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Abstract. This article considers the temporal logic of the lexicographic
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1 Introduction

The mosaic method has been applied for proving completeness and decidability
of temporal logics over multifarious linear flows of time [9, 19, 20, 22]. The opera-
tion of lexicographic product of Kripke frames has been introduced as a variant
of the more classical operation of Cartesian product [12, 14, 17, 23]. See [5] for
details. It has been used for defining the semantical basis of different languages
designed for time representation and temporal reasoning from the perspective
of non-standard analysis [1, 2]. In [3, 4], the temporal logic of the lexicographic
products of unbounded dense linear orders has been considered, its complete
axiomatization has been given and its computability has been studied.

The purpose of this paper is give a new proof of the membership in NP of
the satisfiability problem of the lexicographic products of linear temporal logics.
Its section-by-section breakdown is as follows. Section 2 studies the elementary
properties of the lexicographic products of unbounded dense linear orders. In
section 3, we present the syntax and the semantics of the temporal logic we will
be working with. Sections 4 and 5 define mosaics and maps. In sections 6 and 7,
we prove that the satisfiability problem in our temporal logic is in NP .

2 Products of unbounded dense linear orders

Let F1 = (T1, <1) and F2 = (T2, <2) be linear orders. Their lexicographic product
is the structure F = (T,≺1,≺2) where



– T = T1 × T2,
– ≺1 and ≺2 are the binary relations on T defined by putting (s1, s2) ≺1 (t1, t2)

iff s1 <1 t1 and (s1, s2) ≺2 (t1, t2) iff s1 = t1 and s2 <2 t2.

We define the binary relation ≺ on T by putting (s1, s2) ≺ (t1, t2) iff s1 <1 t1,
or s1 = t1 and s2 <2 t2. For all (s1, s2), (t1, t2) ∈ T , if (s1, s2) ≺ (t1, t2) then let

– ](s1, s2), (t1, t2)[ be the set of all (u1, u2) ∈ T such that (s1, s2) ≺ (u1, u2)
and (u1, u2) ≺ (t1, t2),

– ](s1, s2),+∞[ be the set of all (u1, u2) ∈ T such that (s1, s2) ≺ (u1, u2),
– ]−∞, (t1, t2)[ be the set of all (u1, u2) ∈ T such that (u1, u2) ≺ (t1, t2).

The effect of the operation of lexicographic product may be described informally
as follows: given 2 linear orders, their lexicographic product is the structure
obtained by replacing each point of the first one by a copy of the second one.
The global intuitions underlying such an operation is based upon the fact that,
depending on the accuracy required or the available knowledge, one can describe
a temporal situation at different levels of abstraction. See [6, section I.2.2], or [10]
for details. In Fig. 1 below, we have s1 <1 t1 and s2 <2 t2. As a result, we have
(s1, s2) ≺2 (s1, t2), (s1, s2) ≺1 (t1, s2), (s1, s2) ≺1 (t1, t2), (s1, t2) ≺1 (t1, s2),
(s1, t2) ≺1 (t1, t2) and (t1, s2) ≺2 (t1, t2).
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Fig. 1.

In order to characterize the elementary properties of the operation of lexico-
graphic product, we introduce a first-order language. Let V ar denote a count-
able set of individual variables (with typical members denoted x, y, etc). The set
Lfo of all formulas (with typical members denoted ϕ, ψ, etc) of the first-order
language is given by the rule

– ϕ ::= x <1 y | x <2 y | ⊥ | ¬ϕ | (ϕ ∨ ψ) | ∀x ϕ | x = y,

the formulas x <1 y and x <2 y being read “x precedes but is not infinitely
close to y” and “x precedes and is infinitely close to y”. We adopt the standard
definitions for the remaining Boolean connectives. As usual, we define for all
individual variables x,

– ∃x ϕ ::= ¬∀x ¬ϕ.



The notion of a subformula is standard. We adopt the standard rules for omission
of the parentheses. The size of a formula ϕ, in symbols | ϕ |, is its length over the
alphabet of Lfo. Formulas in which every individual variable in an atomic sub-
formula is in the scope of a corresponding quantifier are called sentences. Models
for the first-order language are flows F = (T,≺1,≺2) where T is a nonempty set
and ≺1 and ≺2 are binary relations on T . An assignment on F is a function f :
V ar −→ T . Satisfaction is a 3-place relation |= between a flow F = (T,≺1,≺2),
an assignment f on F and a formula ϕ. It is inductively defined as usual. In
particular,

– F |=f x <1 y iff f(x) ≺1 f(y),
– F |=f x <2 y iff f(x) ≺2 f(y).

Obviously, if 2 linear orders are unbounded and dense then their lexicographic
product satisfies the following sentences:

IRRE – ∀x x 6<1 x,
– ∀x x 6<2 x,

DISJ – ∀x ∀y (x 6<1 y ∨ x 6<2 y),
TRAN – ∀x ∀y (∃z (x <1 z ∧ z <1 y)→ x <1 y),

– ∀x ∀y (∃z (x <1 z ∧ z <2 y)→ x <1 y),
– ∀x ∀y (∃z (x <2 z ∧ z <1 y)→ x <1 y),
– ∀x ∀y (∃z (x <2 z ∧ z <2 y)→ x <2 y),

DENS – ∀x ∀y (x <1 y → ∃z (x <1 z ∧ z <1 y)),
– ∀x ∀y (x <1 y → ∃z (x <1 z ∧ z <2 y)),
– ∀x ∀y (x <1 y → ∃z (x <2 z ∧ z <1 y)),
– ∀x ∀y (x <2 y → ∃z (x <2 z ∧ z <2 y)),

SERI – ∀x ∃y x <1 y,
– ∀x ∃y x <2 y,
– ∀x ∃y y <1 x,
– ∀x ∃y y <2 x,

UNIV – ∀x ∀y (x = y ∨ x <1 y ∨ x <2 y ∨ y <1 x ∨ y <2 x),

IRRE, DISJ , TRAN , DENS, SERI and UNIV standing for “irreflexive”,
“disjoint”, “transitive”, “dense”, “serial” and “universal”. Obviously, the sen-
tences as above have not the finite model property. By Löwenheim-Skolem the-
orem, they have models in each infinite power. A flow F = (T,≺1,≺2) is said to
be standard iff it satisfies the sentences as above. The first-order theory SF of
standard flows has the following list of proper axioms: IRRE, DISJ , TRAN ,
DENS, SERI and UNIV . The membership problem in the first-order theory
SF is this:

– determine whether a given sentence is in the first-order theory SF .

