About the temporal logic of the lexicographic products of unbounded dense linear orders: a new study of its computability

Philippe Balbiani

To cite this version:

Philippe Balbiani. About the temporal logic of the lexicographic products of unbounded dense linear orders: a new study of its computability. International Workshop on Logic and Cognition (WOLC 2016), Dec 2016, Canton, China. hal-02936481

HAL Id: hal-02936481

https://hal.science/hal-02936481

Submitted on 11 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

About the temporal logic of the lexicographic products of unbounded dense linear orders: a new study of its computability

Philippe Balbiani
Institut de recherche en informatique de Toulouse
CNRS - Toulouse University
Toulouse, France

Abstract

This article considers the temporal logic of the lexicographic products of unbounded dense linear orders and provides via mosaics a new proof of the membership in $N P$ of the satisfiability problem it gives rise to.

Keywords: Linear temporal logic, lexicographic product, satisfiability problem, decidability, complexity, mosaic method, decision procedure.

1 Introduction

The mosaic method has been applied for proving completeness and decidability of temporal logics over multifarious linear flows of time [$9,19,20,22$]. The operation of lexicographic product of Kripke frames has been introduced as a variant of the more classical operation of Cartesian product [12, 14, 17, 23]. See [5] for details. It has been used for defining the semantical basis of different languages designed for time representation and temporal reasoning from the perspective of non-standard analysis $[1,2]$. In $[3,4]$, the temporal logic of the lexicographic products of unbounded dense linear orders has been considered, its complete axiomatization has been given and its computability has been studied.

The purpose of this paper is give a new proof of the membership in $N P$ of the satisfiability problem of the lexicographic products of linear temporal logics. Its section-by-section breakdown is as follows. Section 2 studies the elementary properties of the lexicographic products of unbounded dense linear orders. In section 3, we present the syntax and the semantics of the temporal logic we will be working with. Sections 4 and 5 define mosaics and maps. In sections 6 and 7 , we prove that the satisfiability problem in our temporal logic is in $N P$.

2 Products of unbounded dense linear orders

Let $\mathcal{F}_{1}=\left(T_{1},<_{1}\right)$ and $\mathcal{F}_{2}=\left(T_{2},<_{2}\right)$ be linear orders. Their lexicographic product is the structure $\mathcal{F}=\left(T, \prec_{1}, \prec_{2}\right)$ where
$-T=T_{1} \times T_{2}$,
$-\prec_{1}$ and \prec_{2} are the binary relations on T defined by putting $\left(s_{1}, s_{2}\right) \prec_{1}\left(t_{1}, t_{2}\right)$ iff $s_{1}<_{1} t_{1}$ and $\left(s_{1}, s_{2}\right) \prec_{2}\left(t_{1}, t_{2}\right)$ iff $s_{1}=t_{1}$ and $s_{2}<_{2} t_{2}$.

We define the binary relation \prec on T by putting $\left(s_{1}, s_{2}\right) \prec\left(t_{1}, t_{2}\right)$ iff $s_{1}<_{1} t_{1}$, or $s_{1}=t_{1}$ and $s_{2}<_{2} t_{2}$. For all $\left(s_{1}, s_{2}\right),\left(t_{1}, t_{2}\right) \in T$, if $\left(s_{1}, s_{2}\right) \prec\left(t_{1}, t_{2}\right)$ then let
$-]\left(s_{1}, s_{2}\right),\left(t_{1}, t_{2}\right)\left[\right.$ be the set of all $\left(u_{1}, u_{2}\right) \in T$ such that $\left(s_{1}, s_{2}\right) \prec\left(u_{1}, u_{2}\right)$ and $\left(u_{1}, u_{2}\right) \prec\left(t_{1}, t_{2}\right)$,
$-]\left(s_{1}, s_{2}\right),+\infty\left[\right.$ be the set of all $\left(u_{1}, u_{2}\right) \in T$ such that $\left(s_{1}, s_{2}\right) \prec\left(u_{1}, u_{2}\right)$,
$-]-\infty,\left(t_{1}, t_{2}\right)\left[\right.$ be the set of all $\left(u_{1}, u_{2}\right) \in T$ such that $\left(u_{1}, u_{2}\right) \prec\left(t_{1}, t_{2}\right)$.
The effect of the operation of lexicographic product may be described informally as follows: given 2 linear orders, their lexicographic product is the structure obtained by replacing each point of the first one by a copy of the second one. The global intuitions underlying such an operation is based upon the fact that, depending on the accuracy required or the available knowledge, one can describe a temporal situation at different levels of abstraction. See [6, section I.2.2], or [10] for details. In Fig. 1 below, we have $s_{1}<_{1} t_{1}$ and $s_{2}<_{2} t_{2}$. As a result, we have $\left(s_{1}, s_{2}\right) \prec_{2}\left(s_{1}, t_{2}\right),\left(s_{1}, s_{2}\right) \prec_{1}\left(t_{1}, s_{2}\right),\left(s_{1}, s_{2}\right) \prec_{1}\left(t_{1}, t_{2}\right),\left(s_{1}, t_{2}\right) \prec_{1}\left(t_{1}, s_{2}\right)$, $\left(s_{1}, t_{2}\right) \prec_{1}\left(t_{1}, t_{2}\right)$ and $\left(t_{1}, s_{2}\right) \prec_{2}\left(t_{1}, t_{2}\right)$.

Fig. 1.

In order to characterize the elementary properties of the operation of lexicographic product, we introduce a first-order language. Let Var denote a countable set of individual variables (with typical members denoted x, y, etc). The set $\mathcal{L}_{\text {fo }}$ of all formulas (with typical members denoted φ, ψ, etc) of the first-order language is given by the rule

$$
-\varphi::=x<_{1} y\left|x<_{2} y\right| \perp|\neg \varphi|(\varphi \vee \psi)|\forall x \varphi| x=y,
$$

the formulas $x<_{1} y$ and $x<_{2} y$ being read " x precedes but is not infinitely close to y " and " x precedes and is infinitely close to y ". We adopt the standard definitions for the remaining Boolean connectives. As usual, we define for all individual variables x,
$-\exists x \varphi::=\neg \forall x \neg \varphi$.

The notion of a subformula is standard. We adopt the standard rules for omission of the parentheses. The size of a formula φ, in symbols $|\varphi|$, is its length over the alphabet of $\mathcal{L}_{f o}$. Formulas in which every individual variable in an atomic subformula is in the scope of a corresponding quantifier are called sentences. Models for the first-order language are flows $\mathcal{F}=\left(T, \prec_{1}, \prec_{2}\right)$ where T is a nonempty set and \prec_{1} and \prec_{2} are binary relations on T. An assignment on \mathcal{F} is a function f : $\operatorname{Var} \longrightarrow T$. Satisfaction is a 3-place relation \models between a flow $\mathcal{F}=\left(T, \prec_{1}, \prec_{2}\right)$, an assignment f on \mathcal{F} and a formula φ. It is inductively defined as usual. In particular,
$-\mathcal{F} \models_{f} x<_{1} y$ iff $f(x) \prec_{1} f(y)$,
$-\mathcal{F} \models_{f} x<_{2} y$ iff $f(x) \prec_{2} f(y)$.
Obviously, if 2 linear orders are unbounded and dense then their lexicographic product satisfies the following sentences:
IRRE $-\forall x x \nless{ }_{1} x$, $-\forall x x \nless 2 x$,
DISJ - $\forall x \forall y\left(x \nless_{1} y \vee x \nless_{2} y\right)$,
TRAN - $\forall x \forall y\left(\exists z\left(x<_{1} z \wedge z<_{1} y\right) \rightarrow x<_{1} y\right)$, $-\forall x \forall y\left(\exists z\left(x<_{1} z \wedge z<_{2} y\right) \rightarrow x<_{1} y\right)$,
$-\forall x \forall y\left(\exists z\left(x<_{2} z \wedge z<_{1} y\right) \rightarrow x<_{1} y\right)$, $-\forall x \forall y\left(\exists z\left(x<_{2} z \wedge z<_{2} y\right) \rightarrow x<_{2} y\right)$,
DENS - $\forall x \forall y\left(x<_{1} y \rightarrow \exists z\left(x<_{1} z \wedge z<_{1} y\right)\right)$, $-\forall x \forall y\left(x<_{1} y \rightarrow \exists z\left(x<_{1} z \wedge z<_{2} y\right)\right)$,
$-\forall x \forall y\left(x<_{1} y \rightarrow \exists z\left(x<_{2} z \wedge z<_{1} y\right)\right)$,
$-\forall x \forall y\left(x<_{2} y \rightarrow \exists z\left(x<_{2} z \wedge z<_{2} y\right)\right)$,
$S E R I-\forall x \exists y x<_{1} y$,

- $\forall x \exists y x<_{2} y$,
- $\forall x \exists y y<_{1} x$, - $\forall x \exists y y<2 x$,

UNIV $-\forall x \forall y\left(x=y \vee x<_{1} y \vee x<_{2} y \vee y<_{1} x \vee y<_{2} x\right)$,
IRRE, DISJ, TRAN, DENS, SERI and UNIV standing for "irreflexive", "disjoint", "transitive", "dense", "serial" and "universal". Obviously, the sentences as above have not the finite model property. By Löwenheim-Skolem theorem, they have models in each infinite power. A flow $\mathcal{F}=\left(T, \prec_{1}, \prec_{2}\right)$ is said to be standard iff it satisfies the sentences as above. The first-order theory $S F$ of standard flows has the following list of proper axioms: IRRE, DISJ, TRAN, $D E N S, S E R I$ and $U N I V$. The membership problem in the first-order theory $S F$ is this:

- determine whether a given sentence is in the first-order theory $S F$.

There are several results about the first-order theory $S F$:
Proposition 1 ([1]). (i) $S F$ is countably categorical; (ii) $S F$ is not categorical in any uncountable power; (iii) $S F$ is maximal consistent; (iv) $S F$ is complete with respect to the lexicographic product of any unbounded dense linear orders.

The results about the membership problem in the first-order theory $S F$ are summarized in the following proposition:
Proposition 2. (i) $S F$ is decidable; (ii) SF is PSPACE-complete.
See [1] for the proof of propositions 1 and 2.

3 Syntax and semantics

It is now time to meet the temporal language we will be working with. Let $A t$ be a countable set of atomic formulas (with typical members denoted p, q, etc). We define the set \mathcal{L}_{t} of formulas of our temporal language (with typical members denoted φ, ψ, etc) as follows:
$-\varphi::=p|\perp| \neg \varphi|(\varphi \vee \psi)| G_{1} \varphi\left|G_{2} \varphi\right| H_{1} \varphi \mid H_{2} \varphi$,
the formulas $G_{1} \varphi, G_{2} \varphi, H_{1} \varphi$ and $H_{2} \varphi$ being read " φ will be true at each point within the future of but not infinitely close to the present point", " φ will be true at each instant within the future of and infinitely close to the present instant", " φ has been true at each point within the past of but not infinitely close to the present point" and " φ has been true at each point within the past of and infinitely close to the present point". We adopt the standard definitions for the remaining Boolean connectives. As usual, we define for all $i \in\{1,2\}$,
$-F_{i} \varphi::=\neg G_{i} \neg \varphi$ and
$-P_{i} \varphi::=\neg H_{i} \neg \varphi$.
The notion of a subformula is standard. It is usual to omit parentheses if this does not lead to any ambiguity. The size of a formula φ, in symbols $|\varphi|$, is the number of symbols of φ. A set Γ of formulas is said to be full iff there exists i $\in\{1,2\}$ such that $G_{i} \perp \in \Gamma$, or $H_{i} \perp \in \Gamma$ and the following unique condition is satisfied:

- if there exists $i \in\{1,2\}$ such that $G_{i} \varphi \in \Gamma$, or $H_{i} \varphi \in \Gamma$ then for all $i \in$ $\{1,2\}, G_{i} \varphi \in \Gamma$ and $H_{i} \varphi \in \Gamma$.

