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Abstract
In a modal logic L, a unifier of a formula ϕ is a substitution σ such that σ(ϕ) is

in L. When unifiable formulas have no minimal complete sets of unifiers, they are
nullary. Otherwise, they are either infinitary, or finitary, or unitary depending on the
cardinality of their minimal complete sets of unifiers. The fusion L1 ⊗ L2 of modal
logics L1 and L2 respectively based on the modal connectives 21 and 22 is the least
modal logic based on these modal connectives and containing both L1 and L2. In this
paper, we prove that if L1 ⊗ L2 is unitary then L1 and L2 are unitary and if L1 ⊗ L2
is finitary then L1 and L2 are either unitary, or finitary. We also prove that the fusion
of arbitrary consistent extensions of S5 is nullary when these extensions are different
from Triv1.
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1Dzik conjectured that the fusion S5⊗ S5 of S5 with itself is either nullary, or infinitary [11, Chapter 6].
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1 Introduction

The unification problem in a modal logic L is to determine, given a formula ϕ, whether
there exists a substitution σ such that σ(ϕ) is in L [1]2. In that case, σ is a unifier of ϕ.
We shall say that a set of unifiers of a unifiable formula ϕ is complete if for all unifiers
σ of ϕ, there exists a unifier τ of ϕ in that set such that τ is more general than σ. When
unifiable formulas have no minimal complete sets of unifiers, they are nullary. Otherwise,
they are either infinitary, or finitary, or unitary depending on the cardinality of their mini-
mal complete sets of unifiers [11]. To be nullary is considered to be the worst situation for
a unifiable formula whereas to be unitary is considered to be better than to be finitary which
is itself considered to be better than to be infinitary. The unification type of a modal logic is
the worst unification type of its unifiable formulas3.

The fusion L1⊗L2 of modal logics L1 and L2 respectively based on the modal connectives
21 and 22 is the least modal logic based on these modal connectives and containing both
L1 and L2. A first immediate result is that L1⊗L2 is a conservative extension of the modal
logics L1 and L2 when L1 and L2 are consistent. A number of other results — transfer
results — have been obtained as well. They concern properties preserved under the ope-
ration of forming fusions: the fusion of decidable modal logics is decidable, the fusion of
modal logics having uniform interpolation property has uniform interpolation property, etc.
See [15, Chapter 4] and [23, 24, 31]. To the best of our knowledge, the preservation of
properties related to the unification problem has not been studied yet.

Owing to its strong connections with the admissibility problem [29], the unification pro-
blem is an important problem in Applied Non-Classical Logics [1], a domain of investiga-
tions where fusions of modal logics are omnipresent [24]. It is therefore natural to ask how
the unification types of modal logics are related to the unification type of their fusion. In
this paper, we prove that if L1 ⊗ L2 is unitary then L1 and L2 are unitary and if L1 ⊗ L2
is finitary then L1 and L2 are either unitary, or finitary. In other respects, Dzik conjectured
that the fusion S5⊗ S5 of S5 with itself is either nullary, or infinitary [11, Chapter 6]. Cla-

2We assume that the reader is at home with tools and techniques in modal logics. In particular, we follow
the standard conventions for talking about modal logics: S5 is the least modal logic containing the formulas
usually denoted (T), (4) and (B), KT is the least modal logic containing the formula usually denoted (T), etc.
For more on this, see [7, 8, 22]. As a result, in the main body of the paper, we will present neither the algebraic
semantics of modal logics, nor the relational semantics of modal logics, prefering to introduce semantic tools
and techniques when they are needed.

3About the unification type of modal logics, it is known that KB, KD, KDB, KT and KTB are
nullary [3, 4, 5], S5 and S4.3 are unitary [10, 12], some transitive modal logics like K4 and S4 are finitary [18,
19], K is nullary [20] and K4D1 is unitary [21], the nullariness of KB, KD, KDB, KT and KTB having
only been obtained within the context of unification with parameters. No modal logic is known to be infinitary.
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UNIFICATION TYPE OF FUSIONS

rifying Dzik’s conjecture, we prove that the fusion of arbitrary consistent extensions of S5
is nullary when these extensions are different from Triv. An Appendix includes the proofs
of some of our results.

Jer̆ábek has proved that K is nullary by showing that the K-unifiable formula x → 2x
has no minimal complete sets of unifiers [20]. In Jer̆ábek’s line of reasoning, the fact that
for all d ≥ 0, 2d+1⊥ → 2d⊥ 6∈ K plays an important role. Unfortunately, for all d ≥ 0,
2d⊥ is either equivalent to ⊥, or equivalent to 2⊥ in KB, KD, KDB, KT and KTB. It
follows that Jer̆ábek’s line of reasoning has to be seriously adapted if one wants to apply it
to KB, KD, KDB, KT and KTB. This has been done in [3, 4, 5] by using parameters
and by considering much more complicated formulas than x→ 2x. For the fusion of arbi-
trary consistent extensions of S5 different from Triv, a new adaptation of Jer̆ábek’s line of
reasoning is described in the course of Lemmas 14–29 and Propositions 7, 8 and 9.

2 Syntax

2.1 Formulas and substitutions

Let VAR be a countably infinite set of propositional variables (with typical members de-
noted x, y, etc). Let PAR be a countably infinite set of propositional parameters (with
typical members denoted p, q, etc). Atoms (denoted α, β, etc) are either variables, or pa-
rameters. Let I be a non-empty subset of {1, 2}. The set FORI of I -formulas (with typical
members denoted ϕ, ψ, etc) is inductively defined as follows:

• ϕ,ψ ::= α | ⊥ | ¬ϕ | (ϕ ∨ ψ) | 2iϕ

where i ranges over I . We adopt the standard rules for omission of the parentheses. For
all I -formulas ϕ, we write “ϕ0” to mean “¬ϕ” and we write “ϕ1” to mean “ϕ”. For all
I -formulas ϕ, let var(ϕ) be the set of all variables occurring in ϕ. For all I -formulas
ϕ, the degree of ϕ (denoted deg(ϕ)) is defined as usual. An I -substitution is a function
σ associating to each variable x an I -formula σ(x)4. We shall say that an I -substitution
σ moves a variable x if σ(x) 6= x. Following the standard assumption considered in the
literature [1], we will always assume that I -substitutions move at most finitely many vari-
ables. For all {1, 2}-formulas ϕ(x1, . . . , xm), let σ(ϕ(x1, . . . , xm)) be the {1, 2}-formula
ϕ(σ(x1), . . . , σ(xm)). The composition σ ◦ τ of the I -substitutions σ and τ is the I -
substitution associating to each variable x the I -formula τ(σ(x)). Obviously, for all {1, 2}-
formulas ϕ(x1, . . . , xm), (σ ◦ τ)(ϕ(x1, . . . , xm)) is the {1, 2}-formula ϕ(τ(σ(x1)), . . . ,
τ(σ(xm))).

4Occasionally, we will slightly abuse notation by considering that {1}-substitutions and {2}-substitutions
are also {1, 2}-substitutions.
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2.2 Abbreviations and translation functions

The Boolean connectives >, ∧, → and ↔ are defined by the usual abbreviations. For all
finite sets X of variables, we will use >X as a shorthand for

∧
{x ∨ > : x ∈ X}. As it is

traditionally done, in the extreme case when the finite set X of variables is empty, >X will
be a shorthand for >. The role of the finite set X of variables in the definition of >X will
become clear in Propositions 3 and 6. Nevertheless, we can already mention that this role
is connected to the fact that for all finite sets X of variables, >X is a tautology such that
var(>X) = X . The modal connectives 31 and 32 are defined as follows:

• 31ϕ ::= ¬21¬ϕ,

• 32ϕ ::= ¬22¬ϕ.

From now on in this paper,

let p, q, r be fixed distinct parameters.

Now, let us define modal connectives that will be useful in Section 6 for proving Proposi-
tion 9 saying that the fusion of arbitrary consistent extensions of S5 is nullary when these
extensions are different from Triv. The modal connectives � and � are defined as follows:

• �ϕ ::= p1 ∧ q0 ∧ r1 → 21(p0 ∧ q0 ∧ r0 → 22(p0 ∧ q0 ∧ r1 → 21(p0 ∧ q1 ∧ r0 →
22(p0 ∧ q1 ∧ r1 → 21(p1 ∧ q0 ∧ r0 → 22(p1 ∧ q0 ∧ r1 → ϕ)))))),

• �ϕ ::= p1 ∧ q0 ∧ r1 → 22(p1 ∧ q0 ∧ r0 → 21(p0 ∧ q1 ∧ r1 → 22(p0 ∧ q1 ∧ r0 →
21(p0 ∧ q0 ∧ r1 → 22(p0 ∧ q0 ∧ r0 → 21(p1 ∧ q0 ∧ r1 → ϕ)))))).

For all k ≥ 0, the modal connectives �k and �k are inductively defined as follows:

• �0ϕ ::= ϕ,

• �0ϕ ::= ϕ,

• �k+1ϕ ::= ��k ϕ,

• �k+1ϕ ::= ��k ϕ.

For all k ≥ 0, the modal connectives �<k and �<k are inductively defined as follows:

• �<0ϕ ::= >,

• �<0ϕ ::= >,

• �<k+1ϕ ::= �<kϕ ∧�kϕ,
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UNIFICATION TYPE OF FUSIONS

• �<k+1ϕ ::= �<kϕ ∧�kϕ.

Now, let us define translation functions that will be useful in Section 5 for proving Propo-
sitions 4 and 5 saying that if the fusion of arbitrary consistent modal logics is unitary then
both of them are unitary and if the fusion of arbitrary consistent modal logics is finitary
then both of them are either unitary, or finitary. We inductively define for all finite sets X
of variables and for all i ∈ {1, 2}, the translation functions trTi : FOR{1,2} −→ FOR{i}
and trVX,i : FOR{1,2} −→ FOR{i} as follows:

• trTi (α) = α,

• trVX,i(α) = α,

• trTi (⊥) = ⊥,

• trVX,i(⊥) = ⊥,

• trTi (¬ϕ) = ¬trTi (ϕ),

• trVX,i(¬ϕ) = ¬trVX,i(ϕ),

• trTi (ϕ ∨ ψ) = trTi (ϕ) ∨ trTi (ψ),

• trVX,i(ϕ ∨ ψ) = trVX,i(ϕ) ∨ trVX,i(ψ),

• trTi (2jϕ) = 2jtrTi (ϕ) when i = j,

• trVX,i(2jϕ) = 2jtrVX,i(ϕ) when i = j,

• trTi (2jϕ) = trTi (ϕ) when i 6= j,

• trVX,i(2jϕ) = >X when i 6= j.

As the reader can see from the above definition, the translation function trTi does not de-
pend on X . The reader is invited to appreciate the use of the abbreviation >X in the defini-
tion of the translation function trVX,i.

Lemma 1. Let X be a finite set of variables and i ∈ {1, 2}. For all {i}-formulas ϕ,

• trTi (ϕ) = ϕ,

• trVX,i(ϕ) = ϕ.

Lemma 2. Let i ∈ {1, 2}. For all {1, 2}-formulas ϕ,
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• var(trTi (ϕ)) = var(ϕ),

• var(trVvar(ϕ),i(ϕ)) = var(ϕ).

For all finite sets X of variables, for all i ∈ {1, 2} and for all {1, 2}-substitutions σ, let
σTi and σVX,i be the {i}-substitutions defined as follows:

• for all variables x, σTi (x) = trTi (σ(x)),

• for all variables x, σVX,i(x) = trVX,i(σ(x)).

3 Fusions of modal logics

From now on in this paper,

we write “1̄” to mean “2” and we write “2̄” to mean “1”.

