version 4.0.1
659	[https://img.jgi.doe.gov/]) Function Profile Tool to examine the genomes for sequences predicted
660	to encode orthologs of GldK (TIGR03525), GldL (TIGR03513), GldM (TIGR03517), GldN
661	(TIGR03523), and SprA (TIGR04189). The genomes were also examined for genes encoding
662	proteins with type A CTDs (TIGR04183), type B CTDs (TIGR04131 and pfam13585) (19), and
663	for genes encoding PorP/SprF-like proteins (TIGR03519) in the same way. In each case, the
664	trusted cutoffs assigned by The J. Craig Venter Institute (JCVI) that allow identification of the
665	vast majority of family members with vanishingly few false positives (86) were used. Other
666	potential F. psychrophilum T9SS proteins listed in Table S1 (PorU, PorV, SprE, SprT, Plug,
667	PorQ, PorZ, PorX, PorY, and PG1058) were identified by BLASTP analysis using the
668	appropriate F. johnsoniae or P. gingivalis protein as query.
669	Data Availability
670	All data associated with this work is included either in the manuscript or in the online
671	supplemental materials.
672	Ethics statements

29

Applied and Environmental

lied and Environmental

Microbiology

673

674

675

676

677

678

679

680 Acknowledgements:

Animal Care and Use Committee Protocol #132.

681 The authors are grateful to the staff of the fish facilities (INRA IERP and PEIMA, 682 France) and to Edwige Quillet and Nicolas Dechamp (INRA GABI, France) for supplying fish 683 and advice. We thank Victor Folcher for technical help. For challenge experiments conducted at 684 the NCCCWA, we thank Timothy Leeds for providing fish, and Travis Moreland and Keira 685 Osbourn for technical help. This work was financially supported by the Agence Nationale de la 686 Recherche (grant ANR-17-CE20-0020-01 FlavoPatho), by grant MCB-1516990 from the 687 National Science Foundation to MJM, by United States Department of Agriculture-ARS CRIS 688 projects 5090-31320-004-00D, 8082-32000-007-00-D, and cooperative agreement #5090-31320-689 004-03S. The views contained in this document are those of the authors and should not be 690 interpreted as necessarily representing the official policies, either expressed or implied, of the 691 U.S. Government. Mention of trade name, proprietary product, or specific equipment does not 692 constitute a guarantee or warranty by the USDA and does not imply its approval to the exclusion 693 of other products that may be suitable. This manuscript is submitted for publication with the 694 understanding that the United States Government is authorized to reproduce and distribute 695 reprints for governmental purposes. The USDA is an equal opportunity employer.

The immersion challenges were performed in accordance with the European Directive

2010/2063/UE regarding animal experiments, and were approved by the institutional review

ethics committee, COMETHEA, of the INRAE Center in Jouy-en-Josas, France. Authorizations

were approved by the Direction of the Veterinary Services of Versailles (authorization number

15-58). Injection challenge was performed under the guidelines of NCCCWA Institutional

696					
697	Refer	References			
698					
699 700	1.	Dalsgaard I. 1993. Virulence mechanisms in <i>Cytophaga psychrophila</i> and other <i>Cytophaga</i> -like bacteria pathogenic for fish. Annu Rev Fish Dis:127-144.			
701	2.	Nematollahi A, Decostere A, Pasmans F, Haesebrouck F. 2003. Flavobacterium			
702	2	psychrophilum infections in salmonid fish. J Fish Dis 26:563-574.			
703 704	3.	Starliper CE. 2011. Bacterial coldwater disease of fishes caused by			
704 705	4.	Flavobacterium psychrophilum. Journal of Advanced Research 2:97-108. Miwa S, Nakayasu C. 2005. Pathogenesis of experimentally induced bacterial			
705	4.	cold water disease in ayu <i>Plecoglossus altivelis</i> . Diseases of Aquatic Organisms			
707		67:93-104.			
708	5.	Soares SMC, Walker A, Elwenn SA, Bayliss S, Garden A, Stagg HEB, Munro			
709	0.	ES. 2019. First isolation of <i>Flavobacterium psychrophilum</i> associated with			
710 711		reports of moribund wild European eel (<i>Anguilla anguilla</i>) in Scotland. Journal of Fish Diseases 42:1509-1521.			
712	6.	Gomez E, Mendez J, Cascales D, Guijarro JA. 2014. <i>Flavobacterium</i>			
713	0.	<i>psychrophilum</i> vaccine development: a difficult task. Microb Biotechnol 7:414-			
714		423.			
715	7.	Sundell K, Landor L, Nicolas P, Jorgensen J, Castillo D, Middelboe M, Dalsgaard			
716		I, Donati VL, Madsen L, Wiklund T. 2019. Phenotypic and genetic predictors of			
717		pathogenicity and virulence in Flavobacterium psychrophilum. Front Microbiol			
718		10:1711.			
719	8.	Christiansen RH, Madsen L, Dalsgaard I, Castillo D, Kalatzis PG, Middelboe M.			
720		2016. Effect of bacteriophages on the growth of <i>Flavobacterium psychrophilum</i>			
721	0	and development of phage-resistant strains. Microb Ecol 71:845-59.			
722	9.	Evenhuis JP, Leeds TD, Marancik DP, LaPatra SE, Wiens GD. 2015. Rainbow			
723 724		trout (Oncorhynchus mykiss) resistance to columnaris disease is heritable and			
724		favorably correlated with bacterial cold water disease resistance. Journal of animal science 93:1546-54.			
726	10.	Wiens GD, Palti Y, Leeds TD. 2018. Three generations of selective breeding			
727	10.	improved rainbow trout (<i>Oncorhynchus mykiss</i>) disease resistance against			
728		natural challenge with <i>Flavobacterium psychrophilum</i> during early life-stage			
729		rearing. Aquaculture 497:414-421.			
730	11.	Silva RMO, Evenhuis JP, Vallejo RL, Tsuruta S, Wiens GD, Martin KE, Parsons			
731		JE, Palti Y, Lourenco DAL, Leeds TD. 2019. Variance and covariance estimates			
732		for resistance to bacterial cold water disease and columnaris disease in two			
733		rainbow trout breeding populations. Journal of Animal Science 97:1124-1132.			
734	12.	Duchaud E, Boussaha M, Loux V, Bernardet JF, Michel C, Kerouault B, Mondot			
735		S, Nicolas P, Bossy R, Caron C, Bessières P, Gibrat JF, Claverol S, Dumetz F,			
736		Hénaff ML, Benmansour A. 2007. Complete genome sequence of the fish			
737	40	pathogen <i>Flavobacterium psychrophilum</i> . Nat Biotechnol 25:763-769.			
738	13.	Wu AK, Kropinski AM, Lumsden JS, Dixon B, MacInnes JI. 2015. Complete			
739 740		genome sequence of the fish pathogen <i>Flavobacterium psychrophilum</i> ATCC			
740		49418(T.). Stand Genomic Sci 10:3.			

14.

