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Introduction

The unification problem in a propositional logic is to determine, given a formula ϕ, whether there exists a substitution σ such that σ(ϕ) is in that logic [START_REF] Baader | Unification in modal and description logics[END_REF]. In that case, σ is a unifier of ϕ. When a unifiable formula has minimal complete sets of unifiers, it is either infinitary, finitary, or unitary, depending on the cardinality of its minimal complete sets of unifiers. Otherwise, it is nullary. Within the context of elementary unification, it is known that Alt 1 is nullary [START_REF] Balbiani | Unification in modal logic Alt1[END_REF], S5 and S4.3 are unitary [START_REF] Dzik | Unitary unification of S5 modal logics and its extensions[END_REF][START_REF] Dzik | Unification Types in Logic[END_REF][START_REF] Dzik | Projective unification in modal logic[END_REF], transitive modal logics like K4 and S4 are finitary [START_REF] Ghilardi | Best solving modal equations[END_REF][START_REF] Iemhoff | A syntactic approach to unification in transitive reflexive modal logics[END_REF], KD45, K45 and K4.2 + are unitary [START_REF] Ghilardi | Filtering unification and most general unifiers in modal logic[END_REF][START_REF] Je Ȓ Ábek | Logics with directed unification[END_REF], K is nullary [START_REF] Je Ȓ Ábek | Blending margins: the modal logic K has nullary unification type[END_REF] and K4D1 is unitary [START_REF] Kost | Projective unification in transitive modal logics[END_REF]. The unification types of the description logics EL and FL 0 are known too: both of them are nullary [START_REF] Baader | Unification in the description logic EL[END_REF][START_REF] Baader | Unification of concept terms in description logics[END_REF]. In this paper, we prove that in modal logic K + ⊥ -the least normal modal logic containing the formula ⊥ -unifiable formulas are either unitary, or finitary 1 .

Preliminaries

Let S be a finite set. We will write S for the cardinality of S. If S is non-empty then for all equivalence relations ∼ on S and for all T ⊆S, T /∼ will denote the quotient set of T modulo ∼.

Proposition 1. Let T be a finite set. If S is non-empty then for all equivalence relations ∼ on S, S/∼ ≤ T ≤ S iff there exists a surjective function f from S to T such that for all α, β∈S, if f (α)=f (β) then α∼β. Proposition 1 will be used twice in the proof of Proposition 11.

Syntax

Let VAR be a countably infinite set of variables (with typical members denoted x, y, etc). Let (x 1 , x 2 , . . .) be an enumeration of VAR without repetitions. Let n≥1. The set FOR n of all n-formulas (with typical members denoted ϕ, ψ, etc) is inductively defined by:

• ϕ, ψ ::= x i | ⊥ | ¬ϕ | (ϕ ∨ ψ) | ϕ where i∈{1, . . . , n}.
We adopt the standard rules for omission of the parentheses. The connectives , ∧, → and ↔ are defined by the usual abbreviations. We have also a connective ♦ which is defined by ♦ϕ ::= ¬ ¬ϕ. For all ϕ∈FOR n , we respectively write "ϕ 0 " and "ϕ 1 " to mean "¬ϕ" and "ϕ". From now on, 1 Acknowledgements: The preparation of this paper has been supported by Bulgarian Science Fund (Project DN02/15/19.12.2016) and Université Paul Sabatier (Programme Professeurs invités 2018). We are indebted to Silvio Ghilardi for his suggestion to consider the question of the unification type of K + ⊥.

we write "L 2 " to mean "K + ⊥".

Let ≡ n be the equivalence relation on FOR n defined by:

• ϕ≡ n ψ iff ϕ ↔ ψ∈L 2 .
Proposition 2. ≡ n possesses finitely many equivalence classes.