3.1 Modal logics

Let I be a non-empty subset of {1, 2}. An I -logic is a set L of I -formulas such that

• L contains all I -tautologies

• for all i ∈ I , L contains all I -formulas of the form 2i(ϕ→ ψ)→ (2iϕ→ 2iψ),

• L is closed under modus ponens (if ϕ ∈ L and ϕ→ ψ ∈ L then ψ ∈ L),

• L is closed under I -generalization (if ϕ ∈ L then for all i ∈ I , 2iϕ ∈ L).

As is well-known, the intersection of I -logics is an I -logic. Hence, for every set of I -
formulas, there exists a least I -logic containing it. We shall say that an I -logic L is consis-
tent if L 6= FORI . In this paper, it will be useful to remember that for all i ∈ {1, 2},

• if an {i}-logic L is consistent then either L is contained in the least {i}-logic Trivi
containing all {i}-formulas of the form 2iϕ ↔ ϕ, or L is contained in the least
{i}-logic Verumi containing all {i}-formulas of the form 2iϕ.

See [25]. For all i ∈ {1, 2}, we shall say that an {i}-logic L is a non-trivial extension of
S5 if L contains the least {i}-logic S5i containing all {i}-formulas of the form 2iχ → χ,
2iχ → 2i2iχ and χ → 2i3iχ and L is strictly contained in Trivi. In this paper, it will
be useful to remember that for all i ∈ {1, 2}, if an {i}-logic L is a non-trivial extension of
S5 then one of the following conditions holds:

6
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• there exists kk ≥ 2 such that L is equal to the least extension S5kk
i of S5i containing

all {i}-formulas of the form
∧
{3iϕm : 0 ≤ m ≤ kk} →

∨
{3i(ϕm ∧ ϕn) : 0 ≤

m < n ≤ kk},

• L = S5i.

See [26, 27]. It will also be useful to remember that for all i ∈ {1, 2},

• for all kk ≥ 2, S5kk
i is a Kripke complete modal logic characterized by the class of

all Kripke frames (W,Ri) where Ri is an equivalence relation on W for which each
equivalence class is a finite set of exactly kk possible worlds,

• for all kk ≥ 2, S5kk
i is a Kripke complete modal logic characterized by the class of

all Kripke frames (W,Ri) where Ri is an equivalence relation on W for which each
equivalence class is a finite set of at most kk possible worlds,

• S5i is a Kripke complete modal logic characterized by the class of all Kripke frames
(W,Ri) where Ri is an equivalence relation on W for which each equivalence class
is a countably infinite set of possible worlds.

3.2 Fusions

Let L1 be a {1}-logic and L2 be a {2}-logic. The fusion of L1 and L2 is the least {1, 2}-
logic (denoted L1 ⊗ L2) containing L1 and L2

5. As is well-known, if L1 is consistent and
L2 is consistent then L1⊗L2 is a conservative extension of L1 and L2 [14, 30]6. A number
of other results — transfer results — have been obtained as well. They concern properties
preserved under the operation of forming fusions [15, Chapter 4]: the fusion of decidable
modal logics is decidable, the fusion of modal logics having uniform interpolation property
has uniform interpolation property, etc. We shall say that L1 ⊗ L2 is tensed if L1 ⊗ L2
contains all {1, 2}-formulas of the form ϕ → 2131ϕ and ϕ → 2232ϕ. We shall say
that L1 ⊗ L2 is smooth if for all k, l ≥ 0, if k > l then �k⊥ → �l⊥ 6∈ L1 ⊗ L2 and
�k⊥ → �l⊥ 6∈ L1 ⊗ L2.

5Generalized to logics formulated in languages with an arbitrary number of modal connectives, the opera-
tion of forming fusions is associative. Therefore it makes sense to define the fusion of an arbitrary number of
logics L1, . . . ,Ln respectively formulated in languages with the modal connectives 21, . . . ,2n as being the
least logic formulated in the language with the modal connectives 21, . . . ,2n and containing L1, . . . ,Ln. For
instance, the multimodal logics considered in [9, 13] are fusions of finitely many logics of knowledge. In this
paper, we will only consider the operation of forming fusions of two unimodal logics.

6That is to say, when L1 and L2 are consistent, for all i ∈ {1, 2} and for all {i}-formulas ϕ, if ϕ ∈ L1⊗L2
then ϕ ∈ Li. Obviously, if either L1 is inconsistent, or L2 is inconsistent then L1 ⊗ L2 is inconsistent. In
actual fact, as noticed by Kracht and Wolter [23], L1⊗L2 is a conservative extension of L1 and L2 if and only
if either L1 is consistent and L2 is consistent, or L1 is inconsistent and L2 is inconsistent.

7
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Lemma 3. If L1 and L2 are non-trivial extensions of S5 then L1⊗L2 is tensed and smooth.

Within the context of this paper, it is relevant to investigate the properties of the trans-
lation functions trTi : FOR{1,2} −→ FOR{i} and trVX,i : FOR{1,2} −→ FOR{i} in
L1 ⊗ L2 for each finite set X of variables and for each i ∈ {1, 2}. The following results
will be used in Section 5.

Lemma 4. Let X,Y be finite sets of variables and i ∈ {1, 2}. For all {1, 2}-formulas ϕ,
trVX,i(ϕ)↔ trVY,i(ϕ) ∈ Li.

Lemma 5. Let X be a finite set of variables, i ∈ {1, 2} and σ be a {1, 2}-substitution. For
all {1, 2}-formulas ϕ,

• σTi (trTi (ϕ))↔ trTi (σ(ϕ)) ∈ Li,

• σVX,i(trVX,i(ϕ))↔ trVX,i(σ(ϕ)) ∈ Li.

Lemma 6. Let X be a finite set of variables, i ∈ {1, 2} and σ be an {i}-substitution. For
all {1, 2}-formulas ϕ,

• σ(trTi (ϕ))↔ trTi (σ(ϕ)) ∈ Li,

• σ(trVX,i(ϕ))↔ trVX,i(σ(ϕ)) ∈ Li.

Lemma 7. Let X be a finite set of variables. For all {1, 2}-formulas ϕ,

• trT1 (ϕ)↔ ϕ ∈ L1 ⊗Triv2,

• trVX,1(ϕ)↔ ϕ ∈ L1 ⊗Verum2,

• trT2 (ϕ)↔ ϕ ∈ Triv1 ⊗ L2,

• trVX,2(ϕ)↔ ϕ ∈ Verum1 ⊗ L2.

Lemma 8. Let X be a finite set of variables, i ∈ {1, 2} and ϕ be a {1, 2}-formula. If
ϕ ∈ L1 ⊗ L2 then

1. if Lī ⊆ Trivī then trTi (ϕ) ∈ Li,

2. if Lī ⊆ Verumī then trVX,i(ϕ) ∈ Li.

Within the context of this paper, it is relevant to investigate the properties of the modal
connectives � and � in L1 ⊗ L2. The following results will be used in Section 6.

Lemma 9. 1. L1 ⊗ L2 contains all {1, 2}-formulas of the form �(ϕ→ ψ)→ (�ϕ→
�ψ),

8
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2. L1 ⊗ L2 contains all {1, 2}-formulas of the form �(ϕ→ ψ)→ (�ϕ→ �ψ),

3. L1 ⊗ L2 is closed under the rule ϕ
�ϕ ,

4. L1 ⊗ L2 is closed under the rule ϕ
�ϕ ,

5. if L1 ⊗ L2 is tensed then L1 ⊗ L2 is closed under the rule ¬ϕ→�ψ
¬ψ→�ϕ ,

6. if L1 ⊗ L2 is tensed then L1 ⊗ L2 is closed under the rule ¬ϕ→�ψ
¬ψ→�ϕ .

Lemma 10. For all k ≥ 0,

1. �k> ∈ L1 ⊗ L2,

2. �k> ∈ L1 ⊗ L2,

3. �<k> ∈ L1 ⊗ L2,

4. �<k> ∈ L1 ⊗ L2.

Lemma 11. Let k ≥ 0. For all {1, 2}-formulas ϕ,

1. �<k+1ϕ↔ ϕ ∧��<k ϕ ∈ L1 ⊗ L2,

2. �<k+1ϕ↔ ϕ ∧��<k ϕ ∈ L1 ⊗ L2.

Lemma 12. Let k ≥ 0. If L1 ⊗ L2 is smooth then

1. �k⊥ 6∈ L1 ⊗ L2,

2. �k⊥ 6∈ L1 ⊗ L2.

Lemma 13. Let k ≥ 0. If L1 ⊗ L2 is tensed and smooth then for all l ≥ 0, �k⊥ ∨�l⊥ 6∈
L1 ⊗ L2.

In anticipation of our results about the unification type of fusions in Sections 5 and 6,
we complete this section by defining the families (σk)k≥0, (τk)k≥0, (λk)k≥0 and (µk)k≥0
of {1, 2}-substitutions and by proving some of their properties. From now on in this paper,

let x be a fixed variable.

For all k ≥ 0, let σk and τk be the {1, 2}-substitutions inductively defined as follows:

• σ0(x) = ⊥,

• for all variables y distinct from x, σ0(y) = y,

9
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• τ0(x) = >,

• for all variables y distinct from x, τ0(y) = y,

• σk+1(x) = x ∧�σk(x),

• for all variables y distinct from x, σk+1(y) = y,

• τk+1(x) = ¬(¬x ∧�¬τk(x)),

• for all variables y distinct from x, τk+1(y) = y.

For all k ≥ 0, let λk and µk be the {1, 2}-substitutions defined as follows:

• λk(x) = x ∧�k⊥,

• for all variables y distinct from x, λk(y) = y,

• µk(x) = ¬(¬x ∧�k⊥),

• for all variables y distinct from x, µk(y) = y.

Lemma 14. Let k ≥ 0. We have �<kx∧�k⊥ → σk(x) ∈ L1⊗L2 and �<k¬x∧�k⊥ →
¬τk(x) ∈ L1 ⊗ L2.

Lemma 15. Let k ≥ 0. We have σk(x)→ x ∈ L1 ⊗ L2 and ¬τk(x)→ ¬x ∈ L1 ⊗ L2.

Lemma 16. Let k ≥ 0. We have σk(x)→ �σk(x) ∈ L1 ⊗ L2 and ¬τk(x)→ �¬τk(x) ∈
L1 ⊗ L2.

Lemma 17. Let k ≥ 0. For all l ≥ 0, if k ≤ l then σk(x) → �l⊥ ∈ L1 ⊗ L2 and
¬τk(x)→ �l⊥ ∈ L1 ⊗ L2.

Lemma 18. Let k ≥ 0. For all l ≥ 0, if k ≤ l then �k⊥ ∧ σl(x)↔ σk(x) ∈ L1 ⊗ L2 and
�k⊥ ∧ ¬τl(x)↔ ¬τk(x) ∈ L1 ⊗ L2.

Lemma 19. Let k ≥ 0. For all l ≥ 0, if k ≤ l then λl(σk(x)) ↔ σk(x) ∈ L1 ⊗ L2 and
µl(τk(x))↔ τk(x) ∈ L1 ⊗ L2.

Lemma 20. Let k ≥ 0. For all l ≥ 0, if k ≥ l then λl(σk(x)) ↔ σl(x) ∈ L1 ⊗ L2 and
µl(τk(x))↔ τl(x) ∈ L1 ⊗ L2.

Lemma 21. Let k ≥ 0. If L1 ⊗ L2 is smooth then for all l ≥ 0, if k > l then σk(x) →
�l⊥ 6∈ L1 ⊗ L2 and ¬τk(x)→ �l⊥ 6∈ L1 ⊗ L2.

