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Introduction

The mosaic method has been applied for proving completeness and decidability of temporal logics over multifarious linear flows of time [START_REF] Caleiro | On the mosaic method for many-dimensional modal logics: a case study combining tense and modal operators[END_REF][START_REF] Marx | The mosaic method for temporal logics[END_REF][START_REF] Marx | Local variations on a loose theme: modal logic and decidability[END_REF][START_REF] Reynolds | A decidable temporal logic of parallelism[END_REF]. The operation of lexicographic product of Kripke frames has been introduced as a variant of the more classical operation of Cartesian product [START_REF] Gabbay | Many-Dimensional Modal Logics: Theory and Applications[END_REF][START_REF] Gabbay | Products of modal logics, part 1[END_REF][START_REF] Kurucz | Combining modal logics[END_REF][START_REF] Reynolds | On the products of linear modal logics[END_REF]. See [START_REF] Balbiani | Complete axiomatizations of lexicographic sums and products of modal logics[END_REF] for details. It has been used for defining the semantical basis of different languages designed for time representation and temporal reasoning from the perspective of non-standard analysis [START_REF] Balbiani | Time representation and temporal reasoning from the perspective of non-standard analysis[END_REF][START_REF] Balbiani | Axiomatization and completeness of lexicographic products of modal logics[END_REF]. In [START_REF] Balbiani | Axiomatizing the temporal logic defined over the class of all lexicographic products of dense linear orders without endpoints[END_REF][START_REF] Balbiani | Decidability and complexity via mosaics of the temporal logic of the lexicographic products of unbounded dense linear orders[END_REF], the temporal logic of the lexicographic products of unbounded dense linear orders has been considered, its complete axiomatization has been given and its computability has been studied. The purpose of this paper is give a new proof of the membership in N P of the satisfiability problem of the lexicographic products of linear temporal logics. Its section-by-section breakdown is as follows. Section 2 studies the elementary properties of the lexicographic products of unbounded dense linear orders. In section 3, we present the syntax and the semantics of the temporal logic we will be working with. Sections 4 and 5 define mosaics and maps. In sections 6 and 7, we prove that the satisfiability problem in our temporal logic is in N P .

Products of unbounded dense linear orders

Let F 1 = (T 1 , < 1 ) and F 2 = (T 2 , < 2 ) be linear orders. Their lexicographic product is the structure F = (T, ≺ 1 , ≺ 2 ) where -T = T 1 × T 2 , -≺ 1 and ≺ 2 are the binary relations on T defined by putting (s 1 , s 2 ) ≺ 1 (t 1 , t 2 ) iff s 1 < 1 t 1 and (s 1 , s 2 ) ≺ 2 (t 1 , t 2 ) iff s 1 = t 1 and s 2 < 2 t 2 .

We define the binary relation ≺ on T by putting (s 1 , s 2 ) ≺ (t 1 , t 2 ) iff s 1 < 1 t 1 , or s 1 = t 1 and s 2 < 2 t 2 . For all (s 1 , s 2 ), (t 1 , t 2 ) ∈ T , if (s 1 , s 2 ) ≺ (t 1 , t 2 ) then let -](s 1 , s 2 ), (t 1 , t 2 )[ be the set of all (u 1 , u 2 ) ∈ T such that (s 1 , s 2 ) ≺ (u 1 , u 2 ) and (u 1 , u 2 ) ≺ (t 1 , t 2 ), -](s 1 , s 2 ), +∞[ be the set of all (u 1 , u 2 ) ∈ T such that (s 1 , s 2 ) ≺ (u 1 , u 2 ), -] -∞, (t 1 , t 2 )[ be the set of all (u 1 , u 2 ) ∈ T such that (u 1 , u 2 ) ≺ (t 1 , t 2 ).

The effect of the operation of lexicographic product may be described informally as follows: given 2 linear orders, their lexicographic product is the structure obtained by replacing each point of the first one by a copy of the second one. The global intuitions underlying such an operation is based upon the fact that, depending on the accuracy required or the available knowledge, one can describe a temporal situation at different levels of abstraction. See [6, section I.2.2], or [START_REF] Euzenat | Time granularity[END_REF] for details. In Fig. 1 below, we have s 1 < 1 t 1 and s 2 < 2 t 2 . As a result, we have

(s 1 , s 2 ) ≺ 2 (s 1 , t 2 ), (s 1 , s 2 ) ≺ 1 (t 1 , s 2 ), (s 1 , s 2 ) ≺ 1 (t 1 , t 2 ), (s 1 , t 2 ) ≺ 1 (t 1 , s 2 ), (s 1 , t 2 ) ≺ 1 (t 1 , t 2 ) and (t 1 , s 2 ) ≺ 2 (t 1 , t 2 ). - F 1 6 F 2 p s 1 p t 1 p s 2 p t 2 p (s 1 , s 2 ) p (t 1 , s 2 ) p (s 1 , t 2 ) p (t 1 , t 2 )
Fig. 1.

In order to characterize the elementary properties of the operation of lexicographic product, we introduce a first-order language. Let V ar denote a countable set of individual variables (with typical members denoted x, y, etc). The set L f o of all formulas (with typical members denoted ϕ, ψ, etc) of the first-order language is given by the rule

-ϕ ::= x < 1 y | x < 2 y | ⊥ | ¬ϕ | (ϕ ∨ ψ) | ∀x ϕ | x = y,
the formulas x < 1 y and x < 2 y being read "x precedes but is not infinitely close to y" and "x precedes and is infinitely close to y". We adopt the standard definitions for the remaining Boolean connectives. As usual, we define for all individual variables x, -∃x ϕ ::= ¬∀x ¬ϕ.