Remark that if Γ is a subformula closed full set of formulas then $\perp \in \Gamma$. Moreover, for all $i \in\{1,2\}, G_{i} \perp \in \Gamma$ and $H_{i} \perp \in \Gamma$. In other respect,

Lemma 1. Let φ be a formula. Let Γ be the least subformula closed full set of formulas containing φ. Then $\operatorname{card}(\Gamma) \leq 4 \times|\varphi|+2$.

Proof. By induction on φ.
A model is a structure $\mathcal{M}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}, V\right)$ where $\mathcal{F}_{1}=\left(T_{1},<_{1}\right)$ and $\mathcal{F}_{2}=\left(T_{2},<_{2}\right)$ are linear orders and $V: A t \longrightarrow 2^{T_{1} \times T_{2}}$ is a function. Satisfaction is a 3-place relation \models between a model $\mathcal{M}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}, V\right)$, a pair $\left(s_{1}, s_{2}\right) \in T_{1} \times T_{2}$ and a formula φ. It is defined by induction on φ as usual. In particular, for all $i \in$ $\{1,2\}$,
$-\mathcal{M},\left(s_{1}, s_{2}\right) \models G_{i} \varphi$ iff $\mathcal{M},\left(t_{1}, t_{2}\right) \models \varphi$ for each pair $\left(t_{1}, t_{2}\right) \in T_{1} \times T_{2}$ such that $\left(s_{1}, s_{2}\right) \prec_{i}\left(t_{1}, t_{2}\right)$,
$-\mathcal{M},\left(s_{1}, s_{2}\right) \models H_{i} \varphi$ iff $\mathcal{M},\left(t_{1}, t_{2}\right) \models \varphi$ for each pair $\left(t_{1}, t_{2}\right) \in T_{1} \times T_{2}$ such that $\left(t_{1}, t_{2}\right) \prec_{i}\left(s_{1}, s_{2}\right)$.

As a result, for all $i \in\{1,2\}$,
$-\mathcal{M},\left(s_{1}, s_{2}\right) \models F_{i} \varphi$ iff $\mathcal{M},\left(t_{1}, t_{2}\right) \models \varphi$ for some pair $\left(t_{1}, t_{2}\right) \in T_{1} \times T_{2}$ such that $\left(s_{1}, s_{2}\right) \prec_{i}\left(t_{1}, t_{2}\right)$,

- $\mathcal{M},\left(s_{1}, s_{2}\right) \models P_{i} \varphi$ iff $\mathcal{M},\left(t_{1}, t_{2}\right) \models \varphi$ for some pair $\left(t_{1}, t_{2}\right) \in T_{1} \times T_{2}$ such that $\left(t_{1}, t_{2}\right) \prec_{i}\left(s_{1}, s_{2}\right)$.
\mathcal{M} is said to be a model for φ iff there exists $\left(s_{1}, s_{2}\right) \in T_{1} \times T_{2}$ such that $\mathcal{M},\left(s_{1}, s_{2}\right)$ $\vDash \varphi$. Let \mathcal{C}_{1} and \mathcal{C}_{2} be classes of linear orders. We shall say that a formula φ is satisfiable with respect to $\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$ iff there exists a linear order $\mathcal{F}_{1}=\left(T_{1},<_{1}\right)$ in \mathcal{C}_{1}, there exists a linear order $\mathcal{F}_{2}=\left(T_{2},<_{2}\right)$ in \mathcal{C}_{2} and there exists a function $V: A t \longrightarrow 2^{T_{1} \times T_{2}}$ such that $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, V\right)$ is a model for φ. The temporal logic of $\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$ is the set of all formulas φ such that $\neg \varphi$ is not satisfiable with respect to $\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$. The class of all unbounded dense linear orders will be denoted $\mathcal{C}_{u d}$. [3] considers the temporal logic of $\left(\mathcal{C}_{u d}, \mathcal{C}_{u d}\right)$ and gives its complete axiomatization based on the following 32 axioms:
- $\phi \rightarrow G_{1} P_{1} \phi$,
$-\phi \rightarrow H_{1} F_{1} \phi$,
$-\phi \rightarrow G_{2} P_{2} \phi$,
$-\phi \rightarrow H_{2} F_{2} \phi$,
- $F_{1} F_{1} \phi \rightarrow F_{1} \phi$,
- $P_{1} P_{1} \phi \rightarrow P_{1} \phi$,
- $F_{1} F_{2} \phi \rightarrow F_{1} \phi$,
- $P_{1} P_{2} \phi \rightarrow P_{1} \phi$,
- $F_{2} F_{1} \phi \rightarrow F_{1} \phi$,
$-P_{2} P_{1} \phi \rightarrow P_{1} \phi$,
- $F_{2} F_{2} \phi \rightarrow F_{2} \phi$,
$-P_{2} P_{2} \phi \rightarrow P_{2} \phi$,
- $F_{1} \phi \rightarrow F_{1} F_{1} \phi$,
- $P_{1} \phi \rightarrow P_{1} P_{1} \phi$,
- $F_{1} \phi \rightarrow F_{1} F_{2} \phi$,
- $P_{1} \phi \rightarrow P_{1} P_{2} \phi$,
- $F_{1} \phi \rightarrow F_{2} F_{1} \phi$,
$-P_{1} \phi \rightarrow P_{2} P_{1} \phi$,
- $F_{2} \phi \rightarrow F_{2} F_{2} \phi$,
$-P_{2} \phi \rightarrow P_{2} P_{2} \phi$,
- $F_{1} \top$,
- $P_{1} \top$,
$-F_{2} \top$,
- $P_{2} \top$,
$-F_{1} \phi \wedge F_{1} \psi \rightarrow F_{1}(\phi \wedge \psi) \vee F_{1}\left(\phi \wedge F_{1} \psi\right) \vee F_{1}\left(\phi \wedge F_{2} \psi\right) \vee F_{1}\left(\psi \wedge F_{1} \phi\right) \vee F_{1}\left(\psi \wedge F_{2} \phi\right)$,
$-P_{1} \phi \wedge P_{1} \psi \rightarrow P_{1}(\phi \wedge \psi) \vee P_{1}\left(\phi \wedge P_{1} \psi\right) \vee P_{1}\left(\phi \wedge P_{2} \psi\right) \vee P_{1}\left(\psi \wedge P_{1} \phi\right) \vee P_{1}\left(\psi \wedge P_{2} \phi\right)$,
- $F_{1} \phi \wedge F_{2} \psi \rightarrow F_{2}\left(\psi \wedge F_{1} \phi\right)$,
- $P_{1} \phi \wedge P_{2} \psi \rightarrow P_{2}\left(\psi \wedge P_{1} \phi\right)$,
- $F_{2} \phi \wedge F_{1} \psi \rightarrow F_{2}\left(\phi \wedge F_{1} \psi\right)$,
- $P_{2} \phi \wedge P_{1} \psi \rightarrow P_{2}\left(\phi \wedge P_{1} \psi\right)$,
$-F_{2} \phi \wedge F_{2} \psi \rightarrow F_{2}(\phi \wedge \psi) \vee F_{2}\left(\phi \wedge F_{2} \psi\right) \vee F_{2}\left(\psi \wedge F_{2} \phi\right)$,
$-P_{2} \phi \wedge P_{2} \psi \rightarrow P_{2}(\phi \wedge \psi) \vee P_{2}\left(\phi \wedge P_{2} \psi\right) \vee P_{2}\left(\psi \wedge P_{2} \phi\right)$.
The satisfiability problem this temporal logic gives rise to is this:
- determine whether a given formula is satisfiable with respect to $\left(\mathcal{C}_{u d}, \mathcal{C}_{u d}\right)$.

In order to provide a complete decision procedure in nondeterministic polynomial time for it, we use mosaics and maps.

4 Mosaics

Until the end of this paper, φ will denote a formula and Γ will denote the least subformula closed full set of formulas containing φ. A function $\sigma: \Gamma \longrightarrow\{0,1\}$ is said to be adequate iff $\sigma(\perp)=0$, for all $i \in\{1,2\}, \sigma\left(G_{i} \perp\right)=0$ and $\sigma\left(H_{i} \perp\right)=$ 0 and the 2 following conditions are satisfied:

1. if $\neg \psi \in \Gamma$ then $\sigma(\neg \psi)=1-\sigma(\psi)$,
2. if $\psi \vee \chi \in \Gamma$ then $\sigma(\psi \vee \chi)=\max \{\sigma(\psi), \sigma(\chi)\}$.

A mosaic is a structure (σ, τ) where $\sigma: \Gamma \longrightarrow\{0,1\}$ and $\tau: \Gamma \longrightarrow\{0,1\}$ are adequate functions. We shall say that a mosaic (σ, τ) is 1 -temporal iff the 2 following conditions are satisfied:

1. if $G_{1} \psi \in \Gamma$ then $\sigma\left(G_{1} \psi\right) \leq \min \left\{\tau(\psi), \tau\left(G_{1} \psi\right), \tau\left(G_{2} \psi\right), \tau\left(H_{2} \psi\right)\right\}$,
2. if $H_{1} \psi \in \Gamma$ then $\tau\left(H_{1} \psi\right) \leq \min \left\{\sigma(\psi), \sigma\left(G_{2} \psi\right), \sigma\left(H_{1} \psi\right), \sigma\left(H_{2} \psi\right)\right\}$.

A mosaic (σ, τ) is said to be 2-temporal iff the 6 following conditions are satisfied:

1. if $G_{1} \psi \in \Gamma$ then $\sigma\left(G_{1} \psi\right) \leq \tau\left(G_{1} \psi\right)$,
2. if $G_{2} \psi \in \Gamma$ then $\sigma\left(G_{2} \psi\right) \leq \min \left\{\tau(\psi), \tau\left(G_{2} \psi\right)\right\}$,
3. if $H_{1} \psi \in \Gamma$ then $\sigma\left(H_{1} \psi\right) \leq \tau\left(H_{1} \psi\right)$,
4. if $G_{1} \psi \in \Gamma$ then $\tau\left(G_{1} \psi\right) \leq \sigma\left(G_{1} \psi\right)$,
5. if $H_{1} \psi \in \Gamma$ then $\tau\left(H_{1} \psi\right) \leq \sigma\left(H_{1} \psi\right)$,
6. if $H_{2} \psi \in \Gamma$ then $\tau\left(H_{2} \psi\right) \leq \min \left\{\sigma(\psi), \sigma\left(H_{2} \psi\right)\right\}$.

