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1 Introduction
The unification problem in a propositional logic is to determine, given a formula ϕ, whether there exists
a substitution σ such that σ(ϕ) is in that logic [1]. In that case, σ is a unifier of ϕ. When a unifiable
formula has minimal complete sets of unifiers, it is either infinitary, finitary, or unitary, depending on
the cardinality of its minimal complete sets of unifiers. Otherwise, it is nullary. Within the context
of elementary unification, it is known that Alt1 is nullary [8], S5 and S4.3 are unitary [10, 11, 12],
transitive modal logics like K4 and S4 are finitary [13, 15], KD45, K45 and K4.2+ are unitary [14, 16],
K is nullary [17] and K4D1 is unitary [18]. The unification types of the description logics EL and FL0

are known too: both of them are nullary [2, 3]. In this paper, we prove that in modal logic K + ��⊥
— the least normal modal logic containing the formula ��⊥— unifiable formulas are either unitary,
or finitary1.

2 Preliminaries
Let S be a finite set. We will write ‖S‖ for the cardinality of S. If S is non-empty then for all equivalence
relations ∼ on S and for all T⊆S, T/∼ will denote the quotient set of T modulo ∼.

Proposition 1. Let T be a finite set. If S is non-empty then for all equivalence relations ∼ on S,
‖S/∼‖≤‖T‖≤‖S‖ iff there exists a surjective function f from S to T such that for all α, β∈S, if
f(α)=f(β) then α∼β.

Proposition 1 will be used twice in the proof of Proposition 11.

3 Syntax
Let VAR be a countably infinite set of variables (with typical members denoted x, y, etc). Let
(x1, x2, . . .) be an enumeration of VAR without repetitions. Let n≥1. The set FORn of all n-formulas
(with typical members denoted ϕ, ψ, etc) is inductively defined by:

• ϕ,ψ ::= xi | ⊥ | ¬ϕ | (ϕ ∨ ψ) | �ϕ where i∈{1, . . . , n}.

We adopt the standard rules for omission of the parentheses. The connectives >, ∧, → and ↔ are
defined by the usual abbreviations. We have also a connective ♦ which is defined by ♦ϕ ::= ¬�¬ϕ.
For all ϕ∈FORn, we respectively write “ϕ0” and “ϕ1” to mean “¬ϕ” and “ϕ”. From now on,

1Acknowledgements: The preparation of this paper has been supported by Bulgarian Science Fund (Project
DN02/15/19.12.2016) and Université Paul Sabatier (Programme Professeurs invités 2018). We are indebted to Silvio Ghilardi for
his suggestion to consider the question of the unification type of K+ ��⊥.
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we write “L2” to mean “K +��⊥”.

Let ≡n be the equivalence relation on FORn defined by:

• ϕ≡nψ iff ϕ↔ ψ∈L2.

Proposition 2. ≡n possesses finitely many equivalence classes.

An n-substitution is a couple (k, σ) where k≥1 and σ is a homomorphism from FORn to FORk. Let
SUBn be the set of all n-substitutions. The equivalence relation 'n on SUBn is defined by:

• (k, σ)'n(l, τ) iff for all i∈{1, . . . , n}, σ(xi)↔ τ(xi)∈L2.

The preorder 4n on SUBn is defined by:

• (k, σ)4n(l, τ) iff there exists a k-substitution (m,υ) such that for all i∈{1, . . . , n}, υ(σ(xi))↔
τ(xi)∈L2.

4 Semantics
Let n≥1. An n-tuple of bits (denoted α, β, etc) is a function from {1, . . . , n} to {0, 1}. Such function
should be understood as a propositional valuation of the variables x1, . . . , xn: for all i∈{1, . . . , n}, if
αi=0 then it is interpreted to mean “xi is false” else it is interpreted to mean “xi is true”. Let BITn

be the set of all n-tuples of bits. An n-model is a structure of the form (α, S) where α∈BITn and
S⊆BITn. Such structure should be understood as a tree-like Kripke model of depth at most 1: α is the
valuation of its root node and S is the set of the valuations of its non-root nodes. Let MODn be the
set of all n-models. We shall say that an n-model (α, S) is degenerated if S=∅. Let MODdeg

n be the
set of all degenerated n-models. Notice that ‖MODdeg

n ‖=2n. Notice also that for all sets S of n-tuples
of bits, S × {∅} is a set of degenerated n-models. The binary relation |=n of n-satisfiability between
MODn and FORn is defined as expected. In particular,

• (α, S)|=nxi iff αi=1 where i∈{1, . . . , n},

• (α, S)|=n�ϕ iff for all β∈S, (β, ∅)|=nϕ.