An n-substitution is a couple (k, σ) where k≥1 and σ is a homomorphism from FOR n to FOR k . Let SUB n be the set of all n-substitutions. The equivalence relation n on SUB n is defined by:

• (k, σ) n (l, τ ) iff for all i∈{1, . . . , n}, σ(x i ) ↔ τ (x i )∈L 2 .
The preorder n on SUB n is defined by:

• (k, σ) n (l, τ ) iff there exists a k-substitution (m, υ) such that for all i∈{1, . . . , n}, υ(σ

(x i )) ↔ τ (x i )∈L 2 .

Semantics

Let n≥1. An n-tuple of bits (denoted α, β, etc) is a function from {1, . . . , n} to {0, 1}. Such function should be understood as a propositional valuation of the variables x 1 , . . . , x n : for all i∈{1, . . . , n}, if α i =0 then it is interpreted to mean "x i is false" else it is interpreted to mean "x i is true". Let BIT n be the set of all n-tuples of bits. An n-model is a structure of the form (α, S) where α∈BIT n and S⊆BIT n . Such structure should be understood as a tree-like Kripke model of depth at most 1: α is the valuation of its root node and S is the set of the valuations of its non-root nodes. Let MOD n be the set of all n-models. We shall say that an n-model (α, S) is degenerated if S=∅. Let MOD deg n be the set of all degenerated n-models. Notice that MOD deg n =2 n . Notice also that for all sets S of n-tuples of bits, S × {∅} is a set of degenerated n-models. The binary relation |= n of n-satisfiability between MOD n and FOR n is defined as expected. In particular,

• (α, S)|= n x i iff α i =1 where i∈{1, . . . , n},

• (α, S)|= n ϕ iff for all β∈S, (β, ∅)|= n ϕ.

As a result, (α, S)|= n ♦ϕ iff there exists β∈S such that (β, ∅)|= n ϕ. Proposition 3. For all ϕ∈FOR n , ϕ∈L 2 iff for all (α, S)∈MOD n , (α, S)|= n ϕ.

For all α∈BIT n , the n-formula

• xα = {x αi i : i∈{1, .
. . , n}} exactly characterizes the propositional valuation represented by α. For all (α, S)∈MOD n , the nformula

• for n (α, S)=x α ∧ {x γ : γ∈S} ∧ {♦x γ : γ∈S} exactly characterizes the tree-like Kripke model of depth at most 1 represented by (α, S). 

6. Let (k, σ)∈SUB n . Let (α, S)∈MOD k . For all (β, T ), (γ, U )∈MOD n , if (α, S)|= k σ(for n (β, T )) and (α, S)|= k σ(for n (γ, U )) then (β, T )=(γ, U ).
For all k≥1, a (k, n)-morphism is a function f from MOD k to MOD n such that for all (α, S)∈MOD k and for all (β, T )∈MOD n , if f (α, S)=(β, T ) then2 forward condition: for all γ∈S, there exists δ∈T such that f (γ, ∅)=(δ, ∅), backward condition: for all δ∈T , there exists γ∈S such that f (γ, ∅)=(δ, ∅).

Proposition 7. Let k≥1. Let f be a (k, n)-morphism. Let (β, T )∈MOD k and (γ, U )∈MOD n . If f (β, T )=(γ, U ) then the following conditions hold: (i) the image by f of T × {∅} is equal to U × {∅}; (ii) T =∅ iff U =∅. Proposition 8. Let k≥1. Let f be a (k, n)-morphism. Let (β, T )∈MOD k and (γ, U )∈MOD n . If the following conditions hold then f (β, T )=(γ, U ): (i) f (β, T )|= n xγ ;
(ii) for all δ∈T , there exists ∈U such that f (δ, ∅)=( , ∅); (iii) for all ∈U , there exists δ∈T such that f (δ, ∅)=( , ∅).