The notion of a subformula is standard. We adopt the standard rules for omission of the parentheses. The size of a formula ϕ, in symbols | ϕ |, is its length over the alphabet of L f o . Formulas in which every individual variable in an atomic subformula is in the scope of a corresponding quantifier are called sentences. Models for the first-order language are flows F = (T, ≺ 1 , ≺ 2 ) where T is a nonempty set and ≺ 1 and ≺ 2 are binary relations on T . An assignment on F is a function f : V ar -→ T . Satisfaction is a 3-place relation |= between a flow F = (T, ≺ 1 , ≺ 2 ), an assignment f on F and a formula ϕ. It is inductively defined as usual. In particular,

-F |= f x < 1 y iff f (x) ≺ 1 f (y), -F |= f x < 2 y iff f (x) ≺ 2 f (y).
Obviously, if 2 linear orders are unbounded and dense then their lexicographic product satisfies the following sentences:

IRRE -∀x x < 1 x, -∀x x < 2 x, DISJ -∀x ∀y (x < 1 y ∨ x < 2 y), T RAN -∀x ∀y (∃z (x < 1 z ∧ z < 1 y) → x < 1 y), -∀x ∀y (∃z (x < 1 z ∧ z < 2 y) → x < 1 y), -∀x ∀y (∃z (x < 2 z ∧ z < 1 y) → x < 1 y), -∀x ∀y (∃z (x < 2 z ∧ z < 2 y) → x < 2 y), DEN S -∀x ∀y (x < 1 y → ∃z (x < 1 z ∧ z < 1 y)), -∀x ∀y (x < 1 y → ∃z (x < 1 z ∧ z < 2 y)), -∀x ∀y (x < 1 y → ∃z (x < 2 z ∧ z < 1 y)), -∀x ∀y (x < 2 y → ∃z (x < 2 z ∧ z < 2 y)), SERI -∀x ∃y x < 1 y,
-∀x ∃y x < 2 y, -∀x ∃y y < 1 x, -∀x ∃y y < 2 x, U N IV -∀x ∀y (x = y ∨ x < 1 y ∨ x < 2 y ∨ y < 1 x ∨ y < 2 x), IRRE, DISJ, T RAN , DEN S, SERI and U N IV standing for "irreflexive", "disjoint", "transitive", "dense", "serial" and "universal". Obviously, the sentences as above have not the finite model property. By Löwenheim-Skolem theorem, they have models in each infinite power. A flow F = (T, ≺ 1 , ≺ 2 ) is said to be standard iff it satisfies the sentences as above. The first-order theory SF of standard flows has the following list of proper axioms: IRRE, DISJ, T RAN , DEN S, SERI and U N IV . The membership problem in the first-order theory SF is this:

determine whether a given sentence is in the first-order theory SF .

There are several results about the first-order theory SF : Proposition 1 ( [START_REF] Balbiani | Time representation and temporal reasoning from the perspective of non-standard analysis[END_REF]). (i) SF is countably categorical; (ii) SF is not categorical in any uncountable power; (iii) SF is maximal consistent; (iv) SF is complete with respect to the lexicographic product of any unbounded dense linear orders.

The results about the membership problem in the first-order theory SF are summarized in the following proposition:

Proposition 2. (i) SF is decidable; (ii) SF is P SP ACE-complete.
See [START_REF] Balbiani | Time representation and temporal reasoning from the perspective of non-standard analysis[END_REF] for the proof of propositions 1 and 2.

Syntax and semantics

It is now time to meet the temporal language we will be working with. Let At be a countable set of atomic formulas (with typical members denoted p, q, etc). We define the set L t of formulas of our temporal language (with typical members denoted ϕ, ψ, etc) as follows:

-ϕ ::= p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | G 1 ϕ | G 2 ϕ | H 1 ϕ | H 2 ϕ,
the formulas G 1 ϕ, G 2 ϕ, H 1 ϕ and H 2 ϕ being read "ϕ will be true at each point within the future of but not infinitely close to the present point", "ϕ will be true at each instant within the future of and infinitely close to the present instant", "ϕ has been true at each point within the past of but not infinitely close to the present point" and "ϕ has been true at each point within the past of and infinitely close to the present point". We adopt the standard definitions for the remaining Boolean connectives. As usual, we define for all i ∈ {1, 2},

-F i ϕ ::= ¬G i ¬ϕ and -P i ϕ ::= ¬H i ¬ϕ.
The notion of a subformula is standard. It is usual to omit parentheses if this does not lead to any ambiguity. The size of a formula ϕ, in symbols | ϕ |, is the number of symbols of ϕ. A set Γ of formulas is said to be full iff there exists i ∈ {1, 2} such that G i ⊥ ∈ Γ , or H i ⊥ ∈ Γ and the following unique condition is satisfied:

-if there exists i ∈ {1, 2} such that G i ϕ ∈ Γ , or H i ϕ ∈ Γ then for all i ∈ {1, 2}, G i ϕ ∈ Γ and H i ϕ ∈ Γ .
Remark that if Γ is a subformula closed full set of formulas then ⊥ ∈ Γ . Moreover, for all i ∈ {1, 2}, G i ⊥ ∈ Γ and H i ⊥ ∈ Γ . In other respect, Lemma 1. Let ϕ be a formula. Let Γ be the least subformula closed full set of formulas containing ϕ.

Then card(Γ ) ≤ 4× | ϕ | +2.
Proof. By induction on ϕ.

A model is a structure M = (F 1 , F 2 , V ) where F 1 = (T 1 , < 1 ) and F 2 = (T 2 , < 2 ) are linear orders and V : At -→ 2 T1×T2 is a function. Satisfaction is a 3-place relation |= between a model M = (F 1 , F 2 , V ), a pair (s 1 , s 2 ) ∈ T 1 × T 2 and a formula ϕ.
It is defined by induction on ϕ as usual. In particular, for all i ∈ {1, 2},

-M, (s 1 , s 2 ) |= G i ϕ iff M, (t 1 , t 2 ) |= ϕ for each pair (t 1 , t 2 ) ∈ T × T 2 such that (s 1 , s 2 ) ≺ i (t 1 , t 2 ), -M, (s 1 , s 2 ) |= H i ϕ iff M, (t 1 , t 2 ) |= ϕ for each pair (t 1 , t 2 ) ∈ T × T 2 such that (t 1 , t 2 ) ≺ i (s 1 , s 2 ).
As a result, for all i ∈ {1, 2},

-M, (s 1 , s 2 ) |= F i ϕ iff M, (t 1 , t 2 ) |= ϕ for some pair (t 1 , t 2 ) ∈ T × T 2 such that (s 1 , s 2 ) ≺ i (t 1 , t 2 ), -M, (s 1 , s 2 ) |= P i ϕ iff M, (t 1 , t 2 ) |= ϕ for some pair (t 1 , t 2 ) ∈ T × T 2 such that (t 1 , t 2 ) ≺ i (s 1 , s 2 ).
M is said to be a model for ϕ iff there exists (s