A premodel is a structure $\left(\sigma_{0}, M_{1}, M_{2}\right)$ where $\sigma_{0}: \Gamma \longrightarrow\{0,1\}$ is an adequate function, M_{1} is a set of 1-temporal mosaics and M_{2} is a set of 2-temporal mosaics. The cardinality of a premodel $\left(\sigma_{0}, M_{1}, M_{2}\right)$, in symbols $\left\|\left(\sigma_{0}, M_{1}, M_{2}\right)\right\|$, is the number of mosaics in M_{1} plus the number of mosaics in M_{2}. We shall say that a premodel (σ_{0}, M_{1}, M_{2}) is 0-saturated iff the 4 following conditions are satisfied:

1. if $G_{1} \psi \in \Gamma$ then $\sigma_{0}\left(G_{1} \psi\right)=1$, or there exists an adequate function τ : $\Gamma \longrightarrow\{0,1\}$ such that $\left(\sigma_{0}, \tau\right) \in M_{1}$ and $\tau(\psi)=0$,
2. if $G_{2} \psi \in \Gamma$ then $\sigma_{0}\left(G_{2} \psi\right)=1$, or there exists an adequate function τ : $\Gamma \longrightarrow\{0,1\}$ such that $\left(\sigma_{0}, \tau\right) \in M_{2}$ and $\tau(\psi)=0$,
3. if $H_{1} \psi \in \Gamma$ then $\sigma_{0}\left(H_{1} \psi\right)=1$, or there exists an adequate function τ : $\Gamma \longrightarrow\{0,1\}$ such that $\left(\tau, \sigma_{0}\right) \in M_{1}$ and $\tau(\psi)=0$,
4. if $H_{2} \psi \in \Gamma$ then $\sigma_{0}\left(H_{2} \psi\right)=1$, or there exists an adequate function τ : $\Gamma \longrightarrow\{0,1\}$ such that $\left(\tau, \sigma_{0}\right) \in M_{2}$ and $\tau(\psi)=0$.

A premodel $\left(\sigma_{0}, M_{1}, M_{2}\right)$ is said to be 1-saturated iff for all mosaics $(\sigma, \tau) \in M_{1}$, the 8 following conditions are satisfied:

1. if $G_{1} \psi \in \Gamma$ then $\sigma\left(G_{1} \psi\right)=1$, or there exists an adequate function $\mu: \Gamma \longrightarrow$ $\{0,1\}$ such that $(\sigma, \mu) \in M_{1},(\mu, \tau) \in M_{1} \cup M_{2}$ and $\mu(\psi)=0$, or $\tau(\psi)=0$, or $\tau\left(G_{1} \psi\right)=0$, or $\tau\left(G_{2} \psi\right)=0$,
2. if $G_{2} \psi \in \Gamma$ then $\sigma\left(G_{2} \psi\right)=1$, or there exists an adequate function $\mu: \Gamma \longrightarrow$ $\{0,1\}$ such that $(\sigma, \mu) \in M_{2},(\mu, \tau) \in M_{1}$ and $\mu(\psi)=0$,
3. if $H_{1} \psi \in \Gamma$ then $\sigma\left(H_{1} \psi\right)=1$, or there exists an adequate function $\mu: \Gamma \longrightarrow$ $\{0,1\}$ such that $(\mu, \sigma) \in M_{1}$ and $\mu(\psi)=0$,
4. if $H_{2} \psi \in \Gamma$ then $\sigma\left(H_{2} \psi\right)=1$, or there exists an adequate function $\mu: \Gamma \longrightarrow$ $\{0,1\}$ such that $(\mu, \sigma) \in M_{2}$ and $\mu(\psi)=0$,
5. if $G_{1} \psi \in \Gamma$ then $\tau\left(G_{1} \psi\right)=1$, or there exists an adequate function $\mu: \Gamma \longrightarrow$ $\{0,1\}$ such that $(\tau, \mu) \in M_{1}$ and $\mu(\psi)=0$,
6. if $G_{2} \psi \in \Gamma$ then $\tau\left(G_{2} \psi\right)=1$, or there exists an adequate function $\mu: \Gamma \longrightarrow$ $\{0,1\}$ such that $(\tau, \mu) \in M_{2}$ and $\mu(\psi)=0$,
7. if $H_{1} \psi \in \Gamma$ then $\tau\left(H_{1} \psi\right)=1$, or $\sigma\left(H_{1} \psi\right)=0$, or $\sigma\left(H_{2} \psi\right)=0$, or $\sigma(\psi)=$ 0 , or there exists an adequate function $\mu: \Gamma \longrightarrow\{0,1\}$ such that $(\sigma, \mu) \in$ $M_{1} \cup M_{2},(\mu, \tau) \in M_{1}$ and $\mu(\psi)=0$,
8. if $H_{2} \psi \in \Gamma$ then $\tau\left(H_{2} \psi\right)=1$, or there exists an adequate function $\mu: \Gamma \longrightarrow$ $\{0,1\}$ such that $(\sigma, \mu) \in M_{1},(\mu, \tau) \in M_{2}$ and $\mu(\psi)=0$.

We shall say that a premodel $\left(\sigma_{0}, M_{1}, M_{2}\right)$ is 2-saturated iff for all mosaics (σ, τ) $\in M_{2}$, the 8 following conditions are satisfied:

1. if $G_{1} \psi \in \Gamma$ then $\sigma\left(G_{1} \psi\right)=1$, or there exists an adequate function $\mu: \Gamma \longrightarrow$ $\{0,1\}$ such that $(\tau, \mu) \in M_{1}$ and $\mu(\psi)=0$,
2. if $G_{2} \psi \in \Gamma$ then $\sigma\left(G_{2} \psi\right)=1$, or there exists an adequate function $\mu: \Gamma \longrightarrow$ $\{0,1\}$ such that $(\sigma, \mu) \in M_{2},(\mu, \tau) \in M_{2}$ and $\mu(\psi)=0$, or $\tau(\psi)=0$, or $\tau\left(G_{2} \psi\right)=0$,
3. if $H_{1} \psi \in \Gamma$ then $\sigma\left(H_{1} \psi\right)=1$, or there exists an adequate function $\mu: \Gamma \longrightarrow$ $\{0,1\}$ such that $(\mu, \sigma) \in M_{1}$ and $\mu(\psi)=0$,
4. if $H_{2} \psi \in \Gamma$ then $\sigma\left(H_{2} \psi\right)=1$, or there exists an adequate function $\mu: \Gamma \longrightarrow$ $\{0,1\}$ such that $(\mu, \sigma) \in M_{2}$ and $\mu(\psi)=0$,
5. if $G_{1} \psi \in \Gamma$ then $\tau\left(G_{1} \psi\right)=1$, or there exists an adequate function $\mu: \Gamma \longrightarrow$ $\{0,1\}$ such that $(\tau, \mu) \in M_{1}$ and $\mu(\psi)=0$,
6. if $G_{2} \psi \in \Gamma$ then $\tau\left(G_{2} \psi\right)=1$, or there exists an adequate function $\mu: \Gamma \longrightarrow$ $\{0,1\}$ such that $(\tau, \mu) \in M_{2}$ and $\mu(\psi)=0$,
7. if $H_{1} \psi \in \Gamma$ then $\tau\left(H_{1} \psi\right)=1$, or there exists an adequate function $\mu: \Gamma \longrightarrow$ $\{0,1\}$ such that $(\mu, \sigma) \in M_{1}$ and $\mu(\psi)=0$,
8. if $H_{2} \psi \in \Gamma$ then $\tau\left(H_{2} \psi\right)=1$, or $\sigma\left(H_{2} \psi\right)=0$, or $\sigma(\psi)=0$, or there exists an adequate function $\mu: \Gamma \longrightarrow\{0,1\}$ such that $(\sigma, \mu) \in M_{2},(\mu, \tau) \in M_{2}$ and $\mu(\psi)=0$.

A premodel is said to be saturated iff it is $0-, 1$ - and 2 -saturated. We shall say that a premodel $\left(\sigma_{0}, M_{1}, M_{2}\right)$ is 1-dense iff for all mosaics $(\sigma, \tau) \in M_{1}$, the following unique condition is satisfied:

- there exists an adequate function $\mu: \Gamma \longrightarrow\{0,1\}$ such that $(\sigma, \mu) \in M_{1}$ and $(\mu, \tau) \in M_{1}$.

A premodel $\left(\sigma_{0}, M_{1}, M_{2}\right)$ is said to be 2-dense iff for all mosaics $(\sigma, \tau) \in M_{2}$, the following unique condition is satisfied:

- there exists an adequate function $\mu: \Gamma \longrightarrow\{0,1\}$ such that $(\sigma, \mu) \in M_{2}$ and $(\mu, \tau) \in M_{2}$.

We shall say that a premodel is dense iff it is 1- and 2-dense. A premodel $\left(\sigma_{0}, M_{1}, M_{2}\right)$ is said to be for φ iff $\sigma_{0}(\varphi)=1$.

5 Maps

Until the end of this section, $\left(\sigma_{0}, M_{1}, M_{2}\right)$ will denote a saturated dense premodel. A map is a partial function $l: \mathbb{Q} \times \mathbb{Q} \longrightarrow(\Gamma \longrightarrow\{0,1\})$ with finite domain and such that for all pairs $\left(s_{1}, s_{2}\right) \in \operatorname{dom}(l), l\left(s_{1}, s_{2}\right)$ is an adequate function. A map l is said to be respectful iff $(0,0) \in \operatorname{dom}(l), l(0,0)=\sigma_{0}$ and for all pairs $\left(s_{1}, s_{2}\right),\left(t_{1}, t_{2}\right) \in \operatorname{dom}(l)$, the 2 following conditions are satisfied:

1. if $\left(s_{1}, s_{2}\right) \prec_{1}\left(t_{1}, t_{2}\right)$ and $]\left(s_{1}, s_{2}\right),\left(t_{1}, t_{2}\right)\left[\cap \operatorname{dom}(l)=\emptyset\right.$ then $\left(l\left(s_{1}, s_{2}\right), l\left(t_{1}, t_{2}\right)\right)$ $\in M_{1}$,
2. if $\left(s_{1}, s_{2}\right) \prec_{2}\left(t_{1}, t_{2}\right)$ and $]\left(s_{1}, s_{2}\right),\left(t_{1}, t_{2}\right)\left[\cap \operatorname{dom}(l)=\emptyset\right.$ then $\left(l\left(s_{1}, s_{2}\right), l\left(t_{1}, t_{2}\right)\right)$ $\in M_{2}$.

We first prove a simple lemma.
Lemma 2. Let l_{0} be the map defined by $\operatorname{dom}\left(l_{0}\right)=\{(0,0)\}$ and $l_{0}(0,0)=\sigma_{0}$. Then l_{0} is respectful.

Proof. By definition of l_{0}.
The map l_{0} defined by lemma 2 is called init map with respect to $\left(\sigma_{0}, M_{1}, M_{2}\right)$. We shall say that a map l^{\prime} extends a map l iff $\operatorname{dom}\left(l^{\prime}\right) \supseteq \operatorname{dom}(l)$ and $l_{\mid \operatorname{dom}(l)}^{\prime}=$ l. Much more difficult than lemma 2 are the following lemmas.