There are several results about the first-order theory SF :

Proposition 1 ([1]). (i) SF is countably categorical; (ii) SF is not categorical
in any uncountable power; (iii) SF is maximal consistent; (iv) SF is complete
with respect to the lexicographic product of any unbounded dense linear orders.



The results about the membership problem in the first-order theory SF are
summarized in the following proposition:

Proposition 2. (i) SF is decidable; (ii) SF is PSPACE-complete.

See [1] for the proof of propositions 1 and 2.

3 Syntax and semantics

It is now time to meet the temporal language we will be working with. Let At be
a countable set of atomic formulas (with typical members denoted p, q, etc). We
define the set Lt of formulas of our temporal language (with typical members
denoted ϕ, ψ, etc) as follows:

– ϕ ::= p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | G1ϕ | G2ϕ | H1ϕ | H2ϕ,

the formulas G1ϕ, G2ϕ, H1ϕ and H2ϕ being read “ϕ will be true at each point
within the future of but not infinitely close to the present point”, “ϕ will be true
at each instant within the future of and infinitely close to the present instant”,
“ϕ has been true at each point within the past of but not infinitely close to
the present point” and “ϕ has been true at each point within the past of and
infinitely close to the present point”. We adopt the standard definitions for the
remaining Boolean connectives. As usual, we define for all i ∈ {1, 2},

– Fiϕ ::= ¬Gi¬ϕ and
– Piϕ ::= ¬Hi¬ϕ.

The notion of a subformula is standard. It is usual to omit parentheses if this
does not lead to any ambiguity. The size of a formula ϕ, in symbols | ϕ |, is the
number of symbols of ϕ. A set Γ of formulas is said to be full iff there exists i
∈ {1, 2} such that Gi⊥ ∈ Γ , or Hi⊥ ∈ Γ and the following unique condition is
satisfied:

– if there exists i ∈ {1, 2} such that Giϕ ∈ Γ , or Hiϕ ∈ Γ then for all i ∈
{1, 2}, Giϕ ∈ Γ and Hiϕ ∈ Γ .

Remark that if Γ is a subformula closed full set of formulas then ⊥ ∈ Γ . More-
over, for all i ∈ {1, 2}, Gi⊥ ∈ Γ and Hi⊥ ∈ Γ . In other respect,

Lemma 1. Let ϕ be a formula. Let Γ be the least subformula closed full set of
formulas containing ϕ. Then card(Γ ) ≤ 4× | ϕ | +2.

Proof. By induction on ϕ.

A model is a structureM = (F1,F2, V ) where F1 = (T1, <1) and F2 = (T2, <2)
are linear orders and V : At −→ 2T1×T2 is a function. Satisfaction is a 3-place
relation |= between a model M = (F1,F2, V ), a pair (s1, s2) ∈ T1 × T2 and a
formula ϕ. It is defined by induction on ϕ as usual. In particular, for all i ∈
{1, 2},



– M, (s1, s2) |= Giϕ iff M, (t1, t2) |= ϕ for each pair (t1, t2) ∈ T1 × T2 such
that (s1, s2) ≺i (t1, t2),

– M, (s1, s2) |= Hiϕ iff M, (t1, t2) |= ϕ for each pair (t1, t2) ∈ T1 × T2 such
that (t1, t2) ≺i (s1, s2).

As a result, for all i ∈ {1, 2},

– M, (s1, s2) |= Fiϕ iff M, (t1, t2) |= ϕ for some pair (t1, t2) ∈ T1 × T2 such
that (s1, s2) ≺i (t1, t2),

– M, (s1, s2) |= Piϕ iff M, (t1, t2) |= ϕ for some pair (t1, t2) ∈ T1 × T2 such
that (t1, t2) ≺i (s1, s2).

M is said to be a model for ϕ iff there exists (s1, s2) ∈ T1×T2 such thatM, (s1, s2)
|= ϕ. Let C1 and C2 be classes of linear orders. We shall say that a formula ϕ
is satisfiable with respect to (C1, C2) iff there exists a linear order F1 = (T1, <1)
in C1, there exists a linear order F2 = (T2, <2) in C2 and there exists a function
V : At −→ 2T1×T2 such that (F1,F2, V ) is a model for ϕ. The temporal logic of
(C1, C2) is the set of all formulas ϕ such that ¬ϕ is not satisfiable with respect to
(C1, C2). The class of all unbounded dense linear orders will be denoted Cud. [3]
considers the temporal logic of (Cud, Cud) and gives its complete axiomatization
based on the following 32 axioms:

– φ→ G1P1φ,
– φ→ H1F1φ,
– φ→ G2P2φ,
– φ→ H2F2φ,
– F1F1φ→ F1φ,
– P1P1φ→ P1φ,
– F1F2φ→ F1φ,
– P1P2φ→ P1φ,
– F2F1φ→ F1φ,
– P2P1φ→ P1φ,
– F2F2φ→ F2φ,
– P2P2φ→ P2φ,
– F1φ→ F1F1φ,
– P1φ→ P1P1φ,
– F1φ→ F1F2φ,
– P1φ→ P1P2φ,
– F1φ→ F2F1φ,
– P1φ→ P2P1φ,
– F2φ→ F2F2φ,
– P2φ→ P2P2φ,
– F1>,
– P1>,
– F2>,
– P2>,
– F1φ∧F1ψ → F1(φ∧ψ)∨F1(φ∧F1ψ)∨F1(φ∧F2ψ)∨F1(ψ∧F1φ)∨F1(ψ∧F2φ),



– P1φ∧P1ψ → P1(φ∧ψ)∨P1(φ∧P1ψ)∨P1(φ∧P2ψ)∨P1(ψ∧P1φ)∨P1(ψ∧P2φ),
– F1φ ∧ F2ψ → F2(ψ ∧ F1φ),
– P1φ ∧ P2ψ → P2(ψ ∧ P1φ),
– F2φ ∧ F1ψ → F2(φ ∧ F1ψ),
– P2φ ∧ P1ψ → P2(φ ∧ P1ψ),
– F2φ ∧ F2ψ → F2(φ ∧ ψ) ∨ F2(φ ∧ F2ψ) ∨ F2(ψ ∧ F2φ),
– P2φ ∧ P2ψ → P2(φ ∧ ψ) ∨ P2(φ ∧ P2ψ) ∨ P2(ψ ∧ P2φ).

The satisfiability problem this temporal logic gives rise to is this:

– determine whether a given formula is satisfiable with respect to (Cud, Cud).

In order to provide a complete decision procedure in nondeterministic polynomial
time for it, we use mosaics and maps.