As a result, (α, S)|=n♦ϕ iff there exists β∈S such that (β, ∅)|=nϕ.

Proposition 3. For all ϕ∈FORn, ϕ∈L2 iff for all (α, S)∈MODn, (α, S)|=nϕ.

For all α∈BITn, the n-formula

• x̄α=
∧
{xαi

i : i∈{1, . . . , n}}

exactly characterizes the propositional valuation represented by α. For all (α, S)∈MODn, the n-
formula

• forn(α, S)=x̄α ∧�
∨
{x̄γ : γ∈S} ∧

∧
{♦x̄γ : γ∈S}

exactly characterizes the tree-like Kripke model of depth at most 1 represented by (α, S).

Proposition 4. Let (α, S), (β, T )∈MODn. The following conditions are equivalent: (i) (α, S)=(β, T );
(ii) (α, S)|=nforn(β, T ).

Proposition 5. Let (k, σ)∈SUBn. For all (α, S)∈MODk, there exists (β, T )∈MODn such that
(α, S)|=kσ(forn(β, T )).
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Proposition 6. Let (k, σ)∈SUBn. Let (α, S)∈MODk. For all (β, T ), (γ, U)∈MODn, if (α, S)|=k

σ(forn(β, T )) and (α, S)|=kσ(forn(γ, U)) then (β, T )=(γ, U).

For all k≥1, a (k, n)-morphism is a function f from MODk to MODn such that for all
(α, S)∈MODk and for all (β, T )∈MODn, if f(α, S)=(β, T ) then2

forward condition: for all γ∈S, there exists δ∈T such that f(γ, ∅)=(δ, ∅),

backward condition: for all δ∈T , there exists γ∈S such that f(γ, ∅)=(δ, ∅).

Proposition 7. Let k≥1. Let f be a (k, n)-morphism. Let (β, T )∈MODk and (γ, U)∈MODn. If
f(β, T )=(γ, U) then the following conditions hold: (i) the image by f of T × {∅} is equal to U × {∅};
(ii) T=∅ iff U=∅.

Proposition 8. Let k≥1. Let f be a (k, n)-morphism. Let (β, T )∈MODk and (γ, U)∈MODn. If the
following conditions hold then f(β, T )=(γ, U): (i) f(β, T )|=nx̄

γ; (ii) for all δ∈T , there exists ε∈U
such that f(δ, ∅)=(ε, ∅); (iii) for all ε∈U , there exists δ∈T such that f(δ, ∅)=(ε, ∅).

5 Unification
Let n≥1. An n-unifier of ϕ∈FORn is an n-substitution (k, σ) such that σ(ϕ)∈L2. We shall say that
ϕ∈FORn is n-unifiable if there exists an n-unifier of ϕ. We shall say that a set Σ of n-unifiers of
an n-unifiable ϕ∈FORn is n-complete if for all n-unifiers (k, σ) of ϕ, there exists (l, τ)∈Σ such that
(l, τ)4n(k, σ). As is well-known, for all ϕ∈FORn, if ϕ is n-unifiable then for all minimal n-complete
sets Σ,∆ of n-unifiers of ϕ, Σ and ∆ have the same cardinality. Then, an important question is the
following: when ϕ∈FORn is n-unifiable, is there a minimal n-complete set of n-unifiers of ϕ? When
the answer is “yes”, how large is this set? For all n-unifiable ϕ∈FORn, we shall say that:

• ϕ is n-nullary if there exists no minimal complete set of unifiers of ϕ,

• ϕ is n-infinitary if there exists a minimal complete set of unifiers of ϕ with infinite cardinality,

• ϕ is n-finitary if there exists a minimal complete set of unifiers of ϕ with finite cardinality ≥ 2,

• ϕ is n-unitary if there exists a minimal complete set of unifiers of ϕ with cardinality 1.

Proposition 9. The n-unifiable n-formula ♦x1 → �x1 is n-finitary.