740		Ovillet E. Cuijerre IA. Remardet E. Duchoud E. 2017 More then didney
742		Quillet E, Guijarro JA, Bernardet JF, Duchaud E. 2017. More than gliding:
743		Involvement of GldD and GldG in the virulence of <i>Flavobacterium psychrophilum</i> .
744		Frontiers in Microbiology 8.
745	15.	Castillo D, Christiansen RH, Dalsgaard I, Madsen L, Espejo R, Middelboe M.
746		2016. Comparative genome analysis provides insights into the pathogenicity of
747		Flavobacterium psychrophilum. PLoS One 11:e0152515.
748	16.	McBride MJ, Zhu Y. 2013. Gliding motility and Por secretion system genes are
749		widespread among members of the phylum Bacteroidetes. J Bacteriol 195:270-
750		278.
751	17.	Sato K, Naito M, Yukitake H, Hirakawa H, Shoji M, McBride MJ, Rhodes RG,
752		Nakayama K. 2010. A protein secretion system linked to bacteroidete gliding
753		motility and pathogenesis. Proc Natl Acad Sci USA 107:276-281.
754	18.	McBride MJ. 2019. Bacteroidetes gliding motility and the type IX secretion
755	10.	system. Microbiol Spectr 7:PSIB-0002-2018.
	10	
756	19.	Veith PD, Glew MD, Gorasia DG, Reynolds EC. 2017. Type IX secretion: the
757		generation of bacterial cell surface coatings involved in virulence, gliding motility
758	00	and the degradation of complex biopolymers. Mol Microbiol 106:35-53.
759	20.	Lasica AM, Ksiazek M, Madej M, Potempa J. 2017. The type IX secretion system
760		(T9SS): Highlights and recent insights into its structure and function. Front Cell
761		Infect Microbiol 7:215.
762	21.	Li N, Zhu Y, LaFrentz BR, Evenhuis JP, Hunnicutt DW, Conrad RA, Barbier P,
763		Gullstrand CW, Roets JE, Powers JL, Kulkarni SS, Erbes DH, Garcia JC, Nie P,
764		McBride MJ. 2017. The type IX secretion system is required for virulence of the
765		fish pathogen Flavobacterium columnare. Appl Environ Microbiol 83:e01769-17.
766	22.	Shrivastava A, Johnston JJ, van Baaren JM, McBride MJ. 2013. Flavobacterium
767		johnsoniae GldK, GldL, GldM, and SprA are required for secretion of the cell
768		surface gliding motility adhesins SprB and RemA. Journal of bacteriology
769		195:3201-12.
770	23.	Johnston JJ, Shrivastava A, McBride MJ. 2018. Untangling Flavobacterium
771		johnsoniae gliding motility and protein secretion. J Bacteriol 200.
772	24.	Nakane D, Šato K, Wada H, McBride MJ, Nakayama K. 2013. Helical flow of
773		surface protein required for bacterial gliding motility. Proc Natl Acad Sci USA
774		110:11145-11150.
775	25.	Lauber F, Deme JC, Lea SM, Berks BC. 2018. Type 9 secretion system
776	20.	structures reveal a new protein transport mechanism. Nature 564:77-82.
777	26.	Gorasia DG, Veith PD, Hanssen EG, Glew MD, Sato K, Yukitake H, Nakayama
778	20.	K, Reynolds EC. 2016. Structural insights into the PorK and PorN components of
779		the <i>Porphyromonas gingivalis</i> type IX secretion system. PLoS Pathog
780	07	12:e1005820.
781	27.	Vincent MS, Canestrari MJ, Leone P, Stathopulos J, Ize B, Zoued A, Cambillau
782		C, Kellenberger C, Roussel A, Cascales E. 2017. Characterization of the
783		Porphyromonas gingivalis type IX secretion trans-envelope PorKLMNP core
784		complex. J Biol Chem 292:3252-3261.
785	28.	Leone P, Roche J, Vincent MS, Tran QH, Desmyter A, Cascales E, Kellenberger
786		C, Cambillau C, Roussel A. 2018. Type IX secretion system PorM and gliding

Pérez-Pascual D, Rochat T, Kerouault B, Gomez E, Neulat-Ripoll F, Henry C,

Ō	
ed	
ost	
ਕੱ	
pt	
CLI.	787
O S	788
C	789
₹ V	790
2	791
<u>S</u>	792
et e	793
	794
ğ	795
\triangleleft	796
	797
	798 700
	799
	800 801
	801
	802 803
	003

machinery GldM form arches spanning the periplasmic space. Nature Communications 9:ARTN 429.

- Glew MD, Veith PD, Chen D, Seers CA, Chen YY, Reynolds EC. 2014. Blue native-PAGE analysis of membrane protein complexes in *Porphyromonas gingivalis*. J Proteomics 110:72-92.
- Kulkarni SS, Johnston JJ, Zhu Y, Hying ZT, McBride MJ. 2019. The carboxy terminal region of *Flavobacterium johnsoniae* SprB facilitates its secretion by the
 type IX secretion system and propulsion by the gliding motility machinery. J
 Bacteriol 201:e00218-19.
- Kulkarni SS, Zhu Y, Brendel CJ, McBride MJ. 2017. Diverse C-terminal
 sequences involved in *Flavobacterium johnsoniae* protein secretion. J Bacteriol
 199:e00884-16.
- Glew MD, Veith PD, Peng B, Chen YY, Gorasia DG, Yang Q, Slakeski N, Chen D, Moore C, Crawford S, Reynolds E. 2012. PG0026 is the C-terminal signal peptidase of a novel secretion system of *Porphyromonas gingivalis*. J Biol Chem 287:24605-24617.
- 803 33. Kharade SS, McBride MJ. 2014. *Flavobacterium johnsoniae* chitinase ChiA is
 804 required for chitin utilization and is secreted by the type IX secretion system.
 805 Journal of bacteriology 196:961-70.
- Veith PD, Muhammad NAN, Dashper SG, Likic VA, Gorasia DG, Chen D, Byrne
 SJ, Catmull DV, Reynolds EC. 2013. Protein substrates of a novel secretion
 system are numerous in the *Bacteroidetes* phylum and have in common a
 cleavable C-terminal secretion signal, extensive post-translational modification,
 and cell-surface attachment. Journal of Proteome Research 12:4449-4461.
- 35. Gorasia DG, Veith PD, Chen D, Seers CA, Mitchell HA, Chen YY, Glew MD,
 Dashper SG, Reynolds EC. 2015. *Porphyromonas gingivalis* type IX secretion
 substrates are cleaved and modified by a sortase-like mechanism. PLoS Pathog
 11:e1005152.
- 815 36. Kharade SS, McBride MJ. 2015. *Flavobacterium johnsoniae* PorV is required for
 816 secretion of a subset of proteins targeted to the type IX secretion system. J
 817 Bacteriol 197:147-158.
- Sato K, Yukitake H, Narita Y, Shoji M, Naito M, Nakayama K. 2013. Identification
 of *Porphyromonas gingivalis* proteins secreted by the Por secretion system.
 FEMS microbiology letters 338:68-76.
- 821 38. Kondo Y, Sato K, Nagano K, Nishiguchi M, Hoshino T, Fujiwara T, Nakayama K.
 822 2018. Involvement of PorK, a component of the type IX secretion system, in
 823 Prevotella melaninogenica pathogenicity. Microbiol Immunol 62:554-566.
- Schen Z, Wang X, Ren X, Han W, Malhi KK, Ding C, Yu S. 2019. *Riemerella anatipestifer* GldM is required for bacterial gliding motility, protein secretion, and
 virulence. Vet Res 50:43.
- Malhi KK, Wang X, Chen Z, Ding C, Yu S. 2019. *Riemerella anatipestifer* gene
 AS87_08785 encodes a functional component, GldK, of the type IX secretion
 system. Vet Microbiol 231:93-99.
- 41. Guo Y, Hu D, Guo J, Wang T, Xiao Y, Wang X, Li S, Liu M, Li Z, Bi D, Zhou Z.
 2017. *Riemerella anatipestifer* type IX secretion system is required for virulence and gelatinase secretion. Front Microbiol 8:2553.

Applied and Environmental

Microbiology

833

42.

834 techniques for the psychrotrophic fish pathogen Flavobacterium psychrophilum. 835 Appl Environ Microbiol 70:581-587. 43. Gomez E, Alvarez B, Duchaud E, Guijarro JA. 2015. Development of a 836 837 markerless deletion system for the fish-pathogenic bacterium Flavobacterium 838 psychrophilum. PLOS One 10:e0117969. 839 44. Li N, Qin T, Zhang XL, Huang B, Liu ZX, Xie HX, Zhang J, McBride MJ, Nie P. 840 2015. Gene deletion strategy to examine the involvement of the two chondroitin lyases in Flavobacterium columnare virulence. Applied and environmental 841 microbiology 81:7394-402. 842 Zhu Y, Thomas F, Larocque R, Li N, Duffieux D, Cladiere L, Souchaud F, Michel 843 45. G, McBride MJ. 2017. Genetic analyses unravel the crucial role of a horizontally 844 845 acquired alginate lyase for brown algal biomass degradation by Zobellia 846 galactanivorans. Environ Microbiol 19:2164-2181. 847 46. Link AJ, Phillips D, Church GM. 1997. Methods for generating precise deletions 848 and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179:6228-6237. 849 47. Rochat T, Barbier P, Nicolas P, Loux V, Pérez-Pascual D, Guijarro JA, Bernardet 850 851 J-F, Duchaud E. 2017. Complete genome sequence of Flavobacterium psychrophilum strain OSU THCO2-90. Genome Announc 5. 852 853 48. Ikegami A, Honma K, Sharma A, Kuramitsu HK. 2004. Multiple functions of the leucine-rich repeat protein LrrA of Treponema denticola. Infect Immun 72:4619-854 855 27. 49. Sharma A, Sojar HT, Glurich I, Honma K, Kuramitsu HK, Genco RJ. 1998. 856 857 Cloning, expression, and sequencing of a cell surface antigen containing a 858 leucine-rich repeat motif from Bacteroides forsythus ATCC 43037. Infect Immun 859 66:5703-10. 860 50. Nelson SS, Bollampalli S, McBride MJ. 2008. SprB is a cell surface component of 861 the Flavobacterium johnsoniae gliding motility machinery. J Bacteriol 190:2851-2857. 862 863 51. Wiens GD, LaPatra SE, Welch TJ, Rexroad C, 3rd, Call DR, Cain KD, LaFrentz 864 BR, Vaisvil B, Schmitt DP, Kapatral V. 2014. Complete genome sequence of Flavobacterium psychrophilum strain CSF259-93, used to select rainbow trout for 865 increased genetic resistance against bacterial cold water disease. Genome 866 867 Announc 2. 52. Rhodes RG, Nelson SS, Pochiraju S, McBride MJ. 2011. Flavobacterium 868 869 iohnsoniae sprB is part of an operon spanning the additional gliding motility 870 genes sprC, sprD, and sprF. J Bacteriol 193:599-610. 871 53. Heath JE, Seers CA, Veith PD, Butler CA, Nor Muhammad NA, Chen YY, Slakeski N, Peng B, Zhang L, Dashper SG, Cross KJ, Cleal SM, Moore C, 872 873 Reynolds EC. 2016. PG1058 is a novel multidomain protein component of the 874 bacterial type IX secretion system. PLoS One 11:e0164313. 54. Ortiz-Suarez ML, Samsudin F, Piggot TJ, Bond PJ, Khalid S. 2016. Full-length 875 OmpA: structure, function, and membrane interactions predicted by molecular 876 877 dynamics simulations. Biophysical Journal 111:1692-1702.