4 Mosaics

Until the end of this paper, ϕ will denote a formula and Γ will denote the least
subformula closed full set of formulas containing ϕ. A function σ: Γ −→ {0, 1}
is said to be adequate iff σ(⊥) = 0, for all i ∈ {1, 2}, σ(Gi⊥) = 0 and σ(Hi⊥) =
0 and the 2 following conditions are satisfied:

1. if ¬ψ ∈ Γ then σ(¬ψ) = 1− σ(ψ),
2. if ψ ∨ χ ∈ Γ then σ(ψ ∨ χ) = max{σ(ψ), σ(χ)}.

A mosaic is a structure (σ, τ) where σ: Γ −→ {0, 1} and τ : Γ −→ {0, 1} are
adequate functions. We shall say that a mosaic (σ, τ) is 1-temporal iff the 2
following conditions are satisfied:

1. if G1ψ ∈ Γ then σ(G1ψ) ≤ min{τ(ψ), τ(G1ψ), τ(G2ψ), τ(H2ψ)},
2. if H1ψ ∈ Γ then τ(H1ψ) ≤ min{σ(ψ), σ(G2ψ), σ(H1ψ), σ(H2ψ)}.

A mosaic (σ, τ) is said to be 2-temporal iff the 6 following conditions are satisfied:

1. if G1ψ ∈ Γ then σ(G1ψ) ≤ τ(G1ψ),
2. if G2ψ ∈ Γ then σ(G2ψ) ≤ min{τ(ψ), τ(G2ψ)},
3. if H1ψ ∈ Γ then σ(H1ψ) ≤ τ(H1ψ),
4. if G1ψ ∈ Γ then τ(G1ψ) ≤ σ(G1ψ),
5. if H1ψ ∈ Γ then τ(H1ψ) ≤ σ(H1ψ),
6. if H2ψ ∈ Γ then τ(H2ψ) ≤ min{σ(ψ), σ(H2ψ)}.

A premodel is a structure (σ0,M1,M2) where σ0: Γ −→ {0, 1} is an adequate
function, M1 is a set of 1-temporal mosaics and M2 is a set of 2-temporal mosaics.
The cardinality of a premodel (σ0,M1,M2), in symbols ‖ (σ0,M1,M2) ‖, is the
number of mosaics in M1 plus the number of mosaics in M2. We shall say that a
premodel (σ0,M1,M2) is 0-saturated iff the 4 following conditions are satisfied:

1. if G1ψ ∈ Γ then σ0(G1ψ) = 1, or there exists an adequate function τ :
Γ −→ {0, 1} such that (σ0, τ) ∈ M1 and τ(ψ) = 0,



2. if G2ψ ∈ Γ then σ0(G2ψ) = 1, or there exists an adequate function τ :
Γ −→ {0, 1} such that (σ0, τ) ∈ M2 and τ(ψ) = 0,

3. if H1ψ ∈ Γ then σ0(H1ψ) = 1, or there exists an adequate function τ :
Γ −→ {0, 1} such that (τ, σ0) ∈ M1 and τ(ψ) = 0,

4. if H2ψ ∈ Γ then σ0(H2ψ) = 1, or there exists an adequate function τ :
Γ −→ {0, 1} such that (τ, σ0) ∈ M2 and τ(ψ) = 0.

A premodel (σ0,M1,M2) is said to be 1-saturated iff for all mosaics (σ, τ) ∈ M1,
the 8 following conditions are satisfied:

1. if G1ψ ∈ Γ then σ(G1ψ) = 1, or there exists an adequate function µ: Γ −→
{0, 1} such that (σ, µ) ∈ M1, (µ, τ) ∈ M1 ∪M2 and µ(ψ) = 0, or τ(ψ) = 0,
or τ(G1ψ) = 0, or τ(G2ψ) = 0,

2. if G2ψ ∈ Γ then σ(G2ψ) = 1, or there exists an adequate function µ: Γ −→
{0, 1} such that (σ, µ) ∈ M2, (µ, τ) ∈ M1 and µ(ψ) = 0,

3. if H1ψ ∈ Γ then σ(H1ψ) = 1, or there exists an adequate function µ: Γ −→
{0, 1} such that (µ, σ) ∈ M1 and µ(ψ) = 0,

4. if H2ψ ∈ Γ then σ(H2ψ) = 1, or there exists an adequate function µ: Γ −→
{0, 1} such that (µ, σ) ∈ M2 and µ(ψ) = 0,

5. if G1ψ ∈ Γ then τ(G1ψ) = 1, or there exists an adequate function µ: Γ −→
{0, 1} such that (τ, µ) ∈ M1 and µ(ψ) = 0,

6. if G2ψ ∈ Γ then τ(G2ψ) = 1, or there exists an adequate function µ: Γ −→
{0, 1} such that (τ, µ) ∈ M2 and µ(ψ) = 0,

7. if H1ψ ∈ Γ then τ(H1ψ) = 1, or σ(H1ψ) = 0, or σ(H2ψ) = 0, or σ(ψ) =
0, or there exists an adequate function µ: Γ −→ {0, 1} such that (σ, µ) ∈
M1 ∪M2, (µ, τ) ∈ M1 and µ(ψ) = 0,

8. if H2ψ ∈ Γ then τ(H2ψ) = 1, or there exists an adequate function µ: Γ −→
{0, 1} such that (σ, µ) ∈ M1, (µ, τ) ∈ M2 and µ(ψ) = 0.

We shall say that a premodel (σ0,M1,M2) is 2-saturated iff for all mosaics (σ, τ)
∈ M2, the 8 following conditions are satisfied:

1. if G1ψ ∈ Γ then σ(G1ψ) = 1, or there exists an adequate function µ: Γ −→
{0, 1} such that (τ, µ) ∈ M1 and µ(ψ) = 0,

2. if G2ψ ∈ Γ then σ(G2ψ) = 1, or there exists an adequate function µ: Γ −→
{0, 1} such that (σ, µ) ∈ M2, (µ, τ) ∈ M2 and µ(ψ) = 0, or τ(ψ) = 0, or
τ(G2ψ) = 0,

3. if H1ψ ∈ Γ then σ(H1ψ) = 1, or there exists an adequate function µ: Γ −→
{0, 1} such that (µ, σ) ∈ M1 and µ(ψ) = 0,

4. if H2ψ ∈ Γ then σ(H2ψ) = 1, or there exists an adequate function µ: Γ −→
{0, 1} such that (µ, σ) ∈ M2 and µ(ψ) = 0,

5. if G1ψ ∈ Γ then τ(G1ψ) = 1, or there exists an adequate function µ: Γ −→
{0, 1} such that (τ, µ) ∈ M1 and µ(ψ) = 0,

6. if G2ψ ∈ Γ then τ(G2ψ) = 1, or there exists an adequate function µ: Γ −→
{0, 1} such that (τ, µ) ∈ M2 and µ(ψ) = 0,

7. if H1ψ ∈ Γ then τ(H1ψ) = 1, or there exists an adequate function µ: Γ −→
{0, 1} such that (µ, σ) ∈ M1 and µ(ψ) = 0,



8. if H2ψ ∈ Γ then τ(H2ψ) = 1, or σ(H2ψ) = 0, or σ(ψ) = 0, or there exists
an adequate function µ: Γ −→ {0, 1} such that (σ, µ) ∈M2, (µ, τ) ∈M2 and
µ(ψ) = 0.