For all n-unifiable ϕ∈FORn and for all π≥1, we shall say that ϕ is n-π-reasonable if for all n-unifiers
(k, σ) of ϕ, if k≥π then there exists an n-unifier (l, τ) of ϕ such that (l, τ)4n(k, σ) and l≤π.

Proposition 10. Let ϕ∈FORn be n-unifiable and π≥1. If ϕ is n-π-reasonable then ϕ is either n-
finitary, or n-unitary.

6 Main results
Let n≥1.

Proposition 11. Let k≥n. For all (k, n)-morphisms g, there exists a surjective (k, n)-morphism f such
that for all (α, S), (β, T )∈MODk, if f(α, S)=f(β, T ) then g(α, S)=g(β, T ).

2The morphisms described here should not be mistaken for the bounded morphisms usually considered in modal logic [9,
Definition 2.10]. In particular, in the above definition, there is no condition related to the propositional valuation of the variables.
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Proof. Let g be a (k, n)-morphism. Let ∼k be the equivalence relation on MODk defined by:

• (α, S)∼k(β, T ) iff g(α, S)=g(β, T ).

Lemma 1. 1. ‖MODdeg
k /∼k‖≤‖MODdeg

n ‖,

2. ‖MODdeg
n ‖≤‖MODdeg

k ‖.

Hence, by Proposition 1, there exists a surjective function fdeg from MODdeg
k to MODdeg

n such that
for all (α, ∅), (β, ∅)∈MOD

deg
k , if fdeg(α, ∅)=fdeg(β, ∅) then (α, ∅)∼k(β, ∅).

Lemma 2. For all non-empty sets S, T of k-tuples of bits, if the images by fdeg of S×{∅} and T ×{∅}
are equal then the images by g of S × {∅} and T × {∅} are equal.

For all non-empty sets E of n-tuples of bits, let

• f◦(E) be the set of all (α, S)∈MODk \MODdeg
k such that the image by fdeg of S × {∅} is

equal to E × {∅},

• f•(E) be the set of all (α, S)∈MODn \MODdeg
n such that S=E.

Notice that since fdeg is surjective, therefore ‖f◦(E)‖≥2k. Notice also that ‖f•(E)‖=2n.

Lemma 3. For all non-empty sets E of n-tuples of bits,

1. ‖f◦(E)/∼k‖≤‖f•(E)‖,

2. ‖f•(E)‖≤‖f◦(E)‖.

Thus, for all non-empty sets E of n-tuples of bits, by Proposition 1, there exists a surjective func-
tion fE from f◦(E) to f•(E) such that for all (α, S), (β, T )∈f◦(E), if fE(α, S)=fE(β, T ) then
(α, S)∼k(β, T ). Let f be the function from MODk to MODn such that for all (α, ∅)∈MODdeg

k ,

• f(α, ∅)=fdeg(α, ∅)

and for all (α, S)∈MODk \MOD
deg
k , E being the non-empty set of n-tuples of bits such that the

image by fdeg of S × {∅} is equal to E × {∅},

• f(α, S)=fE(α, S).

Lemma 4. f is surjective.

Lemma 5. f is a (k, n)-morphism.

Lemma 6. For all (α, S), (β, T )∈MODk, if f(α, S)=f(β, T ) then g(α, S)=g(β, T ).

This finishes the proof of Proposition 11.

Proposition 12. For all ϕ∈FORn, if ϕ is n-unifiable then ϕ is n-n-reasonable.

Proof. Let ϕ∈FORn. Suppose ϕ is n-unifiable. Let (k, σ) be an n-unifier of ϕ such that k≥n. Hence,
σ(ϕ)∈L2. Let g be the function from MODk to MODn such that for all (α, S)∈MODk,

• g(α, S) is the (β, T )∈MODn such that (α, S)|=kσ(forn(β, T )).

Notice that by Propositions 5 and 6, g is well-defined.

Lemma 7. g is a (k, n)-morphism.
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Lemma 8. For all (α, S), (β, T )∈MODk, if g(α, S)=g(β, T ) then for all i∈{1, . . . , n}, (α, S)|=kσ(xi)
iff (β, T )|=kσ(xi).