Lemma 22. Let k ≥ 0. If L1 ⊗ L2 is smooth then for all l ≥ 0, �k⊥ ∨ ¬τl(x) 6∈ L1 ⊗ L2
and �k⊥ ∨ σl(x) 6∈ L1 ⊗ L2.

10
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4 Unification

4.1 Unifiable formulas and unification types

Let I be a non-empty subset of {1, 2}. Let L be an I -logic. We shall say that an I -
substitution σ is equivalent in L to an I -substitution τ with respect to a set X of variables
(in symbols σ 'XL τ ) if for all variables y ∈ X , σ(y) ↔ τ(y) ∈ L. We shall say that
an I -substitution σ is more general in L than an I -substitution τ with respect to a set X
of variables (in symbols σ �XL τ ) if there exists an I -substitution υ such that σ ◦ υ 'XL
τ . Obviously, for all sets X of variables and for all I -substitutions σ, τ , if σ 'XL τ then
σ �XL τ . Moreover, for all sets X of variables, on the set of all I -substitutions, the binary
relation'XL is reflexive, symmetric and transitive and the binary relation�XL is reflexive and
transitive. We shall say that an I -formula ϕ is L-unifiable if there exists an I -substitution
σ such that σ(ϕ) ∈ L. In that case, σ is an L-unifier of ϕ. We shall say that a set Σ of
L-unifiers of an L-unifiable I -formula ϕ is L-complete if for all L-unifiers σ of ϕ, there
exists τ ∈ Σ such that τ �var(ϕ)

L σ. As is well-known, if an L-unifiable I -formula has
minimal L-complete sets of L-unifiers then these sets have the same cardinality7. About
the type of L-unifiable I -formulas, we shall say that an L-unifiable I -formula

• ϕ is L-nullary (or of type 0) if there exists no minimal L-complete set of L-unifiers
of ϕ,

• ϕ is L-infinitary (or of type∞) if there exists a minimal L-complete set of L-unifiers
of ϕ but there exists no finite one,

• ϕ is L-finitary (or of type ω) if there exists a finite minimal L-complete set of L-
unifiers of ϕ but there exists no with cardinality 1,

• ϕ is L-unitary (or of type 1) if there exists a minimal L-complete set of L-unifiers of
ϕ with cardinality 1.

Obviously, the types “L-nullary”, “L-infinitary”, “L-finitary” and “L-unitary” constitute a
set of jointly exhaustive and pairwise distinct situations. To be of type 0 is considered to
be the worst situation whereas to be of type 1 is considered to be better than to be of type
ω which is itself considered to be better than to be of type ∞. As for the type of L, we
traditionally distinguish between elementary unification and unification with parameters:

7Suppose Σ and ∆ are minimal L-complete sets of L-unifiers of the same L-unifiable I -formula ϕ. By
the L-completeness of Σ and ∆, one can readily define functions f : Σ −→ ∆ and g : ∆ −→ Σ such that
f(σ) �var(ϕ)

L σ for each σ ∈ Σ and g(δ) �var(ϕ)
L δ for each δ ∈ ∆. By the minimality of Σ and ∆, it follows

that f and g are injective. Hence, Σ and ∆ have the same cardinality.
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• elementary unification in L is the problem of asking whether a given parameter-free
I -formula is L-unifiable,

• unification with parameters in L is the problem of asking whether a given I -formula
is L-unifiable.

We shall say that

• L is nullary (or of type 0) for elementary unification if there exists an L-nullary L-
unifiable parameter-free I -formula,

• L is infinitary (or of type∞) for elementary unification if every L-unifiable parame-
ter-free I -formula is either L-unitary, or L-finitary, or L-infinitary and there exists an
L-infinitary L-unifiable parameter-free I -formula,

• L is finitary (or of type ω) for elementary unification if every L-unifiable parameter-
free I -formula is either L-unitary, or L-finitary and there exists an L-finitary L-
unifiable parameter-free I -formula,

• L is unitary (or of type 1) for elementary unification if every L-unifiable parameter-
free I -formula is L-unitary.

We shall say that

• L is nullary (or of type 0) for unification with parameters if there exists an L-nullary
L-unifiable I -formula,

• L is infinitary (or of type ∞) for unification with parameters if every L-unifiable
I -formula is either L-unitary, or L-finitary, or L-infinitary and there exists an L-
infinitary L-unifiable I -formula,

• L is finitary (or of type ω) for unification with parameters if every L-unifiable I -
formula is either L-unitary, or L-finitary and there exists an L-finitary L-unifiable
I -formula,

• L is unitary (or of type 1) for unification with parameters if every L-unifiable I -
formula is L-unitary.

Obviously, both for elementary unification and for unification with parameters, the types
“nullary”, “infinitary”, “finitary” and “unitary” constitute a set of jointly exhaustive and
pairwise distinct situations. In other respects, the unification type of L for elementary uni-
fication is at least better than the unification type of L for unification with parameters and
there is a priori no guarantee that the unification type for elementary unification and the

12
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unification type for unification with parameters are equal. For instance, the implication
fragment of Boolean logic is unitary for elementary unification and finitary for unification
with parameters [6]8. To the extent that in cases such as KB, KD, KDB, KT and KTB,
the unification type for unification with parameters is known whereas the unification type
for elementary unification is still a mystery9. Of course, seeing that the unification type of
an equational theory depends not only on the equational theory itself but also on the set of
symbols that can occur in the considered unification problems, this phenomenon is already
well-known from the theory of unification [2]. Finally, as already noticed by several authors
within the context of unimodal logics, there is no I -logic L that is known to be infinitary
either for elementary unification, or for unification with parameters. See [11].

4.2 Playing with formulas and substitutions

Let L1 be a consistent {1}-logic and L2 be a consistent {2}-logic.

Lemma 23. Let k ≥ 0. For all l ≥ 0, if k ≤ l then σl ◦ λk '
{x}
L1⊗L2

σk and τl ◦ µk '
{x}
L1⊗L2

τk.

Lemma 24. Let k ≥ 0. For all l ≥ 0, if k ≤ l then σl �
{x}
L1⊗L2

σk and τl �
{x}
L1⊗L2

τk.

Lemma 25. Let k ≥ 0. If L1⊗L2 is smooth then for all l ≥ 0, if k < l then σk 6�
{x}
L1⊗L2

σl

and τk 6�
{x}
L1⊗L2

τl.

Lemma 26. Let k ≥ 0. If L1 ⊗ L2 is smooth then for all l ≥ 0, σk 6�
{x}
L1⊗L2

τl and

τk 6�
{x}
L1⊗L2

σl.

From now on in this paper,

let ϕ be the {1, 2}-formula x→ �x and ψ be the {1, 2}-formula ¬x→ �¬x.

The {1, 2}-formulas ϕ and ψ will be the keys in Section 6 to the determination of the
unification type of the fusion of arbitrary consistent extensions of S5. In the meantime, by
Lemma 9, if L1 ⊗ L2 is tensed then ϕ and ψ have the same unifiers in L1 ⊗ L2. Hence, in
that case, as long as we only consider ϕ and ψ through their unifiers in L1⊗L2, it does not
matter if we are talking about either ϕ, or ψ.

Lemma 27. Let k ≥ 0. For all unifiers σ of ϕ in L1 ⊗ L2, σ(x) → �<kσ(x) ∈ L1 ⊗ L2
and for all unifiers τ of ψ in L1 ⊗ L2, ¬τ(x)→ �<k¬τ(x) ∈ L1 ⊗ L2.

8For all parameter-free formulas ϕ with→ as its sole connective, ϕ is unifiable in Boolean logic and the
so-called Löwenheim substitution ε defined by ε(y) = ϕ → y for each y ∈ var(ϕ) constitutes a minimal
complete set of unifiers of it.

9KB, KD, KDB, KT and KTB are nullary for unification with parameters [3, 4, 5].

13



BALBIANI, GENCER AND ROSTAMIGIV

Lemma 28. For all k ≥ 0, σk is a unifier of ϕ in L1⊗L2 and τk is a unifier of ψ in L1⊗L2.

Lemma 29. Let υ be a {1, 2}-substitution. If υ is a unifier of ϕ in L1 ⊗ L2 then for all
k ≥ 0, the following conditions are equivalent:

(a) σk ◦ υ '
{x}
L1⊗L2

υ,

(b) σk �
{x}
L1⊗L2

υ,

(c) υ(x)→ �k⊥ ∈ L1 ⊗ L2

and if υ is a unifier of ψ in L1 ⊗ L2 then for all k ≥ 0, the following conditions are
equivalent:

(d) τk ◦ υ '
{x}
L1⊗L2

υ,

(e) τk �
{x}
L1⊗L2

υ,

(f) ¬υ(x)→ �k⊥ ∈ L1 ⊗ L2.

5 General results about the unification type of fusions

Let L1 be a consistent {1}-logic and L2 be a consistent {2}-logic.

Proposition 1. Let i ∈ {1, 2} and χ be an {i}-formula. If χ is unifiable in L1 ⊗ L2 then χ
is Li-unifiable.

Proof. Suppose χ is unifiable in L1 ⊗ L2. Hence, there exists a {1, 2}-substitution σ such
that σ(χ) ∈ L1 ⊗ L2. Without loss of generality, suppose i = 1. Since L2 is consistent,
either L2 ⊆ Triv2, or L2 ⊆ Verum2. In the former case, L1⊗L2 ⊆ L1⊗Triv2

10. Since
σ(χ) ∈ L1 ⊗ L2, σ(χ) ∈ L1 ⊗ Triv2. Thus, by Lemma 7, trT1 (σ(χ)) ∈ L1 ⊗ Triv2.
Since L1 ⊗ Triv2 is a conservative extension of L1, it follows that trT1 (σ(χ)) ∈ L1.
Consequently, by Lemma 5, σT1 (trT1 (χ)) ∈ L1. Hence, by Lemma 1, σT1 (χ) ∈ L1. Thus,
χ is L1-unifiable.

Proposition 2. Let i ∈ {1, 2} and χ be an {i}-formula. For all complete sets Σ of unifiers
of χ in L1 ⊗ L2,

1. if Lī ⊆ Trivī then {σTi : σ ∈ Σ} is an Li-complete set of Li-unifiers of χ,

2. if Lī ⊆ Verumī then {σV∅,i : σ ∈ Σ} is an Li-complete set of Li-unifiers of χ.
10In the latter case, the proof can be similarly done.
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Proof. Let Σ be a complete set of unifiers of χ in L1 ⊗ L2. The proof of Item (1) can be
done as follows11.

Suppose i = 1 and L2 ⊆ Triv2.

Claim {σT1 : σ ∈ Σ} is a set of L1-unifiers of χ.

Proof: It suffices to prove that for all σ ∈ Σ, σT1 (χ) ∈ L1. Let σ ∈ Σ. The proof that
σT1 (χ) ∈ L1 is essentially the one described in the body of the proof of Proposition 1.
We include it here for the sake of the completeness. Since Σ is a set of unifiers of χ in
L1 ⊗ L2, we obtain σ(χ) ∈ L1 ⊗ L2. Since L2 ⊆ Triv2, L1 ⊗ L2 ⊆ L1 ⊗Triv2. Since
σ(χ) ∈ L1 ⊗ L2, σ(χ) ∈ L1 ⊗ Triv2. Hence, by Lemma 7, trT1 (σ(χ)) ∈ L1 ⊗ Triv2.
Since L1 ⊗Triv2 is a conservative extension of L1, trT1 (σ(χ)) ∈ L1. Thus, by Lemma 5,
σT1 (trT1 (χ)) ∈ L1. Hence, by Lemma 1, σT1 (χ) ∈ L1.