Alvarez B, Secades P, McBride MJ, Guijarro JA. 2004. Development of genetic

34

AEN

W0
Inlo
ad
ed
fro
З
^t
0://a
aen
n.a
Sm
.or
Q
ň
Jur
ы Б
, J
20
20
at
Ž
INRAE -
Ins
ź
atl
de
Re
Sh
ро
Downloaded from http://aem.asm.org/ on June 25, 2020 at INRAE - Inst Natl de Rech pour l'Agricultur
βΑ'
ric
iculture,
lre,
Α
lim
en:
Alimentatio
on
et l
Ē
١vir
iuo
our l'Agriculture, l'Alimentation et l'Environnement
ner
Ħ

878	55.	Samsudin F, Ortiz-Suarez ML, Piggot TJ, Bond PJ, Khalid S. 2016. OmpA: a
879		flexible clamp for bacterial cell wall attachment. Structure 24:2227-2235.
880	56.	Rhodes RG, Samarasam MN, Shrivastava A, van Baaren JM, Pochiraju S,
881		Bollampalli S, McBride MJ. 2010. Flavobacterium johnsoniae gldN and gldO are
882		partially redundant genes required for gliding motility and surface localization of
883		SprB. J Bacteriol 192:1201-1211.
884	57.	Braun TF, Khubbar MK, Saffarini DA, McBride MJ. 2005. Flavobacterium
885	011	<i>johnsoniae</i> gliding motility genes identified by <i>mariner</i> mutagenesis. J Bacteriol
886		187:6943-6952.
887	58.	Zhu Y, McBride MJ. 2016. Comparative analysis of <i>Cellulophaga algicola</i> and
888	00.	Flavobacterium johnsoniae gliding motility. J Bacteriol 198:1743-54.
889	59.	Pérez-Pascual D, Menendez A, Fernandez L, Mendez J, Reimundo P, Navais R,
890	55.	Guijarro JA. 2009. Spreading versus biomass production by colonies of the fish
890		pathogen <i>Flavobacterium psychrophilum</i> : role of the nutrient concentration. Int
892		Microbiol 12:207-14.
892 893	60.	Bernardet JF, Kerouault B. 1989. Phenotypic and genomic studies of "Cytophaga
895 894	00.	psychrophila" isolated from diseased rainbow trout (Oncorhynchus mykiss) in
894 895		France. Appl Environ Microbiol 55:1796-1800.
	61	
896	61.	Holt RA, Amandi A, Rohovec J, Fryer J. 1988. Relation of water temperature to
897		Cytophaga psychrophila infection in coho (Oncorhynchus kisutch) and chinook
898		salmon (<i>O. tshawytscha</i>) and rainbow trout (<i>Salmo gairdneri</i>). In Society AF (ed),
899		International Fish Health Conference Handbook. International Fish Health
900	00	Conference, Vancouver, Canada.
901	62.	Pishchany G, Skaar EP. 2012. Taste for blood: hemoglobin as a nutrient source
902		for pathogens. PLoS Pathog 8:e1002535.
903	63.	Högfors-Rönnholm E, Wiklund T. 2010. Hemolytic activity in <i>Flavobacterium</i>
904		psychrophilum is a contact-dependent, two-step mechanism and differently
905		expressed in smooth and rough phenotypes. Microbial Pathogenesis 49:369-375.
906	64.	Moller JD, Ellis AE, Barnes AC, Dalsgaard I. 2005. Iron acquisition mechanisms
907	05	of <i>Flavobacterium psychrophilum</i> . Journal of Fish Diseases 28:391-398.
908	65.	Nakayama K. 2015. Porphyromonas gingivalis and related bacteria: from colonial
909		pigmentation to the type IX secretion system and gliding motility. Journal of
910		Periodontal Research 50:1-8.
911	66.	Halpern D, Gruss A. 2015. A sensitive bacterial-growth-based test reveals how
912		intestinal Bacteroides meet their porphyrin requirement. Bmc Microbiology 15.
913	67.	Hogfors-Ronnholm E, Norrgard J, Wiklund T. 2015. Adhesion of smooth and
914		rough phenotypes of Flavobacterium psychrophilum to polystyrene surfaces.
915		Journal of Fish Diseases 38:429-437.
916	68.	Alvarez B, Secades P, Prieto M, McBride MJ, Guijarro JA. 2006. A mutation in
917		Flavobacterium psychrophilum tlpB inhibits gliding motility and induces biofilm
918		formation. Appl Environ Microbiol 72:4044-4053.
919	69.	Sundell K, Wiklund T. 2011. Effect of biofilm formation on antimicrobial tolerance
920		of Flavobacterium psychrophilum. Journal of Fish Diseases 34:373-383.
921	70.	Hadidi S, Glenney GW, Welch TJ, Silverstein JT, Wiens GD. 2008. Spleen size
922		predicts resistance of rainbow trout to Flavobacterium psychrophilum challenge.
923		Journal of Immunology 180:4156-4165.