Unification

Let n≥1. An n-unifier of ϕ∈FOR n is an n-substitution (k, σ) such that σ(ϕ)∈L 2 . We shall say that ϕ∈FOR n is n-unifiable if there exists an n-unifier of ϕ. We shall say that a set Σ of n-unifiers of an n-unifiable ϕ∈FOR n is n-complete if for all n-unifiers (k, σ) of ϕ, there exists (l, τ )∈Σ such that (l, τ ) n (k, σ). As is well-known, for all ϕ∈FOR n , if ϕ is n-unifiable then for all minimal n-complete sets Σ, ∆ of n-unifiers of ϕ, Σ and ∆ have the same cardinality. Then, an important question is the following: when ϕ∈FOR n is n-unifiable, is there a minimal n-complete set of n-unifiers of ϕ? When the answer is "yes", how large is this set? For all n-unifiable ϕ∈FOR n , we shall say that:

• ϕ is n-nullary if there exists no minimal complete set of unifiers of ϕ,

• ϕ is n-infinitary if there exists a minimal complete set of unifiers of ϕ with infinite cardinality,

• ϕ is n-finitary if there exists a minimal complete set of unifiers of ϕ with finite cardinality ≥ 2,

• ϕ is n-unitary if there exists a minimal complete set of unifiers of ϕ with cardinality 1.

Proposition 9. The n-unifiable n-formula ♦x 1 → x 1 is n-finitary.
For all n-unifiable ϕ∈FOR n and for all π≥1, we shall say that ϕ is n-π-reasonable if for all n-unifiers (k, σ) of ϕ, if k≥π then there exists an n-unifier (l, τ ) of ϕ such that (l, τ ) n (k, σ) and l≤π.

Proposition 10. Let ϕ∈FOR n be n-unifiable and π≥1. If ϕ is n-π-reasonable then ϕ is either nfinitary, or n-unitary.

Main results

Let n≥1.

Proposition 11. Let k≥n. For all (k, n)-morphisms g, there exists a surjective (k, n)-morphism f such that for all (α, S), (β, T )∈MOD k , if f (α, S)=f (β, T ) then g(α, S)=g(β, T ).

Proof. Let g be a (k, n)-morphism. Let ∼ k be the equivalence relation on MOD k defined by:

• (α, S)∼ k (β, T ) iff g(α, S)=g(β, T ). Lemma 1. 1. MOD deg k /∼ k ≤ MOD deg n , 2. MOD deg n ≤ MOD deg k .
Hence, by Proposition 1, there exists a surjective function For all non-empty sets E of n-tuples of bits, let

f deg from MOD deg k to MOD deg n such that for all (α, ∅), (β, ∅)∈MOD deg k , if f deg (α, ∅)=f deg (β, ∅) then (α, ∅)∼ k (β, ∅).
• f • (E) be the set of all (α, S)∈MOD k \ MOD deg k such that the image by f deg of S × {∅} is equal to E × {∅}, • f • (E) be the set of all (α, S)∈MOD n \ MOD deg n such that S=E. Notice that since f deg is surjective, therefore f • (E) ≥2 k . Notice also that f • (E) =2 n .
Lemma 3. For all non-empty sets E of n-tuples of bits,

1. f • (E)/∼ k ≤ f • (E) , 2. f • (E) ≤ f • (E) .
Thus, for all non-empty sets E of n-tuples of bits, by Proposition 1, there exists a surjective function f E from f • (E) to f • (E) such that for all (α, S), (β, T )∈f

• (E), if f E (α, S)=f E (β, T ) then (α, S)∼ k (β, T ). Let f be the function from MOD k to MOD n such that for all (α, ∅)∈MOD deg k , • f (α, ∅)=f deg (α, ∅)
and for all (α, S)∈MOD k \ MOD deg k , E being the non-empty set of n-tuples of bits such that the image by

f deg of S × {∅} is equal to E × {∅}, • f (α, S)=f E (α, S). Lemma 4. f is surjective. Lemma 5. f is a (k, n)-morphism. Lemma 6. For all (α, S), (β, T )∈MOD k , if f (α, S)=f (β, T ) then g(α, S)=g(β, T ).
This finishes the proof of Proposition 11.