Claim {σT1 : σ ∈ Σ} is an L1-complete set of L1-unifiers of χ.

Proof: By the previous Claim, it suffices to prove that for all {1}-substitutions σ, if σ(χ) ∈
L1 then there exists τ ∈ Σ such that τT1 �

var(χ)
L1

σ. Let σ be a {1}-substitution. Suppose
σ(χ) ∈ L1. Hence, σ(χ) ∈ L1 ⊗L2. Since Σ is a complete set of unifiers of χ in L1 ⊗L2,
there exists τ ∈ Σ such that τ �var(χ)

L1⊗L2
σ. Thus, there exists a {1, 2}-substitution υ such that

τ ◦ υ 'var(χ)
L1⊗L2

σ. Hence, for all variables y ∈ var(χ), υ(τ(y)) ↔ σ(y) ∈ L1 ⊗ L2. Since
L2 ⊆ Triv2, L1⊗L2 ⊆ L1⊗Triv2. Since for all variables y ∈ var(χ), υ(τ(y))↔ σ(y) ∈
L1⊗L2, for all variables y ∈ var(χ), υ(τ(y))↔ σ(y) ∈ L1⊗Triv2. Thus, by Lemma 7,
for all variables y ∈ var(χ), trT1 (υ(τ(y)) ↔ σ(y)) ∈ L1 ⊗ Triv2. Since L1 ⊗ Triv2 is
a conservative extension of L1, for all variables y ∈ var(χ), trT1 (υ(τ(y))↔ σ(y)) ∈ L1.
Thus, for all variables y ∈ var(χ), trT1 (υ(τ(y))) ↔ trT1 (σ(y)) ∈ L1. Consequently,
by Lemma 5, for all variables y ∈ var(χ), υT1 (τT1 (y)) ↔ trT1 (σ(y)) ∈ L1. Hence, by
Lemma 1, for all variables y ∈ var(χ), υT1 (τT1 (y))↔ σ(y) ∈ L1. Thus, τT1 ◦υT1 '

var(χ)
L1

σ.

Consequently, τT1 �
var(χ)
L1

σ.

This ends the proof of Proposition 2.

Proposition 3. Let i ∈ {1, 2} and χ be a {1, 2}-formula.

1. For all minimal Li-complete sets Σ of Li-unifiers of trTi (χ), if Lī = Trivī then Σ is
a minimal complete set of unifiers of χ in L1 ⊗ L2,

11The proof of Items (2)–(4) can be similarly done.
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2. for all minimal Li-complete sets Σ of Li-unifiers of trVvar(χ),i(χ), if Lī = Verumī

then Σ is a minimal complete set of unifiers of χ in L1 ⊗ L2.

Proof. The proof of Item (1) can be done as follows12.

Let Σ be a minimal Li-complete set of Li-unifiers of trTi (χ). Suppose i = 1 and L2 =
Triv2.

Claim Σ is a set of unifiers of χ in L1 ⊗ L2.

Proof: It suffices to prove that for all σ ∈ Σ, σ(χ) ∈ L1 ⊗ L2. Let σ ∈ Σ. Since Σ
is a set of Li-unifiers of trTi (χ), σ(trTi (χ)) ∈ Li. Hence, by Lemma 6, trTi (σ(χ)) ∈ Li.
Since i = 1 and L2 = Triv2, then by Lemma 7, σ(χ) ∈ L1 ⊗ L2.

Claim Σ is a complete set of unifiers of χ in L1 ⊗ L2.

Proof: By the previous Claim, it suffices to prove that for all {1, 2}-substitutions σ, if
σ(χ) ∈ L1 ⊗ L2 then there exists τ ∈ Σ such that τ �var(χ)

L1⊗L2
σ. Let σ be a {1, 2}-

substitution. Suppose σ(χ) ∈ L1 ⊗ L2. Since i = 1 and L2 = Triv2, then by Lemma 7,
trTi (σ(χ)) ∈ L1 ⊗ L2. Since L1 ⊗ L2 is a conservative extension of Li, trTi (σ(χ)) ∈ Li.
Hence, by Lemma 5, σTi (trTi (χ)) ∈ Li. Thus, σTi is an Li-unifier of trTi (χ). Since Σ is an

Li-complete set of Li-unifiers of trTi (χ), there exists τ ∈ Σ such that τ �var(trT
i (χ))

Li
σTi .

Consequently, there exists an {i}-substitution υ such that τ ◦υ 'var(trT
i (χ))

Li
σTi . Hence, for

all variables y ∈ var(trTi (χ)), υ(τ(y)) ↔ σTi (y) ∈ Li. Thus, by Lemma 1, for all vari-
ables y ∈ var(trTi (χ)), trTi (υ(τ(y)))↔ trTi (σ(y)) ∈ Li. Consequently, for all variables
y ∈ var(trTi (χ)), trTi (υ(τ(y)))↔ trTi (σ(y)) ∈ L1 ⊗ L2. Since i = 1 and L2 = Triv2,
then by Lemma 7, for all variables y ∈ var(trTi (χ)), υ(τ(y)) ↔ σ(y) ∈ L1 ⊗ L2.
Hence, by Lemma 2, for all variables y ∈ var(χ), υ(τ(y)) ↔ σ(y) ∈ L1 ⊗ L2. Thus,
τ ◦ υ 'var(χ)

L1⊗L2
σ. Consequently, τ �var(χ)

L1⊗L2
σ.

Claim Σ is a minimal complete set of unifiers of χ in L1 ⊗ L2.

Proof: By the previous Claim, it suffices to prove that for all σ, τ ∈ Σ, if σ �var(χ)
L1⊗L2

τ then

σ = τ . Let σ, τ ∈ Σ. Suppose σ �var(χ)
L1⊗L2

τ . Hence, there exists an {1, 2}-substitution υ

such that σ ◦υ 'var(χ)
L1⊗L2

τ . Thus, for all variables y ∈ var(χ), υ(σ(y))↔ τ(y) ∈ L1⊗L2.
Hence, by Lemma 2, for all variables y ∈ var(trTi (χ)), υ(σ(y)) ↔ τ(y) ∈ L1 ⊗ L2.

12The proof of Item (2) can be similarly done.
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Since i = 1 and L2 = Triv2, then by Lemma 7, for all variables y ∈ var(trTi (χ)),
trTi (υ(σ(y))) ↔ trTi (τ(y)) ∈ L1 ⊗ L2. Since L1 ⊗ L2 is a conservative extension of
Li, for all variables y ∈ var(trTi (χ)), trTi (υ(σ(y))) ↔ trTi (τ(y)) ∈ Li. Consequently,
by Lemmas 1 and 5, for all variables y ∈ var(trTi (χ)), υTi (σ(y)) ↔ τ(y) ∈ Li. Thus,

σ �var(trT
i (χ))

Li
τ . Since Σ is a minimal Li-complete set of Li-unifiers of trTi (χ), σ = τ .

This ends the proof of Proposition 3.

In the above proof, the reader is invited to appreciate the uses of Lemma 2.

Proposition 4. Both for elementary unification and for unification with parameters, if L1⊗
L2 is of type 1 then for all i ∈ {1, 2}, Li is of type 1.

Proof. Suppose L1 ⊗ L2 is of type 1. Suppose i = 1.

It suffices to prove that for all L1-unifiable {1}-formulas χ, χ is L1-unitary. Let χ be
an L1-unifiable {1}-formula. Hence, there exists a {1}-substitution σ such that σ(χ) ∈ L1.
Thus, σ(χ) ∈ L1 ⊗L2. Hence, χ is unifiable in L1 ⊗L2. Since L1 ⊗L2 is of type 1, there
exists a minimal complete set Σ of unifiers of χ in L1 ⊗ L2 with cardinality 1. Since L2
is consistent, either L2 ⊆ Triv2, or L2 ⊆ Verum2. In the former case, by Proposition 2,
{σT1 : σ ∈ Σ} is an L1-complete set of L1-unifiers of χ13. Since the cardinality of Σ is 1,
the cardinality of {σT1 : σ ∈ Σ} is 1. Consequently, χ is L1-unitary.

Notice that the converse of the statement established in Proposition 4 is not always true.
For instance, as proved in Section 6, S5⊗ S5 is of type 0.

Proposition 5. Both for elementary unification and for unification with parameters, if L1⊗
L2 is of type ω then for all i ∈ {1, 2}, Li is either of type 1, or of type ω.

Proof. Suppose L1 ⊗ L2 is of type ω. Suppose i = 1.

It suffices to prove that for all L1-unifiable {1}-formulas χ, χ is either L1-unitary, or L1-
finitary. Let χ be an L1-unifiable {1}-formula. The proof that χ is either L1-unitary, or
L1-finitary is essentially the one described in the body of the proof of Proposition 4. We
include it here for the sake of the completeness. Since χ is an L1-unifiable {1}-formula,
there exists a {1}-substitution σ such that σ(χ) ∈ L1. Thus, σ(χ) ∈ L1 ⊗ L2. Hence, χ is
unifiable in L1⊗L2. Since L1⊗L2 is of type ω, there exists a finite minimal complete set Σ
of unifiers of χ in L1 ⊗ L2. Since L2 is consistent, either L2 ⊆ Triv2, or L2 ⊆ Verum2.
In the former case, by Proposition 2, {σT1 : σ ∈ Σ} is an L1-complete set of L1-unifiers

13In the latter case, the proof can be similarly done.
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of χ14. Since Σ is finite, {σT1 : σ ∈ Σ} is finite. Consequently, χ is either L1-unitary, or
L1-finitary.

Notice that the converse of the statement established in Proposition 5 is not always true.
For instance, as proved in [28, Chapter 6], K4 ⊗ K4 and S4 ⊗ S4 are of type 0. After
Propositions 4 and 5, it is natural to ask whether both for elementary unification and for
unification with parameters, if L1 ⊗ L2 is of type ∞ then for all i ∈ {1, 2}, Li is either
of type 1, or of type ω, or of type∞. Unfortunately, we have not been able to answer this
question, seeing that in Proposition 2, it is not clear that if the set Σ considered there is an
infinite minimal complete set of unifiers then, when either Lī ⊆ Trivī, or Lī ⊆ Verumī,
the corresponding set among {σTi : σ ∈ Σ} and {σV∅,i : σ ∈ Σ} is minimal complete too.

Proposition 6. Both for elementary unification and for unification with parameters, for all
i ∈ {1, 2}, if either Li = Trivi, or Li = Verumi then the type of L1⊗L2 and the type of
Lī are equal.

Proof. Suppose i = 1.

Suppose either L1 = Triv1, or L1 = Verum1. In the former case, for the sake of the
contradiction, suppose that the type of L1 ⊗ L2 and the type of L2 are not equal15. We
consider the following cases.

Case L2 is of type 0: Hence, there exists an L2-unifiable {2}-formula χ of type 0. Thus,
there exists an L2-unifier υ of χ. Hence, υ is a unifier of χ in L1 ⊗ L2. Since L1 ⊗ L2
is not of type 0, there exists a minimal complete set Σ of unifiers of χ in L1 ⊗ L2. Since
L1 = Triv1, then by Proposition 2, {σT2 : σ ∈ Σ} is an L2-complete set of L2-unifiers
of χ. Since χ is of type 0, {σT2 : σ ∈ Σ} is not a minimal L2-complete set of L2-unifiers
of χ. Consequently, there exists σ, τ ∈ Σ such that σT2 �

var(χ)
L2

τT2 and σT2 6= τT2 . Thus,

σ 6= τ . Since σT2 �
var(χ)
L2

τT2 , it follows that there exists a {2}-substitution λ such that
for all variables y ∈ var(χ), λ(σT2 (y)) ↔ τT2 (y) ∈ L2. Consequently, for all variables
y ∈ var(χ), λ(trT2 (σ(y))) ↔ trT2 (τ(y)) ∈ L2. Thus, by Lemma 6, for all variables
y ∈ var(χ), trT2 (λ(σ(y))) ↔ trT2 (τ(y)) ∈ L2. Hence, for all variables y ∈ var(χ),
trT2 (λ(σ(y))) ↔ trT2 (τ(y)) ∈ L1 ⊗ L2. Since L1 = Triv1, then by Lemma 7, for all
variables y ∈ var(χ), λ(σ(y))↔ τ(y) ∈ L1 ⊗ L2. Consequently, σ ◦ λ 'var(χ)

L1⊗L2
τ . Thus,

σ �var(χ)
L1⊗L2

τ . Since Σ is a minimal complete set of unifiers of χ in L1 ⊗ L2, σ = τ : a
contradiction.