Lemma 3. Let $i \in\{1,2\}$ and ψ be a formula such that $G_{i} \psi \in \Gamma$. Let l be a respectful map and $\left(s_{1}, s_{2}\right) \in \operatorname{dom}(l)$ such that $l\left(s_{1}, s_{2}\right)\left(G_{i} \psi\right)=0$. There exists a respectful map l^{\prime} and there exists $\left(t_{1}, t_{2}\right) \in \mathbb{Q} \times \mathbb{Q}$ such that l^{\prime} extends $l,\left(t_{1}, t_{2}\right)$ $\in \operatorname{dom}\left(l^{\prime}\right),\left(s_{1}, s_{2}\right) \prec_{i}\left(t_{1}, t_{2}\right)$ and $l^{\prime}\left(t_{1}, t_{2}\right)(\psi)=0$.

Proof. Since $\operatorname{dom}(l)$ is finite, then there exists a nonnegative integer k and there exists $\left(u_{1}^{1}, u_{2}^{1}\right), \ldots,\left(u_{1}^{k}, u_{2}^{k}\right) \in \mathbb{Q} \times \mathbb{Q}$ such that $]\left(s_{1}, s_{2}\right),+\infty[\cap \operatorname{dom}(l)=$ $\left\{\left(u_{1}^{1}, u_{2}^{1}\right), \ldots,\left(u_{1}^{k}, u_{2}^{k}\right)\right\}$. Without loss of generality, we may assume that $\left(s_{1}, s_{2}\right)$ $\prec\left(u_{1}^{1}, u_{2}^{1}\right) \ldots \prec\left(u_{1}^{k}, u_{2}^{k}\right)$. Moreover, $\left(s_{1}, s_{2}\right) \prec_{j_{1}}\left(u_{1}^{1}, u_{2}^{1}\right) \ldots \prec_{j_{k}}\left(u_{1}^{k}, u_{2}^{k}\right)$ for exactly one k-tuple $\left(j_{1}, \ldots, j_{k}\right) \in\{1,2\}^{k}$. Now, we proceed by induction on k.
Basis. Suppose $k=0$. Now, consider the 2 following cases.

1. Suppose $]-\infty,\left(s_{1}, s_{2}\right)\left[\cap \operatorname{dom}(l)=\emptyset\right.$. Since l is respectful and $l\left(s_{1}, s_{2}\right)\left(G_{i} \psi\right)=$ 0 , then $\left(s_{1}, s_{2}\right)=(0,0)$ and there exists an adequate function $\mu: \Gamma \longrightarrow\{0,1\}$ such that $\left(\sigma_{0}, \mu\right) \in M_{i}$ and $\mu(\psi)=0$. Let $\left(t_{1}, t_{2}\right) \in \mathbb{Q} \times \mathbb{Q}$ be such that $(0,0)$ $\prec_{i}\left(t_{1}, t_{2}\right)$ and l^{\prime} be the least extension of l such that $\left(t_{1}, t_{2}\right) \in \operatorname{dom}\left(l^{\prime}\right)$ and $l^{\prime}\left(t_{1}, t_{2}\right)=\mu$. Obviously, l^{\prime} is respectful.
2. Suppose $]-\infty,\left(s_{1}, s_{2}\right)[\cap \operatorname{dom}(l) \neq \emptyset$. Since $\operatorname{dom}(l)$ is finite, then there exists $\left(v_{1}, v_{2}\right) \in \operatorname{dom}(l)$ such that $\left(v_{1}, v_{2}\right) \prec\left(s_{1}, s_{2}\right)$ and $]\left(v_{1}, v_{2}\right),\left(s_{1}, s_{2}\right)[\cap \operatorname{dom}(l)$ $=\emptyset$. Moreover, $\left(v_{1}, v_{2}\right) \prec_{j}\left(s_{1}, s_{2}\right)$ for exactly one $j \in\{1,2\}$. Since l is respectful and $l\left(s_{1}, s_{2}\right)\left(G_{i} \psi\right)=0$, then $\left(l\left(v_{1}, v_{2}\right), l\left(s_{1}, s_{2}\right)\right) \in M_{j}$ and there exists an adequate function $\mu: \Gamma \longrightarrow\{0,1\}$ such that $\left(l\left(s_{1}, s_{2}\right), \mu\right) \in M_{i}$ and $\mu(\psi)=0$. Let $\left(t_{1}, t_{2}\right) \in \mathbb{Q} \times \mathbb{Q}$ be such that $\left(s_{1}, s_{2}\right) \prec_{i}\left(t_{1}, t_{2}\right)$ and l^{\prime} be the least extension of l such that $\left(t_{1}, t_{2}\right) \in \operatorname{dom}\left(l^{\prime}\right)$ and $l^{\prime}\left(t_{1}, t_{2}\right)=\mu$. Obviously, l^{\prime} is respectful.

Step. Suppose $k \geq 1$. Now, consider the 4 following cases.

1. Suppose $i=1$ and $j_{1}=1$. Since l is respectful and $l\left(s_{1}, s_{2}\right)\left(G_{1} \psi\right)=0$, then $\left(l\left(s_{1}, s_{2}\right), l\left(u_{1}^{1}, u_{2}^{1}\right)\right) \in M_{1}$ and (i) there exists an adequate function μ : $\Gamma \longrightarrow\{0,1\}$ such that $\left(l\left(s_{1}, s_{2}\right), \mu\right) \in M_{1},\left(\mu, l\left(u_{1}^{1}, u_{2}^{1}\right)\right) \in M_{1}$ and $\mu(\psi)$ $=0$, or (ii) there exists an adequate function $\mu: \Gamma \longrightarrow\{0,1\}$ such that $\left(l\left(s_{1}, s_{2}\right), \mu\right) \in M_{1},\left(\mu, l\left(u_{1}^{1}, u_{2}^{1}\right)\right) \in M_{2}$ and $\mu(\psi)=0$, or (iii) $l\left(u_{1}^{1}, u_{2}^{1}\right)(\psi)$ $=0$, or (iv) $l\left(u_{1}^{1}, u_{2}^{1}\right)\left(G_{1} \psi\right)=0$, or $(\mathbf{v}) l\left(u_{1}^{1}, u_{2}^{1}\right)\left(G_{2} \psi\right)=0$. In case (i), let $\left(t_{1}, t_{2}\right) \in \mathbb{Q} \times \mathbb{Q}$ be such that $\left(s_{1}, s_{2}\right) \prec_{1}\left(t_{1}, t_{2}\right)$ and $\left(t_{1}, t_{2}\right) \prec_{1}\left(u_{1}^{1}, u_{2}^{1}\right)$ and l^{\prime} be the least extension of l such that $\left(t_{1}, t_{2}\right) \in \operatorname{dom}\left(l^{\prime}\right)$ and $l^{\prime}\left(t_{1}, t_{2}\right)=\mu$. In case (ii), let $\left(t_{1}, t_{2}\right) \in \mathbb{Q} \times \mathbb{Q}$ be such that $\left(s_{1}, s_{2}\right) \prec_{1}\left(t_{1}, t_{2}\right)$ and $\left(t_{1}, t_{2}\right)$ $\prec_{2}\left(u_{1}^{1}, u_{2}^{1}\right)$ and l^{\prime} be the least extension of l such that $\left(t_{1}, t_{2}\right) \in \operatorname{dom}\left(l^{\prime}\right)$ and $l^{\prime}\left(t_{1}, t_{2}\right)=\mu$. In case (iii), let $\left(t_{1}, t_{2}\right) \in \mathbb{Q} \times \mathbb{Q}$ be $\left(u_{1}^{1}, u_{2}^{1}\right)$ and l^{\prime} be l. In case (iv), by induction hypothesis, there exists a respectful map l^{\prime} and there exists $\left(t_{1}, t_{2}\right) \in \mathbb{Q} \times \mathbb{Q}$ such that l^{\prime} extends $l,\left(t_{1}, t_{2}\right) \in \operatorname{dom}\left(l^{\prime}\right),\left(u_{1}^{1}, u_{2}^{1}\right) \prec_{1}$ $\left(t_{1}, t_{2}\right)$ and $l^{\prime}\left(t_{1}, t_{2}\right)(\psi)=0$. In case (\mathbf{v}), by induction hypothesis, there exists a respectful map l^{\prime} and there exists $\left(t_{1}, t_{2}\right) \in \mathbb{Q} \times \mathbb{Q}$ such that l^{\prime} extends l, $\left(t_{1}, t_{2}\right) \in \operatorname{dom}\left(l^{\prime}\right),\left(u_{1}^{1}, u_{2}^{1}\right) \prec_{2}\left(t_{1}, t_{2}\right)$ and $l^{\prime}\left(t_{1}, t_{2}\right)(\psi)=0$. Obviously, in all cases, l^{\prime} is respectful.
2. Suppose $i=1$ and $j_{1}=2$. Since l is respectful and $l\left(s_{1}, s_{2}\right)\left(G_{1} \psi\right)=0$, then $\left(l\left(s_{1}, s_{2}\right), l\left(u_{1}^{1}, u_{2}^{1}\right)\right) \in M_{2}$ and $l\left(u_{1}^{1}, u_{2}^{1}\right)\left(G_{1} \psi\right)=0$. By induction hypothesis, there exists a respectful map l^{\prime} and there exists $\left(t_{1}, t_{2}\right) \in \mathbb{Q} \times \mathbb{Q}$ such that l^{\prime} extends $l,\left(t_{1}, t_{2}\right) \in \operatorname{dom}\left(l^{\prime}\right),\left(u_{1}^{1}, u_{2}^{1}\right) \prec_{1}\left(t_{1}, t_{2}\right)$ and $l^{\prime}\left(t_{1}, t_{2}\right)(\psi)=0$. Obviously, l^{\prime} is respectful.
3. Suppose $i=2$ and $j_{1}=1$. Since l is respectful and $l\left(s_{1}, s_{2}\right)\left(G_{2} \psi\right)=0$, then $\left(l\left(s_{1}, s_{2}\right), l\left(u_{1}^{1}, u_{2}^{1}\right)\right) \in M_{1}$ and there exists an adequate function $\mu: \Gamma \longrightarrow$
$\{0,1\}$ such that $\left(l\left(s_{1}, s_{2}\right), \mu\right) \in M_{2},\left(\mu, l\left(u_{1}^{1}, u_{2}^{1}\right)\right) \in M_{1}$ and $\mu(\psi)=0$. Let $\left(t_{1}, t_{2}\right) \in \mathbb{Q} \times \mathbb{Q}$ be such that $\left(s_{1}, s_{2}\right) \prec_{2}\left(t_{1}, t_{2}\right)$ and $\left(t_{1}, t_{2}\right) \prec_{1}\left(u_{1}^{1}, u_{2}^{1}\right)$ and l^{\prime} be the least extension of l such that $\left(t_{1}, t_{2}\right) \in \operatorname{dom}\left(l^{\prime}\right)$ and $l^{\prime}\left(t_{1}, t_{2}\right)=\mu$. Obviously, l^{\prime} is respectful.
4. Suppose $i=2$ and $j_{1}=2$. Since l is respectful and $l\left(s_{1}, s_{2}\right)\left(G_{2} \psi\right)=0$, then $\left(l\left(s_{1}, s_{2}\right), l\left(u_{1}^{1}, u_{2}^{1}\right)\right) \in M_{2}$ and (i) there exists an adequate function μ : $\Gamma \longrightarrow\{0,1\}$ such that $\left(l\left(s_{1}, s_{2}\right), \mu\right) \in M_{2},\left(\mu, l\left(u_{1}^{1}, u_{2}^{1}\right)\right) \in M_{2}$ and $\mu(\psi)$ $=0$, or (ii) $l\left(u_{1}^{1}, u_{2}^{1}\right)(\psi)=0$, or (iii) $l\left(u_{1}^{1}, u_{2}^{1}\right)\left(G_{2} \psi\right)=0$. In case (i), let $\left(t_{1}, t_{2}\right) \in \mathbb{Q} \times \mathbb{Q}$ be such that $\left(s_{1}, s_{2}\right) \prec_{2}\left(t_{1}, t_{2}\right)$ and $\left(t_{1}, t_{2}\right) \prec_{2}\left(u_{1}^{1}, u_{2}^{1}\right)$ and l^{\prime} be the least extension of l such that $\left(t_{1}, t_{2}\right) \in \operatorname{dom}\left(l^{\prime}\right)$ and $l^{\prime}\left(t_{1}, t_{2}\right)=\mu$. In case (ii), let $\left(t_{1}, t_{2}\right) \in \mathbb{Q} \times \mathbb{Q}$ be (u_{1}^{1}, u_{2}^{1}) and l^{\prime} be l. In case (iii), by induction hypothesis, there exists a respectful map l^{\prime} and there exists $\left(t_{1}, t_{2}\right) \in \mathbb{Q} \times \mathbb{Q}$ such that l^{\prime} extends $l,\left(t_{1}, t_{2}\right) \in \operatorname{dom}\left(l^{\prime}\right),\left(u_{1}^{1}, u_{2}^{1}\right) \prec_{2}\left(t_{1}, t_{2}\right)$ and $l^{\prime}\left(t_{1}, t_{2}\right)(\psi)$ $=0$. Obviously, in all cases, l^{\prime} is respectful.