1 , s 2 ) ∈ T 1 ×T 2 such that M, (s 1 , s 2 ) |= ϕ.
Let C 1 and C 2 be classes of linear orders. We shall say that a formula ϕ is satisfiable with respect to (C 1 , C 2 ) iff there exists a linear order

F 1 = (T 1 , < 1 )
in C 1 , there exists a linear order F 2 = (T 2 , < 2 ) in C 2 and there exists a function

V : At -→ 2 T1×T2 such that (F 1 , F 2 , V ) is a model for ϕ. The temporal logic of (C 1 , C 2 )
is the set of all formulas ϕ such that ¬ϕ is not satisfiable with respect to (C 1 , C 2 ). The class of all unbounded dense linear orders will be denoted C ud . [START_REF] Balbiani | Axiomatizing the temporal logic defined over the class of all lexicographic products of dense linear orders without endpoints[END_REF] considers the temporal logic of (C ud , C ud ) and gives its complete axiomatization based on the following 32 axioms:

-φ → G 1 P 1 φ, -φ → H 1 F 1 φ, -φ → G 2 P 2 φ, -φ → H 2 F 2 φ, 2. if G 2 ψ ∈ Γ then σ 0 (G 2 ψ) = 1
, or there exists an adequate function τ : Γ -→ {0, 1} such that (σ 0 , τ ) ∈ M 2 and τ (ψ) = 0, 3. if H 1 ψ ∈ Γ then σ 0 (H 1 ψ) = 1, or there exists an adequate function τ :

Γ -→ {0, 1} such that (τ, σ 0 ) ∈ M 1 and τ (ψ) = 0, 4. if H 2 ψ ∈ Γ then σ 0 (H 2 ψ) = 1, or there exists an adequate function τ :

Γ -→ {0, 1} such that (τ, σ 0 ) ∈ M 2 and τ (ψ) = 0.

A premodel (σ 0 , M 1 , M 2 ) is said to be 1-saturated iff for all mosaics (σ, τ ) ∈ M 1 , the 8 following conditions are satisfied: We shall say that a premodel (σ 0 , M 1 , M 2 ) is 2-saturated iff for all mosaics (σ, τ ) ∈ M 2 , the 8 following conditions are satisfied:

1. if G 1 ψ ∈ Γ then σ(G 1 ψ) = 1, or there exists an adequate function µ: Γ -→ {0, 1} such that (σ, µ) ∈ M 1 , (µ, τ ) ∈ M 1 ∪ M 2 and µ(ψ) = 0, or τ (ψ) = 0, or τ (G 1 ψ) = 0, or τ (G 2 ψ) = 0, 2. if G 2 ψ ∈ Γ then σ(G 2 ψ) = 1, or there exists an adequate function µ: Γ -→ {0, 1} such that (σ, µ) ∈ M 2 , (µ, τ ) ∈ M 1 and µ(ψ) = 0, 3. if H 1 ψ ∈ Γ then σ(H 1 ψ) = 1, or there exists an adequate function µ: Γ -→ {0, 1} such that (µ, σ) ∈ M 1 and µ(ψ) = 0, 4. if H 2 ψ ∈ Γ then σ(H 2 ψ) = 1, or there exists an adequate function µ: Γ -→ {0, 1} such that (µ, σ) ∈ M 2 and µ(ψ) = 0, 5. if G 1 ψ ∈ Γ then τ (G 1 ψ) = 1, or there exists an adequate function µ: Γ -→ {0, 1} such that (τ, µ) ∈ M 1 and µ(ψ) = 0, 6. if G 2 ψ ∈ Γ then τ (G 2 ψ) = 1, or there exists an adequate function µ: Γ -→ {0, 1} such that (τ, µ) ∈ M 2 and µ(ψ) = 0, 7. if H 1 ψ ∈ Γ then τ (H 1 ψ) = 1, or σ(H 1 ψ) = 0, or σ(H 2 ψ) = 0, or σ(ψ) = 0, or there exists an adequate function µ: Γ -→ {0, 1} such that (σ, µ) ∈ M 1 ∪ M 2 , (µ, τ ) ∈ M 1 and µ(ψ) = 0, 8. if H 2 ψ ∈ Γ then τ (H 2 ψ) = 1,
1. if G 1 ψ ∈ Γ then σ(G 1 ψ) = 1
, or there exists an adequate function µ: Γ -→ {0, 1} such that (τ, µ) ∈ M 1 and µ(ψ A premodel is said to be saturated iff it is 0-, 1-and 2-saturated. We shall say that a premodel (σ 0 , M 1 , M 2 ) is 1-dense iff for all mosaics (σ, τ ) ∈ M 1 , the following unique condition is satisfied:

) = 0, 2. if G 2 ψ ∈ Γ then σ(G 2 ψ) = 1, or there exists an adequate function µ: Γ -→ {0, 1} such that (σ, µ) ∈ M 2 , (µ, τ ) ∈ M 2 and µ(ψ) = 0, or τ (ψ) = 0, or τ (G 2 ψ) = 0, 3. if H 1 ψ ∈ Γ then σ(H 1 ψ) = 1, or there exists an adequate function µ: Γ -→ {0, 1} such that (µ, σ) ∈ M 1 and µ(ψ) = 0, 4. if H 2 ψ ∈ Γ then σ(H 2 ψ) = 1, or there exists an adequate function µ: Γ -→ {0, 1} such that (µ, σ) ∈ M 2 and µ(ψ) = 0, 5. if G 1 ψ ∈ Γ then τ (G 1 ψ) = 1, or there exists an adequate function µ: Γ -→ {0, 1} such that (τ, µ) ∈ M 1 and µ(ψ) = 0, 6. if G 2 ψ ∈ Γ then τ (G 2 ψ) = 1,
there exists an adequate function µ: Γ -→ {0, 1} such that (σ, µ) ∈ M 1 and (µ, τ ) ∈ M 1 .

A premodel (σ 0 , M 1 , M 2 ) is said to be 2-dense iff for all mosaics (σ, τ ) ∈ M 2 , the following unique condition is satisfied:

there exists an adequate function µ: Γ -→ {0, 1} such that (σ, µ) ∈ M 2 and (µ, τ ) ∈ M 2 .