Applied and Environmental Microbiology

AEM

Applied and Environmental Microbiology

924	71.	Levipan HA, Avendano-Herrera R. 2017. Different phenotypes of mature biofilm
925		in <i>Flavobacterium psychrophilum</i> share a potential for virulence that differs from
926	70	planktonic state. Front Cell Infect Microbiol 7:76.
927	72.	Braun TF, McBride MJ. 2005. Flavobacterium johnsoniae GldJ is a lipoprotein
928		that is required for gliding motility. J Bacteriol 187:2628-2637.
929	73.	LaFrentz BR, LaPatra SE, Call DR, Cain KD. 2008. Isolation of rifampicin
930		resistant Flavobacterium psychrophilum strains and their potential as live
931		attenuated vaccine candidates. Vaccine 26:5582-9.
932	74.	Gliniewicz K, Wildung M, Orfe LH, Wiens GD, Cain KD, Lahmers KK, Snekvik
933		KR, Call DR. 2015. Potential mechanisms of attenuation for rifampicin-passaged
934		strains of Flavobacterium psychrophilum. BMC Microbiol 15:179.
935	75.	Bertolini JM, Wakabayashi H, Watral VG, Whipple MJ, Rohovec JS. 1994.
936		Electrophoretic detection of proteases from selected strains of <i>Flexibacter</i>
937		psychrophilus and assessment of their variability. J Aquat Anim Health 6:224-
938		233.
939	76.	Cain KD, LaFrentz BR. 2007. Laboratory maintenance of <i>Flavobacterium</i>
940	70.	psychrophilum and Flavobacterium columnare. Current Protocols in Microbiology
941		6:13B.1.1-13B.1.12.
942	77.	Holt RA, Rohovec JS, Fryer JL. 1993. Bacterial coldwater disease, p 3-23. In
943		Inglis V, Roberts RJ, Bromage NR (ed), Bacterial diseases of fish. Blackwell
943 944		Scientific Publications, Oxford.
	70	
945	78.	Cato EP, Johnson JL. 1976. Reinstatement of species rank for <i>Bacteroides</i>
946		fragilis, B. ovatus, B. distasonis, B. thetaiotaomicron, and B. vulgatus:
947		Designation of neotype strains for <i>Bacteroides fragilis</i> (Veillon and Zuber)
948		Castellani and Chalmers and Bacteroides thetaiotaomicron (Distaso) Castellani
949		and Chalmers. Int J Syst Bacteriol 26:230-237.
950	79.	Bertani G. 1951. Studies on lysogenesis I. The mode of phage liberation by
951		lysogenic Escherichia coli. J Bacteriol 62:293-300.
952	80.	McBride MJ, Kempf MJ. 1996. Development of techniques for the genetic
953		manipulation of the gliding bacterium Cytophaga johnsonae. J Bacteriol 178:583-
954		590.
955	81.	Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the
956		head of bacteriophage T4. Nature 227:680-5.
957	82.	Newton JC, Wood TM, Hartley MM. 1997. Isolation and partial characterization of
958		extracellular proteases produced by isolates of Flavobacterium columnare
959		derived from catfish. Journal of aquatic animal health 9:75-85.
960	83.	Wiens GD, LaPatra SE, Welch TJ, Evenhuis JP, Rexroad CE, Leeds TD. 2013.
961		On-farm performance of rainbow trout (Oncorhynchus mykiss) selectively bred
962		for resistance to bacterial cold water disease: Effect of rearing environment on
963		survival phenotype. Aquaculture 388:128-136.
964	84.	Quillet E, Dorson M, Le Guillou S, Benmansour A, Boudinot P. 2007. Wide range
965	• ••	of susceptibility to rhabdoviruses in homozygous clones of rainbow trout. Fish &
966		Shellfish Immunology 22:510-519.
967	85.	Fraslin C, Dechamp N, Bernard M, Krieg F, Hervet C, Guyomard R, Esquerre D,
968	55.	Barbieri J, Kuchly C, Duchaud E, Boudinot P, Rochat T, Bernardet JF, Quillet E.
968 969		2018. Quantitative trait loci for resistance to <i>Flavobacterium psychrophilum</i> in
707		

970		rainbow trout: effect of the mode of infection and evidence of epistatic
971		interactions. Genet Sel Evol 50:60.
972	86.	Haft DH, Selengut JD, Richter RA, Harkins D, Basu MK, Beck E. 2013.
973		TIGRFAMs and genome properties in 2013. Nucleic Acids Res 41:D387-95.
974	87.	de Lorenzo V, Timmis KN. 1994. Analysis and construction of stable phenotypes
975		in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods
976		in enzymology 235:386-405.

976 977 978

37

Downloaded from http://aem.asm.org/ on June 25, 2020 at INRAE - Inst Natl de Rech pour l'Agriculture, l'Alimentation et l'Environnement

979	Table 1. Predicted T9SS type A	CTD-containing proteins of F. psychrophilum st	train OSU THCO2-90 ¹
-----	--------------------------------	--	---------------------------------

Locus tag	Protein name	AA ²	Mol. Mass (kDa) 3	Domains ⁴	Description/ known or predicted function
THC0290_0086		642	70.9	M1_APN_like (cd09603) Peptidase_M1 (pfam01433)	Probable peptidase precursor (M1 family metalloprotease)
THC0290_0091		1139	122.8	Sortilin-Vps10 super family (cl25791) Peptidase_M6 super family (cl29544)	Probable glycoside hydrolase precursor
THC0290_0128		113	12.8	1 - 1 , , , ,	
THC0290_0129		324	33.6		Putative outer membrane protein precursor
THC0290_0170		398	41.7	LRR_5 (pfam13306)	Probable cell surface protein (Leucine-rich repeat protein) precursor
THC0290_0171		421	44.5	LRR_5 (pfam13306)	Probable cell surface protein precursor (Leucine-rich repe protein) precursor
THC0290_0172		329	35.2	LRR_5 (pfam13306)	Probable cell surface protein (Leucine-rich repeat protein)
THC0290_0173		444	47.2	LRR_5 (pfam13306)	Probable cell surface protein (Leucine-rich repeat protein) precursor
THC0290_0174		422	44.5	LRR_5 (pfam13306)	Probable cell surface protein (Leucine-rich repeat protein) precursor
THC0290_0175		330	35.3	LRR_5 (pfam13306)	Probable cell surface protein (Leucine-rich repeat protein) precursor
THC0290_0176		375	40.1	LRR_5 (pfam13306)	Probable cell surface protein (Leucine-rich repeat protein) precursor
THC0290_0177		536	56.0	LRR_5 (pfam13306)	Probable cell surface protein (Leucine-rich repeat protein) precursor
THC0290_0178		307	33.1	LRR_5 (pfam13306)	Probable cell surface protein (Leucine-rich repeat protein) precursor
THC0290_0179		421	44.3	LRR_5 (pfam13306)	Probable cell surface protein (Leucine-rich repeat protein) precursor
THC0290_0180		398	42.1	LRR_5 (pfam13306)	Probable cell surface protein (Leucine-rich repeat protein) precursor
THC0290_0181		467	50.1	LRR_5 (pfam13306)	Probable cell surface protein (Leucine-rich repeat protein) precursor
THC0290_0182		329	35.0	LRR_5 (pfam13306)	Probable cell surface protein (Leucine-rich repeat protein) precursor
THC0290_0183		306	33.2	LRR_5 (pfam13306)	Probable cell surface protein (Leucine-rich repeat protein) precursor
THC0290_0184		351	37.0	LRR_5 (pfam13306)	Probable cell surface protein (Leucine-rich repeat protein)

Accepted Manuscript Posted Online

Downloaded from http://aem.asm.org/ on June 25, 2020 at INRAE - Inst Natl de Rech pour l'Agriculture, l'Alimentation et l'Environnement

õ
ñ
000
ğ
ed
fro
m
5
₽
1
Be
3
as
3
9
é
n
ے
n
Ð
ŝ
\mathbf{N}
02
0
at I
Ż
NRAE
Ē
<u>-</u>
ns
t
7
Nat
Natl d
Natl de l
Natl de Re
Natl de Rech
Downloaded from http://aem.asm.org/ on June 25, 2020 at INRAE - Inst Natl de Rech p
Natl de Rech pou
pour
pour l'⁄
pour l'Agriculture, l'Alimentation et l'Envir
pour l'Agriculture, l'Alimentation et l'Envir
pour l'Agriculture, l'Alimentation et l'Envir
pour l'Agriculture, l'Alimentation et l'En

1					
THE CO. 010	_	220	25.2	LDD 5 (6 10000)	precursor
THC0290_0185)	329	35.3	LRR_5 (pfam13306)	Probable cell surface protein (Leucine-rich repeat protein)
THC0290 0186	5	328	35.3	LRR_5 (pfam13306)	precursor Probable cell surface protein (Leucine-rich repeat protein)
111C0290_0180	J	526	55.5	ERR_5 (plain15500)	precursor
THC0290 0237	7 Fpp1	1138	119.6	ZnMc super family (cl00064)	Peptidase precursor (Psychrophilic metalloprotease Fpp1)
11100290_025	1 1 1 1 1	1150	117.0	FN3 super family (cl21522)	repiduse precursor (r syemophine metanoprocease r ppr)
				P proprotein super family (cl27557)	
THC0290 0238	8 Fpp2	942	100.3	ZnMc_pappalysin_like (cd04275)	Peptidase precursor (Psychrophilic metalloprotease Fpp2)
	11			Cleaved Adhesin super family	
				(cl06636)	
THC0290_0299)	914	100.1	Peptidase_M36 (pfam02128)	Probable peptidase precursor (M36 fungalysin family
				PA_subtilisin_1 (cd04818)	metalloprotease)
THC0290_0300)	919	99.8	Peptidase_M36 (pfam02128)	Probable peptidase precursor (M36 fungalysin family
				PA_subtilisin_1 (cd04818)	metalloprotease)
THC0290_0878		747	78.2	FN3 (cd00063)	Putative adhesin precursor
THC0290_0931	1	960	103.3	ZnMc super family (cl00064)	Peptidase precursor (Collagenase; Zn-dependent
TUC0200 004		511	50.5	D (11 00 0 (107402)	metalloprotease)
THC0290_0944	ŧ	544	58.5	Peptidases_S8_9 (cd07493)	Probable peptidase precursor (S8 subtilisin family serine endopeptidase)
THC0290 0977	7	585	64.9	Abhydrolase super family (cl21494)	Esterase/lipase/thioesterase family protein precursor
THC0290_0977 THC0290_1054		408	46.0	SGNH hydrolase super family	Esterase/inpase/unoesterase rainity protein precursor
111C0290_105-	+	400	40.0	(cl01053)	
				PKD repeat (COG3291)	
THC0290 1343	3	1218	134.1	ZnMc super family (cl00064)	Probable cell surface protein precursor; putative
				PKD (COG3291, 3 copies)	metallopeptidase, metzincin clan
				PCC super family (cl28216)	I I,
THC0290_1494	4	657	71.5	HNHc super family (cl00083)	Probable ribonuclease
THC0290_1520)	613	66.2	Endonuclease_1 (pfam04231)	Probable endonuclease precursor
				FN3 (cd00063)	
				COG2374 super family (cl28586)	
THC0290_1595		628	67.9		Putative adhesin precursor
THC0290_1797		263	29.4	DOMON_DOH (cd09631)	
THC0290_2029		301	32.9		
THC0290_2146		1278	142.1	Peptidase_C25_N (cd02258)	Peptidase precursor (T9SS CTD signal peptidase, PorU)
THC0290_2157		166	18.7	A TELL (12 4022)	
THC0290_2385)	456	49.2	ATS1 super family (cl34932) RCC1 (pfam00415)	RCC1 (Regulator of Chromosome Condensation) repeat domain protein precursor
Average		550	59.3	KUUT (plain00415)	protein precursor
Median		422	39.3 46.0		
wiculan		722	40.0		