A premodel is said to be saturated iff it is 0-, 1- and 2-saturated. We shall say that
a premodel (σ0,M1,M2) is 1-dense iff for all mosaics (σ, τ) ∈ M1, the following
unique condition is satisfied:

– there exists an adequate function µ: Γ −→ {0, 1} such that (σ, µ) ∈ M1 and
(µ, τ) ∈ M1.

A premodel (σ0,M1,M2) is said to be 2-dense iff for all mosaics (σ, τ) ∈M2, the
following unique condition is satisfied:

– there exists an adequate function µ: Γ −→ {0, 1} such that (σ, µ) ∈ M2 and
(µ, τ) ∈ M2.

We shall say that a premodel is dense iff it is 1- and 2-dense. A premodel
(σ0,M1,M2) is said to be for ϕ iff σ0(ϕ) = 1.

5 Maps

Until the end of this section, (σ0,M1,M2) will denote a saturated dense pre-
model. A map is a partial function l: Q × Q −→ (Γ −→ {0, 1}) with finite
domain and such that for all pairs (s1, s2) ∈ dom(l), l(s1, s2) is an adequate
function. A map l is said to be respectful iff (0, 0) ∈ dom(l), l(0, 0) = σ0 and for
all pairs (s1, s2), (t1, t2) ∈ dom(l), the 2 following conditions are satisfied:

1. if (s1, s2) ≺1 (t1, t2) and ](s1, s2), (t1, t2)[∩dom(l) = ∅ then (l(s1, s2), l(t1, t2))
∈ M1,

2. if (s1, s2) ≺2 (t1, t2) and ](s1, s2), (t1, t2)[∩dom(l) = ∅ then (l(s1, s2), l(t1, t2))
∈ M2.

We first prove a simple lemma.

Lemma 2. Let l0 be the map defined by dom(l0) = {(0, 0)} and l0(0, 0) = σ0.
Then l0 is respectful.

Proof. By definition of l0.

The map l0 defined by lemma 2 is called init map with respect to (σ0,M1,M2).
We shall say that a map l′ extends a map l iff dom(l′) ⊇ dom(l) and l′|dom(l) =
l. Much more difficult than lemma 2 are the following lemmas.

Lemma 3. Let i ∈ {1, 2} and ψ be a formula such that Giψ ∈ Γ . Let l be a
respectful map and (s1, s2) ∈ dom(l) such that l(s1, s2)(Giψ) = 0. There exists
a respectful map l′ and there exists (t1, t2) ∈ Q×Q such that l′ extends l, (t1, t2)
∈ dom(l′), (s1, s2) ≺i (t1, t2) and l′(t1, t2)(ψ) = 0.



Proof. Since dom(l) is finite, then there exists a nonnegative integer k and
there exists (u11, u

1
2), . . . , (uk1 , u

k
2) ∈ Q × Q such that ](s1, s2),+∞[∩dom(l) =

{(u11, u12), . . . , (uk1 , u
k
2)}. Without loss of generality, we may assume that (s1, s2)

≺ (u11, u
1
2) . . . ≺ (uk1 , u

k
2). Moreover, (s1, s2) ≺j1 (u11, u

1
2) . . . ≺jk (uk1 , u

k
2) for ex-

actly one k-tuple (j1, . . . , jk) ∈ {1, 2}k. Now, we proceed by induction on k.
Basis. Suppose k = 0. Now, consider the 2 following cases.

1. Suppose ]−∞, (s1, s2)[∩dom(l) = ∅. Since l is respectful and l(s1, s2)(Giψ) =
0, then (s1, s2) = (0, 0) and there exists an adequate function µ: Γ −→ {0, 1}
such that (σ0, µ) ∈Mi and µ(ψ) = 0. Let (t1, t2) ∈ Q×Q be such that (0, 0)
≺i (t1, t2) and l′ be the least extension of l such that (t1, t2) ∈ dom(l′) and
l′(t1, t2) = µ. Obviously, l′ is respectful.

2. Suppose ]−∞, (s1, s2)[∩dom(l) 6= ∅. Since dom(l) is finite, then there exists
(v1, v2) ∈ dom(l) such that (v1, v2) ≺ (s1, s2) and ](v1, v2), (s1, s2)[∩dom(l)
= ∅. Moreover, (v1, v2) ≺j (s1, s2) for exactly one j ∈ {1, 2}. Since l is
respectful and l(s1, s2)(Giψ) = 0, then (l(v1, v2), l(s1, s2)) ∈ Mj and there
exists an adequate function µ: Γ −→ {0, 1} such that (l(s1, s2), µ) ∈ Mi and
µ(ψ) = 0. Let (t1, t2) ∈ Q×Q be such that (s1, s2) ≺i (t1, t2) and l′ be the
least extension of l such that (t1, t2) ∈ dom(l′) and l′(t1, t2) = µ. Obviously,
l′ is respectful.

Step. Suppose k ≥ 1. Now, consider the 4 following cases.

1. Suppose i = 1 and j1 = 1. Since l is respectful and l(s1, s2)(G1ψ) = 0,
then (l(s1, s2), l(u11, u

1
2)) ∈ M1 and (i) there exists an adequate function µ:

Γ −→ {0, 1} such that (l(s1, s2), µ) ∈ M1, (µ, l(u11, u
1
2)) ∈ M1 and µ(ψ)

= 0, or (ii) there exists an adequate function µ: Γ −→ {0, 1} such that
(l(s1, s2), µ) ∈ M1, (µ, l(u11, u

1
2)) ∈ M2 and µ(ψ) = 0, or (iii) l(u11, u

1
2)(ψ)

= 0, or (iv) l(u11, u
1
2)(G1ψ) = 0, or (v) l(u11, u

1
2)(G2ψ) = 0. In case (i), let

(t1, t2) ∈ Q×Q be such that (s1, s2) ≺1 (t1, t2) and (t1, t2) ≺1 (u11, u
1
2) and

l′ be the least extension of l such that (t1, t2) ∈ dom(l′) and l′(t1, t2) = µ.
In case (ii), let (t1, t2) ∈ Q×Q be such that (s1, s2) ≺1 (t1, t2) and (t1, t2)
≺2 (u11, u