Lemma 4. Let $i \in\{1,2\}$ and ψ be a formula such that $H_{i} \psi \in \Gamma$. Let l be a respectful map and $\left(s_{1}, s_{2}\right) \in \operatorname{dom}(l)$ such that $l\left(s_{1}, s_{2}\right)\left(H_{i} \psi\right)=0$. There exists a respectful map l^{\prime} and there exists $\left(t_{1}, t_{2}\right) \in \mathbb{Q} \times \mathbb{Q}$ such that l^{\prime} extends $l,\left(t_{1}, t_{2}\right)$ $\in \operatorname{dom}\left(l^{\prime}\right),\left(t_{1}, t_{2}\right) \prec_{i}\left(s_{1}, s_{2}\right)$ and $l^{\prime}\left(t_{1}, t_{2}\right)(\psi)=0$.

Proof. Similar to the proof of lemma 3.
Lemma 5. Let $i \in\{1,2\}$. Let l be a respectful map and $\left(s_{1}, s_{2}\right),\left(t_{1}, t_{2}\right) \in \operatorname{dom}(l)$ such that $\left(s_{1}, s_{2}\right) \prec_{i}\left(t_{1}, t_{2}\right)$ and $]\left(s_{1}, s_{2}\right),\left(t_{1}, t_{2}\right)[\cap \operatorname{dom}(l)=\emptyset$. There exists a respectful map l^{\prime} and there exists $\left(u_{1}, u_{2}\right) \in \mathbb{Q} \times \mathbb{Q}$ such that l^{\prime} extends $l,\left(u_{1}, u_{2}\right)$ $\in \operatorname{dom}\left(l^{\prime}\right),\left(s_{1}, s_{2}\right) \prec_{i}\left(u_{1}, u_{2}\right)$ and $\left(u_{1}, u_{2}\right) \prec_{i}\left(t_{1}, t_{2}\right)$.

Proof. Since l is respectful and $\left(s_{1}, s_{2}\right) \prec_{i}\left(t_{1}, t_{2}\right)$, then $\left(l\left(s_{1}, s_{2}\right), l\left(t_{1}, t_{2}\right)\right) \in M_{i}$ and there exists an adequate function $\mu: \Gamma \longrightarrow\{0,1\}$ such that $\left(l\left(s_{1}, s_{2}\right), \mu\right) \in$ M_{i} and $\left(\mu, l\left(t_{1}, t_{2}\right)\right) \in M_{i}$. Let $\left(u_{1}, u_{2}\right) \in \mathbb{Q} \times \mathbb{Q}$ be such that $\left(s_{1}, s_{2}\right) \prec_{i}\left(u_{1}, u_{2}\right)$ and $\left(u_{1}, u_{2}\right) \prec_{i}\left(t_{1}, t_{2}\right)$ and l^{\prime} be the least extension of l such that $\left(u_{1}, u_{2}\right) \in$ $\operatorname{dom}\left(l^{\prime}\right)$ and $l^{\prime}\left(t_{1}, t_{2}\right)=\mu$. Obviously, l^{\prime} is respectful.

The maps l^{\prime} defined by lemmas $3-5$ are respectively called right completion of l with respect to i, ψ and $\left(s_{1}, s_{2}\right)$, left completion of l with respect to i, ψ and $\left(s_{1}, s_{2}\right)$ and dense completion of l with respect to $i,\left(s_{1}, s_{2}\right)$ and $\left(t_{1}, t_{2}\right)$.

6 Correctness and completeness of the mosaic method

Now, we are ready to formulate our main propositions.

6.1 Correctness

First, the correctness of the mosaic method.
Proposition 3. If there exists a saturated dense premodel for φ then φ is satisfiable with respect to $\left(\mathcal{C}_{u d}, \mathcal{C}_{u d}\right)$.

Proof. Suppose there exists a saturated dense premodel $\left(\sigma_{0}, M_{1}, M_{2}\right)$ for φ. Following the line of reasoning suggested in [19], we think of the construction of a model for φ as a process approaching a limit via a sequence l_{0}, l_{1}, \ldots of respectful maps. Lemma 2 is used to initiate the construction whereas lemmas 3-5 are used to make improvements at each step of the construction. Consider an enumeration $\left(i^{0}, \psi^{0},\left(s_{1}^{0}, s_{2}^{0}\right),\left(t_{1}^{0}, t_{2}^{0}\right)\right),\left(i^{1}, \psi^{1},\left(s_{1}^{1}, s_{2}^{1}\right),\left(t_{1}^{1}, t_{2}^{1}\right)\right), \ldots$ of $\{1,2\} \times \mathcal{L}_{t} \times(\mathbb{Q} \times \mathbb{Q}) \times(\mathbb{Q} \times \mathbb{Q})$ where each item appears infinitely often. We inductively define a sequence l_{0}, l_{1}, \ldots of respectful maps as follows:
Basis. Let l_{0} be the init map with respect to (σ_{0}, M_{1}, M_{2}).
Step. Let $l_{n}^{\text {right }}, l_{n}^{\text {left }}$ and l_{n+1} be the respectful maps defined as follows:
(i) if i^{n}, ψ^{n}, l_{n} and $\left(s_{1}^{n}, s_{2}^{n}\right)$ satisfy the conditions of lemma 3 then let $l_{n}^{\text {right }}$ be the right completion of l_{n} with respect to i^{n}, ψ^{n} and $\left(s_{1}^{n}, s_{2}^{n}\right)$ else let $l_{n}^{\text {right }}$ be l_{n},
(ii) if $i^{n}, \psi^{n}, l_{n}^{\text {right }}$ and $\left(s_{1}^{n}, s_{2}^{n}\right)$ satisfy the conditions of lemma 4 then let $l_{n}^{\text {left }}$ be the left completion of $l_{n}^{\text {right }}$ with respect to i^{n}, ψ^{n} and $\left(s_{1}^{n}, s_{2}^{n}\right)$ else let $l_{n}^{\text {left }}$ be $l_{n}^{\text {right }}$,
(iii) if $i^{n}, l_{n}^{l e f t},\left(s_{1}^{n}, s_{2}^{n}\right)$ and $\left(t_{1}^{n}, t_{2}^{n}\right)$ satisfy the conditions of lemma 5 then let l_{n+1} be the dense completion of $l_{n}^{l e f t}$ with respect to $i^{n},\left(s_{1}^{n}, s_{2}^{n}\right)$ and $\left(t_{1}^{n}, t_{2}^{n}\right)$ else let l_{n+1} be $l_{n}^{\text {left }}$.

The reader may easily verify that the sequence l_{0}, l_{1}, \ldots of respectful maps is such that $\operatorname{dom}\left(l_{0}\right) \subseteq \operatorname{dom}\left(l_{1}\right) \subseteq \ldots$ and for all nonnegative integers $n, l_{n+1 \mid \operatorname{dom}\left(l_{n}\right)}$ $=l_{n}$. Let $l: \mathbb{Q} \times \mathbb{Q} \longrightarrow(\Gamma \longrightarrow\{0,1\})$ be the partial function defined by $\operatorname{dom}(l)=$ $\bigcup\left\{\operatorname{dom}\left(l_{n}\right): n\right.$ is a nonnegative integer $\}$ and $l\left(s_{1}, s_{2}\right)=l_{n}\left(s_{1}, s_{2}\right)$ for each $\left(s_{1}, s_{2}\right)$ $\in \operatorname{dom}(l), n$ being a nonnegative integer such that $\left(s_{1}, s_{2}\right) \in \operatorname{dom}\left(l_{n}\right)$. Obviously, $(0,0) \in \operatorname{dom}(l)$ and $l(0,0)=\sigma_{0}$. Let $\mathcal{F}=\left(T, \lessdot_{1}, \lessdot_{2}\right)$ be the structure defined by

$$
-T=\operatorname{dom}(l)
$$

$-\lessdot_{1}$ and \lessdot_{2} are the binary relations on T defined by putting $\left(s_{1}, s_{2}\right) \lessdot_{1}\left(t_{1}, t_{2}\right)$ iff $s_{1}<t_{1}$ and $\left(s_{1}, s_{2}\right) \lessdot_{2}\left(t_{1}, t_{2}\right)$ iff $s_{1}=t_{1}$ and $s_{2}<t_{2}$.