39

No.
Ş
≥
0
മ
Q
Q
0
Ţ
o'
⊐
5
#
D
5
a)
ดิ
Ä
<u>ب</u>
മ
<u>s</u>
3
-
<u> </u>
Q
-
0
⊐
L
Ē
⊐
Φ
~
3
5
N
ŏ
Ñ
0
0)
¥
=
Z
ע
5

5
Ins
Inst
Inst N
Inst Na
Inst Natl
Inst Natl of
Inst Natl de
Inst Natl de
Inst Natl de R
Inst Natl de Re
Inst Natl de Rec
Inst Natl de Rech
ownloaded from http://aem.asm.org/ on June 25, 2020 at INRAE - Inst Natl de Rech p
Inst Natl de Rech po
Doc
oour l'Agriculture, l'Alimentation et l'

D

Range	113	12.8				
	to	to				
	1278	142.1				

981 982

¹The T9SS type A CTD (TIGR04183) is a C-terminal domain that targets a protein for secretion by the T9SS. TIGR04183 is described 983 as 'Por secretion system C-terminal sorting domain' on the J. Craig Venter Institute TIGR website (http://www.jcvi.org/cgi-984 bin/tigrfams/index.cgi). Each of these proteins contains an N-terminal signal peptide for export across the cytoplasmic membrane as 985 determined using SignalP 5.0 with a cutoff of 0.8, and a T9SS type A C-terminal domain (CTD) for secretion across the outer 986 membrane by the T9SS as determined using the Integrated Microbial Genomes (IMG version 4.0.1 [https://img.jgi.doe.gov/]) tools 987 and trusted cutoffs. 988

989 ²Length of full-length protein in amino acids before removal of signal peptide or CTD. 990

³Molecular mass (kDa) of full-length protein in amino acids before removal of signal peptide or CTD. 991 992

993 ⁴Domains other than signal peptide and CTDs, with pfam, cl, cd, or COG numbers indicated.

Table 2. Predicted T9SS type B CTD-containing proteins of F. psychrophilum strain OSU THCO2-901 994 995

Locus tag	Name	AA ²	Mol. Mass (kDa) ³	Domains ⁴	Description/Function or predicted function
THC0290_0023	SprC	477	51.2	FlgD_ig super family (cl21544)	Gliding motility protein precursor, SprC
THC0290_0025	SprB	3521	366.8	SprB repeat (pfam13573, 3 copies) FlgD Ig-like domain (cl21544)	Gliding motility adhesin precursor, SprB
THC0290_0332		2653	269.2	ATS1 super family (cl34932) Calx-beta domain (cl02522) Herpes_BLLF1 super family (cl37540)	Putative adhesin precursor
THC0290 1047		798	87.8	······································	Putative adhesin precursor
THC0290 1048		757	82.6		Putative adhesin precursor
THC0290 1527		2229	233.6	Ig_2 (pfam13895)	Putative adhesin precursor
THC0290_1616		1253	129.6	YjdB (COG5492, 2 copies) Big_2 (cl02708)	Putative adhesin precursor
THC0290_1818		1452	158.9	u	Putative adhesin precursor
THC0290_1932		2001	200.0	DUF11 (pfam01345) PRK08026 super family (cl35635)	Putative adhesin precursor
THC0290_2338		2008	208.3	fn3 (pfam00041, 2 copies) FN3 (cd00063, 2 copies) CUB (cd00041)	Putative adhesin precursor
Average Median		1715 1727	178.8		
			179.5		
Range		477 to 3521	51.2 to 366.8		

996 997

999

¹The T9SS type B CTD (TIGR04131/pfam13585) is a C-terminal domain that targets a protein for secretion by the T9SS. TIGR04131 998 is described as 'gliding motility-associated C-terminal domain' on the J. Craig Venter Institute TIGR website (http://www.jcvi.org/cgibin/tigrfams/index.cgi). Each of these proteins contains an N-terminal signal peptide for export across the cytoplasmic membrane as 1000 determined using SignalP 5.0 with a cutoff of 0.7, and a T9SS type B CTD for secretion across the outer membrane by the T9SS as determined using the IMG tools and trusted cutoffs. THC0290_0023 (SprC) matched only pfam13585, whereas each of the other 1001 1002 proteins matched both TIGR04131 and pfam13585.

1003

Applied and Environmental Microbiology

AEM

Downloaded from http://aem.asm.org/ on June 25, 2020 at INRAE - Inst Natl de Rech pour l'Agriculture, l'Alimentation et l'Environnement

²Length of full-length protein in amino acids before removal of signal peptide or CTD.
 ³Molecular mass (kDa) of full-length protein in amino acids before removal of signal peptide or CTD.

⁴Domains other than signal peptide and CTDs, with pfam, cl, cd, or COG numbers indicated.

Downloaded from http://aem.asm.org/ on June 25, 2020 at INRAE - Inst Natl de Rech pour l'Agriculture, l'Alimentation et l'Environnement

42

1010 Table 3. F. psychrophilum T9SS type A CTD and type B CTD proteins identified by LC-MS/MS analysis of cell-free spent

1011 culture medium^a

1012

Locus	Mol.	I. T9SS Predicted protein function or description Spectral counts from cultur				re fluid
tag/Protein	Mass	CTD ^c		Wild type	$\Delta gldN$	$\Delta gldN$
name	(kDa) ^b					+ pBFp4
T9SS-CTD prote	eins other	than leuc	cine-rich repeat proteins			
THC0290_0238	100.3	type A	Peptidase	813	72	903
/Fpp2						
THC0290_0025	366.8	type B	Gliding motility adhesin SprB	268	59	315
/SprB						
THC0290_0931	103.3	type A	Peptidase (collagenase)	170	22	143
THC0290_2338	208.3	type B	Adhesin	84	32	94
THC0290_1932	200.0	type B	Adhesin	48	17	36
THC0290_1520	66.2	type A	Endonuclease	37	0	40
THC0290_2029	32.9	type A		34	19	45
THC0290_1797	29.4	type A		32	1	23
THC0290_1616	129.6	type B	Adhesin	27	8	53
THC0290_1595	67.9	type A	Adhesin	24	8	16

Applied and Environmental Microbiology

Downloaded from http://aem.asm.org/ on June 25, 2020 at INRAE - Inst Natl de Rech pour l'Agriculture, l'Alimentation et l'Environnement

THC0290_0944	58.5	type A	Peptidase	21	0	23
THC0290_2146	142.1	type A	T9SS-specific CTD peptidase	20	17	32
/PorU						
THC0290_1494	71.5	type A	Ribonuclease	19	0	24
THC0290_0332	269.2	type B	Adhesin	15	4	16
THC0290_1527	233.6	type B	Adhesin	13	5	20
THC0290_0023	51.2	type B	Gliding motility protein SprC	9	4	9
/SprC						
THC0290_1047	87.8	type B	Adhesin	8	1	15
THC0290_1343	134.1	type A	Peptidase	6	0	6
THC0290_0086	70.9	type A	Peptidase	6	0	9
THC0290_0237	119.6	type A	Peptidase	6	0	5
/Fpp1						
THC0290_0129	33.6	type A		6	1	9
THC0290_1818	158.9	type B	Adhesin	6	0	6
THC0290_0091	122.8	type A	Glycoside hydrolase	5	2	4
THC0290_1048	82.6	type B	Adhesin	3	0	7
THC0290_0299	100.1	type A	Peptidase	1	16	6
THC0290_1054	46.0	type A		0	0	3
THC0290_0128	12.8	type A		0	2	0