Since k≥n therefore by Proposition 11 and Lemma 7, let f be a surjective (k, n)-morphism such
that for all (α, S), (β, T )∈MODk, if f(α, S)=f(β, T ) then g(α, S)=g(β, T ). Let (n, τ), (k, ν) be the
n-substitutions defined by:

• τ(xi)=
∨
{forn(f(α, S)) : (α, S)∈MODk is such that (α, S)|=kσ(xi)} where i∈{1, . . . , n},

• ν(xi)=
∨
{fork(α, S) : (α, S)∈MODk is such that f(α, S)|=nxi} where i∈{1, . . . , n}.

Lemma 9. Let ψ∈FORn. For all (β, T )∈MODn, the following conditions are equivalent: (i) there
exists (α, S)∈MODk such that f(α, S)=(β, T ) and (α, S)|=kσ(ψ); (ii) for all (α, S)∈MODk, if
f(α, S)=(β, T ) then (α, S)|=kσ(ψ); (iii) (β, T )|=nτ(ψ).

Lemma 10. For all (β, T )∈MODk and for all i∈{1, . . . , n}, (β, T )|=kν(xi) iff f(β, T )|=nxi.

Lemma 11. Let (β, T )∈MODk and (γ, U)∈MODn. The following conditions are equivalent:
(i) f(β, T )=(γ, U); (ii) (β, T )|=kν(forn(γ, U)).

Lemma 12. For all (β, T )∈MODk and for all i∈{1, . . . , n}, (β, T )|=kν(τ(xi)) iff (β, T )|=kσ(xi).

Since σ(ϕ)∈L2, therefore by Proposition 3, for all (α, S)∈MODk, (α, S)|=kσ(ϕ). Thus, by Lemma 9,
for all (β, T )∈MODn, (β, T )|=nτ(ϕ). Consequently, by Proposition 3, τ(ϕ)∈L2. Hence, (n, τ) is an
n-unifier of ϕ. Since by Lemma 12, (n, τ)4n(k, σ), therefore ϕ is n-n-reasonable.

Theorem 1. For all ϕ∈FORn, if ϕ is n-unifiable then ϕ is either n-finitary, or n-unitary.

7 Conclusion
In this paper, within the context of elementary unification, we have proved Theorem 1 asserting that in
K + ��⊥, unifiable formulas are either finitary, or unitary. We believe that in our line of reasoning,
the main properties of K +��⊥ are the ones given in Propositions 2, 5 and 6. Proposition 2 says that
K + ��⊥ is locally tabular3 — it is used in the proof of Proposition 10. Propositions 5 and 6 give
us the possibility to define the function g — they are used in the proof of Proposition 12. Notice that
Theorem 1 is an immediate consequence of Propositions 10 and 12. Here are open questions:

1. determine the unification type of the locally tabular modal logic K +�d⊥ for each d≥3,

2. determine the unification types of other locally tabular modal logics like the ones studied in [19, 20,
21],

3. determine the unification types of the modal logics KB, KD and KT.

We conjecture that within the context of elementary unification, the modal logics mentioned in Items 1
and 2 are either finitary, or unitary. As for the modal logics considered in Item 3, it is only known that
KD and KT are not unitary within the context of elementary unification and KB, KD and KT are
nullary within the context of unification with parameters [4, 5, 6].

3A modal logic L is locally tabular if for all n≥1, the equivalence relation ≡n on FORn defined by

• ϕ≡nψ iff ϕ↔ ψ∈L
possesses finitely many equivalence classes. The most popular of all locally tabular modal logics is probably S5. See [19, 20, 21]
for other examples of locally tabular modal logics.
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Appendix
Proof of Proposition 1: See [7]. Notice that Proposition 1 is used exactly twice in the proof of Propo-
sition 11: once immediately after Lemma 1 and once immediately after Lemma 3.

Proof of Proposition 2: This result follows from [9, Proposition 2.29] and the following fact: for
all ϕ∈FORn, there exists ψ∈FORn such that the degree of ψ is less than 2 and ϕ↔ ψ∈L2.
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Proof of Proposition 3: See [9, Chapter 4] for proofs of similar completeness results.

Proof of Proposition 4: This result follows from the definition of forn.

Proof of Proposition 5: Let (α, S)∈MODk. Let β be the n-tuple of bits such that for all i∈{1, . . . , n},
if (α, S)6|=kσ(xi) then βi=0 else βi=1. Let T be the set of n-tuples of bits such that for all δ∈BITn,
δ∈T iff there exists γ∈S such that for all i∈{1, . . . , n}, if (γ, ∅) 6|=kσ(xi) then δi=0 else δi=1. Obvi-
ously, (α, S)|=kσ(forn(β, T )).