1
2) and l′ be the least extension of l such that (t1, t2) ∈ dom(l′) and

l′(t1, t2) = µ. In case (iii), let (t1, t2) ∈ Q × Q be (u11, u
1
2) and l′ be l. In

case (iv), by induction hypothesis, there exists a respectful map l′ and there
exists (t1, t2) ∈ Q×Q such that l′ extends l, (t1, t2) ∈ dom(l′), (u11, u

1
2) ≺1

(t1, t2) and l′(t1, t2)(ψ) = 0. In case (v), by induction hypothesis, there exists
a respectful map l′ and there exists (t1, t2) ∈ Q × Q such that l′ extends l,
(t1, t2) ∈ dom(l′), (u11, u

1
2) ≺2 (t1, t2) and l′(t1, t2)(ψ) = 0. Obviously, in all

cases, l′ is respectful.
2. Suppose i = 1 and j1 = 2. Since l is respectful and l(s1, s2)(G1ψ) = 0, then

(l(s1, s2), l(u11, u
1
2)) ∈ M2 and l(u11, u

1
2)(G1ψ) = 0. By induction hypothe-

sis, there exists a respectful map l′ and there exists (t1, t2) ∈ Q × Q such
that l′ extends l, (t1, t2) ∈ dom(l′), (u11, u

1
2) ≺1 (t1, t2) and l′(t1, t2)(ψ) = 0.

Obviously, l′ is respectful.
3. Suppose i = 2 and j1 = 1. Since l is respectful and l(s1, s2)(G2ψ) = 0, then

(l(s1, s2), l(u11, u
1
2)) ∈ M1 and there exists an adequate function µ: Γ −→



{0, 1} such that (l(s1, s2), µ) ∈ M2, (µ, l(u11, u
1
2)) ∈ M1 and µ(ψ) = 0. Let

(t1, t2) ∈ Q×Q be such that (s1, s2) ≺2 (t1, t2) and (t1, t2) ≺1 (u11, u
1
2) and

l′ be the least extension of l such that (t1, t2) ∈ dom(l′) and l′(t1, t2) = µ.
Obviously, l′ is respectful.

4. Suppose i = 2 and j1 = 2. Since l is respectful and l(s1, s2)(G2ψ) = 0,
then (l(s1, s2), l(u11, u

1
2)) ∈ M2 and (i) there exists an adequate function µ:

Γ −→ {0, 1} such that (l(s1, s2), µ) ∈ M2, (µ, l(u11, u
1
2)) ∈ M2 and µ(ψ)

= 0, or (ii) l(u11, u
1
2)(ψ) = 0, or (iii) l(u11, u

1
2)(G2ψ) = 0. In case (i), let

(t1, t2) ∈ Q×Q be such that (s1, s2) ≺2 (t1, t2) and (t1, t2) ≺2 (u11, u
1
2) and

l′ be the least extension of l such that (t1, t2) ∈ dom(l′) and l′(t1, t2) = µ. In
case (ii), let (t1, t2) ∈ Q×Q be (u11, u

1
2) and l′ be l. In case (iii), by induction

hypothesis, there exists a respectful map l′ and there exists (t1, t2) ∈ Q×Q
such that l′ extends l, (t1, t2) ∈ dom(l′), (u11, u

1
2) ≺2 (t1, t2) and l′(t1, t2)(ψ)

= 0. Obviously, in all cases, l′ is respectful.

Lemma 4. Let i ∈ {1, 2} and ψ be a formula such that Hiψ ∈ Γ . Let l be a
respectful map and (s1, s2) ∈ dom(l) such that l(s1, s2)(Hiψ) = 0. There exists
a respectful map l′ and there exists (t1, t2) ∈ Q×Q such that l′ extends l, (t1, t2)
∈ dom(l′), (t1, t2) ≺i (s1, s2) and l′(t1, t2)(ψ) = 0.

Proof. Similar to the proof of lemma 3.

Lemma 5. Let i ∈ {1, 2}. Let l be a respectful map and (s1, s2), (t1, t2) ∈ dom(l)
such that (s1, s2) ≺i (t1, t2) and ](s1, s2), (t1, t2)[∩dom(l) = ∅. There exists a
respectful map l′ and there exists (u1, u2) ∈ Q×Q such that l′ extends l, (u1, u2)
∈ dom(l′), (s1, s2) ≺i (u1, u2) and (u1, u2) ≺i (t1, t2).

Proof. Since l is respectful and (s1, s2) ≺i (t1, t2), then (l(s1, s2), l(t1, t2)) ∈ Mi

and there exists an adequate function µ: Γ −→ {0, 1} such that (l(s1, s2), µ) ∈
Mi and (µ, l(t1, t2)) ∈ Mi. Let (u1, u2) ∈ Q×Q be such that (s1, s2) ≺i (u1, u2)
and (u1, u2) ≺i (t1, t2) and l′ be the least extension of l such that (u1, u2) ∈
dom(l′) and l′(t1, t2) = µ. Obviously, l′ is respectful.

The maps l′ defined by lemmas 3–5 are respectively called right completion of
l with respect to i, ψ and (s1, s2), left completion of l with respect to i, ψ and
(s1, s2) and dense completion of l with respect to i, (s1, s2) and (t1, t2).

6 Correctness and completeness of the mosaic method

Now, we are ready to formulate our main propositions.

6.1 Correctness

First, the correctness of the mosaic method.

Proposition 3. If there exists a saturated dense premodel for ϕ then ϕ is sat-
isfiable with respect to (Cud, Cud).



Proof. Suppose there exists a saturated dense premodel (σ0,M1,M2) for ϕ.
Following the line of reasoning suggested in [19], we think of the construc-
tion of a model for ϕ as a process approaching a limit via a sequence l0, l1,
. . . of respectful maps. Lemma 2 is used to initiate the construction whereas
lemmas 3–5 are used to make improvements at each step of the construction.
Consider an enumeration (i0, ψ0, (s01, s

0
2), (t01, t

0
2)), (i1, ψ1, (s11, s

1
2), (t11, t

1
2)), . . . of

{1, 2} × Lt × (Q × Q) × (Q × Q) where each item appears infinitely often. We
inductively define a sequence l0, l1, . . . of respectful maps as follows:
Basis. Let l0 be the init map with respect to (σ0,M1,M2).
Step. Let lrightn , lleftn and ln+1 be the respectful maps defined as follows:

(i) if in, ψn, ln and (sn1 , s
n
2 ) satisfy the conditions of lemma 3 then let lrightn be

the right completion of ln with respect to in, ψn and (sn1 , s
n
2 ) else let lrightn

be ln,
(ii) if in, ψn, lrightn and (sn1 , s

n
2 ) satisfy the conditions of lemma 4 then let lleftn

be the left completion of lrightn with respect to in, ψn and (sn1 , s
n
2 ) else let

lleftn be lrightn ,
(iii) if in, lleftn , (sn1 , s

n
2 ) and (tn1 , t

n
2 ) satisfy the conditions of lemma 5 then let

ln+1 be the dense completion of lleftn with respect to in, (sn1 , s
n
2 ) and (tn1 , t

n
2 )

else let ln+1 be lleftn .