44

Leucine-rich rep	-					
THC0290_0183	33.2	type A	leucine-rich repeat protein	51	22	46
THC0290_0174	44.5	type A	leucine-rich repeat protein	23	13	22
THC0290_0171	44.5	type A	leucine-rich repeat protein	22	18	32
THC0290_0170	41.7	type A	leucine-rich repeat protein	20	40	24
THC0290_0181	50.1	type A	leucine-rich repeat protein	17	18	1
THC0290_0184	37.0	type A	leucine-rich repeat protein	15	25	2
THC0290_0186	35.3	type A	leucine-rich repeat protein	12	15	1
THC0290_0182	35.0	type A	leucine-rich repeat protein	9	17	1
THC0290_0175	35.3	type A	leucine-rich repeat protein	7	16	1
THC0290_0185	35.3	type A	leucine-rich repeat protein	7	9	1
THC0290_0172	35.2	type A	leucine-rich repeat protein	7	19	1
THC0290_0180	42.1	type A	leucine-rich repeat protein	0	20	
THC0290_0177	56.0	type A	leucine-rich repeat protein	0	15	

1013 1014

^a Proteins in cell-free culture fluid from wild-type *F. psychrophilum*, $\Delta gldN$ mutant, and $\Delta gldN$ complemented with pBFp4, were analyzed by LC-MS/MS. Total/unweighted spectrum counts corresponding to total number of spectra associated to a single protein

1017 and indicative of relative abundance of that protein are indicated for each strain. Only proteins with predicted T9SS CTDs are shown.

For the full dataset, which includes additional proteins, see Dataset S1. The following type A CTD proteins were not detected:

1019 THC0290_0173, THC0290_0176, THC0290_0178, THC0290_0179, THC0290_0300, THC0290_0878, THC0290_0977,

1020 THC0290_2157, THC0290_2385. However, the LRR proteins THC0290_0173, THC0290_0176, THC0290_0178, THC0290_0179,

may have been present, because they are similar in sequence to the other LRR proteins, resulting in ambiguity regarding protein
 assignment for some peptides (Dataset S1). Similarly, THC0290_300 may have been missed because of similarity in sequence to

1023 THC0290_0299. 1024

Applied and Environmental Microbiology 1025 ^b Molecular mass as calculated for full-length protein before removal of signal peptide. 1026

^c Type A CTDs belong to TIGRFAM protein domain family TIGR04183. Type B CTDs belong to TIGRFAM protein domain family
 TIGR04131 and/or pfam13585.

1028 110K04151 and/of pla

1030 ^d These proteins have paralogs in the genome that complicate assignment of peptides.

1031 1032 Table 4. Strains and plasmids used in this study

Strain	Description ^a	Source or
or plasmid		reference
Bacteroides thetaiotaomicron	Used to measure porphyrin (heme, hemoglobin or	(78)
strain VPI-5482 ^T	protoporphyrin IX)	
E. coli DH5αMCR	Strain used for general cloning	Life
		Technologies
		(Grand
		Island, NY)
<i>E. coli</i> S17-1 λ pir	Strain used for conjugation	(87)
F. psychrophilum strain		
OSU THCO2-90	Wild type	(47, 75)
F. psychrophilum strain FpT13	$\Delta gldN$ in strain OSU THCO2-90	This study
Plasmids		
pCP11	E. coli-Flavobacterium shuttle plasmid; Ap ^r (Em) ^r	(80)
pYT313	Suicide vector carrying <i>sacB</i> ; Apr (Emr)	(45)
pBFp0	2,858 bp region upstream of gldN amplified with primers	This study
	2060 and 2061 and cloned into BamHI and SalI sites of	
	pYT313; Ap ^r (Em ^r)	
pBFp1	Construct used to delete gldN; 3,132 bp region downstream	This study
	of gldN amplified with primers 2062 and 2063 and cloned	
	into SalI and SphI sites of pBFp0; Apr (Emr)	
pBFp4	Plasmid for complementation of gldN; gldN was amplified	This study
	with primers 2076 and 2077 and cloned into KpnI and SphI	
	sites of pCP11; Ap ^r (Em ^r)	

47

1033

1034	^{<i>a</i>} Antibiotic resistance phenotypes:	ampicillin, Ap ^r ; erythromycin, Em ^r . Unle	ess indicated
------	---	--	---------------

- 1035 otherwise, the antibiotic resistance phenotypes are those expressed in E. coli. The antibiotic
- 1036 resistance phenotypes given in parentheses are those expressed in F. psychrophilum but not in E.

1037 coli.

1038

Accepted Manuscript Posted Online

1039 **Table 5. Primers used in this study**

Primers	Sequence ^a
2060	5' GCTAG <u>GGATCC</u> GCTAGAAATGATAGAGGTTGTTATT 3'
2061	5' GCTAG <u>GTCGAC</u> GTCATTATCTTTTAGTTGTTGTGCT 3'
2062	5' GCTAG <u>GTCGAC</u> CGTTTTAATGCACTGACTTATAAAG 3'
2063	5' GCTAG <u>GCATGC</u> GTAATTTCGCCATCTAGATATTCT 3'
2076	5' GCTAG <u>GGTACC</u> AGCTAGCTTCTCTGGAATAG 3'
2077	5' GCTAG <u>GCATGC</u> ATTTGGTAAGAGTTTTTTAA 3'

1040

^aUnderlined sequences indicate introduced restriction enzyme sites.

1042

49

Applied and Environ<u>mental</u>

1043 1044

1045 Figure 1. Gliding of wild-type and $\Delta gldN$ mutant cells on agar

1046 Cells were grown in TYES at 18°C for 24 h to late exponential phase, (OD approximately 1.3).
1047 Ten microliters of cultures were spotted on TYES solidified with agar (10 g /l) and observed for

1048 motility using an Olympus BH-2 phase-contrast microscope. Wild-type (WT) F. psychrophilum,

1049 $\Delta gldN$ mutant, and $\Delta gldN$ complemented with wild-type gldN on pBFp4 are shown. In each case

1050 a series of images were taken using a Photometrics Cool-SNAP_{cf}² camera. Individual frames

1051 were colored from red (time 0) to yellow, green, cyan, and finally blue (132 s) and integrated

1052 into one image, resulting in 'rainbow traces' of gliding cells. The top row shows the first frame

1053 for each strain, and the bottom row shows the corresponding 132 sec rainbow trace. White cells

1054 in the bottom panel correspond to cells that exhibited little if any net movement. Bar at lower

1055 right (20 μ m) applies to all panels. The rainbow traces correspond to the sequences in Movie S1.

1056

1057

1058 Figure 2. Colonies of wild-type, $\Delta gldN$ mutant, and complemented strains of *F*.

1059 psychrophilum

1060 (A-C) Micro-colonies of wild type (WT), $\Delta gldN$ mutant, and $\Delta gldN$ mutant complemented with

- 1061 wild-type gldN on pBFp4. Colonies arose from cells incubated for 32 h at 18°C on 5% TYES
- 1062 solidified with agar (10 g/l). Photomicrographs were taken with a Photometrics Cool-SNAP_{cf}²
- 1063 camera mounted on an Olympus IMT-2 phase contrast microscope. Bar in panel C (0.5 mm)
- 1064 applies to panels A, B, and C. (D) Macro-colonies of wild type, $\Delta gldN$ mutant, and
- 1065 complemented mutant. Cells were spotted on 5% TYES solidified with agar (10 g/l), incubated at
- 1066 18°C for 12 d, and photographed using a Nikon D7200 camera. Bar in panel D indicates 10 mm.

Applied and Environmental Microbiology

1067

1	0	68
	~	

1069 1070	Figure 3. Soluble extracellular proteins of wild-type and $\Delta gldN$ mutant cells
1071	Cells of wild-type <i>F. psychrophilum</i> , $\Delta gldN$ mutant, and $\Delta gldN$ mutant complemented with wild-
1072	type gldN on pBFp4, were grown in TYES medium at 18°C with shaking until cells reached
1073	early stationary phase of growth (Klett readings of 160). Cells were removed by centrifugation
1074	followed by filtration (0.45 μ m). Proteins from equal amounts of cell-free spent media of wild-
1075	type, mutant, and complemented cells were precipitated with TCA, solubilized in loading buffer,
1076	and separated by SDS-PAGE. Proteins were detected by silver staining. Lane labeled 'TYES'
1077	contained an equivalent amount of TYES growth medium that had not been inoculated with F .