Proposition 12. For all ϕ∈FOR n , if ϕ is n-unifiable then ϕ is n-n-reasonable.

Proof. Let ϕ∈FOR n . Suppose ϕ is n-unifiable. Let (k, σ) be an n-unifier of ϕ such that k≥n. Hence, σ(ϕ)∈L 2 . Let g be the function from MOD k to MOD n such that for all (α, S)∈MOD k ,

• g(α, S) is the (β, T )∈MOD n such that (α, S)|= k σ(for n (β, T )).

Notice that by Propositions 5 and 6, g is well-defined. Lemma 7. g is a (k, n)-morphism. Lemma 8. For all (α, S), (β, T )∈MOD k , if g(α, S)=g(β, T ) then for all i∈{1, . . . , n}, (α, S)|= k σ(x i ) iff (β, T )|= k σ(x i ).

Since k≥n therefore by Proposition 11 and Lemma 7, let f be a surjective (k, n)-morphism such that for all (α, S), (β, T )∈MOD k , if f (α, S)=f (β, T ) then g(α, S)=g(β, T ). Let (n, τ ), (k, ν) be the n-substitutions defined by:

• τ (x i )= {for n (f (α, S)) : (α, S)∈MOD k is such that (α, S)|= k σ(x i )} where i∈{1, . . . , n},

• ν(x i )= {for k (α, S) : (α, S)∈MOD k is such that f (α, S)|= n x i } where i∈{1, . . . , n}. Lemma 9. Let ψ∈FOR n . For all (β, T )∈MOD n , the following conditions are equivalent: (i) there exists (α, S)∈MOD k such that f (α, S)=(β, T ) and (α,

S)|= k σ(ψ); (ii) for all (α, S)∈MOD k , if f (α, S)=(β, T ) then (α, S)|= k σ(ψ); (iii) (β, T )|= n τ (ψ).
Lemma 10. For all (β, T )∈MOD k and for all i∈{1, . . . , n}, (β,

T )|= k ν(x i ) iff f (β, T )|= n x i .
Lemma 11. Let (β, T )∈MOD k and (γ, U )∈MOD n . The following conditions are equivalent:

(i) f (β, T )=(γ, U ); (ii) (β, T )|= k ν(for n (γ, U )).
Lemma 12. For all (β, T )∈MOD k and for all i∈{1, . . . , n}, (β,

T )|= k ν(τ (x i )) iff (β, T )|= k σ(x i ).
Since σ(ϕ)∈L 2 , therefore by Proposition 3, for all (α, S)∈MOD k , (α, S)|= k σ(ϕ). Thus, by Lemma 9, for all (β, T )∈MOD n , (β, T )|= n τ (ϕ). Consequently, by Proposition 3, τ (ϕ)∈L 2 . Hence, (n, τ ) is an n-unifier of ϕ. Since by Lemma 12, (n, τ ) n (k, σ), therefore ϕ is n-n-reasonable.

Theorem 1. For all ϕ∈FOR n , if ϕ is n-unifiable then ϕ is either n-finitary, or n-unitary.

Conclusion

In this paper, within the context of elementary unification, we have proved Theorem 1 asserting that in K + ⊥, unifiable formulas are either finitary, or unitary. We believe that in our line of reasoning, the main properties of K + ⊥ are the ones given in Propositions 2, 5 and 6. Proposition 2 says that K + ⊥ is locally tabular 3 -it is used in the proof of Proposition 10. Propositions 5 and 6 give us the possibility to define the function g -they are used in the proof of Proposition 12. Notice that Theorem 1 is an immediate consequence of Propositions 10 and 12. Here are open questions:

1. determine the unification type of the locally tabular modal logic K + d ⊥ for each d≥3, 2. determine the unification types of other locally tabular modal logics like the ones studied in [START_REF] Miyazaki | Normal modal logics containing KTB with some finiteness conditions[END_REF][START_REF] Nagle | The extensions of the modal logic K5[END_REF][START_REF] Shapirovsky | Local tabularity without transitivity[END_REF],

3. determine the unification types of the modal logics KB, KD and KT.