We shall say that a premodel is dense iff it is 1-and 2-dense. A premodel (σ 0 , M 1 , M 2 ) is said to be for ϕ iff σ 0 (ϕ) = 1.

Maps

Until the end of this section, (σ 0 , M 1 , M 2 ) will denote a saturated dense premodel. A map is a partial function l:

Q × Q -→ (Γ -→ {0, 1}
) with finite domain and such that for all pairs (s 1 , s 2 ) ∈ dom(l), l(s 1 , s 2 ) is an adequate function. A map l is said to be respectful iff (0, 0) ∈ dom(l), l(0, 0) = σ 0 and for all pairs (s 1 , s 2 ), (t 1 , t 2 ) ∈ dom(l), the 2 following conditions are satisfied:

1. if (s 1 , s 2 ) ≺ 1 (t 1 , t 2 ) and ](s 1 , s 2 ), (t 1 , t 2 )[∩dom(l) = ∅ then (l(s 1 , s 2 ), l(t 1 , t 2 )) ∈ M 1 , 2. if (s 1 , s 2 ) ≺ 2 (t 1 , t 2 ) and ](s 1 , s 2 ), (t 1 , t 2 )[∩dom(l) = ∅ then (l(s 1 , s 2 ), l(t 1 , t 2 )) ∈ M 2 .
We first prove a simple lemma.

Lemma 2. Let l 0 be the map defined by dom(l 0 ) = {(0, 0)} and l 0 (0, 0) = σ 0 . Then l 0 is respectful.

Proof. By definition of l 0 .

The map l 0 defined by lemma 2 is called init map with respect to (σ 0 , M 1 , M 2 ). We shall say that a map l extends a map l iff dom(l ) ⊇ dom(l) and l |dom(l) = l. Much more difficult than lemma 2 are the following lemmas.

Lemma 3. Let i ∈ {1, 2} and ψ be a formula such that G i ψ ∈ Γ . Let l be a respectful map and (s 1 , s 2 ) ∈ dom(l) such that l(s 1 , s 2 )(G i ψ) = 0. There exists a respectful map l and there exists (t

1 , t 2 ) ∈ Q × Q such that l extends l, (t 1 , t 2 ) ∈ dom(l ), (s 1 , s 2 ) ≺ i (t 1 , t 2 ) and l (t 1 , t 2 )(ψ) = 0.
Proof. Since dom(l) is finite, then there exists a nonnegative integer k and there exists (u

1 1 , u 1 2 ), . . . , (u k 1 , u k 2 ) ∈ Q × Q such that ](s 1 , s 2 ), +∞[∩dom(l) = {(u 1 1 , u 1 
2 ), . . . , (u k 1 , u k 2 )}. Without loss of generality, we may assume that (s 1 , s 2 )

≺ (u 1 1 , u 1 2 ) . . . ≺ (u k 1 , u k 2 ). Moreover, (s 1 , s 2 ) ≺ j1 (u 1 1 , u 1 2 ) . . . ≺ j k (u k 1 , u k 2 )
for exactly one k-tuple (j 1 , . . . , j k ) ∈ {1, 2} k . Now, we proceed by induction on k. Basis. Suppose k = 0. Now, consider the 2 following cases.

1. Suppose ]-∞, (s 1 , s 2 )[∩dom(l) = ∅. Since l is respectful and l(s 1 , s 2 )(G i ψ) = 0, then (s 1 , s 2 ) = (0, 0) and there exists an adequate function µ: Γ -→ {0, 1} such that (σ 0 , µ) ∈ M i and µ(ψ) = 0. Let (t 1 , t 2 ) ∈ Q × Q be such that (0, 0) ≺ i (t 1 , t 2 ) and l be the least extension of l such that (t 1 , t 2 ) ∈ dom(l ) and

l (t 1 , t 2 ) = µ. Obviously, l is respectful. 2. Suppose ] -∞, (s 1 , s 2 )[∩dom(l) = ∅. Since dom(l) is finite, then there exists (v 1 , v 2 ) ∈ dom(l) such that (v 1 , v 2 ) ≺ (s 1 , s 2 ) and ](v 1 , v 2 ), (s 1 , s 2 )[∩dom(l) = ∅. Moreover, (v 1 , v 2 ) ≺ j (s 1 , s 2 )
for exactly one j ∈ {1, 2}. Since l is respectful and l(s 1 , s 2 )(G i ψ) = 0, then (l(v 1 , v 2 ), l(s 1 , s 2 )) ∈ M j and there exists an adequate function µ: Γ -→ {0, 1} such that (l(s 1 , s 2 ), µ) ∈ M i and µ(ψ

) = 0. Let (t 1 , t 2 ) ∈ Q × Q be such that (s 1 , s 2 ) ≺ i (t 1 , t 2 )
and l be the least extension of l such that (t 1 , t 2 ) ∈ dom(l ) and l (t 1 , t 2 ) = µ. Obviously, l is respectful.

Step. Suppose k ≥ 1. Now, consider the 4 following cases.

1. Suppose i = 1 and j 1 = 1. Since l is respectful and l(s

1 , s 2 )(G 1 ψ) = 0, then (l(s 1 , s 2 ), l(u 1 1 , u 1 
2 )) ∈ M 1 and (i) there exists an adequate function µ:

Γ -→ {0, 1} such that (l(s 1 , s 2 ), µ) ∈ M 1 , (µ, l(u 1 1 , u 1 2 )) ∈ M 1 and µ(ψ) = 0, or (ii) there exists an adequate function µ: Γ -→ {0, 1} such that (l(s 1 , s 2 ), µ) ∈ M 1 , (µ, l(u 1 1 , u 1 2 )) ∈ M 2 and µ(ψ) = 0, or (iii) l(u 1 1 , u 1 2 )(ψ) = 0, or (iv) l(u 1 1 , u 1 2 )(G 1 ψ) = 0, or (v) l(u 1 1 , u 1 2 )(G 2 ψ) = 0. In case (i), let (t 1 , t 2 ) ∈ Q × Q be such that (s 1 , s 2 ) ≺ 1 (t 1 , t 2 ) and (t 1 , t 2 ) ≺ 1 (u 1 1 , u 1 
2 ) and l be the least extension of l such that (t 1 , t 2 ) ∈ dom(l ) and l (t 1 , t 2 ) = µ.