We define the binary relation \lessdot on T by putting $\left(s_{1}, s_{2}\right) \lessdot\left(t_{1}, t_{2}\right)$ iff $s_{1}<t_{1}$, or $s_{1}=t_{1}$ and $s_{2}<t_{2}$. By lemmas $3-5, \mathcal{F}$ satisfies $S E R I$ and $D E N S$. Since \mathcal{F} is a substructure of $\mathbb{Q} \times \mathbb{Q}$, then it satisfies $I R R E, D I S J, T R A N$ and $U N I V$. Hence, \mathcal{F} is standard. Thus, by item 1 of proposition $1, \mathcal{F}$ is isomorphic with $\mathbb{Q} \times \mathbb{Q}$. Without loss of generality, we may assume that \mathcal{F} is equal to $\mathbb{Q} \times \mathbb{Q}$. Let $V: A t \longrightarrow 2^{T}$ be the function defined by $\left(s_{1}, s_{2}\right) \in V(p)$ iff $p \in \Gamma$ and $l\left(s_{1}, s_{2}\right)(p)$ $=1$ - i.e. V makes p true at $\left(s_{1}, s_{2}\right)$ iff l says so - and $\mathcal{M}=\left(T, \lessdot_{1}, \lessdot_{2}, V\right)$. By induction on ψ, let us demonstrate that if $\psi \in \Gamma$ then

- if $l\left(s_{1}, s_{2}\right)(\psi)=1$ then $\mathcal{M},\left(s_{1}, s_{2}\right) \models \psi$,
- if $l\left(s_{1}, s_{2}\right)(\psi)=0$ then $\mathcal{M},\left(s_{1}, s_{2}\right) \not \vDash \psi$.

Basis. Suppose $\psi=p$. Now, if $\psi \in \Gamma$ then consider the 2 following cases.

1. Suppose $l\left(s_{1}, s_{2}\right)(\psi)=1$. Therefore, $\left(s_{1}, s_{2}\right) \in V(p)$. Consequently, $\mathcal{M},\left(s_{1}\right.$, $\left.s_{2}\right) \models \psi$.
2. Suppose $l\left(s_{1}, s_{2}\right)(\psi)=0$. Hence, $\left(s_{1}, s_{2}\right) \notin V(p)$. Thus, $\mathcal{M},\left(s_{1}, s_{2}\right) \not \vDash \psi$.

Step. Suppose $\psi=\perp$, or $\psi=\neg \chi$, or $\psi=\chi \vee \rho$, or $\psi=G_{1} \chi$, or $\psi=G_{2} \chi$, or $\psi=H_{1} \chi$, or $\psi=H_{2} \chi$. Leaving the cases $\psi=\perp, \psi=\neg \chi$ and $\psi=\chi \vee \rho$ to the reader, we only consider the cases $\psi=G_{1} \chi$ and $\psi=G_{2} \chi$, the cases $\psi=$ $H_{1} \chi$ and $\psi=H_{2} \chi$ being similar to them. Now, if $G_{i} \chi \in \Gamma$ then consider the 2 following cases.

1. Suppose $l\left(s_{1}, s_{2}\right)\left(G_{i} \chi\right)=1$. Therefore, $l_{m}\left(s_{1}, s_{2}\right)\left(G_{i} \chi\right)=1, m$ being a nonnegative integer such that $\left(s_{1}, s_{2}\right) \in \operatorname{dom}\left(l_{m}\right)$. Let $\left(t_{1}, t_{2}\right) \in T$ such that $\left(s_{1}, s_{2}\right) \lessdot_{i}\left(t_{1}, t_{2}\right)$, we demonstrate $\mathcal{M},\left(t_{1}, t_{2}\right) \models \chi$. Since $\left(t_{1}, t_{2}\right) \in T$, then there exists a nonnegative integer n such that $\left(t_{1}, t_{2}\right) \in \operatorname{dom}\left(l_{n}\right)$. Let o $=\max \{m, n\}$. Since $l_{m}\left(s_{1}, s_{2}\right)\left(G_{i} \chi\right)=1$, then $l_{o}\left(s_{1}, s_{2}\right)\left(G_{i} \chi\right)=1$. Moreover, since $\operatorname{dom}\left(l_{o}\right)$ is finite, then there exists a nonnegative integer k and there exists $\left(u_{1}^{1}, u_{2}^{1}\right), \ldots,\left(u_{1}^{k}, u_{2}^{k}\right) \in T$ such that $]\left(s_{1}, s_{2}\right),\left(t_{1}, t_{2}\right)\left[\cap \operatorname{dom}\left(l_{o}\right)\right.$ $=\left\{\left(u_{1}^{1}, u_{2}^{1}\right), \ldots,\left(u_{1}^{k}, u_{2}^{k}\right)\right\}$. Without loss of generality, we may assume that $\left(s_{1}, s_{2}\right) \lessdot\left(u_{1}^{1}, u_{2}^{1}\right) \ldots \lessdot\left(u_{1}^{k}, u_{2}^{k}\right)$ and $\left(u_{1}^{k}, u_{2}^{k}\right) \lessdot\left(t_{1}, t_{2}\right)$. Moreover, $\left(s_{1}, s_{2}\right)$ $\lessdot_{j_{1}}\left(u_{1}^{1}, u_{2}^{1}\right) \ldots \lessdot_{j_{k}}\left(u_{1}^{k}, u_{2}^{k}\right)$ for exactly one k-tuple $\left(j_{1}, \ldots, j_{k}\right) \in\{1,2\}^{k}$ and $\left(u_{1}^{k}, u_{2}^{k}\right) \lessdot_{j}\left(t_{1}, t_{2}\right)$ for exactly one $j \in\{1,2\}$. Since l_{o} is respectful, then $\left(l_{o}\left(s_{1}, s_{2}\right), l_{o}\left(u_{1}^{1}, u_{2}^{1}\right)\right) \in M_{j_{1}}, \ldots,\left(l_{o}\left(u_{1}^{k-1}, u_{2}^{k-1}\right), l_{o}\left(u_{1}^{k}, u_{2}^{k}\right)\right) \in M_{j_{k}}$ and $\left(l_{o}\left(u_{1}^{k}, u_{2}^{k}\right), l_{o}\left(t_{1}, t_{2}\right)\right) \in M_{j}$. Remark that $\min \left\{\min \left\{j_{1}, \ldots, j_{k}\right\}, j\right\}=i$. Since $l_{o}\left(s_{1}, s_{2}\right)\left(G_{i} \chi\right)=1$, mosaics in M_{1} are 1-temporal and mosaics in M_{2} are 2temporal, then $l_{o}\left(t_{1}, t_{2}\right)(\chi)=1$. Consequently, $l\left(t_{1}, t_{2}\right)(\chi)=1$. By induction hypothesis, $\mathcal{M},\left(t_{1}, t_{2}\right) \models \chi$.
2. Suppose $l\left(s_{1}, s_{2}\right)\left(G_{i} \chi\right)=0$. Hence, $l_{m}\left(s_{1}, s_{2}\right)\left(G_{i} \chi\right)=0, m$ being a nonnegative integer such that $\left(s_{1}, s_{2}\right) \in \operatorname{dom}\left(l_{m}\right)$. By definition of the sequence l_{0}, l_{1}, \ldots of respectful maps, there exists a nonnegative integer n and there exists $\left(t_{1}, t_{2}\right) \in T$ such that $\left(t_{1}, t_{2}\right) \in \operatorname{dom}\left(l_{n}\right),\left(s_{1}, s_{2}\right) \lessdot_{i}\left(t_{1}, t_{2}\right)$ and $l_{n}\left(t_{1}, t_{2}\right)(\chi)$ $=0$. Consequently, $l\left(t_{1}, t_{2}\right)(\chi)=0$. By induction hypothesis, $\mathcal{M},\left(t_{1}, t_{2}\right) \not \vDash$ χ. Since $\left(s_{1}, s_{2}\right) \lessdot_{i}\left(t_{1}, t_{2}\right)$, then $\mathcal{M},\left(s_{1}, s_{2}\right) \not \vDash G_{i} \chi$.

Since $\left(\sigma_{0}, M_{1}, M_{2}\right)$ is for φ, then $\sigma_{0}(\varphi)=1$. Since $(0,0) \in \operatorname{dom}(l)$ and $l(0,0)=$ σ_{0}, then $l(0,0)(\varphi)=1$ and $\mathcal{M},(0,0) \models \varphi$. Since \mathcal{F} is isomorphic with $\mathbb{Q} \times \mathbb{Q}$, then φ is satisfiable with respect to $\left(\mathcal{C}_{u d}, \mathcal{C}_{u d}\right)$.

6.2 Completeness

Second, the completeness of the mosaic method.
Proposition 4. If φ is satisfiable with respect to $\left(\mathcal{C}_{u d}, \mathcal{C}_{u d}\right)$ then there exists a saturated dense premodel for φ of cardinality bounded by $2 \times(8 \times|\varphi|+6)^{8}$.

Proof. Suppose φ is satisfiable with respect to $\left(\mathcal{C}_{u d}, \mathcal{C}_{u d}\right)$. Hence, there exists a linear order $\mathcal{F}_{1}=\left(T_{1},<_{1}\right)$ in $\mathcal{C}_{u d}$, there exists a linear order $\mathcal{F}_{2}=\left(T_{2},<_{2}\right)$ in $\mathcal{C}_{u d}$ and there exists a function $V: A t \longrightarrow 2^{T_{1} \times T_{2}}$ such that $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, V\right)$ is a model for φ. For all $\left(s_{1}, s_{2}\right) \in T_{1} \times T_{2}$, let $\sigma\left(s_{1}, s_{2}\right): \Gamma \longrightarrow\{0,1\}$ be the function such that if $\psi \in \Gamma$ then $\sigma\left(s_{1}, s_{2}\right)(\psi)=\operatorname{if}\left(\mathcal{F}_{1}, \mathcal{F}_{2}, V\right),\left(s_{1}, s_{2}\right) \vDash \psi$ then 1 else 0 . Obviously,
$\sigma\left(s_{1}, s_{2}\right)$ is an adequate function. Let $s_{1} \in T_{1}$. Let $\equiv_{s_{1}}$ be the binary relation on T_{2} defined as follows: $t_{2} \equiv_{s_{1}} u_{2}$ iff $\sigma\left(s_{1}, t_{2}\right)=\sigma\left(s_{1}, u_{2}\right)$. Obviously, $\equiv_{s_{1}}$ is an equivalence relation on T_{2}. Moreover, since Γ is finite, then there exists finitely many equivalence classes modulo $\equiv_{s_{1}}$. We define
$-\Delta_{2}^{s_{1}}=\left\{G_{2} \psi: G_{2} \psi \in \Gamma\right.$ is such that $\sigma\left(s_{1}, t_{2}\right)(\psi)=0$ for some $\left.t_{2} \in T_{2}\right\}$, $-\Lambda_{2}^{s_{1}}=\left\{H_{2} \psi: H_{2} \psi \in \Gamma\right.$ is such that $\sigma\left(s_{1}, t_{2}\right)(\psi)=0$ for some $\left.t_{2} \in T_{2}\right\}$.

Obviously, $\Delta_{2}^{s_{1}} \subseteq \Gamma$ and $\Lambda_{2}^{s_{1}} \subseteq \Gamma$. Therefore, by lemma 1, $\operatorname{card}\left(\Delta_{2}^{s_{1}}\right) \leq 4 \times|\varphi|$ +2 and $\operatorname{card}\left(\Lambda_{2}^{s_{1}}\right) \leq 4 \times|\varphi|+2$. Let

- for all $G_{2} \psi \in \Delta_{2}^{s_{1}}, f_{2}^{s_{1}}\left(G_{2} \psi\right)=\left\{t_{2}: t_{2} \in T_{2}\right.$ is such that $\left.\sigma\left(s_{1}, t_{2}\right)(\psi)=0\right\}$,
- for all $H_{2} \psi \in \Lambda_{2}^{s_{1}}, g_{2}^{s_{1}}\left(H_{2} \psi\right)=\left\{t_{2}: t_{2} \in T_{2}\right.$ is such that $\left.\sigma\left(s_{1}, t_{2}\right)(\psi)=0\right\}$.