14In the latter case, the proof can be similarly done.
15In the latter case, the proof can be similarly done.
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Case L2 is of type ∞: Hence, by Propositions 4 and 5, neither L1 ⊗ L2 is of type 1,
nor L1 ⊗ L2 is of type ω. Since L1 ⊗ L2 is not of type ∞, L1 ⊗ L2 is of type 0. Thus,
there exists a unifiable {1, 2}-formula χ of type 0 in L1 ⊗ L2. Hence, there exists a uni-
fier υ of χ in L1 ⊗ L2. Consequently, υ(χ) ∈ L1 ⊗ L2. Since L1 = Triv1, then by
Lemma 7, trT2 (υ(χ)) ∈ L1 ⊗ L2. Thus, by Lemma 5, υT2 (trT2 (χ)) ∈ L1 ⊗ L2. Since
L1⊗L2 is a conservative extension of L2, it follows that υT2 (trT2 (χ)) ∈ L2. Consequently,
υT2 is an L2-unifier of trT2 (χ). Since L2 is of type∞, there exists a minimal L2-complete
set Σ of L2-unifiers of trT2 (χ). Since L1 = Triv1, then by Proposition 3, Σ is a minimal
complete set of unifiers of χ in L1⊗L2. Thus, χ is not of type 0 in L1⊗L2: a contradiction.

Case L2 is of type ω: Thus, by Proposition 4, L1 ⊗ L2 is not of type 1. Since L1 ⊗ L2 is
not of type ω, either L1 ⊗ L2 is of type 0, or L1 ⊗ L2 is of type∞. Consequently, there
exists a unifiable {1, 2}-formula χ either of type 0, or of type∞ in L1 ⊗ L2. Hence, there
exists a unifier υ of χ in L1 ⊗ L2. Consequently, υ(χ) ∈ L1 ⊗ L2. Since L1 = Triv1,
then by Lemma 7, trT2 (υ(χ)) ∈ L1 ⊗ L2. Thus, by Lemma 5, υT2 (trT2 (χ)) ∈ L1 ⊗ L2.
Since L1 ⊗ L2 is a conservative extension of L2, we obtain υT2 (trT2 (χ)) ∈ L2. Hence, υT2
is an L2-unifier of trT2 (χ). Since L2 is of type ω, there exists a finite minimal L2-complete
set Σ of L2-unifiers of trT2 (χ). Since L1 = Triv1, then by Proposition 3, Σ is a minimal
complete set of unifiers of χ in L1 ⊗ L2. Consequently, neither χ is of type 0 in L1 ⊗ L2,
nor χ is of type∞ in L1 ⊗ L2: a contradiction.

Case L2 is of type 1: Since L1 ⊗ L2 is not of type 1, there exists a unifiable {1, 2}-
formula χ either of type 0, or of type ∞, or of type ω in L1 ⊗ L2. Thus, there exists a
unifier υ of χ in L1 ⊗ L2. Hence, υ(χ) ∈ L1 ⊗ L2. Since L1 = Triv1, then by Lemma 7,
trT2 (υ(χ)) ∈ L1⊗L2. Consequently, by Lemma 5, υT2 (trT2 (χ)) ∈ L1⊗L2. Since L1⊗L2
is a conservative extension of L2, υT2 (trT2 (χ)) ∈ L2. Thus, υT2 is an L2-unifier of trT2 (χ).
Since L2 is of type 1, there exists a finite minimal L2-complete set Σ of L2-unifiers of
trT2 (χ) with cardinality 1. Since L1 = Triv1, then by Proposition 3, Σ is a minimal com-
plete set of unifiers of χ in L1 ⊗ L2. Hence, neither χ is of type 0 in L1 ⊗ L2, nor χ is of
type∞ in L1 ⊗ L2, nor χ is of type ω in L1 ⊗ L2: a contradiction.

In the above proof, the reader is invited to appreciate the uses of Proposition 3.

6 Specific results about the unification type of fusions

Let L1 be a consistent {1}-logic and L2 be a consistent {2}-logic. In Propositions 7 and 8,
for all m ≥ 0, σm and τm are the {1, 2}-substitutions defined in Section 3 and ϕ and ψ are
the {1, 2}-formulas defined in Section 4.
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Proposition 7. If L1 and L2 are non-trivial extensions of S5 then for all unifiers υ of ϕ∧ψ
in L1 ⊗ L2, there exists m ≥ 0 such that either σm �{x}L1⊗L2

υ, or τm �{x}L1⊗L2
υ.

Proof. Suppose L1 and L2 are non-trivial extensions of S5. Let υ be a unifier of ϕ ∧ ψ
in L1 ⊗ L2. Hence, υ is a unifier of ϕ in L1 ⊗ L2 and υ is a unifier of ψ in L1 ⊗ L2.
Let m ≥ 0 be such that deg(υ(x)) ≤ 6m. Suppose σm 6�{x}L1⊗L2

υ and τm 6�{x}L1⊗L2
υ.

Since υ is a unifier of ϕ in L1 ⊗ L2 and υ is a unifier of ψ in L1 ⊗ L2, then by Lemma 29,
υ(x)→ �m⊥ 6∈ L1⊗L2 and ¬υ(x)→ �m⊥ 6∈ L1⊗L2. Since L1 and L2 are non-trivial
extensions of S5, either there exists kk ≥ 2 such that L1 = S5kk

1 , or L1 = S51 and either
there exists ll ≥ 2 such that L2 = S5ll

2 , or L2 = S52. Consequently, we have to consider
the following cases:

1. there exists kk ≥ 2 such that L1 = S5kk
1 and there exists ll ≥ 2 such that L2 = S5ll

2 ,

2. there exists kk ≥ 2 such that L1 = S5kk
1 and L2 = S52,

3. L1 = S51 and there exists ll ≥ 2 such that L2 = S5ll
2 ,

4. L1 = S51 and L2 = S52.

The proof in Case (1) can be done as follows16.

Remind that

• S5kk
1 is a Kripke complete {1}-logic characterized by the class of all Kripke frames

(W,R1) where R1 is an equivalence relation on W for which each equivalence class
is a finite set of exactly kk possible worlds,

• S5ll
2 is a Kripke complete {2}-logic characterized by the class of all Kripke frames

(W,R2) where R2 is an equivalence relation on W for which each equivalence class
is a finite set of exactly ll possible worlds,

• S5kk
1 is characterized by the class of all Kripke frames (W,R1) where R1 is an equi-

valence relation on W for which each equivalence class is a finite set of at most kk
possible worlds,

• S5ll
2 is also characterized by the class of all Kripke frames (W,R2) where R2 is an

equivalence relation on W for which each equivalence class is a finite set of at most
ll possible worlds.

Since these classes of Kripke frames are closed under the formation of disjoint unions and
isomorphic copies, then by [15, Theorem 4.1],

16The proof of Cases (2)–(4) can be similarly done.
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• L1 ⊗ L2 is a Kripke complete {1, 2}-logic characterized both by the class C= of all
Kripke frames (W,R1, R2) whereR1 is an equivalence relation onW for which each
equivalence class is a finite set of exactly kk possible worlds andR2 is an equivalence
relation on W for which each equivalence class is a finite set of exactly ll possible
worlds,

• L1 ⊗ L2 is a Kripke complete {1, 2}-logic characterized both by the class C≤ of all
Kripke frames (W,R1, R2) whereR1 is an equivalence relation onW for which each
equivalence class is a finite set of at most kk possible worlds andR2 is an equivalence
relation on W for which each equivalence class is a finite set of at most ll possible
worlds.

Since υ(x)→ �m⊥ 6∈ L1 ⊗ L2 and ¬υ(x)→ �m⊥ 6∈ L1 ⊗ L2,

• there exists a Kripke frame F = (W,R1, R2) in C=, there exists a model M =
(W,R1, R2, V ) based on F and there exists t0 ∈W such thatM, t0 |= υ(x)∧¬�m

⊥,

• there exists a Kripke frame F ′ = (W ′, R′1, R′2) in C=, there exists a model M′ =
(W ′, R′1, R′2, V ′) based on F ′ and there exists t′0 ∈ W ′ such thatM′, t′0 |= ¬υ(x) ∧
¬�m ⊥.

Now, let us transform M and M′ into kinds of tree-like models without affecting satis-
fiability. An adaptation of the transformation called unravelling [7, Definition 4.51] will
enable us to do this. We describe the transformation ofM as follows17. A t0-tip inM is
a tuple of the form (u0, a1, u1, . . . , ak, uk) where u0 = t0, k ≥ 0, a1, . . . , ak ∈ {1, 2} and
u1, . . . , uk ∈W are such that

• for all i ∈ {1, . . . , k}, ui−1Raiui,

• for all i ∈ {1, . . . , k}, ui−1 6= ui,

• for all i ∈ {2, . . . , k}, ai−1 6= ai.

Let W ′′ be the set of all t0-tips inM. Notice that (t0) ∈ W ′′. For all i ∈ {1, 2}, let R′′i be
the equivalence relation on W ′′ such that for all (u0, a1, u1, . . . , ak, uk), (v0, b1, v1, . . . , bl,
vl) ∈ W ′′, (u0, a1, u1, . . . , ak, uk)R′′i (v0, b1, v1, . . . , bl, vl) iff one of the following condi-
tions holds:

• (u0, a1, u1, . . . , ak, uk) = (v0, b1, v1, . . . , bl, vl),

• k ≥ 1, (u0, a1, u1, . . . , ak−1, uk−1) = (v0, b1, v1, . . . , bl, vl) and ak = i,
17The description of the transformation ofM′ can be similarly done.
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• l ≥ 1, (u0, a1, u1, . . . , ak, uk) = (v0, b1, v1, . . . , bl−1, vl−1) and bl = i,

• k ≥ 1, l ≥ 1, (u0, a1, u1, . . . , ak−1, uk−1) = (v0, b1, v1, . . . , bl−1, vl−1), ak = i, and
bl = i.

Notice that for all (u0, a1, u1, . . . , ak, uk) ∈ W ′′, the equivalence class of (u0, a1, u1, . . . ,
ak, uk) modulo R′′1 contains exactly kk elements and the equivalence class of (u0, a1, u1,
. . . , ak, uk) modulo R′′2 contains exactly ll elements. Moreover, the intersection of these
equivalence classes is the singleton {(u0, a1, u1, . . . , ak, uk)}. Let V ′′ be the valuation on
W ′′ such that for all atoms α, V ′′(α) = {(u0, a1, u1, . . . , ak, uk) ∈ W ′′ : uk ∈ V (α)}.
Let the unravelling ofM around t0 be the structure

• M′′ = (W ′′, R′′1 , R′′2 , V ′′).

Similarly, let the unravelling ofM′ around t′0 be the structure

• M′′′ = (W ′′′, R′′′1 , R′′′2 , V ′′′).