The reader may easily verify that the sequence l0, l1, . . . of respectful maps is
such that dom(l0) ⊆ dom(l1) ⊆ . . . and for all nonnegative integers n, ln+1|dom(ln)

= ln. Let l: Q×Q −→ (Γ −→ {0, 1}) be the partial function defined by dom(l) =⋃
{dom(ln): n is a nonnegative integer} and l(s1, s2) = ln(s1, s2) for each (s1, s2)
∈ dom(l), n being a nonnegative integer such that (s1, s2) ∈ dom(ln). Obviously,
(0, 0) ∈ dom(l) and l(0, 0) = σ0. Let F = (T,l1,l2) be the structure defined
by

– T = dom(l),
– l1 and l2 are the binary relations on T defined by putting (s1, s2) l1 (t1, t2)

iff s1 < t1 and (s1, s2) l2 (t1, t2) iff s1 = t1 and s2 < t2.

We define the binary relation l on T by putting (s1, s2) l (t1, t2) iff s1 < t1,
or s1 = t1 and s2 < t2. By lemmas 3–5, F satisfies SERI and DENS. Since F
is a substructure of Q×Q, then it satisfies IRRE, DISJ , TRAN and UNIV .
Hence, F is standard. Thus, by item 1 of proposition 1, F is isomorphic with
Q×Q. Without loss of generality, we may assume that F is equal to Q×Q. Let
V : At −→ 2T be the function defined by (s1, s2) ∈ V (p) iff p ∈ Γ and l(s1, s2)(p)
= 1 — i.e. V makes p true at (s1, s2) iff l says so — and M = (T,l1,l2, V ).
By induction on ψ, let us demonstrate that if ψ ∈ Γ then

– if l(s1, s2)(ψ) = 1 then M, (s1, s2) |= ψ,
– if l(s1, s2)(ψ) = 0 then M, (s1, s2) 6|= ψ.

Basis. Suppose ψ = p. Now, if ψ ∈ Γ then consider the 2 following cases.

1. Suppose l(s1, s2)(ψ) = 1. Therefore, (s1, s2) ∈ V (p). Consequently, M, (s1,
s2) |= ψ.



2. Suppose l(s1, s2)(ψ) = 0. Hence, (s1, s2) 6∈ V (p). Thus, M, (s1, s2) 6|= ψ.

Step. Suppose ψ = ⊥, or ψ = ¬χ, or ψ = χ ∨ ρ, or ψ = G1χ, or ψ = G2χ, or
ψ = H1χ, or ψ = H2χ. Leaving the cases ψ = ⊥, ψ = ¬χ and ψ = χ ∨ ρ to
the reader, we only consider the cases ψ = G1χ and ψ = G2χ, the cases ψ =
H1χ and ψ = H2χ being similar to them. Now, if Giχ ∈ Γ then consider the 2
following cases.

1. Suppose l(s1, s2)(Giχ) = 1. Therefore, lm(s1, s2)(Giχ) = 1, m being a non-
negative integer such that (s1, s2) ∈ dom(lm). Let (t1, t2) ∈ T such that
(s1, s2) li (t1, t2), we demonstrate M, (t1, t2) |= χ. Since (t1, t2) ∈ T , then
there exists a nonnegative integer n such that (t1, t2) ∈ dom(ln). Let o
= max{m,n}. Since lm(s1, s2)(Giχ) = 1, then lo(s1, s2)(Giχ) = 1. More-
over, since dom(lo) is finite, then there exists a nonnegative integer k and
there exists (u11, u

1
2), . . . , (uk1 , u

k
2) ∈ T such that ](s1, s2), (t1, t2)[∩dom(lo)

= {(u11, u12), . . . , (uk1 , u
k
2)}. Without loss of generality, we may assume that

(s1, s2) l (u11, u
1
2) . . . l (uk1 , u

k
2) and (uk1 , u

k
2) l (t1, t2). Moreover, (s1, s2)

lj1 (u11, u
1
2) . . . ljk (uk1 , u

k
2) for exactly one k-tuple (j1, . . . , jk) ∈ {1, 2}k

and (uk1 , u
k
2) lj (t1, t2) for exactly one j ∈ {1, 2}. Since lo is respectful,

then (lo(s1, s2), lo(u11, u
1
2)) ∈ Mj1 , . . ., (lo(uk−11 , uk−12 ), lo(uk1 , u

k
2)) ∈ Mjk and

(lo(uk1 , u
k
2), lo(t1, t2)) ∈ Mj . Remark that min{min{j1, . . . , jk}, j} = i. Since

lo(s1, s2)(Giχ) = 1, mosaics in M1 are 1-temporal and mosaics in M2 are 2-
temporal, then lo(t1, t2)(χ) = 1. Consequently, l(t1, t2)(χ) = 1. By induction
hypothesis, M, (t1, t2) |= χ.

2. Suppose l(s1, s2)(Giχ) = 0. Hence, lm(s1, s2)(Giχ) = 0, m being a nonnega-
tive integer such that (s1, s2) ∈ dom(lm). By definition of the sequence l0, l1,
. . . of respectful maps, there exists a nonnegative integer n and there exists
(t1, t2) ∈ T such that (t1, t2) ∈ dom(ln), (s1, s2) li (t1, t2) and ln(t1, t2)(χ)
= 0. Consequently, l(t1, t2)(χ) = 0. By induction hypothesis, M, (t1, t2) 6|=
χ. Since (s1, s2) li (t1, t2), then M, (s1, s2) 6|= Giχ.

Since (σ0,M1,M2) is for ϕ, then σ0(ϕ) = 1. Since (0, 0) ∈ dom(l) and l(0, 0) =
σ0, then l(0, 0)(ϕ) = 1 and M, (0, 0) |= ϕ. Since F is isomorphic with Q × Q,
then ϕ is satisfiable with respect to (Cud, Cud).

6.2 Completeness

Second, the completeness of the mosaic method.