In case (ii), let (t 1 , t 2 ) ∈ Q × Q be such that (s 1 , s 2 ) ≺ 1 (t 1 , t 2 ) and (t 1 , t 2 ) ≺ 2 (u 1 1 , u 1 
2 ) and l be the least extension of l such that (t 1 , t 2 ) ∈ dom(l ) and

l (t 1 , t 2 ) = µ. In case (iii), let (t 1 , t 2 ) ∈ Q × Q be (u 1 1 , u 1 
2 ) and l be l. In case (iv), by induction hypothesis, there exists a respectful map l and there exists (t

1 , t 2 ) ∈ Q × Q such that l extends l, (t 1 , t 2 ) ∈ dom(l ), (u 1 1 , u 1 
2 ) ≺ 1 (t 1 , t 2 ) and l (t 1 , t 2 )(ψ) = 0. In case (v), by induction hypothesis, there exists a respectful map l and there exists (t

1 , t 2 ) ∈ Q × Q such that l extends l, (t 1 , t 2 ) ∈ dom(l ), (u 1 1 , u 1 2 ) ≺ 2 (t 1 , t 2 ) and l (t 1 , t 2 )(ψ) = 0.
Obviously, in all cases, l is respectful. 2. Suppose i = 1 and j 1 = 2. Since l is respectful and l(s

1 , s 2 )(G 1 ψ) = 0, then (l(s 1 , s 2 ), l(u 1 1 , u 1 2 )) ∈ M 2 and l(u 1 1 , u 1 
2 )(G 1 ψ) = 0. By induction hypothesis, there exists a respectful map l and there exists (t

1 , t 2 ) ∈ Q × Q such that l extends l, (t 1 , t 2 ) ∈ dom(l ), (u 1 1 , u 1 2 ) ≺ 1 (t 1 , t 2 ) and l (t 1 , t 2 )(ψ) = 0. Obviously, l is respectful. 3. Suppose i = 2 and j 1 = 1. Since l is respectful and l(s 1 , s 2 )(G 2 ψ) = 0, then (l(s 1 , s 2 ), l(u 1 1 , u 1 
2 )) ∈ M 1 and there exists an adequate function µ:

Γ -→ {0, 1} such that (l(s 1 , s 2 ), µ) ∈ M 2 , (µ, l(u 1 1 , u 1 2 )) ∈ M 1 and µ(ψ) = 0. Let (t 1 , t 2 ) ∈ Q × Q be such that (s 1 , s 2 ) ≺ 2 (t 1 , t 2 ) and (t 1 , t 2 ) ≺ 1 (u 1 1 , u 1 
2 ) and l be the least extension of l such that (t 1 , t 2 ) ∈ dom(l ) and l (t 1 , t 2 ) = µ. Obviously, l is respectful. 4. Suppose i = 2 and j 1 = 2. Since l is respectful and l(s 1 , s 2 )(G 2 ψ) = 0, then (l(s 1 , s 2 ), l(u 1 1 , u 1 2 )) ∈ M 2 and (i) there exists an adequate function µ:

Γ -→ {0, 1} such that (l(s 1 , s 2 ), µ) ∈ M 2 , (µ, l(u 1 1 , u 1 2 )) ∈ M 2 and µ(ψ) = 0, or (ii) l(u 1 1 , u 1 2 )(ψ) = 0, or (iii) l(u 1 1 , u 1 2 )(G 2 ψ) = 0. In case (i), let (t 1 , t 2 ) ∈ Q × Q be such that (s 1 , s 2 ) ≺ 2 (t 1 , t 2 ) and (t 1 , t 2 ) ≺ 2 (u 1 1 , u 1 
2 ) and l be the least extension of l such that (t 1 , t 2 ) ∈ dom(l ) and l (t

1 , t 2 ) = µ. In case (ii), let (t 1 , t 2 ) ∈ Q×Q be (u 1 1 , u 1 
2 ) and l be l. In case (iii), by induction hypothesis, there exists a respectful map l and there exists (t

1 , t 2 ) ∈ Q × Q such that l extends l, (t 1 , t 2 ) ∈ dom(l ), (u 1 1 , u 1 2 ) ≺ 2 (t 1 , t 2 ) and l (t 1 , t 2 )(ψ) = 0.
Obviously, in all cases, l is respectful. Lemma 4. Let i ∈ {1, 2} and ψ be a formula such that H i ψ ∈ Γ . Let l be a respectful map and (s 1 , s 2 ) ∈ dom(l) such that l(s 1 , s 2 )(H i ψ) = 0. There exists a respectful map l and there exists (t

1 , t 2 ) ∈ Q × Q such that l extends l, (t 1 , t 2 ) ∈ dom(l ), (t 1 , t 2 ) ≺ i (s 1 , s 2 ) and l (t 1 , t 2 )(ψ) = 0.
Proof. Similar to the proof of lemma 3.

Lemma 5. Let i ∈ {1, 2}. Let l be a respectful map and (s 1 , s 2 ), (t 1 , t 2 ) ∈ dom(l) such that (s 1 , s 2 ) ≺ i (t 1 , t 2 ) and ](s 1 , s 2 ), (t 1 , t 2 )[∩dom(l) = ∅.
There exists a respectful map l and there exists

(u 1 , u 2 ) ∈ Q × Q such that l extends l, (u 1 , u 2 ) ∈ dom(l ), (s 1 , s 2 ) ≺ i (u 1 , u 2 ) and (u 1 , u 2 ) ≺ i (t 1 , t 2 ).
Proof. Since l is respectful and (s 1 , s 2 ) ≺ i (t 1 , t 2 ), then (l(s 1 , s 2 ), l(t 1 , t 2 )) ∈ M i and there exists an adequate function µ: Γ -→ {0, 1} such that (l(s 1 , s 2 ), µ) ∈ M i and (µ,

l(t 1 , t 2 )) ∈ M i . Let (u 1 , u 2 ) ∈ Q × Q be such that (s 1 , s 2 ) ≺ i (u 1 , u 2 )
and (u 1 , u 2 ) ≺ i (t 1 , t 2 ) and l be the least extension of l such that (u 1 , u 2 ) ∈ dom(l ) and l (t 1 , t 2 ) = µ. Obviously, l is respectful.