Let f ′′ be the function defined fromW ′′ toW and associating to each t0-tip (u0, a1, u1, . . . ,
ak, uk) in W ′′ the possible world uk in W . Similarly, let f ′′′ be the function defined from
W ′′′ to W ′ and associating to each t′0-tip (u′0, a′1, u′1, . . . , a′k, u′k) in W ′′′ the possible world
u′k in W ′. Obviously, f ′′ is a bounded morphism fromM′′ toM such that f ′′((t0)) = t0

18.
Similarly, obviously, f ′′′ is a bounded morphism fromM′′′ toM′ such that f ′′′((t′0)) = t′0.
Since M, t0 |= υ(x) ∧ ¬ �m ⊥, then by [7, Proposition 2.14], M′′, (t0) |= υ(x) and
M′′, (t0) 6|= �m⊥. Similarly, since M′, t′0 |= ¬υ(x) ∧ ¬ �m ⊥, then by [7, Proposi-
tion 2.14], M′′′, (t′0) 6|= υ(x) and M′′′, (t′0) 6|= �m⊥. Since M′′, (t0) 6|= �m⊥, there
exists t1,1, t1,2, t1,3, t1,4, t1,5, t1,6, . . . , tm,1, tm,2, tm,3, tm,4, tm,5, tm,6 ∈W such that

• t0R1t1,1R2t1,2R1t1,3R2t1,4R1t1,5R2t1,6 . . . R1tm,1R2tm,2R1tm,3R2tm,4R1tm,5R2
tm,6,

18To see this, notice that

• by the definition of the valuation V ′′ on W ′′, for all t0-tips (u0, a1, u1, . . . , ak, uk) in W ′′,
(u0, a1, u1, . . . , ak, uk) and uk satisfy the same atoms,

• for all i ∈ {1, 2}, by the definition of the equivalence relation R′′
i on W ′′, knowing that Ri is an

equivalence relation on W , for all t0-tips (u0, a1, u1, . . . , ak, uk), (v0, b1, v1, . . . , bl, vl) in W ′′, if
(u0, a1, u1, . . . , ak, uk)R′′

i (v0, b1, v1, . . . , bl, vl) then ukRivl,

• for all i ∈ {1, 2}, by the definition of the equivalence relation R′′
i on W ′′, knowing

that Ri is an equivalence relation on W , for all t0-tips (u0, a1, u1, . . . , ak, uk) in W ′′ and
for all v in W , if ukRiv then there exists a t0-tip (v0, b1, v1, . . . , bl, vl) in W ′′ such that
(u0, a1, u1, . . . , ak, uk)R′′

i (v0, b1, v1, . . . , bl, vl) and vl = v.
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• M, t0 |= p1 ∧ q0 ∧ r1,M, t1,1 |= p0 ∧ q0 ∧ r0,M, t1,2 |= p0 ∧ q0 ∧ r1,M, t1,3 |=
p0∧ q1∧ r0,M, t1,4 |= p0∧ q1∧ r1,M, t1,5 |= p1∧ q0∧ r0,M, t1,6 |= p1∧ q0∧ r1,
. . ., M, tm,1 |= p0 ∧ q0 ∧ r0, M, tm,2 |= p0 ∧ q0 ∧ r1, M, tm,3 |= p0 ∧ q1 ∧ r0,
M, tm,4 |= p0 ∧ q1 ∧ r1,M, tm,5 |= p1 ∧ q0 ∧ r0,M, tm,6 |= p1 ∧ q0 ∧ r1.

This implies thatW ′′ contains the t0-tip tt = (t0, 1, t1,1, 2, t1,2, 1, t1,3, 2, t1,4, 1, t1,5, 2, t1,6,
. . . , 1, tm,1, 2, tm,2, 1, tm,3, 2, tm,4, 1, tm,5, 2, tm,6). Similarly, since M′′′, (t′0) 6|= �m⊥,
there exists t′1,1, t

′
1,2, t

′
1,3, t

′
1,4, t

′
1,5, t

′
1,6, . . . , t

′
m,1, t

′
m,2, t

′
m,3, t

′
m,4, t

′
m,5, t

′
m,6 ∈W ′ such that

• t′0R2t
′
1,1R1t

′
1,2R2t

′
1,3R1t

′
1,4R2t

′
1,5R1t

′
1,6 . . . R2t

′
m,1R1t

′
m,2R2t

′
m,3R1t

′
m,4R2t

′
m,5R1

t′m,6,

• M′, t′0 |= p1 ∧ q0 ∧ r1,M′, t′1,1 |= p1 ∧ q0 ∧ r0,M′, t′1,2 |= p0 ∧ q1 ∧ r1,M′, t′1,3 |=
p0∧q1∧r0,M′, t′1,4 |= p0∧q0∧r1,M′, t′1,5 |= p0∧q0∧r0,M′, t′1,6 |= p1∧q0∧r1,
. . .,M′, t′m,1 |= p1 ∧ q0 ∧ r0,M′, t′m,2 |= p0 ∧ q1 ∧ r1,M′, t′m,3 |= p0 ∧ q1 ∧ r0,
M′, t′m,4 |= p0 ∧ q0 ∧ r1,M′, t′m,5 |= p0 ∧ q0 ∧ r0,M′, t′m,6 |= p1 ∧ q0 ∧ r1.

Similarly, this implies that W ′′′ contains the t′0-tip tt′ = (t′0, 2, t′1,1, 1, t′1,2, 2, t′1,3, 1, t′1,4, 2,
t′1,5, 1, t′1,6, . . . , 2, t′m,1, 1, t′m,2, 2, t′m,3, 1, t′m,4, 2, t′m,5, 1, t′m,6). LetM∪ = (W∪, R∪1 , R∪2 ,
V ∪) be the model obtained from the disjoint union ofM′′ andM′′′ by deleting all possible
worlds in R′′1(tt) but tt and by deleting all possible worlds in R′′′2 (tt′) but tt′. Notice
that consequently, R∪1 (tt) = {tt} and R∪2 (tt′) = {tt′}. Obviously, the Kripke frame
(W∪, R∪1 , R∪2 ) is in C≤. Moreover, notice that in this frame, the length of the shortest path
from (t0) to tt is equal to 6m and the length of the shortest path from (t′0) to tt′ is equal to
6m. Since deg(υ(x)) ≤ 6m,M′′, (t0) |= υ(x) andM′′′, (t′0) 6|= υ(x),M∪, (t0) |= υ(x)
andM∪, (t′0) 6|= υ(x). LetM] = (W], R]1 , R]2 , V ]) be the least model model obtained
fromM∪ = (W∪, R∪1 , R∪2 , V ∪) by adding new states u1, u2, u3, u4 and u5 such that

(?) ttR]1 u1R
]
2 u2R

]
1 u3R

]
2 u4R

]
1 u5R

]
2 tt′,

(??) R]1 and R]2 are reflexive and symmetric19,

(? ? ?) M], u1 |= p0 ∧ q0 ∧ r0, M], u2 |= p0 ∧ q0 ∧ r1, M], u3 |= p0 ∧ q1 ∧ r0,
M], u4 |= p0 ∧ q1 ∧ r1 andM], u5 |= p1 ∧ q0 ∧ r0.

Notice that consequently, R]1 (tt) = {tt, u1} and R]2 (tt′) = {tt′, u5}. Obviously, the
Kripke frame (W], R]1 , R]2 ) is in C≤. Moreover, notice that in this frame, the length of
the shortest path from (t0) to tt is still equal to 6m and the length of the shortest path
from (t′0) to tt′ is still equal to 6m. Since deg(υ(x)) ≤ 6m, M∪, (t0) |= υ(x) and
M∪, (t′0) 6|= υ(x), we obtainM], (t0) |= υ(x) andM], (t′0) 6|= υ(x). Since υ is a unifier

19The transitivity of R]
1 and R]

2 is a consequence of the definition ofM].
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of ϕ and υ is a unifier of ψ, υ(x)→ �υ(x) ∈ L1 ⊗L2 and ¬υ(x)→ �¬σ(x) ∈ L1 ⊗L2.
Since the Kripke frame (W], R]1 , R]2 ) is in C≤,M], (t0) |= υ(x) andM], (t′0) 6|= υ(x),
it follows thatM], tt |= υ(x) andM], tt′ 6|= υ(x). Since υ(x) → �υ(x) ∈ L1 ⊗ L2,
¬υ(x) → �¬σ(x) ∈ L1 ⊗ L2 and the Kripke frame (W], R]1 , R]2 ) is in C≤, then by (?),
(??) and (? ? ?),M], tt 6|= υ(x) andM], tt′ |= υ(x): a contradiction.

This ends the proof of Proposition 7.

Proposition 8. If L1 and L2 are non-trivial extensions of S5 then ϕ ∧ ψ is of type 0 in
L1 ⊗ L2.

Proof. Suppose L1 and L2 are non-trivial extensions of S5. Suppose ϕ ∧ ψ is not of type
0 in L1 ⊗ L2. Consequently, there exists a minimal complete set Σ of unifiers of ϕ ∧ ψ
in L1 ⊗ L2. By Lemma 28, σ0 is a unifier of ϕ ∧ ψ in L1 ⊗ L2. Since Σ is a minimal
complete set of unifiers of ϕ∧ψ in L1⊗L2, let υ ∈ Σ be such that υ �{x}L1⊗L2

σ0. Thus, by

Proposition 7, let k ≥ 0 be such that either σk �
{x}
L1⊗L2

υ, or τk �
{x}
L1⊗L2

υ. In the former
case, by Lemma 28, σk+1 is a unifier of ϕ∧ψ in L1⊗L2. Since Σ is a minimal complete set
of unifiers ofϕ∧ψ in L1⊗L2, let υ′ ∈ Σ be such that υ′ �{x}L1⊗L2

σk+1. Since σk �
{x}
L1⊗L2

υ,

then by Lemma 24, υ′ �{x}L1⊗L2
υ. Since Σ is a minimal complete set of unifiers of ϕ ∧ ψ

in L1 ⊗ L2, υ′ = υ. Since σk �
{x}
L1⊗L2

υ and υ′ �{x}L1⊗L2
σk+1, σk �

{x}
L1⊗L2

σk+1: a

contradiction with Lemmas 3 and 25. In the latter case, since υ �{x}L1⊗L2
σ0, τk �

{x}
L1⊗L2

σ0:
a contradiction with Lemmas 3 and 26.

Proposition 9. If L1 and L2 are non-trivial extensions of S5 then L1 ⊗ L2 is of type 0 for
unification with parameters.

Proof. By Proposition 8.

7 Conclusion
After Propositions 4 and 5, it is natural to ask whether if L1 ⊗ L2 is of type∞ then for all
i ∈ {1, 2}, Li is either of type 1, or of type ω, or of type ∞. Unfortunately, we have not
been able to answer this question, seeing that in Proposition 2, it is not clear that if the set
Σ considered there is an infinite minimal complete set of unifiers then, when Lī ⊆ Trivī,
or Lī ⊆ Verumī, the corresponding set among {σTi : σ ∈ Σ} and {σV∅,i : σ ∈ Σ} is
minimal complete too20.

20By the way, no modal logic (either unimodal, or multimodal) is known to be infinitary and it is also an
open problem to determine if such modal logic exists.
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Following the same line of reasoning as the one used in Section 6, other fusions such as
K4 ⊗K4 and S4 ⊗ S4 can also be proved to be nullary. See [28, Chapter 6]. The results
obtained there as well as the results obtained in Section 6 lead us to the conjecture that
every non-trivial fusion is of type 0, that is to say: if L1 ⊗ L2 is not of type 0 then either
L1 = Triv1, or L1 = Verum1, or L2 = Triv2, or L2 = Verum2. These results also
lead us to the conjecture that if either L1 is of type 0, or L2 is of type 0 then L1 ⊗ L2 is
of type 021. By Propositions 4 and 5, this conjecture is equivalent to the one saying that if
L1⊗L2 is of type∞ then for all i ∈ {1, 2}, Li is either of type 1, or of type ω, or of type∞.