1078 *psychrophilum*, indicating bands that correspond to components of the growth medium.

1079

Accepted Manuscript Posted Online

1080	Figure 4. Proteolytic activity of wild-type and $\Delta gldN$ mutant cells
1081	Exoproteolytic activity of <i>F. psychrophilum</i> wild type (WT), $\Delta gldN$ mutant, and $\Delta gldN$
1082	complemented with pBFp4. A) stationary phase cultures were spotted on TYESG agar
1083	supplemented with casein (7.5 g/l) and proteolytic activity was visualized as clearing zones
1084	around the bacterial growth after incubation at 18°C for 4 days. B) proteolytic activity measured
1085	using azocasein as a substrate. Cells were grown in TYESG broth at 18°C with shaking.
1086	Proteolytic activity was measured in cell-free supernatants from each strain at different stages of
1087	growth. The results of three experiments are presented (values and error bars are means and
1088	standard deviations, respectively). Solid lines: OD ₆₀₀ indicating growth. Dashed lines: proteolytic
1089	activity units. Color code: blue (WT), red ($\Delta gldN$), green ($\Delta gldN$ complemented with pBFp4).

1090

AEM

Applied and Environmental Microbiology 1091

1092 1093 1094	
1095	
1096	Figure 5. Hemolytic activity of wild-type and $\Delta gldN$ mutant cells
1097	Hemolytic activities of cells of F. psychrophilum wild type (WT), $\Delta gldN$ mutant, and $\Delta gldN$
1098	complemented with pBFp4, incubated for 4 days at 18°C on TYESG agar supplemented with
1099	rainbow trout blood (50 ml/l). The results are representative of three independent experiments.
1100 1101	

Applied and Environmental Microbiology

1102	
1103	
1104 1105	Figure 6. Hemoglobin utilization by wild-type and $\Delta gldN$ mutant cells
1106	Detection of residual heme after growth of <i>F. psychrophilum</i> wild type (WT), $\Delta gldN$ mutant, and
1107	$\Delta gldN$ complemented with pBFp4 to stationary phase in TYESG broth supplemented with 0.5
1108	μM hemoglobin. The heme-protoporphyrin IX-screen is a bacterial-growth-based assay that
1109	exploits Bacteroides thetaiotaomicron heme auxotrophy. The stimulation area (cm ²) is
1110	proportional to the amount of porphyrin (heme, hemoglobin or protoporphyrin IX) in the sample.
1111	TYESG Hb and TYESG \emptyset : sterile medium with (Hb) or without (\emptyset) addition of hemoglobin to
1112	0.5 μ M. The results correspond to three independent bacterial cultures (mean and standard
1113	deviation are presented).
1114	
1115	

54

Applied and Environmental Microbiology

Applied and Environmental Microbiology

AEM

1116	
1117 1118	
1113	Figure 7. Adhesion, biofilm formation, and sedimentation of wild-type and $\Delta gldN$ mutant
1120	cells
1121	(A) Adhesion of wild-type F. psychrophilum (blue), $\Delta gldN$ mutant (red), and $\Delta gldN$ mutant
1122	complemented with pBFp4 (green) to polystyrene after 3 h of incubation at 18°C without shaking
1123	as determined by staining with crystal violet and measuring absorbance at 595 nm. Adhesion
1124	shown in relation to the wild-type strain, which was set as 100. (B) Biofilm formation on
1125	polystyrene by the same strains (identical color code) grown in half-strength TYES broth for 120
1126	h at 18°C without shaking. (C) Cell sedimentation of the same strains grown in half-strength
1127	TYES broth for 96 h at 18°C with shaking at 200 rpm.
1128 1129	

55

Applied and Environmental Microbiology Applied and Environmental

Microbiology

Poste	
nuscript	1130 1131 1132
ted Ma	1133 1134
Accep	1135 1136
	1137 1138

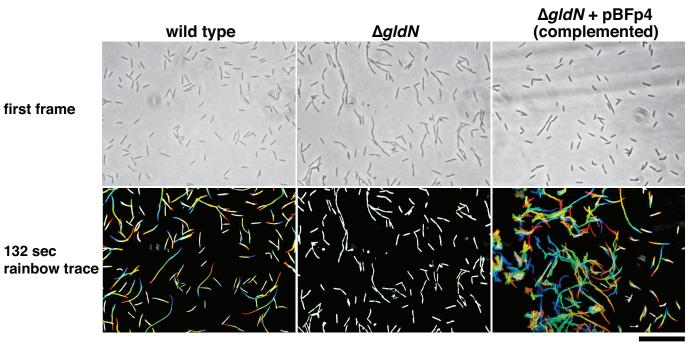
- 1139 fish inoculated with either the wild type or the $\Delta gldN$ mutant complemented with pBFp4 are
- 1140 significantly different from the $\Delta gldN$ mutant (Mantel-Cox Log-rank test pvalues <0.0001). The

Figure 8. Analysis of virulence of wild-type and AgldN mutant cells toward rainbow trout

intramuscular injection challenge. Four groups of 20 fish (n=80) were challenged with each F.

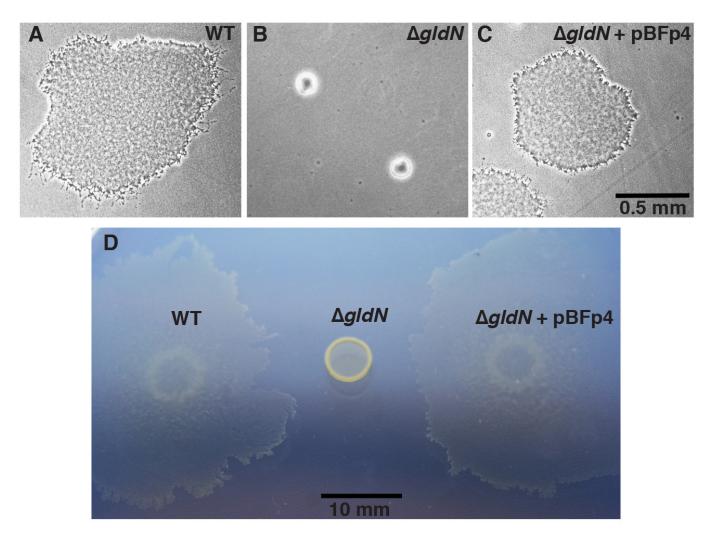
psychrophilum strain at doses (CFU/fish) of 2.6×10^6 (wild type), 2.7×10^6 ($\Delta gldN$ mutant) and

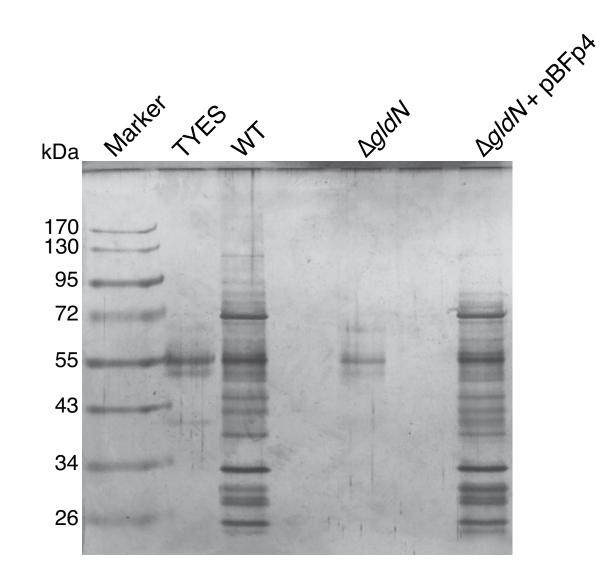
 2.8×10^6 ($\Delta gldN$ mutant complemented with pBFp4). Survival curves for fish inoculated with

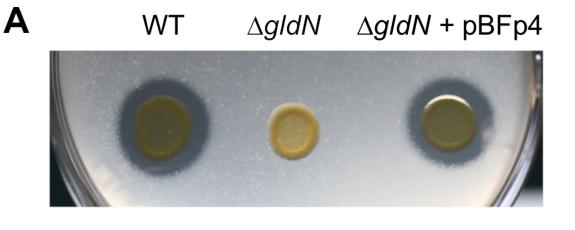

PBS (Control) and for fish inoculated with the $\Delta gldN$ mutant were identical. Survival curves for

following challenge by injection. Kaplan-Meier survival curves of rainbow trout after