Proposition 4. If ϕ is satisfiable with respect to (Cud, Cud) then there exists a
saturated dense premodel for ϕ of cardinality bounded by 2× (8× | ϕ | +6)8.

Proof. Suppose ϕ is satisfiable with respect to (Cud, Cud). Hence, there exists a
linear order F1 = (T1, <1) in Cud, there exists a linear order F2 = (T2, <2) in Cud
and there exists a function V : At −→ 2T1×T2 such that (F1,F2, V ) is a model for
ϕ. For all (s1, s2) ∈ T1×T2, let σ(s1, s2): Γ −→ {0, 1} be the function such that
if ψ ∈ Γ then σ(s1, s2)(ψ) = if (F1,F2, V ), (s1, s2) |= ψ then 1 else 0. Obviously,



σ(s1, s2) is an adequate function. Let s1 ∈ T1. Let ≡s1 be the binary relation
on T2 defined as follows: t2 ≡s1 u2 iff σ(s1, t2) = σ(s1, u2). Obviously, ≡s1 is an
equivalence relation on T2. Moreover, since Γ is finite, then there exists finitely
many equivalence classes modulo ≡s1 . We define

– ∆s1
2 = {G2ψ: G2ψ ∈ Γ is such that σ(s1, t2)(ψ) = 0 for some t2 ∈ T2},

– Λs1
2 = {H2ψ: H2ψ ∈ Γ is such that σ(s1, t2)(ψ) = 0 for some t2 ∈ T2}.

Obviously, ∆s1
2 ⊆ Γ and Λs1

2 ⊆ Γ . Therefore, by lemma 1, card(∆s1
2 ) ≤ 4× | ϕ |

+2 and card(Λs1
2 ) ≤ 4× | ϕ | +2. Let

– for all G2ψ ∈ ∆s1
2 , fs12 (G2ψ) = {t2: t2 ∈ T2 is such that σ(s1, t2)(ψ) = 0},

– for all H2ψ ∈ Λs1
2 , gs12 (H2ψ) = {t2: t2 ∈ T2 is such that σ(s1, t2)(ψ) = 0}.

We shall say that

– t2 ∈ fs12 (G2ψ) is maximal iff for all u2 ∈ fs12 (G2ψ), t2 ≡s1 u2, or there exists
v2 ∈ fs12 (G2ψ) such that u2 <2 v2 and t2 ≡s1 v2,

– t2 ∈ gs12 (H2ψ) is minimal iff for all u2 ∈ gs12 (H2ψ), t2 ≡s1 u2, or there exists
v2 ∈ gs12 (H2ψ) such that v2 <2 u2 and t2 ≡s1 v2.

Since there exists finitely many equivalence classes modulo ≡s1 , then for all G2ψ
∈ ∆s1

2 , there exists t2(G2ψ) ∈ fs12 (G2ψ) such that t2(G2ψ) is maximal and for
all H2ψ ∈ Λs1

2 , there exists t2(H2ψ) ∈ gs12 (H2ψ) such that t2(H2ψ) is minimal.
For all s2 ∈ T2, let

– Πs1
2 (s2) = {s2} ∪ {t2(G2ψ): G2ψ ∈ ∆s1

2 } ∪ {t2(H2ψ): H2ψ ∈ Λs1
2 }.

Since card(∆s1
2 ) ≤ 4× | ϕ | +2 and card(Λs1

2 ) ≤ 4× | ϕ | +2, then card(Πs1
2 (s2))

≤ 8× | ϕ | +5. Let t2, u2 ∈ Πs1
2 (s2) be such that t2 ≡s1 ◦ <2 ◦ ≡s1 u2. A

witness of 2-density for t2 and u2 is v2 ∈ T2 such that t2 ≡s1 ◦ <2 ◦ ≡s1 v2, v2
≡s1 ◦ <2 ◦ ≡s1 u2 and v2 ≡s1 ◦ <2 ◦ ≡s1 v2. Since there exists finitely many
equivalence classes modulo ≡s1 and t2 ≡s1 ◦ <2 ◦ ≡s1 u2, then such a witness
exists. Now, let

– Πs1
2,witness(s2) be the least subset of T2 containing Πs1

2 (s2) and such that
for all t2, u2 ∈ Πs1

2 (s2), if t2 ≡ ◦ <2 ◦ ≡ u2 then Πs1
2,witness(s2) contains a

witness of 2-density for t2 and u2.

Remark that the cardinality of Πs1
2,witness(s2) is bounded by (8× | ϕ | +6)2.

Let ∼= be the binary relation on T1 × T2 defined as follows: (s1, s2) ∼= (t1, t2)
iff {σ(s1, u2): u2 ∈ Πs1

2 (s2)} = {σ(t1, v2): v2 ∈ Πt1
2 (t2)}. Obviously, ∼= is an

equivalence relation on T1 × T2. Moreover, since Γ is finite, then there exists
finitely many equivalence classes modulo ∼=. We define

– ∆1 = {G1ψ: G1ψ ∈ Γ is such that σ(s1, s2)(ψ) = 0 for some (s1, s2) ∈
T1 × T2},

– Λ1 = {H1ψ: H1ψ ∈ Γ is such that σ(s1, s2)(ψ) = 0 for some (s1, s2) ∈
T1 × T2}.



Obviously, ∆1 ⊆ Γ and Λ1 ⊆ Γ . Therefore, by lemma 1, card(∆1) ≤ 4× | ϕ | +2
and card(Λ1) ≤ 4× | ϕ | +2. Let

– for all G1ψ ∈ ∆1, f1(G1ψ) = {(s1, s2): (s1, s2) ∈ T1 × T2 is such that
σ(s1, s2)(ψ) = 0},

– for all H1ψ ∈ Λ1, g1(H1ψ) = {(s1, s2): (s1, s2) ∈ T1 × T2 is such that
σ(s1, s2)(ψ) = 0}.

We shall say that

– (s1, s2) ∈ f1(G1ψ) is maximal iff for all (t1, t2) ∈ f1(G1ψ), (s1, s2) ∼= (t1, t2),
or there exists (u1, u2) ∈ f1(G1ψ) such that (t1, t2) ≺ (u1, u2) and (s1, s2)
∼= (u1, u2),

– (s1, s2) ∈ g1(H1ψ) is minimal iff for all (t1, t2) ∈ g1(H1ψ), (s1, s2) ∼= (t1, t2),
or there exists (u1, u2) ∈ g1(H1ψ) such that (u1, u2) ≺ (t1, t2) and (s1, s2)
∼= (u1, u2).