Finally, Proposition 9 only constitutes a partial answer to Dzik’s conjecture that the fu-
sion S5⊗S5 of S5 with itself is either nullary, or infinitary [11, Chapter 6], seeing that it is
still unknown when L1 and L2 are non-trivial extensions of S5 whether L1 ⊗ L2 is of type
0 for elementary unification. In the case of elementary unification, what will play the role
of the parameters p, q and r used in the formulas ϕ and ψ? What will play the role of the
formulas ϕ and ψ? Is S5⊗ S5 itself of type 0 for elementary unification?
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Appendix

This Appendix includes the proofs of some of our results. Most of these proofs are rela-
tively simple and we have included them here just for the sake of the completeness.

Proof of Lemma 1: The proof is done by induction on ϕ.

Proof of Lemma 2: The proof is done by induction on ϕ.

Proof of Lemma 3: Suppose L1 and L2 are non-trivial extensions of S5.

Firstly, we prove that L1 ⊗ L2 is tensed. Since S51 contains all {1}-formulas of the form
ϕ → 2131ϕ and S52 contains all {2}-formulas of the form ϕ → 2232ϕ, L1 contains
all {1}-formulas of the form ϕ → 2131ϕ and L2 contains all {2}-formulas of the form
ϕ → 2232ϕ. Hence, L1 ⊗ L2 contains all {1, 2}-formulas of the form ϕ → 2131ϕ and
ϕ→ 2232ϕ. Thus, L1 ⊗ L2 is tensed.

Secondly, we prove that L1 ⊗ L2 is smooth. More precisely, we prove that for all k, l ≥ 0,
if k > l then �k⊥ → �l⊥ 6∈ L1 ⊗ L2

22. Let k, l ≥ 0. Suppose k > l. Let M =
(W,R1, R2, V ) be a model such that

• W = {i ≥ 0 : 0 ≤ i ≤ 6l},

• for all i, j ∈W , iR1j iff | j − i |≤ 1 and either i = j, or max{i, j} is odd,

• for all i, j ∈W , iR2j iff | j − i |≤ 1 and either i = j, or max{i, j} is even,

• V (p) = {i ≥ 0 : 0 ≤ i ≤ 6l and either i mod 6 = 0, or i mod 6 = 5},

• V (q) = {i ≥ 0 : 0 ≤ i ≤ 6l and either i mod 6 = 3, or i mod 6 = 4},

• V (r) = {i ≥ 0 : 0 ≤ i ≤ 6l and either i mod 6 = 0, or i mod 6 = 2, or i
mod 6 = 4}.

Obviously,M, 0 |= �k⊥ andM, 0 |= ¬�l⊥. Consequently, the Kripke frame (W,R1, R2)
does not validate �k⊥ → �l⊥. In other respects, each equivalence class modulo R1 con-
tains exactly two possible worlds and each equivalence class modulo R2 contains exactly
two possible worlds. Hence, the Kripke frame (W,R1, R2) validates S52

1 ⊗ S52
2. Since the

Kripke frame (W,R1, R2) does not validate �k⊥ → �l⊥, �k⊥ → �l⊥ 6∈ S52
1 ⊗ S52

2.
Since L1 and L2 are non-trivial extensions of S5, L1 ⊗ L2 ⊆ S52

1 ⊗ S52
2. Since �k⊥ →

22The proof that for all k, l ≥ 0, if k > l then �k⊥ → �l⊥ 6∈ L1 ⊗ L2 can be similarly done.
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�l⊥ 6∈ S52
1 ⊗ S52

2, �k⊥ → �l⊥ 6∈ L1 ⊗ L2.

Proof of Lemma 4: The proof is done by induction on ϕ.

Proof of Lemma 5: The proof is done by induction on ϕ.

Proof of Lemma 6: The proof is done by induction on ϕ.

Proof of Lemma 7: The proof is done by induction on ϕ.

Proof of Lemma 8: The proof of Item (1) can be done as follows23.

Suppose i = 1.

Suppose ϕ ∈ L1⊗L2 and L2 ⊆ Triv2. Hence, L1⊗L2 ⊆ L1⊗Triv2. Since ϕ ∈ L1⊗L2,
ϕ ∈ L1 ⊗Triv2. Thus, by Lemma 7, trT1 (ϕ) ∈ L1 ⊗Triv2. Since L1 ⊗Triv2 is a con-
servative extension of L1, trT1 (ϕ) ∈ L1.

Proof of Lemma 9: The proofs of Items (1)–(4) are left to the reader. The proofs of
Items (5) and (6) are done by using the well-known fact that if L1 ⊗ L2 is tensed then
L1 ⊗ L2 is closed under the rules ¬ϕ→21ψ

¬ψ→21ϕ
and ¬ϕ→22ψ

¬ψ→22ϕ
.

Proof of Lemma 10: The proof is done by induction on k.

Proof of Lemma 11: The proof is done by induction on k.

Proof of Lemma 12: Suppose L1⊗L2 is smooth. Hence, �k+1⊥ → �k⊥ 6∈ L1⊗L2 and
�k+1⊥ → �k⊥ 6∈ L1 ⊗ L2. Thus, �k⊥ 6∈ L1 ⊗ L2 and �k⊥ 6∈ L1 ⊗ L2.

Proof of Lemma 13: The proof is done by induction on k. Suppose for all k′ ≥ 0, if
k′ < k then if L1 ⊗ L2 is tensed and smooth then for all l ≥ 0, �k′⊥ ∨�l⊥ 6∈ L1 ⊗ L2.

Case k = 0: Suppose L1 ⊗ L2 is tensed and smooth. Let l ≥ 0. Since L1 ⊗ L2 is
smooth, then by Lemma 12, �l⊥ 6∈ L1 ⊗ L2. Hence, �k⊥ ∨�l⊥ 6∈ L1 ⊗ L2.

Case k ≥ 1: Suppose L1 ⊗ L2 is tensed and smooth. Let l ≥ 0. Since L1 ⊗ L2 is
tensed and smooth, then by induction hypothesis, (�k−1⊥ ∨ �l+1⊥) 6∈ L1 ⊗ L2. Thus,

23The proof of Item (2) can be similarly done.
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(¬ �k−1 ⊥ → � �l ⊥) 6∈ L1 ⊗ L2. Since L1 ⊗ L2 is tensed, then by Lemma 9,
(¬�l ⊥ → ��k−1 ⊥) 6∈ L1 ⊗ L2. Consequently, (�k⊥ ∨�l⊥) 6∈ L1 ⊗ L2.

Proof of Lemma 14: The proof is done by induction on k. Suppose for all k′ ≥ 0, if
k′ < k then �<k′

x∧�k′⊥ → σk′(x) ∈ L1⊗L2 and �<k′¬x∧�k′⊥ → ¬τk′(x) ∈ L1⊗L2.

Case k = 0: This case is left to the reader.

Case k ≥ 1: By induction hypothesis, �<k−1x ∧ �k−1⊥ → σk−1(x) ∈ L1 ⊗ L2 and
�<k−1¬x ∧ �k−1⊥ → ¬τk−1(x) ∈ L1 ⊗ L2. Hence, � �<k−1 x ∧ � �k−1 ⊥ →
�σk−1(x) ∈ L1 ⊗ L2 and � �<k−1 ¬x ∧ � �k−1 ⊥ → �¬τk−1(x) ∈ L1 ⊗ L2. Thus,
x∧��<k−1x∧��k−1⊥ → x∧�σk−1(x) ∈ L1⊗L2 and ¬x∧��<k−1¬x∧��k−1⊥ →
¬x ∧ �¬τk−1(x) ∈ L1 ⊗ L2. Consequently, by Lemma 11, �<kx ∧ �k⊥ → σk(x) ∈
L1 ⊗ L2 and �<k¬x ∧�k⊥ → ¬τk(x) ∈ L1 ⊗ L2.

Proof of Lemma 15: The proof is left to the reader.

Proof of Lemma 16: The proof is done by induction on k. Suppose for all k′ ≥ 0, if
k′ < k then σk′(x)→ �σk′(x) ∈ L1 ⊗ L2 and ¬τk′(x)→ �¬τk′(x) ∈ L1 ⊗ L2.

Case k = 0: This case is left to the reader.

Case k ≥ 1: By induction hypothesis, σk−1(x)→ �σk−1(x) ∈ L1 ⊗L2 and ¬τk−1(x)→
�¬τk−1(x) ∈ L1 ⊗ L2. Hence, by Lemma 15, σk−1(x) → x ∧ �σk−1(x) ∈ L1 ⊗ L2
and ¬τk−1(x) → ¬x ∧ �¬τk−1(x) ∈ L1 ⊗ L2. Thus, σk−1(x) → σk(x) ∈ L1 ⊗ L2 and
¬τk−1(x) → ¬τk(x) ∈ L1 ⊗ L2. Consequently, �σk−1(x) → �σk(x) ∈ L1 ⊗ L2 and
�¬τk−1(x)→ �¬τk(x) ∈ L1⊗L2. Since σk(x)→ �σk−1(x) ∈ L1⊗L2 and ¬τk(x)→
�¬τk−1(x) ∈ L1⊗L2, σk(x)→ �σk(x) ∈ L1⊗L2 and ¬τk(x)→ �¬τk(x) ∈ L1⊗L2.

Proof of Lemma 17: The proof is done by induction on k. Suppose for all k′ ≥ 0, if k′ < k
then for all l ≥ 0, if k′ ≤ l then σk′(x)→ �l⊥ ∈ L1⊗L2 and ¬τk′(x)→ �l⊥ ∈ L1⊗L2.

Let l ≥ 0. Suppose k ≤ l.

Case k = 0: This case is left to the reader.

Case k ≥ 1: Since k ≤ l, k−1 ≤ l−1 and by induction hypothesis, σk−1(x)→ �l−1⊥ ∈
L1 ⊗ L2 and ¬τk−1(x)→ �l−1⊥ ∈ L1 ⊗ L2. Hence, �σk−1(x)→ ��l−1 ⊥ ∈ L1 ⊗ L2
and �¬τk−1(x) → � �l−1 ⊥ ∈ L1 ⊗ L2. Thus, x ∧ �σk−1(x) → � �l−1 ⊥ ∈ L1 ⊗ L2
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and ¬x ∧�¬τk−1(x) → ��l−1 ⊥ ∈ L1 ⊗ L2. Consequently, σk(x) → �l⊥ ∈ L1 ⊗ L2
and ¬τk(x)→ �l⊥ ∈ L1 ⊗ L2.

Proof of Lemma 18: The proof is done by induction on k. Suppose for all k′ ≥ 0, if
k′ < k then for all l ≥ 0, if k′ ≤ l then �k′⊥ ∧ σl(x) ↔ σk′(x) ∈ L1 ⊗ L2 and
�k′⊥ ∧ ¬τl(x)↔ ¬τk′(x) ∈ L1 ⊗ L2. Let l ≥ 0. Suppose k ≤ l.

Case k = 0: This case is left to the reader.