Proof of Proposition 6: This result follows from the following facts: (i) for all (β, T ), (γ, U)∈MODn,
if (α, S)|=kσ(x̄β) and (α, S)|=kσ(x̄γ) then β=γ; (ii) for all (β, T ), (γ, U)∈MODn, if (α, S)|=kσ(�

∨
{x̄δ :

δ∈T} ∧
∧
{♦x̄δ : δ∈T}) and (α, S)|=kσ(�

∨
{x̄ε : ε∈U} ∧

∧
{♦x̄ε : ε∈U}) then T=U .

Proof of Proposition 7: This result follows from the definition of (k, n)-morphisms.

Proof of Proposition 8: Suppose the following conditions holds: (i) f(β, T )|=nx̄
γ ; (ii) for all δ∈T ,

there exists ε∈U such that f(δ, ∅)=(ε, ∅); (iii) for all ε∈U , there exists δ∈T such that f(δ, ∅)=(ε, ∅).
Let (γ′, U ′)∈MODn be such that f(β, T )=(γ′, U ′). Since f(β, T )|=nx̄

γ , therefore (γ′, U ′)|=nx̄
γ .

Hence, obviously, γ′=γ. Since f is a (k, n)-morphism, therefore the following conditions hold: (iv) for
all δ′∈T , there exists ε′∈U ′ such that f(δ′, ∅)=(ε′, ∅); (v) for all ε′∈U ′, there exists δ′∈T such that
f(δ′, ∅)=(ε′, ∅). Since for all δ∈T , there exists ε∈U such that f(δ, ∅)=(ε, ∅), therefore U ′⊆U . More-
over, since for all ε∈U , there exists δ∈T such that f(δ, ∅)=(ε, ∅), therefore U ′⊇U . Thus, U ′=U . Since
f(β, T )=(γ′, U ′) and γ′=γ, therefore f(β, T )=(γ, U).

Proof of Proposition 9: Let (n, σ) and (n, τ) be the n-substitutions defined by:

• σ(x1)=�⊥ ∨ x1,

• τ(x1)=♦> ∧ x1,

• σ(xi)=xi for each i∈{2, . . . , n},

• τ(xi)=xi for each i∈{2, . . . , n}.

Obviously, ♦σ(x1)→ �σ(x1)∈L2 and♦τ(x1)→ �τ(x1)∈L2. Hence, (n, σ) and (n, τ) are n-unifiers
of ♦x1 → �x1. Thus, ♦x1 → �x1 is n-unifiable. In order to prove that ♦x1 → �x1 is n-finitary, it
suffices to prove that {(n, σ), (n, τ)} is a minimal n-complete set of n-unifiers of ♦x1 → �x1.

n-completeness of {(n, σ), (n, τ)}: Let (k, υ) be an arbitrary n-unifier of ♦x1 → �x1. Consequently,
♦υ(x1)→ �υ(x1)∈L2. By standard reasoning in modal logic, it follows that either�⊥ → υ(x1)∈L2,
or υ(x1) → ♦>∈L2. In the former case4, it follows immediately that υ(σ(x1)) ↔ υ(x1)∈L2. Hence,
(n, σ)4n(k, υ).

Minimality of {(n, σ), (n, τ)}: For the sake of the contradiction, suppose {(n, σ), (n, τ)} is not mi-
nimal. Consequently, either (n, σ)4n(n, τ), or (n, τ)4n(n, σ). In the former case5, there exists an
n-substitution (k, υ) such that υ(σ(x1)) ↔ τ(x1)∈L2. Hence, �⊥ ∨ υ(x1) ↔ ♦> ∧ x1∈L2. Thus,
�⊥ → ♦>∈L2: a contradiction.