Since there exists finitely many equivalence classes modulo ∼=, then for all G1ψ ∈
∆1, there exists (s1(G1ψ), s2(G1ψ)) ∈ f1(G1ψ) such that (s1(G1ψ), s2(G1ψ)) is
maximal and for all H1ψ ∈ Λ1, there exists (s1(H1ψ), s2(H1ψ)) ∈ g1(H1ψ) such
that (s1(H1ψ), s2(H1ψ)) is minimal. Since (F1,F2, V ) is a model for ϕ, there
exists (s01, s

0
2) ∈ T1 × T2 such that (F1,F2, V ), (s01, s

0
2) |= ϕ. Let

– Π1 = {(s01, s02)} ∪ {(s1(G1ψ), s2(G1ψ)): G1ψ ∈ ∆1} ∪ {(s1(H1ψ), s2(H1ψ)):
H1ψ ∈ Λ1}.

Since card(∆1) ≤ 4× | ϕ | +2 and card(Λ1) ≤ 4× | ϕ | +2, then card(Π1)
≤ 8× | ϕ | +5. Let (s1, s2), (t1, t2) ∈ Π1 be such that (s1, s2) ∼= ◦ ≺1 ◦ ∼=
(t1, t2). A witness of 1-density for (s1, s2) and (t1, t2) is (u1, u2) ∈ T1 × T2 such
that (s1, s2) ∼= ◦ ≺1 ◦ ∼= (u1, u2), (u1, u2) ∼= ◦ ≺1 ◦ ∼= (t1, t2) and (u1, u2)
∼= ◦ ≺1 ◦ ∼= (u1, u2). Since there exists finitely many equivalence classes modulo
∼= and (s1, s2) ∼= ◦ ≺1 ◦ ∼= (t1, t2), then such a witness exists. Now, let

– Π1,witness be the least subset of T1 × T2 containing Π1 and such that for all
(s1, s2), (t1, t2) ∈ Π1, if (s1, s2) ∼= ◦ ≺1 ◦ ∼= (t1, t2) then Π1,witness contains
a witness of 1-density for (s1, s2) and (t1, t2).

Remark that the cardinality of Π1,witness is bounded by (8× | ϕ | +6)2. Now,
let (σ0,M1,M2) be the structure defined by

– σ0 = σ(s01, s
0
2),

– M1 is the set of all mosaics of the form (σ, τ) such that for some (s1, s2), (t1,
t2) ∈ Π1,witness, there exists u2 ∈ Πs1

2,witness(s2) and there exists v2 ∈
Πt1

2,witness(t2) such that σ = σ(s1, u2), τ = σ(t1, v2) and (s1, s2) ∼= ◦ ≺1 ◦ ∼=
(t1, t2),

– M2 is the set of all mosaics of the form (σ, τ) such that for some (s1, s2) ∈
Π1,witness, there exists t2, u2 ∈ Πs1

2,witness(s2) such that σ = σ(s1, t2), τ =
σ(s1, u2) and t2 ≡s1 ◦ <2 ◦ ≡s1 u2.



Remark that the cardinality of (σ0,M1,M2) is bounded by 2 × (8× | ϕ | +6)8.
Moreover, σ0(ϕ) = 1. Hence, it suffices to prove the following properties:

– (σ0,M1,M2) is a premodel,
– (σ0,M1,M2) is saturated,
– (σ0,M1,M2) is dense.

The proofs of these properties are left to the reader.

7 Decidability and complexity

Now, we are ready to provide a complete decision procedure in nondeterministic
polynomial time for the satisfiability problem the temporal logic of the lexico-
graphic products of unbounded dense linear orders gives rise to.

Theorem 1. The satisfiability problem with respect to (Cud, Cud) is in NP .

Proof. Given a formula ϕ, let us proceed as follows:

1. compute the least subformula closed full set Γ of formulas containing ϕ,
2. nondeterministically choose a premodel (σ0,M1,M2) for ϕ of cardinality

bounded by 2× (8× | ϕ | +6)8,
3. check whether (σ0,M1,M2) is saturated and dense.

By lemma 1, card(Γ ) ≤ 4× | ϕ | +2. Hence, (σ0,M1,M2) is polysize in | ϕ |.
Thus, we can execute steps (i), (ii) and (iii) in time polynomial in | ϕ |. Obviously,
the execution of steps (i), (ii) and (iii) leads to an “accept” iff there exists a
saturated dense premodel for ϕ of cardinality bounded by 2 × (8× | ϕ | +6)8.
Therefore, by propositions 3 and 4, the execution of steps (i), (ii) and (iii) leads
to an “accept” iff ϕ is satisfiable with respect to (Cud, Cud). Consequently, the
satisfiability problem with respect to (Cud, Cud) is in NP .

8 Conclusion

Temporal logics in which one can assign a proper meaning to the association
of statements about different grained temporal domains have been considered.
See [10, 15, 21] for details. Nevertheless, it seems that the results concerning
the issues of axiomatization/completeness and decidability/complexity presented
in [3, 4] and in this paper constitute the first steps towards a temporal logic based
on different levels of abstraction. Much remains to be done.

Let us, for instance, consider the lexicographic products of special linear flows
of time like Z, Q and R. For each of these products, what is the corresponding
first-order theory in terms of the binary predicates <1 and <2? Is this first-order
theory decidable? What is the corresponding modal logic in terms of the tem-
poral connectives G1, G2, H1 and H2? Is this modal logic decidable?



Concerning the problems of decidability and complexity, all normal extensions of
S4.3, as proved in [8, 11], possess the finite model property and all finitely axiom-
atizable normal extensions of K4.3, as proved in [25], are decidable. Is it possible
to demonstrate similar results in our lexicographic setting? Or could undecid-
ability results similar to the ones obtained by Reynolds and Zakharyaschev [23]
within the context of the products of the modal logics determined by arbitrarily
long linear orders be demonstrated in our lexicographic setting?

In other respect, we can associate with <1 and <2 the until-like connectives
U1 and U2 and the since-like connectives S1 and S2, the formulas ϕU1ψ, ϕU2ψ,
ϕS1ψ and ϕS2ψ being read as one reads the formulas ϕUψ and ϕSψ in clas-
sical temporal logic, this time with <1 and <2. What can be done concerning
the problems of axiomatization/completeness and decidability/complexity these
new temporal connectives give rise to?

An important result in temporal logic is Kamp’s Theorem. It concerns the func-
tional completeness of the until operator [13]. Kamp’s Theorem says that for all
monadic formulas of the first-order theory of linear orders, there exists a tem-
poral formula using only the until and since temporal operators such that both
formulas — the monadic one and the temporal one — are equally interpreted in
any temporal model. What can be done about Kamp’s Theorem in terms of the
binary predicates <1 and <2 and the temporal connectives U1, U2, S1 and S2?
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