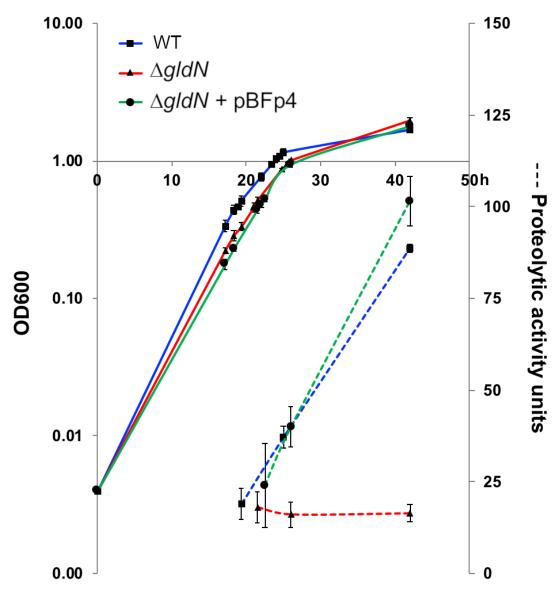
- 1141 survival curve of the $\Delta gldN$ mutant complemented with pBFp4 was modestly higher than the
- 1142 wild type (pvalue = 0.0012).

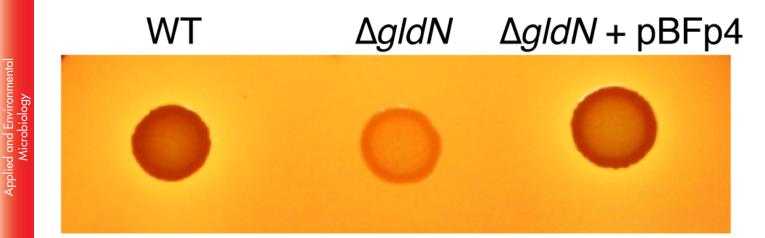

56

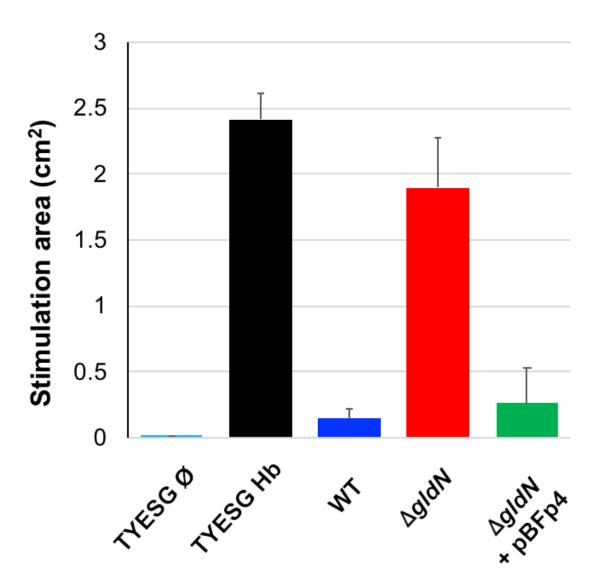

1143 1144 1145	Figure 9. Analysis of virulence of wild-type and $\Delta gldN$ mutant cells toward rainbow trout
1146	following immersion challenge
1147	Groups of 42 fish were infected by immersion with F. psychrophilum wild type (WT), $\Delta gldN$,
1148	and $\Delta gldN$ complemented with pBFp4. The results of two independent experiments are
1149	presented. A) F. psychrophilum bacterial loads in aquarium water during fish infection by
1150	immersion. Average of bacterial quantification determined at the beginning (0 h) and end (24 h)
1151	of fish infection challenge. B) Kaplan-Meier survival curves of rainbow trout after immersion
1152	challenge (each group composed of 30 fish). Survival curves for fish challenged with the $\Delta gldN$
1153	mutant, or with either the wild type or the $\Delta gldN$ mutant complemented with pBFp4 are
1154	significantly different (Mantel-Cox Log-rank test pvalues <0.0001). Colored shaded areas
1155	indicate 95% confidence intervals. C) Bacterial loads in organs of rainbow trout after immersion
1156	challenge. Six fish were sacrificed at 6 h and 30 h post-infection for each group. Serial dilutions
1157	of homogenized organs were incubated on TYESG agar supplemented with fetal calf serum (50
1158	ml/l) to determine the CFU. Bacterial loads of spleen (left panel) and gills (right panel) are
1159	shown. Horizontal dashed line indicates the detection threshold. Values are significantly lower
1160	for $\Delta gldN$ relative to wild-type and complemented strains (Mann-Whitney pvalues < 0.0001).
1161 1162	

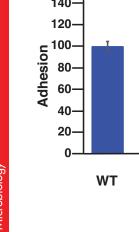

20 µm

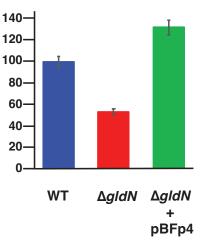
Downloaded from http://aem.asm.org/ on June 25, 2020 at INRAE - Inst Natl de Rech pour l'Agriculture, l'Alimentation et l'Environnement

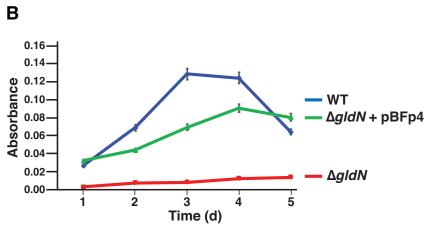



Applied and Environmental Microbiology

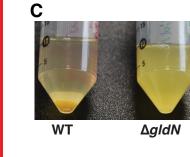

Β


Downloaded from http://aem.asm.org/ on June 25, 2020 at INRAE - Inst Natl de Rech pour l'Agriculture, l'Alimentation et l'Environnement

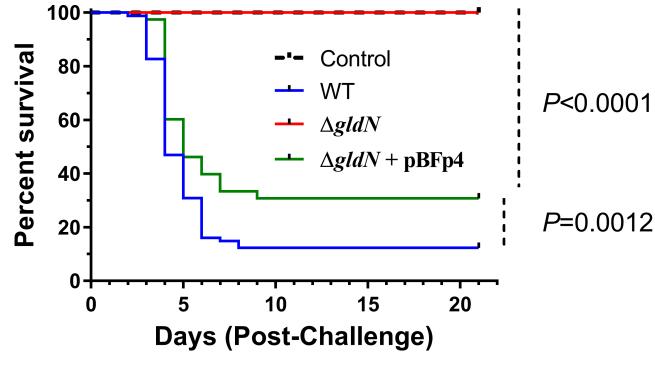

AEM



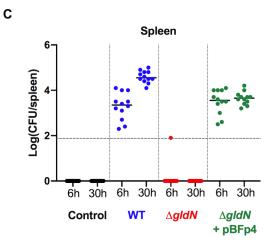
Downloaded from http://aem.asm.org/ on June 25, 2020 at INRAE - Inst Natl de Rech pour l'Agriculture, l'Alimentation et l'Environnement

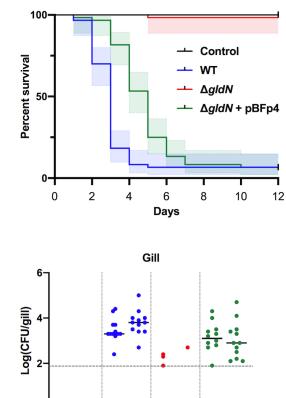


Α


AEM

Δ*gldN* + pBFp4


10


Downloaded from http://aem.asm.org/ on June 25, 2020 at INRAE - Inst Natl de Rech pour l'Agriculture, l'Alimentation et l'Environnement

Α

	CFU/mI	
	Time (hours)	
Strain	0	24
Wild-type	$\textbf{2.4}\times\textbf{10}^{7}$	2.0 × 10 ⁷
∆gIdN	$\textbf{2.0}\times\textbf{10}^{7}$	1.2 × 10 ⁷
∆ <i>gIdN</i> + pBFp4	2.0×10^{7}	4.5 × 10 ⁷

В

∆*gldN* + pBFp4 ∆**gldN**

30h

6h 30h

Downloaded from http://aem.asm.org/ on June 25, 2020 at INRAE - Inst Natl de Rech pour l'Agriculture, l'Alimentation et l'Environnement

AEM

WT

0-

6h 6h

Control