4In the latter case, the proof can be similarly done.
5In the latter case, the proof can be similarly done.
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Proof of Proposition 10: Suppose ϕ is n-π-reasonable. Let Σ be the set of all n-unifiers of ϕ. No-
tice that Σ is n-complete. Let Σ′ be the set of n-substitutions obtained from Σ by keeping only the
n-substitutions (k, σ) such that k≤π. Since Σ is n-complete and ϕ is n-π-reasonable, therefore Σ′ is
n-complete. Let Σ′′ be the set of n-substitutions obtained from Σ′ by keeping only one representative
of each equivalence class modulo 'n. Since Σ′ is n-complete, therefore Σ′′ is n-complete. More-
over, since ≡n possesses finitely many equivalence classes, therefore Σ′′ is finite. Hence, ϕ is either
n-finitary, or n-unitary.

Proof of Lemma 1: (1) For all (α, ∅)∈MODdeg
k , [(α, ∅)] will denote the equivalence class modulo

∼k with (α, ∅) as its representative. Let h be the function from MOD
deg
k /∼k to MODdeg

n such that for
all (α, ∅)∈MODdeg

k h([(α, ∅)])=g(α, ∅). Since obviously, h is injective, therefore ‖MODdeg
k /∼k‖≤

‖MODdeg
n ‖.

(2) Since k≥n, therefore 2n≤2k. Hence, ‖MODdeg
n ‖≤‖MODdeg

k ‖.

Proof of Lemma 2: Let S, T be non-empty sets of k-tuples of bits. Suppose the images by fdeg of
S × {∅} and T × {∅} are equal. For the sake of the contradiction, suppose the images by g of S × {∅}
and T ×{∅} are not equal. Hence, there exists (γ, U)∈MODn such that either (γ, U)∈g(S×{∅}) and
(γ, U) 6∈g(T×{∅}), or (γ, U)∈g(T×{∅}) and (γ, U)6∈g(S×{∅}). In the former case6, let α∈S be such
that g(α, ∅)=(γ, U). Since the images by fdeg of S × {∅} and T × {∅} are equal, therefore there exists
β∈T such that fdeg(α, ∅)=fdeg(β, ∅). Thus, (α, ∅)∼k(β, ∅). Consequently, g(α, ∅)=g(β, ∅). Since
g(α, ∅)=(γ, U), therefore g(β, ∅)=(γ, U). Since β∈T , therefore (γ, U)∈g(T × {∅}): a contradiction.

Proof of Lemma 3: Let E be a non-empty set of n-tuples of bits.

(1) For the sake of the contradiction, suppose ‖f◦(E)/∼k‖>‖f•(E)‖. Hence, there exists p>2n and
there exists (α1, S1), . . . , (αp, Sp)∈f◦(E) such that for all i, j∈{1, . . . , p}, if i 6=j then (αi, Si) 6∼k(αj ,
Sj). Thus, for all i, j∈{1, . . . , p}, if i6=j then g(αi, Si)6=g(αj , Sj). Moreover, fdeg(S1×{∅})=E×{∅},
. . ., fdeg(Sp × {∅})=E × {∅}. Consequently, for all i, j∈{1, . . . , p}, if i6=j then fdeg(Si ×
{∅})=fdeg(Sj×{∅}). Hence, by Lemma 2, for all i, j∈{1, . . . , p}, if i 6=j then g(Si×{∅})=g(Sj×{∅}).
Let (β1, T1), . . . , (βp, Tp)∈MODn be such that g(α1, S1)=(β1, T1), . . ., g(αp, Sp)=(βp, Tp). Since
for all i, j∈{1, . . . , p}, if i 6=j then g(αi, Si)6=g(αj , Sj), therefore for all i, j∈{1, . . . , p}, if i6=j then
(βi, Ti)6=(βj , Tj). Moreover, by Proposition 7, g(S1×{∅})=T1×{∅}, . . ., g(Sp×{∅})=Tp×{∅}. Since
for all i, j∈{1, . . . , p}, if i6=j then g(Si×{∅})=g(Sj×{∅}), therefore for all i, j∈{1, . . . , p}, if i 6=j then
Ti=Tj . Since for all i, j∈{1, . . . , p}, if i6=j then (βi, Ti)6=(βj , Tj), therefore for all i, j∈{1, . . . , p}, if
i6=j then βi 6=βj . Thus, p≤2n: a contradiction.

(2) Since k≥n, therefore 2n≤2k. Consequently, ‖f•(E)‖≤‖f◦(E)‖.

Proof of Lemma 4: Let (β, T )∈MODn. We consider the following 2 cases.