We shall say that
$-t_{2} \in f_{2}^{s_{1}}\left(G_{2} \psi\right)$ is maximal iff for all $u_{2} \in f_{2}^{s_{1}}\left(G_{2} \psi\right), t_{2} \equiv{ }_{s_{1}} u_{2}$, or there exists $v_{2} \in f_{2}^{s_{1}}\left(G_{2} \psi\right)$ such that $u_{2}<_{2} v_{2}$ and $t_{2} \equiv s_{s_{1}} v_{2}$,
$-t_{2} \in g_{2}^{s_{1}}\left(H_{2} \psi\right)$ is minimal iff for all $u_{2} \in g_{2}^{s_{1}}\left(H_{2} \psi\right), t_{2} \equiv_{s_{1}} u_{2}$, or there exists $v_{2} \in g_{2}^{s_{1}}\left(H_{2} \psi\right)$ such that $v_{2}<_{2} u_{2}$ and $t_{2} \equiv_{s_{1}} v_{2}$.

Since there exists finitely many equivalence classes modulo $\equiv_{s_{1}}$, then for all $G_{2} \psi$ $\in \Delta_{2}^{s_{1}}$, there exists $t_{2}\left(G_{2} \psi\right) \in f_{2}^{s_{1}}\left(G_{2} \psi\right)$ such that $t_{2}\left(G_{2} \psi\right)$ is maximal and for all $H_{2} \psi \in \Lambda_{2}^{s_{1}}$, there exists $t_{2}\left(H_{2} \psi\right) \in g_{2}^{s_{1}}\left(H_{2} \psi\right)$ such that $t_{2}\left(H_{2} \psi\right)$ is minimal. For all $s_{2} \in T_{2}$, let
$-\Pi_{2}^{s_{1}}\left(s_{2}\right)=\left\{s_{2}\right\} \cup\left\{t_{2}\left(G_{2} \psi\right): G_{2} \psi \in \Delta_{2}^{s_{1}}\right\} \cup\left\{t_{2}\left(H_{2} \psi\right): H_{2} \psi \in \Lambda_{2}^{s_{1}}\right\}$.
Since $\operatorname{card}\left(\Delta_{2}^{s_{1}}\right) \leq 4 \times|\varphi|+2$ and $\operatorname{card}\left(\Lambda_{2}^{s_{1}}\right) \leq 4 \times|\varphi|+2$, then $\operatorname{card}\left(\Pi_{2}^{s_{1}}\left(s_{2}\right)\right)$ $\leq 8 \times|\varphi|+5$. Let $t_{2}, u_{2} \in \Pi_{2}^{s_{1}}\left(s_{2}\right)$ be such that $t_{2} \equiv s_{1} \circ<_{2} \circ \equiv_{s_{1}} u_{2}$. A witness of 2-density for t_{2} and u_{2} is $v_{2} \in T_{2}$ such that $t_{2} \equiv_{s_{1}} \circ<_{2} \circ \equiv_{s_{1}} v_{2}, v_{2}$ $\equiv_{s_{1}} \circ<_{2} \circ \equiv_{s_{1}} u_{2}$ and $v_{2} \equiv_{s_{1}} \circ<_{2} \circ \equiv_{s_{1}} v_{2}$. Since there exists finitely many equivalence classes modulo $\equiv_{s_{1}}$ and $t_{2} \equiv_{s_{1}} \circ<_{2} \circ \equiv_{s_{1}} u_{2}$, then such a witness exists. Now, let

- $\Pi_{2, \text { witness }}^{s_{1}}\left(s_{2}\right)$ be the least subset of T_{2} containing $\Pi_{2}^{s_{1}}\left(s_{2}\right)$ and such that for all $t_{2}, u_{2} \in \Pi_{2}^{s_{1}}\left(s_{2}\right)$, if $t_{2} \equiv \circ<_{2} \circ \equiv u_{2}$ then $\Pi_{2, \text { witness }}^{s_{1}}\left(s_{2}\right)$ contains a witness of 2 -density for t_{2} and u_{2}.

Remark that the cardinality of $\Pi_{2, \text { witness }}^{s_{1}}\left(s_{2}\right)$ is bounded by $(8 \times|\varphi|+6)^{2}$. Let \cong be the binary relation on $T_{1} \times T_{2}$ defined as follows: $\left(s_{1}, s_{2}\right) \cong\left(t_{1}, t_{2}\right)$ iff $\left\{\sigma\left(s_{1}, u_{2}\right): u_{2} \in \Pi_{2}^{s_{1}}\left(s_{2}\right)\right\}=\left\{\sigma\left(t_{1}, v_{2}\right): v_{2} \in \Pi_{2}^{t_{1}}\left(t_{2}\right)\right\}$. Obviously, \cong is an equivalence relation on $T_{1} \times T_{2}$. Moreover, since Γ is finite, then there exists finitely many equivalence classes modulo \cong. We define
$-\Delta_{1}=\left\{G_{1} \psi: G_{1} \psi \in \Gamma\right.$ is such that $\sigma\left(s_{1}, s_{2}\right)(\psi)=0$ for some $\left(s_{1}, s_{2}\right) \in$ $\left.T_{1} \times T_{2}\right\}$,
$-\Lambda_{1}=\left\{H_{1} \psi: H_{1} \psi \in \Gamma\right.$ is such that $\sigma\left(s_{1}, s_{2}\right)(\psi)=0$ for some $\left(s_{1}, s_{2}\right) \in$ $\left.T_{1} \times T_{2}\right\}$.

Obviously, $\Delta_{1} \subseteq \Gamma$ and $\Lambda_{1} \subseteq \Gamma$. Therefore, by lemma 1, $\operatorname{card}\left(\Delta_{1}\right) \leq 4 \times|\varphi|+2$ and $\operatorname{card}\left(\Lambda_{1}\right) \leq 4 \times|\varphi|+2$. Let

- for all $G_{1} \psi \in \Delta_{1}, f_{1}\left(G_{1} \psi\right)=\left\{\left(s_{1}, s_{2}\right):\left(s_{1}, s_{2}\right) \in T_{1} \times T_{2}\right.$ is such that $\left.\sigma\left(s_{1}, s_{2}\right)(\psi)=0\right\}$,
- for all $H_{1} \psi \in \Lambda_{1}, g_{1}\left(H_{1} \psi\right)=\left\{\left(s_{1}, s_{2}\right):\left(s_{1}, s_{2}\right) \in T_{1} \times T_{2}\right.$ is such that $\left.\sigma\left(s_{1}, s_{2}\right)(\psi)=0\right\}$.

We shall say that
$-\left(s_{1}, s_{2}\right) \in f_{1}\left(G_{1} \psi\right)$ is maximal iff for all $\left(t_{1}, t_{2}\right) \in f_{1}\left(G_{1} \psi\right),\left(s_{1}, s_{2}\right) \cong\left(t_{1}, t_{2}\right)$, or there exists $\left(u_{1}, u_{2}\right) \in f_{1}\left(G_{1} \psi\right)$ such that $\left(t_{1}, t_{2}\right) \prec\left(u_{1}, u_{2}\right)$ and $\left(s_{1}, s_{2}\right)$ $\cong\left(u_{1}, u_{2}\right)$,
$-\left(s_{1}, s_{2}\right) \in g_{1}\left(H_{1} \psi\right)$ is minimal iff for all $\left(t_{1}, t_{2}\right) \in g_{1}\left(H_{1} \psi\right),\left(s_{1}, s_{2}\right) \cong\left(t_{1}, t_{2}\right)$, or there exists $\left(u_{1}, u_{2}\right) \in g_{1}\left(H_{1} \psi\right)$ such that $\left(u_{1}, u_{2}\right) \prec\left(t_{1}, t_{2}\right)$ and $\left(s_{1}, s_{2}\right)$ $\cong\left(u_{1}, u_{2}\right)$.

Since there exists finitely many equivalence classes modulo \cong, then for all $G_{1} \psi \in$ Δ_{1}, there exists $\left(s_{1}\left(G_{1} \psi\right), s_{2}\left(G_{1} \psi\right)\right) \in f_{1}\left(G_{1} \psi\right)$ such that $\left(s_{1}\left(G_{1} \psi\right), s_{2}\left(G_{1} \psi\right)\right)$ is maximal and for all $H_{1} \psi \in \Lambda_{1}$, there exists $\left(s_{1}\left(H_{1} \psi\right), s_{2}\left(H_{1} \psi\right)\right) \in g_{1}\left(H_{1} \psi\right)$ such that $\left(s_{1}\left(H_{1} \psi\right), s_{2}\left(H_{1} \psi\right)\right)$ is minimal. Since $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, V\right)$ is a model for φ, there exists $\left(s_{1}^{0}, s_{2}^{0}\right) \in T_{1} \times T_{2}$ such that $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, V\right),\left(s_{1}^{0}, s_{2}^{0}\right) \models \varphi$. Let
$-\Pi_{1}=\left\{\left(s_{1}^{0}, s_{2}^{0}\right)\right\} \cup\left\{\left(s_{1}\left(G_{1} \psi\right), s_{2}\left(G_{1} \psi\right)\right): G_{1} \psi \in \Delta_{1}\right\} \cup\left\{\left(s_{1}\left(H_{1} \psi\right), s_{2}\left(H_{1} \psi\right)\right):\right.$ $\left.H_{1} \psi \in \Lambda_{1}\right\}$.

Since $\operatorname{card}\left(\Delta_{1}\right) \leq 4 \times|\varphi|+2$ and $\operatorname{card}\left(\Lambda_{1}\right) \leq 4 \times|\varphi|+2$, then $\operatorname{card}\left(\Pi_{1}\right)$ $\leq 8 \times|\varphi|+5$. Let $\left(s_{1}, s_{2}\right),\left(t_{1}, t_{2}\right) \in \Pi_{1}$ be such that $\left(s_{1}, s_{2}\right) \cong \circ \prec_{1} \circ \cong$ $\left(t_{1}, t_{2}\right)$. A witness of 1-density for $\left(s_{1}, s_{2}\right)$ and $\left(t_{1}, t_{2}\right)$ is $\left(u_{1}, u_{2}\right) \in T_{1} \times T_{2}$ such that $\left(s_{1}, s_{2}\right) \cong \circ \prec_{1} \circ \cong\left(u_{1}, u_{2}\right),\left(u_{1}, u_{2}\right) \cong \circ \prec_{1} \circ \cong\left(t_{1}, t_{2}\right)$ and $\left(u_{1}, u_{2}\right)$ $\cong \circ \prec_{1} \circ \cong\left(u_{1}, u_{2}\right)$. Since there exists finitely many equivalence classes modulo \cong and $\left(s_{1}, s_{2}\right) \cong \circ \prec_{1} \circ \cong\left(t_{1}, t_{2}\right)$, then such a witness exists. Now, let

- $\Pi_{1, \text { witness }}$ be the least subset of $T_{1} \times T_{2}$ containing Π_{1} and such that for all $\left(s_{1}, s_{2}\right),\left(t_{1}, t_{2}\right) \in \Pi_{1}$, if $\left(s_{1}, s_{2}\right) \cong \circ \prec_{1} \circ \cong\left(t_{1}, t_{2}\right)$ then $\Pi_{1, \text { witness }}$ contains a witness of 1-density for $\left(s_{1}, s_{2}\right)$ and $\left(t_{1}, t_{2}\right)$.