We conjecture that within the context of elementary unification, the modal logics mentioned in Items 1 and 2 are either finitary, or unitary. As for the modal logics considered in Item 3, it is only known that KD and KT are not unitary within the context of elementary unification and KB, KD and KT are nullary within the context of unification with parameters [START_REF] Balbiani | Remarks about the unification type of several non-symmetric non-transitive modal logics[END_REF][START_REF] Balbiani | KD is nullary[END_REF][START_REF] Balbiani | About the unification type of modal logics between KB and KTB[END_REF].

Proof of Proposition 3: See [9, Chapter 4] for proofs of similar completeness results.

Proof of Proposition 4: This result follows from the definition of for n .

Proof of Proposition 5: Let (α, S)∈MOD k . Let β be the n-tuple of bits such that for all i∈{1, . . . , n}, if (α, S) |= k σ(x i ) then β i =0 else β i =1. Let T be the set of n-tuples of bits such that for all δ∈BIT n , δ∈T iff there exists γ∈S such that for all i∈{1, . . . , n}, if (γ, ∅) |= k σ(x i ) then δ i =0 else δ i =1. Obviously, (α, S)|= k σ(for n (β, T )).

Proof of Proposition 6: This result follows from the following facts:

(i) for all (β, T ), (γ, U )∈MOD n , if (α, S)|= k σ(x β ) and (α, S)|= k σ(x γ ) then β=γ; (ii) for all (β, T ), (γ, U )∈MOD n , if (α, S)|= k σ( {x δ : δ∈T } ∧ {♦x δ : δ∈T }) and (α, S)|= k σ( {x : ∈U } ∧ {♦x : ∈U }) then T =U .
Proof of Proposition 7: This result follows from the definition of (k, n)-morphisms.

Proof of Proposition 8: Suppose the following conditions holds: (i) f (β, T )|= n xγ ; (ii) for all δ∈T , there exists ∈U such that f (δ, ∅)=( , ∅); (iii) for all ∈U , there exists δ∈T such that f (δ, ∅)=( , ∅).

Let (γ , U )∈MOD n be such that f (β, T )=(γ , U ). Since f (β, T )|= n xγ , therefore (γ , U )|= n xγ .
Hence, obviously, γ =γ. Since f is a (k, n)-morphism, therefore the following conditions hold: (iv) for all δ ∈T , there exists ∈U such that f (δ , ∅)=( , ∅); (v) for all ∈U , there exists δ ∈T such that f (δ , ∅)=( , ∅). Since for all δ∈T , there exists ∈U such that f (δ, ∅)=( , ∅), therefore U ⊆U . Moreover, since for all ∈U , there exists δ∈T such that f (δ, ∅)=( , ∅), therefore U ⊇U . Thus, U =U . Since f (β, T )=(γ , U ) and γ =γ, therefore f (β, T )=(γ, U ).

Proof of Proposition 9: Let (n, σ) and (n, τ ) be the n-substitutions defined by:

• σ(x 1 )= ⊥ ∨ x 1 , • τ (x 1 )=♦ ∧ x 1 ,
• σ(x i )=x i for each i∈{2, . . . , n},

• τ (x i )=x i for each i∈{2, . . . , n}.

Obviously, ♦σ(x 1 ) → σ(x 1 )∈L 2 and ♦τ (x 1 ) → τ (x 1 )∈L 2 . Hence, (n, σ) and (n, τ ) are n-unifiers of ♦x 1 → x 1 . Thus, ♦x 1 → x 1 is n-unifiable. In order to prove that ♦x 1 → x 1 is n-finitary, it suffices to prove that {(n, σ), (n, τ )} is a minimal n-complete set of n-unifiers of ♦x 1 → x 1 .

n-completeness of {(n, σ), (n, τ )}: Let (k, υ) be an arbitrary n-unifier of ♦x 1 → x 1 . Consequently, ♦υ(x 1 ) → υ(x 1 )∈L 2 . By standard reasoning in modal logic, it follows that either ⊥ → υ(x 1 )∈L 2 , or υ(x 1 ) → ♦ ∈L 2 . In the former case 4 , it follows immediately that υ(σ(x 1 )) ↔ υ(x 1 )∈L 2 . Hence, (n, σ) n (k, υ).