The maps l defined by lemmas 3-5 are respectively called right completion of l with respect to i, ψ and (s 1 , s 2 ), left completion of l with respect to i, ψ and (s 1 , s 2 ) and dense completion of l with respect to i, (s 1 , s 2 ) and (t 1 , t 2 ).

Correctness and completeness of the mosaic method

Now, we are ready to formulate our main propositions.

Correctness

First, the correctness of the mosaic method. Proposition 3. If there exists a saturated dense premodel for ϕ then ϕ is satisfiable with respect to (C ud , C ud ).

Obviously, ∆ 1 ⊆ Γ and Λ 1 ⊆ Γ . Therefore, by lemma 1, card(∆

1 ) ≤ 4× | ϕ | +2 and card(Λ 1 ) ≤ 4× | ϕ | +2. Let -for all G 1 ψ ∈ ∆ 1 , f 1 (G 1 ψ) = {(s 1 , s 2 ): (s 1 , s 2 ) ∈ T 1 × T 2 is such that σ(s 1 , s 2 )(ψ) = 0}, -for all H 1 ψ ∈ Λ 1 , g 1 (H 1 ψ) = {(s 1 , s 2 ): (s 1 , s 2 ) ∈ T 1 × T 2 is such that σ(s 1 , s 2 )(ψ) = 0}.
We shall say that

-(s 1 , s 2 ) ∈ f 1 (G 1 ψ) is maximal iff for all (t 1 , t 2 ) ∈ f 1 (G 1 ψ), (s 1 , s 2 ) ∼ = (t 1 , t 2 ), or there exists (u 1 , u 2 ) ∈ f 1 (G 1 ψ) such that (t 1 , t 2 ) ≺ (u 1 , u 2 ) and (s 1 , s 2 ) ∼ = (u 1 , u 2 ), -(s 1 , s 2 ) ∈ g 1 (H 1 ψ) is minimal iff for all (t 1 , t 2 ) ∈ g 1 (H 1 ψ), (s 1 , s 2 ) ∼ = (t 1 , t 2 ),
or there exists (u

1 , u 2 ) ∈ g 1 (H 1 ψ) such that (u 1 , u 2 ) ≺ (t 1 , t 2 ) and (s 1 , s 2 ) ∼ = (u 1 , u 2 ).
Since there exists finitely many equivalence classes modulo ∼ =, then for all G 1 ψ ∈ ∆ 1 , there exists (s

1 (G 1 ψ), s 2 (G 1 ψ)) ∈ f 1 (G 1 ψ) such that (s 1 (G 1 ψ), s 2 (G 1 ψ)) is maximal and for all H 1 ψ ∈ Λ 1 , there exists (s 1 (H 1 ψ), s 2 (H 1 ψ)) ∈ g 1 (H 1 ψ) such that (s 1 (H 1 ψ), s 2 (H 1 ψ)) is minimal. Since (F 1 , F 2 , V ) is a model for ϕ, there exists (s 0 1 , s 0 2 ) ∈ T 1 × T 2 such that (F 1 , F 2 , V ), (s 0 1 , s 0 2 ) |= ϕ. Let -Π 1 = {(s 0 1 , s 0 2 )} ∪ {(s 1 (G 1 ψ), s 2 (G 1 ψ)): G 1 ψ ∈ ∆ 1 } ∪ {(s 1 (H 1 ψ), s 2 (H 1 ψ)): H 1 ψ ∈ Λ 1 }. Since card(∆ 1 ) ≤ 4× | ϕ | +2 and card(Λ 1 ) ≤ 4× | ϕ | +2, then card(Π 1 ) ≤ 8× | ϕ | +5. Let (s 1 , s 2 ), (t 1 , t 2 ) ∈ Π 1 be such that (s 1 , s 2 ) ∼ = • ≺ 1 • ∼ = (t 1 , t 2 ). A witness of 1-density for (s 1 , s 2 ) and (t 1 , t 2 ) is (u 1 , u 2 ) ∈ T 1 × T 2 such that (s 1 , s 2 ) ∼ = • ≺ 1 • ∼ = (u 1 , u 2 ), (u 1 , u 2 ) ∼ = • ≺ 1 • ∼ = (t 1 , t 2 ) and (u 1 , u 2 ) ∼ = • ≺ 1 • ∼ = (u 1 , u 2 )
. Since there exists finitely many equivalence classes modulo ∼ = and (s 1 , s 2 ) ∼ = • ≺ 1 • ∼ = (t 1 , t 2 ), then such a witness exists. Now, let -Π 1,witness be the least subset of T 1 × T 2 containing Π 1 and such that for all (s 1 , s 2 ), (t

1 , t 2 ) ∈ Π 1 , if (s 1 , s 2 ) ∼ = • ≺ 1 • ∼ = (t 1 , t 2 ) then Π 1,
witness contains a witness of 1-density for (s 1 , s 2 ) and (t 1 , t 2 ).

Remark that the cardinality of Π 1,witness is bounded by (8× | ϕ | +6) 2 . Now, let (σ 0 , M 1 , M 2 ) be the structure defined by

-σ 0 = σ(s 0 1 , s 0 
2 ), -M 1 is the set of all mosaics of the form (σ, τ ) such that for some (s 1 , s 2 ), (t 1 , t 2 ) ∈ Π 1,witness , there exists u 2 ∈ Π s1 2,witness (s 2 ) and there exists

v 2 ∈ Π t1 2,witness (t 2 ) such that σ = σ(s 1 , u 2 ), τ = σ(t 1 , v 2 ) and (s 1 , s 2 ) ∼ = • ≺ 1 • ∼ = (t 1 , t 2 ),
-M 2 is the set of all mosaics of the form (σ, τ ) such that for some (s 1 , s 2 ) ∈ Π 1,witness , there exists

t 2 , u 2 ∈ Π s1 2,witness (s 2 ) such that σ = σ(s 1 , t 2 ), τ = σ(s 1 , u 2 ) and t 2 ≡ s1 • < 2 • ≡ s1 u 2 .
Remark that the cardinality of (σ 0 , M 1 , M 2 ) is bounded by 2 × (8× | ϕ | +6) 8 . Moreover, σ 0 (ϕ) = 1. Hence, it suffices to prove the following properties:

-(σ 0 , M 1 , M 2 ) is a premodel, -(σ 0 , M 1 , M 2 ) is saturated, -(σ 0 , M 1 , M 2 ) is dense.
The proofs of these properties are left to the reader.