Remark that the cardinality of $\Pi_{1, \text { witness }}$ is bounded by $(8 \times|\varphi|+6)^{2}$. Now, let $\left(\sigma_{0}, M_{1}, M_{2}\right)$ be the structure defined by

- $\sigma_{0}=\sigma\left(s_{1}^{0}, s_{2}^{0}\right)$,
- M_{1} is the set of all mosaics of the form (σ, τ) such that for some $\left(s_{1}, s_{2}\right),\left(t_{1}\right.$, $\left.t_{2}\right) \in \Pi_{1, \text { witness }}$, there exists $u_{2} \in \Pi_{2, \text { witness }}^{s_{1}}\left(s_{2}\right)$ and there exists $v_{2} \in$ $\Pi_{2, \text { witness }}^{t_{1}}\left(t_{2}\right)$ such that $\sigma=\sigma\left(s_{1}, u_{2}\right), \tau=\sigma\left(t_{1}, v_{2}\right)$ and $\left(s_{1}, s_{2}\right) \cong \circ \prec_{1} \circ \cong$ $\left(t_{1}, t_{2}\right)$,
- M_{2} is the set of all mosaics of the form (σ, τ) such that for some $\left(s_{1}, s_{2}\right) \in$ $\Pi_{1, \text { witness }}$, there exists $t_{2}, u_{2} \in \Pi_{2, \text { witness }}^{s_{1}}\left(s_{2}\right)$ such that $\sigma=\sigma\left(s_{1}, t_{2}\right), \tau=$ $\sigma\left(s_{1}, u_{2}\right)$ and $t_{2} \equiv_{s_{1}} \circ<_{2} \circ \equiv_{s_{1}} u_{2}$.

Remark that the cardinality of (σ_{0}, M_{1}, M_{2}) is bounded by $2 \times(8 \times|\varphi|+6)^{8}$. Moreover, $\sigma_{0}(\varphi)=1$. Hence, it suffices to prove the following properties:

- $\left(\sigma_{0}, M_{1}, M_{2}\right)$ is a premodel,
- $\left(\sigma_{0}, M_{1}, M_{2}\right)$ is saturated,
- $\left(\sigma_{0}, M_{1}, M_{2}\right)$ is dense.

The proofs of these properties are left to the reader.

$7 \quad$ Decidability and complexity

Now, we are ready to provide a complete decision procedure in nondeterministic polynomial time for the satisfiability problem the temporal logic of the lexicographic products of unbounded dense linear orders gives rise to.

Theorem 1. The satisfiability problem with respect to $\left(\mathcal{C}_{u d}, \mathcal{C}_{u d}\right)$ is in NP.
Proof. Given a formula φ, let us proceed as follows:

1. compute the least subformula closed full set Γ of formulas containing φ,
2. nondeterministically choose a premodel $\left(\sigma_{0}, M_{1}, M_{2}\right)$ for φ of cardinality bounded by $2 \times(8 \times|\varphi|+6)^{8}$,
3 . check whether $\left(\sigma_{0}, M_{1}, M_{2}\right)$ is saturated and dense.
By lemma 1, $\operatorname{card}(\Gamma) \leq 4 \times|\varphi|+2$. Hence, $\left(\sigma_{0}, M_{1}, M_{2}\right)$ is polysize in $|\varphi|$. Thus, we can execute steps (i), (ii) and (iii) in time polynomial in $|\varphi|$. Obviously, the execution of steps (i), (ii) and (iii) leads to an "accept" iff there exists a saturated dense premodel for φ of cardinality bounded by $2 \times(8 \times|\varphi|+6)^{8}$. Therefore, by propositions 3 and 4 , the execution of steps (i), (ii) and (iii) leads to an "accept" iff φ is satisfiable with respect to ($\left.\mathcal{C}_{u d}, \mathcal{C}_{u d}\right)$. Consequently, the satisfiability problem with respect to $\left(\mathcal{C}_{u d}, \mathcal{C}_{u d}\right)$ is in $N P$.

8 Conclusion

Temporal logics in which one can assign a proper meaning to the association of statements about different grained temporal domains have been considered. See $[10,15,21]$ for details. Nevertheless, it seems that the results concerning the issues of axiomatization/completeness and decidability/complexity presented in $[3,4]$ and in this paper constitute the first steps towards a temporal logic based on different levels of abstraction. Much remains to be done.

Let us, for instance, consider the lexicographic products of special linear flows of time like \mathbb{Z}, \mathbb{Q} and \mathbb{R}. For each of these products, what is the corresponding first-order theory in terms of the binary predicates $<_{1}$ and $<_{2}$? Is this first-order theory decidable? What is the corresponding modal logic in terms of the temporal connectives G_{1}, G_{2}, H_{1} and H_{2} ? Is this modal logic decidable?

Concerning the problems of decidability and complexity, all normal extensions of $S 4.3$, as proved in $[8,11]$, possess the finite model property and all finitely axiomatizable normal extensions of $K 4.3$, as proved in [25], are decidable. Is it possible to demonstrate similar results in our lexicographic setting? Or could undecidability results similar to the ones obtained by Reynolds and Zakharyaschev [23] within the context of the products of the modal logics determined by arbitrarily long linear orders be demonstrated in our lexicographic setting?

In other respect, we can associate with $<_{1}$ and $<_{2}$ the until-like connectives U_{1} and U_{2} and the since-like connectives S_{1} and S_{2}, the formulas $\varphi U_{1} \psi, \varphi U_{2} \psi$, $\varphi S_{1} \psi$ and $\varphi S_{2} \psi$ being read as one reads the formulas $\varphi U \psi$ and $\varphi S \psi$ in classical temporal logic, this time with $<_{1}$ and $<_{2}$. What can be done concerning the problems of axiomatization/completeness and decidability/complexity these new temporal connectives give rise to?

An important result in temporal logic is Kamp's Theorem. It concerns the functional completeness of the until operator [13]. Kamp's Theorem says that for all monadic formulas of the first-order theory of linear orders, there exists a temporal formula using only the until and since temporal operators such that both formulas - the monadic one and the temporal one - are equally interpreted in any temporal model. What can be done about Kamp's Theorem in terms of the binary predicates $<_{1}$ and $<_{2}$ and the temporal connectives U_{1}, U_{2}, S_{1} and S_{2} ?

Acknowledgement

The author makes a point of thanking his colleagues of the Institut de recherche en informatique de Toulouse as well as the participants of the 8th International Workshop on Logic and Cognition who, by their comments and their suggestions, contributed to the development of the present paper. We also make a point of thanking the referees for their feedback.

References

1. Balbiani, P. Time representation and temporal reasoning from the perspective of non-standard analysis. In Brewka, G., Lang, J. (editors): Eleventh International Conference on Principles of Knowledge Representation and Reasoning. AAAI (2008) 695-704.
2. Balbiani, P. Axiomatization and completeness of lexicographic products of modal logics. In Ghilardi, S., Sebastiani, R. (editors): Frontiers of Combining Systems. Springer (2009) 165-180.
3. Balbiani, P. Axiomatizing the temporal logic defined over the class of all lexicographic products of dense linear orders without endpoints In Markey, N., Wijsen, J. (editors): Temporal Representation and Reasoning. IEEE (2010) 19-26.
4. Balbiani, P., Mikulás, S. Decidability and complexity via mosaics of the temporal logic of the lexicographic products of unbounded dense linear orders. In Fontaine, P., Ringeissen, C., Schmidt, R. (editors): Frontiers of Combining Systems. Springer (2013) 151-164.
5. Balbiani, P., Shapirovsky, I. Complete axiomatizations of lexicographic sums and products of modal logics. In preparation.
6. Van Benthem, J. The Logic of Time. Kluwer (1991).
7. Blackburn, P., de Rijke, M., Venema, Y. Modal Logic. Cambridge University Press (2001).
8. Bull, R. That all normal extensions of $S 4.3$ have the finite model property. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 12 (1966) 314-344.
9. Caleiro, C., Viganò, L., Volpe, M. On the mosaic method for many-dimensional modal logics: a case study combining tense and modal operators. Logica Universalis 7 (2013) 33-69.
10. Euzenat, J., Montanari, A. Time granularity. In Fisher, M., Gabbay, D., Vila, L. (editors): Handbook of Temporal Reasoning in Artificial Intelligence. Elsevier (2005) 59-118.
11. Fine, K. The logics containing S4.3. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 17 (1971) 371-376.
12. Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M. Many-Dimensional Modal Logics: Theory and Applications. Elsevier (2003).
13. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J. On the temporal analysis of fairness. In: Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages . ACM (1980) 163-173.
14. Gabbay, D., Shehtman, V. Products of modal logics, part 1. Logic Journal of the IGPL 6 (1998) 73-146.
15. Gagné, J.-R., Plaice, J. A nonstandard temporal deductive database system. Journal of Symbolic Computation 22 (1996) 649-664.
16. Kracht, M., Wolter, F. Properties of independently axiomatizable bimodal logics. Journal of Symbolic Logic 56 (1991) 1469-1485.
17. Kurucz, A. Combining modal logics. In Blackburn, P., van Benthem, J., Wolter, F. (editors): Handbook of Modal Logic. Elsevier (2007) 869-924.
18. Litak, T., Wolter, F. All finitely axiomatizable tense logics of linear time flows are CoNP-complete. Studia Logica 81 (2005) 153-165.
19. Marx, M., Mikulás, S., Reynolds, M. The mosaic method for temporal logics. In Dyckhoff, R. (editor): Automated Reasoning with AnalyticTableaux and Related Methods. Springer (2000) 324-340.
20. Marx, M., Venema, Y. Local variations on a loose theme: modal logic and decidability. In Grädel, E., Kolaitis, P., Libkin, L., Marx, M., Spencer, J., Vardi, M., Venema, Y., Weinstein, S. (editors): Finite Model Theory and its Applications. Springer (2007) 371-429.
21. Nakamura, K., Fusaoka, A. Reasoning about hybrid systems based on a nonstandard model. In Orgun, M., Thornton, J. (editors): AI 2007: Advances in Artificial Intelligence. Springer (2007) 749-754.
22. Reynolds, M. A decidable temporal logic of parallelism. Notre Dame Journal of Formal Logic 38 (1997) 419-436.
23. Reynolds, M., Zakharyaschev, M. On the products of linear modal logics. Journal of Logic and Compution 11 (2001) 909-931.
24. Wolter, F. Fusions of modal logics revisited. In Kracht, M., de Rijke, M., Wansing, H., Zakharyaschev, M. (editors): Advances in Modal Logic. CSLI Publications (1998) 361-379.
25. Zakharyaschev, M., Alekseev, A. All finitely axiomatizable normal extensions of K4.3 are decidable. Mathematical Logic Quarterly 41 (1995) 15-23.