Minimality of {(n, σ), (n, τ )}: For the sake of the contradiction, suppose {(n, σ), (n, τ )} is not minimal. Consequently, either (n, σ) n (n, τ ), or (n, τ ) n (n, σ). In the former case 5 , there exists an n-substitution (k, υ) such that υ(σ(x 1 )) ↔ τ (x 1 )∈L 2 . Hence, ⊥ ∨ υ(x 1 ) ↔ ♦ ∧ x 1 ∈L 2 . Thus, ⊥ → ♦ ∈L 2 : a contradiction.

Proof of Proposition 10: Suppose ϕ is n-π-reasonable. Let Σ be the set of all n-unifiers of ϕ. Notice that Σ is n-complete. Let Σ be the set of n-substitutions obtained from Σ by keeping only the n-substitutions (k, σ) such that k≤π. Since Σ is n-complete and ϕ is n-π-reasonable, therefore Σ is n-complete. Let Σ be the set of n-substitutions obtained from Σ by keeping only one representative of each equivalence class modulo n . Since Σ is n-complete, therefore Σ is n-complete. Moreover, since ≡ n possesses finitely many equivalence classes, therefore Σ is finite. Hence, ϕ is either n-finitary, or n-unitary.

Proof of Lemma 1: (1) For all (α, ∅)∈MOD deg k , [(α, ∅)] will denote the equivalence class modulo ∼ k with (α, ∅) as its representative. Let h be the function from

MOD deg k /∼ k to MOD deg n such that for all (α, ∅)∈MOD deg k h([(α, ∅)])=g(α, ∅). Since obviously, h is injective, therefore MOD deg k /∼ k ≤ MOD deg n . (2) Since k≥n, therefore 2 n ≤2 k . Hence, MOD deg n ≤ MOD deg k .
Proof of Lemma 2: Let S, T be non-empty sets of k-tuples of bits. Suppose the images by f deg of S × {∅} and T × {∅} are equal. For the sake of the contradiction, suppose the images by g of S × {∅} and T × {∅} are not equal. Hence, there exists (γ, U )∈MOD n such that either (γ, U )∈g(S × {∅}) and (γ, U ) ∈g(T ×{∅}), or (γ, U )∈g(T ×{∅}) and (γ, U ) ∈g(S ×{∅}). In the former case6 , let α∈S be such that g(α, ∅)=(γ, U ). Since the images by f deg of S × {∅} and T × {∅} are equal, therefore there exists

β∈T such that f deg (α, ∅)=f deg (β, ∅). Thus, (α, ∅)∼ k (β, ∅). Consequently, g(α, ∅)=g(β, ∅). Since g(α, ∅)=(γ, U ), therefore g(β, ∅)=(γ, U ). Since β∈T , therefore (γ, U )∈g(T × {∅}): a contradiction.
Proof of Lemma 3: Let E be a non-empty set of n-tuples of bits.