Decidability and complexity

Now, we are ready to provide a complete decision procedure in nondeterministic polynomial time for the satisfiability problem the temporal logic of the lexicographic products of unbounded dense linear orders gives rise to.

Theorem 1. The satisfiability problem with respect to (C ud , C ud ) is in N P .

Proof. Given a formula ϕ, let us proceed as follows:

1. compute the least subformula closed full set Γ of formulas containing ϕ, 2. nondeterministically choose a premodel (σ 0 , M 1 , M 2 ) for ϕ of cardinality bounded by 2

× (8× | ϕ | +6) 8 , 3. check whether (σ 0 , M 1 , M 2 ) is saturated and dense. By lemma 1, card(Γ ) ≤ 4× | ϕ | +2. Hence, (σ 0 , M 1 , M 2 ) is polysize in | ϕ |.
Thus, we can execute steps (i), (ii) and (iii) in time polynomial in | ϕ |. Obviously, the execution of steps (i), (ii) and (iii) leads to an "accept" iff there exists a saturated dense premodel for ϕ of cardinality bounded by 2 × (8× | ϕ | +6) 8 . Therefore, by propositions 3 and 4, the execution of steps (i), (ii) and (iii) leads to an "accept" iff ϕ is satisfiable with respect to (C ud , C ud ). Consequently, the satisfiability problem with respect to (C ud , C ud ) is in N P .

Conclusion

Temporal logics in which one can assign a proper meaning to the association of statements about different grained temporal domains have been considered. See [START_REF] Euzenat | Time granularity[END_REF][START_REF] Gagné | A nonstandard temporal deductive database system[END_REF][START_REF] Nakamura | Reasoning about hybrid systems based on a nonstandard model[END_REF] for details. Nevertheless, it seems that the results concerning the issues of axiomatization/completeness and decidability/complexity presented in [START_REF] Balbiani | Axiomatizing the temporal logic defined over the class of all lexicographic products of dense linear orders without endpoints[END_REF][START_REF] Balbiani | Decidability and complexity via mosaics of the temporal logic of the lexicographic products of unbounded dense linear orders[END_REF] and in this paper constitute the first steps towards a temporal logic based on different levels of abstraction. Much remains to be done.

Let us, for instance, consider the lexicographic products of special linear flows of time like Z, Q and R. For each of these products, what is the corresponding first-order theory in terms of the binary predicates < 1 and < 2 ? Is this first-order theory decidable? What is the corresponding modal logic in terms of the temporal connectives G 1 , G 2 , H 1 and H 2 ? Is this modal logic decidable?

Concerning the problems of decidability and complexity, all normal extensions of S4.3, as proved in [START_REF] Bull | That all normal extensions of S4.3 have the finite model property[END_REF][START_REF] Fine | The logics containing S4.3[END_REF], possess the finite model property and all finitely axiomatizable normal extensions of K4.3, as proved in [START_REF] Zakharyaschev | All finitely axiomatizable normal extensions of K4.3 are decidable[END_REF], are decidable. Is it possible to demonstrate similar results in our lexicographic setting? Or could undecidability results similar to the ones obtained by Reynolds and Zakharyaschev [START_REF] Reynolds | On the products of linear modal logics[END_REF] within the context of the products of the modal logics determined by arbitrarily long linear orders be demonstrated in our lexicographic setting?

In other respect, we can associate with < 1 and < 2 the until-like connectives U 1 and U 2 and the since-like connectives S 1 and S 2 , the formulas ϕU 1 ψ, ϕU 2 ψ, ϕS 1 ψ and ϕS 2 ψ being read as one reads the formulas ϕU ψ and ϕSψ in classical temporal logic, this time with < 1 and < 2 . What can be done concerning the problems of axiomatization/completeness and decidability/complexity these new temporal connectives give rise to? An important result in temporal logic is Kamp's Theorem. It concerns the functional completeness of the until operator [START_REF] Gabbay | On the temporal analysis of fairness[END_REF]. Kamp's Theorem says that for all monadic formulas of the first-order theory of linear orders, there exists a temporal formula using only the until and since temporal operators such that both formulas -the monadic one and the temporal one -are equally interpreted in any temporal model. What can be done about Kamp's Theorem in terms of the binary predicates < 1 and < 2 and the temporal connectives U 1 , U 2 , S 1 and S 2 ?

  or there exists an adequate function µ: Γ -→ {0, 1} such that (σ, µ) ∈ M 1 , (µ, τ ) ∈ M 2 and µ(ψ) = 0.

  or there exists an adequate function µ: Γ -→ {0, 1} such that (τ, µ) ∈ M 2 and µ(ψ) = 0, 7. if H 1 ψ ∈ Γ then τ (H 1 ψ) = 1, or there exists an adequate function µ: Γ -→ {0, 1} such that (µ, σ) ∈ M 1 and µ(ψ) = 0, 8. if H 2 ψ ∈ Γ then τ (H 2 ψ) = 1, or σ(H 2 ψ) = 0, or σ(ψ) = 0, or there exists an adequate function µ: Γ -→ {0, 1} such that (σ, µ) ∈ M 2 , (µ, τ ) ∈ M 2 and µ(ψ) = 0.