Case T=∅: Hence, (β, T )∈MODdeg
n . Since fdeg is surjective, therefore there exists (α, ∅)∈MODdeg

k

such that fdeg(α, ∅)=(β, T ). Thus, f(α, ∅)=(β, T ).

Case T is a non-empty set of n-tuples of bits: Consequently, (β, T )∈MODn \MODdeg
n . Obviously,

(β, T )∈f•(T ). Since fT is surjective, therefore there exists (α, S)∈f◦(T ) such that fT (α, S)=(β, T ).
Hence, the image by fdeg of S × {∅} is equal to T × {∅}. Thus, f(α, S)=fT (α, S). Since

6In the latter case, the proof can be similarly done.
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fT (α, S)=(β, T ), therefore f(α, S)=(β, T ).

Proof of Lemma 5: Let (α, S)∈MODk and (β, T )∈MODn be such that f(α, S)=(β, T ).

Forward condition: Let γ∈S. Hence, S is a non-empty set of k-tuples of bits and T is a non-empty
set of n-tuples of bits. Thus, (α, S)∈MODk \MODdeg

k . Consequently, E being the non-empty set of
n-tuples of bits such that the image by fdeg of S × {∅} is equal to E × {∅}, f(α, S)=fE(α, S). Since
f(α, S)=(β, T ), therefore fE(α, S)=(β, T ). Hence, E=T . Since E is the non-empty set of n-tuples
of bits such that the image by fdeg of S × {∅} is equal to E × {∅}, therefore the image by fdeg of
S × {∅} is equal to T × {∅}. Since γ∈S, therefore there exists δ∈T such that fdeg(γ, ∅)=(δ, ∅). Thus,
f(γ, ∅)=(δ, ∅).

Backward condition: Let δ∈T . Consequently, T is a non-empty set of n-tuples of bits and S is a
non-empty set of k-tuples of bits. Hence, E being the non-empty set of n-tuples of bits such that the
image by fdeg of S × {∅} is equal to E × {∅}, f(α, S)=fE(α, S). Since f(α, S)=(β, T ), therefore
fE(α, S)=(β, T ). Thus, E=T . Since E is the non-empty set of n-tuples of bits such that the image by
fdeg of S ×{∅} is equal to E ×{∅}, therefore the image by fdeg of S ×{∅} is equal to T ×{∅}. Since
δ∈T , therefore there exists γ∈S such that fdeg(γ, ∅)=(δ, ∅). Consequently, f(γ, ∅)=(δ, ∅).

Proof of Lemma 6: Let (α, S), (β, T )∈MODk. Suppose f(α, S)=f(β, T ). We consider the fol-
lowing 2 cases.

Case S=∅. Hence, f(α, S)=fdeg(α, ∅). Since f(α, S)=f(β, T ), therefore fdeg(α, ∅)=f(β, T ). Thus,
T=∅. Consequently, f(β, T )=fdeg(β, ∅). Since fdeg(α, ∅)=f(β, T ), therefore fdeg(α, ∅)=fdeg(β, ∅).
Hence, (α, ∅)∼k(β, ∅). Thus, g(α, ∅)=g(β, ∅). Since S=∅ and T=∅, therefore g(α, S)=g(β, T ).

Case S is a non-empty set of k-tuples of bits. Consequently, E being the non-empty set of n-
tuples of bits such that the image by fdeg of S × {∅} is equal to E × {∅}, f(α, S)=fE(α, S).
Since f(α, S)=f(β, T ), therefore fE(α, S)=f(β, T ). Hence, E is a non-empty set of n-tuples
of bits such that the image by fdeg of T × {∅} is equal to E × {∅}. Thus, f(β, T )=fE(β, T ).
Since fE(α, S)=f(β, T ), therefore fE(α, S)=fE(β, T ). Consequently, (α, S)∼k(β, T ). Hence,
g(α, S)=g(β, T ).

Proof of Lemma 7: This result follows from the definition of g.

Proof of Lemma 8: This result follows from the definition of g.

Proof of Lemma 9: By induction on ψ.

Proof of Lemma 10: By Proposition 4.

Proof of Lemma 11: By Lemma 10 and Proposition 8.

Proof of Lemma 12: By Lemma 11.

Proof of Theorem 1: By Propositions 10 and 12.

9


	Introduction
	Preliminaries
	Syntax
	Semantics
	Unification
	Main results
	Conclusion