(1) For the sake of the contradiction, suppose f • (E)/∼ k > f • (E) . Hence, there exists p>2 n and there exists (α 1 , S 1 ), . . . , (α p , S p )∈f • (E) such that for all i, j∈{1, . . . , p}, if i =j then (α i , S i ) ∼ k (α j , S j ). Thus, for all i, j∈{1, . . . , p}, if i =j then g(α i , S i ) =g(α j , S j ). Moreover, f deg (S 1 ×{∅})=E×{∅}, . . ., f deg (S p × {∅})=E × {∅}. Consequently, for all i, j∈{1, . . . , p}, if i =j then f deg (S i × {∅})=f deg (S j ×{∅}). Hence, by Lemma 2, for all i, j∈{1, . . . , p}, if i =j then g(S i ×{∅})=g(S j ×{∅}). Let (β 1 , T 1 ), . . . , (β p , T p )∈MOD n be such that g(α 1 , S 1 )=(β 1 , T 1 ), . . ., g(α p , S p )=(β p , T p ). Since for all i, j∈{1, . . . , p}, if i =j then g(α i , S i ) =g(α j , S j ), therefore for all i, j∈{1, . . . , p}, if i =j then (β i , T i ) =(β j , T j ). Moreover, by Proposition 7, g(S 1 ×{∅})=T 1 ×{∅}, . . ., g(S p ×{∅})=T p ×{∅}. Since for all i, j∈{1, . . . , p}, if i =j then g(S i ×{∅})=g(S j ×{∅}), therefore for all i, j∈{1, . . . , p}, if i =j then T i =T j . Since for all i, j∈{1, . . . , p}, if i =j then (β i , T i ) =(β j , T j ), therefore for all i, j∈{1, . . . , p}, if i =j then β i =β j . Thus, p≤2 n : a contradiction.

(2) Since k≥n, therefore 2 n ≤2 k . Consequently, f • (E) ≤ f • (E) .

Proof of Lemma 4: Let (β, T )∈MOD n . We consider the following 2 cases. Case T is a non-empty set of n-tuples of bits: Consequently, (β, T )∈MOD n \ MOD deg n . Obviously, (β, T )∈f • (T ). Since f T is surjective, therefore there exists (α, S)∈f • (T ) such that f T (α, S)=(β, T ). Hence, the image by f deg of S × {∅} is equal to T × {∅}. Thus, f (α, S)=f T (α, S). Since

Proposition 4 .

 4 Let (α, S), (β, T )∈MOD n . The following conditions are equivalent:(i) (α, S)=(β, T ); (ii) (α, S)|= n for n (β, T ).Proposition 5. Let (k, σ)∈SUB n . For all (α, S)∈MOD k , there exists (β, T )∈MOD n such that (α, S)|= k σ(for n (β, T )).

Proposition

  

Lemma 2 .

 2 For all non-empty sets S, T of k-tuples of bits, if the images by f deg of S × {∅} and T × {∅} are equal then the images by g of S × {∅} and T × {∅} are equal.

CaseT

  =∅: Hence, (β, T )∈MOD deg n . Since f deg is surjective, therefore there exists (α, ∅)∈MOD deg k such that f deg (α, ∅)=(β, T ). Thus, f (α, ∅)=(β, T ).

The morphisms described here should not be mistaken for the bounded morphisms usually considered in modal logic [9, Definition 2.10]. In particular, in the above definition, there is no condition related to the propositional valuation of the variables.

A modal logic L is locally tabular if for all n≥1, the equivalence relation ≡n on FORn defined by• ϕ≡nψ iff ϕ ↔ ψ∈L possesses finitely many equivalence classes. The most popular of all locally tabular modal logics is probably S5. See[START_REF] Miyazaki | Normal modal logics containing KTB with some finiteness conditions[END_REF][START_REF] Nagle | The extensions of the modal logic K5[END_REF][START_REF] Shapirovsky | Local tabularity without transitivity[END_REF] for other examples of locally tabular modal logics.

In the latter case, the proof can be similarly done.

In the latter case, the proof can be similarly done.

In the latter case, the proof can be similarly done.

Appendix

Proof of Proposition 1: See [START_REF] Balbiani | About the unification types of the modal logics determined by classes of deterministic frames[END_REF]. Notice that Proposition 1 is used exactly twice in the proof of Proposition 11: once immediately after Lemma 1 and once immediately after Lemma 3.

Proof of Proposition 2:

This result follows from [9, Proposition 2.29] and the following fact: for all ϕ∈FOR n , there exists ψ∈FOR n such that the degree of ψ is less than 2 and ϕ ↔ ψ∈L 2 .