if G 2 ψ ∈ Γ then σ(G 2 ψ) ≤ min{τ (ψ), τ (G 2 ψ)},

if H 1 ψ ∈ Γ then σ(H 1 ψ) ≤ τ (H 1 ψ),

if G 1 ψ ∈ Γ then τ (G 1 ψ) ≤ σ(G 1 ψ),

if H 1 ψ ∈ Γ then τ (H 1 ψ) ≤ σ(H 1 ψ),

if H 2 ψ ∈ Γ then τ (H 2 ψ) ≤ min{σ(ψ), σ(H 2 ψ)}.A premodel is a structure (σ 0 , M 1 , M 2 ) where σ 0 : Γ -→ {0, 1} is an adequate function, M 1 is a set of 1-temporal mosaics and M 2 is a set of 2-temporal mosaics. The cardinality of a premodel (σ 0 , M 1 , M 2 ), in symbols (σ 0 , M 1 , M 2 ) , is the number of mosaics in M 1 plus the number of mosaics in M 2 . We shall say that a premodel (σ 0 , M 1 , M 2 ) is 0-saturated iff the 4 following conditions are satisfied:1. if G 1 ψ ∈ Γ then σ 0 (G 1 ψ) = 1,or there exists an adequate function τ :Γ -→ {0, 1} such that (σ 0 , τ ) ∈ M 1 and τ (ψ) = 0,
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Proof. Suppose there exists a saturated dense premodel (σ 0 , M 1 , M 2 ) for ϕ. Following the line of reasoning suggested in [START_REF] Marx | The mosaic method for temporal logics[END_REF], we think of the construction of a model for ϕ as a process approaching a limit via a sequence l 0 , l 1 , . . . of respectful maps. Lemma 2 is used to initiate the construction whereas lemmas 3-5 are used to make improvements at each step of the construction. Consider an enumeration (i 0 , ψ 0 , (s 0 1 , s 0 2 ), (t 0 1 , t 0 2 )), (i 1 , ψ 1 , (s 1 1 , s 1 2 ), (t

where each item appears infinitely often. We inductively define a sequence l 0 , l 1 , . . . of respectful maps as follows: Basis. Let l 0 be the init map with respect to (σ 0 , M 1 , M 2 ).

Step. Let l right n , l lef t n and l n+1 be the respectful maps defined as follows: ) satisfy the conditions of lemma 5 then let l n+1 be the dense completion of l lef t n with respect to i n , (s n 1 , s n 2 ) and (t n 1 , t n 2 ) else let l n+1 be l lef t n . The reader may easily verify that the sequence l 0 , l 1 , . . . of respectful maps is such that dom(l 0 ) ⊆ dom(l 1 ) ⊆ . . . and for all nonnegative integers n, l n+1 |dom(ln) = l n . Let l: Q×Q -→ (Γ -→ {0, 1}) be the partial function defined by dom(l) = {dom(l n ): n is a nonnegative integer} and l(s 1 , s 2 ) = l n (s 1 , s 2 ) for each (s 1 , s 2 ) ∈ dom(l), n being a nonnegative integer such that (s 1 , s 2 ) ∈ dom(l n ). Obviously, (0, 0) ∈ dom(l) and l(0, 0) = σ 0 . Let F = (T, 1 , 2 ) be the structure defined by -T = dom(l), -1 and 2 are the binary relations on T defined by putting (s 1 , s 2 ) 1 (t 1 , t 2 ) iff s 1 < t 1 and (s 1 , s 2 ) 2 (t 1 , t 2 ) iff s 1 = t 1 and s 2 < t 2 .

We define the binary relation on T by putting (s 1 , s 2 ) (t 1 , t 2 ) iff s 1 < t 1 , or s 1 = t 1 and s 2 < t 2 . By lemmas 3-5, F satisfies SERI and DEN S. Since F is a substructure of Q × Q, then it satisfies IRRE, DISJ, T RAN and U N IV . Hence, F is standard. Thus, by item 1 of proposition 1, F is isomorphic with Q × Q. Without loss of generality, we may assume that F is equal to

2. Suppose l(s 1 , s 2 )(ψ) = 0. Hence, (s 1 , s 2 ) ∈ V (p). Thus, M, (s 1 , s 2 ) |= ψ.

Step.

Leaving the cases ψ = ⊥, ψ = ¬χ and ψ = χ ∨ ρ to the reader, we only consider the cases ψ = G 1 χ and ψ = G 2 χ, the cases ψ = H 1 χ and ψ = H 2 χ being similar to them. Now, if G i χ ∈ Γ then consider the 2 following cases.

Moreover, since dom(l o ) is finite, then there exists a nonnegative integer k and there exists (u

Without loss of generality, we may assume that (s Since (σ 0 , M 1 , M 2 ) is for ϕ, then σ 0 (ϕ) = 1. Since (0, 0) ∈ dom(l) and l(0, 0) = σ 0 , then l(0, 0)(ϕ) = 1 and M, (0, 0) |= ϕ. Since F is isomorphic with Q × Q, then ϕ is satisfiable with respect to (C ud , C ud ).

Completeness

Second, the completeness of the mosaic method.

Proposition 4. If ϕ is satisfiable with respect to (C ud , C ud ) then there exists a saturated dense premodel for ϕ of cardinality bounded by 2

Proof. Suppose ϕ is satisfiable with respect to (C ud , C ud ). Hence, there exists a linear order F 1 = (T 1 , < 1 ) in C ud , there exists a linear order F 2 = (T 2 , < 2 ) in C ud and there exists a function

) is an adequate function. Let s 1 ∈ T 1 . Let ≡ s1 be the binary relation on T 2 defined as follows: t 2 ≡ s1 u 2 iff σ(s 1 , t 2 ) = σ(s 1 , u 2 ). Obviously, ≡ s1 is an equivalence relation on T 2 . Moreover, since Γ is finite, then there exists finitely many equivalence classes modulo ≡ s1 . We define

We shall say that

Since there exists finitely many equivalence classes modulo ≡ s1 , then for all Remark that the cardinality of Π s1 2,witness (s 2 ) is bounded by (8× | ϕ | +6) 2 . Let ∼ = be the binary relation on T 1 × T 2 defined as follows: (s 1 , s 2 ) ∼ = (t 1 , t 2 ) iff {σ(s 1 , u 2 ): u 2 ∈ Π s1 2 (s 2 )} = {σ(t 1 , v 2 ): v 2 ∈ Π t1 2 (t 2 )}. Obviously, ∼ = is an equivalence relation on T 1 × T 2 . Moreover, since Γ is finite, then there exists finitely many equivalence classes modulo ∼ =. We define -∆ 1 = {G 1 ψ: G 1 ψ ∈ Γ is such that σ(s 1 , s 2 )(ψ) = 0 for some (s 1 , s 2 ) ∈ T 1 × T 2 }, -Λ 1 = {H 1 ψ: H 1 ψ ∈ Γ is such that σ(s 1 , s 2 )(ψ) = 0 for some (s 1 , s 2 ) ∈ T 1 × T 2 }.