Case k ≥ 1: Since k ≤ l, k − 1 ≤ l − 1 and by induction hypothesis, �k−1⊥ ∧
σl−1(x)↔ σk−1(x) ∈ L1 ⊗ L2 and �k−1⊥ ∧ ¬τl−1(x)↔ ¬τk−1(x) ∈ L1 ⊗ L2. Hence,
��k−1⊥∧x∧�σl−1(x)↔ x∧�σk−1(x) ∈ L1⊗L2 and ��k−1⊥∧¬x∧�¬τl−1(x)↔
¬x∧�¬τk−1(x) ∈ L1⊗L2. Thus, �k⊥∧σl(x)↔ σk(x) ∈ L1⊗L2 and �k⊥∧¬τl(x)↔
¬τk(x) ∈ L1 ⊗ L2.

Proof of Lemma 19: The proof is done by induction on k. Suppose for all k′ ≥ 0,
if k′ < k then for all l ≥ 0, if k′ ≤ l then λl(σk′(x)) ↔ σk′(x) ∈ L1 ⊗ L2 and
µl(τk′(x))↔ τk′(x) ∈ L1 ⊗ L2. Let l ≥ 0. Suppose k ≤ l.

Case k = 0: This case is left to the reader.

Case k ≥ 1: Since k ≤ l, k − 1 ≤ l and by induction hypothesis, λl(σk−1(x)) ↔
σk−1(x) ∈ L1 ⊗ L2 and µl(τk−1(x)) ↔ τk−1(x) ∈ L1 ⊗ L2. Hence, x ∧ �l⊥ ∧
�λl(σk−1(x)) ↔ �l⊥ ∧ x ∧ �σk−1(x) ∈ L1 ⊗ L2 and ¬x ∧ �l⊥ ∧ �¬µl(τk−1(x)) ↔
�l⊥∧¬x∧�¬τk−1(x) ∈ L1⊗L2. Thus, λl(x∧�σk−1(x))↔ �l⊥∧ σk(x) ∈ L1⊗L2
and µl(¬x ∧ �¬τk−1(x)) ↔ �l⊥ ∧ ¬τk(x) ∈ L1 ⊗ L2. Since k ≤ l, by Lemma 17,
λl(σk(x))↔ σk(x) ∈ L1 ⊗ L2 and µl(τk(x))↔ τk(x) ∈ L1 ⊗ L2.

Proof of Lemma 20: The proof is done by induction on k. Suppose for all k′ ≥ 0,
if k′ < k then for all l ≥ 0, if k′ ≥ l then λl(σk′(x)) ↔ σl(x) ∈ L1 ⊗ L2 and
µl(τk′(x))↔ τl(x) ∈ L1 ⊗ L2. Let l ≥ 0. Suppose k ≥ l.

Case k = l: This case is left to the reader.

Case k ≥ l + 1: Hence, k − 1 ≥ l and by induction hypothesis, λl(σk−1(x)) ↔ σl(x) ∈
L1 ⊗ L2 and µl(τk−1(x))↔ τl(x) ∈ L1 ⊗ L2. Thus, x ∧�l⊥∧�λl(σk−1(x))↔ �l⊥∧
x∧�σl(x) ∈ L1⊗L2 and ¬x∧�l⊥∧�¬µl(τk−1(x))↔ �l⊥∧¬x∧�¬τl(x) ∈ L1⊗L2.
Consequently, λl(x∧�σk−1(x))↔ �l⊥∧σl+1(x) ∈ L1⊗L2 and µl(¬x∧�¬τk−1(x))↔
�l⊥ ∧ ¬τl+1(x) ∈ L1 ⊗ L2. Hence, by Lemma 18, λl(σk(x)) ↔ σl(x) ∈ L1 ⊗ L2 and

30



UNIFICATION TYPE OF FUSIONS

µl(τk(x))↔ τl(x) ∈ L1 ⊗ L2.

Proof of Lemma 21: Suppose L1 ⊗ L2 is smooth. Let l ≥ 0. Suppose k > l. Let υ
and θ be the {1, 2}-substitutions defined as follows:

• υ(x) = >,

• for all variables y distinct from x, υ(y) = y,

• θ(x) = ⊥,

• for all variables y distinct from x, θ(y) = y.

By Lemma 14, �<kx∧�k⊥ → σk(x) ∈ L1⊗L2 and �<k¬x∧�k⊥ → ¬τk(x) ∈ L1⊗L2.
Hence, �<kυ(x) ∧�k⊥ → υ(σk(x)) ∈ L1 ⊗ L2 and �<k¬θ(x) ∧�k⊥ → ¬θ(τk(x)) ∈
L1⊗L2. Since υ(x) = > and θ(x) = ⊥, then by Lemma 10, �k⊥ → υ(σk(x)) ∈ L1⊗L2
and �k⊥ → ¬θ(τk(x)) ∈ L1 ⊗ L2. Since L1 ⊗ L2 is smooth and k > l, �k⊥ → �l⊥ 6∈
L1 ⊗ L2 and �k⊥ → �l⊥ 6∈ L1 ⊗ L2. Since �k⊥ → υ(σk(x)) ∈ L1 ⊗ L2 and �k⊥ →
¬θ(τk(x)) ∈ L1 ⊗ L2, υ(σk(x)) → �l⊥ 6∈ L1 ⊗ L2 and ¬θ(τk(x)) → �l⊥ 6∈ L1 ⊗ L2.
Thus, σk(x)→ �l⊥ 6∈ L1 ⊗ L2 and ¬τk(x)→ �l⊥ 6∈ L1 ⊗ L2.

Proof of Lemma 22: Suppose L1 ⊗ L2 is smooth. Let l ≥ 0. Let υ and θ be the {1, 2}-
substitutions defined as follows:

• υ(x) = >,

• for all variables y distinct from x, υ(y) = y,

• θ(x) = ⊥,

• for all variables y distinct from x, θ(y) = y.

Since L1⊗L2 is smooth, then by Lemma 12, �k⊥ 6∈ L1⊗L2 and �k⊥ 6∈ L1⊗L2. Since
υ(x) = > and θ(x) = ⊥, �k⊥ ∨ ¬υ(x) 6∈ L1 ⊗ L2 and �k⊥ ∨ θ(x) 6∈ L1 ⊗ L2. Hence,
�k⊥∨¬x 6∈ L1 ⊗L2 and �k⊥∨ x 6∈ L1 ⊗L2. By Lemma 15, ¬τk(x)→ ¬x ∈ L1 ⊗L2
and σl(x) → x ∈ L1 ⊗ L2. Since �k⊥ ∨ ¬x 6∈ L1 ⊗ L2 and �k⊥ ∨ x 6∈ L1 ⊗ L2,
�k⊥ ∨ ¬τk(x) 6∈ L1 ⊗ L2 and �k⊥ ∨ σl(x) 6∈ L1 ⊗ L2.

Proof of Lemma 23: By Lemma 20.

Proof of Lemma 24: By Lemma 23.
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Proof of Lemma 25: Suppose L1 ⊗ L2 is smooth. Let l ≥ 0. Suppose k < l. Suppose
either σk �

{x}
L1⊗L2

σl, or τk �
{x}
L1⊗L2

τl. In the former case, let λ be a {1, 2}-substitution
such that σk ◦ λ '{x} σl. Hence, λ(σk(x)) ↔ σl(x) ∈ L1 ⊗ L2. Since L1 ⊗ L2 is
smooth and k < l, then by Lemma 21, σl(x) → �k⊥ 6∈ L1 ⊗ L2. By Lemma 17,
σk(x) → �k⊥ ∈ L1 ⊗ L2. Thus, λ(σk(x)) → �k⊥ ∈ L1 ⊗ L2. Since σl(x) → �k⊥ 6∈
L1 ⊗ L2, λ(σk(x)) ↔ σl(x) 6∈ L1 ⊗ L2: a contradiction. In the latter case, let µ be a
{1, 2}-substitution such that τk ◦ µ '{x} τl. Consequently, µ(τk(x)) ↔ τl(x) ∈ L1 ⊗ L2.
Since L1 ⊗ L2 is smooth and k < l, by Lemma 21, ¬τl(x) → �k⊥ 6∈ L1 ⊗ L2. By
Lemma 17, ¬τk(x) → �k⊥ ∈ L1 ⊗ L2. Hence, ¬µ(τk(x)) → �k⊥ ∈ L1 ⊗ L2. Since
¬τl(x)→ �k⊥ 6∈ L1 ⊗ L2, µ(τk(x))↔ τl(x) 6∈ L1 ⊗ L2: a contradiction.

Proof of Lemma 26: Suppose L1⊗L2 is smooth. Let l ≥ 0. Suppose either σk �
{x}
L1⊗L2

τl,

or τk �
{x}
L1⊗L2

σl. In the former case, let λ be a {1, 2}-substitution such that σk ◦ λ '{x} τl.
Hence, λ(σk(x)) ↔ τl(x) ∈ L1 ⊗ L2. By Lemma 17, σk(x) → �k⊥ ∈ L1 ⊗ L2. Since
L1⊗L2 is smooth, then by Lemma 22, �k⊥∨¬τl(x) 6∈ L1⊗L2. Since λ(σk(x))↔ τl(x) ∈
L1⊗L2, then λ(σk(x))→ �k⊥ 6∈ L1⊗L2. Thus, σk(x)→ �k⊥ 6∈ L1⊗L2: a contradic-
tion. In the latter case, let µ be a {1, 2}-substitution such that τk ◦µ '{x} σl. Consequently,
µ(τk(x))↔ σl(x) ∈ L1⊗L2. By Lemma 17, ¬τk(x)→ �k⊥ ∈ L1⊗L2. Since L1⊗L2 is
smooth, then by Lemma 22, �k⊥∨σl(x) 6∈ L1⊗L2. Since µ(τk(x))↔ σl(x) ∈ L1⊗L2,
¬µ(τk(x))→ �k⊥ 6∈ L1 ⊗ L2. Hence, ¬τk(x)→ �k⊥ 6∈ L1 ⊗ L2: a contradiction.

Proof of Lemma 27: The proof is done by induction on k. Suppose for all k′ ≥ 0, if
k′ < k then for all L1 ⊗ L2-unifiers σ of ϕ, σ(x) → �<k′

σ(x) ∈ L1 ⊗ L2 and for all
L1 ⊗ L2-unifiers τ of ψ, ¬τ(x)→ �<k′¬τ(x) ∈ L1 ⊗ L2.

Case k = 0: This case is left to the reader.

Case k ≥ 1: Let σ be an L1⊗L2-unifier of ϕ and τ be an L1⊗L2-unifier of ψ. By induction
hypothesis, σ(x)→ �<k−1σ(x) ∈ L1⊗L2 and ¬τ(x)→ �<k−1¬τ(x) ∈ L1⊗L2. Since
σ is an L1⊗L2-unifier of ϕ and τ is an L1⊗L2-unifier of ψ, σ(x)→ �k−1σ(x) ∈ L1⊗L2
and ¬τ(x) → �k−1¬τ(x) ∈ L1 ⊗ L2. Since σ(x) → �<k−1σ(x) ∈ L1 ⊗ L2 and
¬τ(x) → �<k−1¬τ(x) ∈ L1 ⊗ L2, σ(x) → �<k−1σ(x) ∧ �k−1σ(x) ∈ L1 ⊗ L2 and
¬τ(x) → �<k−1¬τ(x) ∧ �k−1¬τ(x) ∈ L1 ⊗ L2. Hence, σ(x) → �<kσ(x) ∈ L1 ⊗ L2
and ¬τ(x)→ �<k¬τ(x) ∈ L1 ⊗ L2.

Proof of Lemma 28: By Lemma 16.

Proof of Lemma 29: Suppose υ is an L1 ⊗ L2-unifier of ϕ. Let k ≥ 0.
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(a)⇒ (b): Suppose σk ◦ υ '
{x}
L1⊗L2

υ. Hence, σk �
{x}
L1⊗L2

υ.

(b)⇒ (c): Suppose σk �
{x}
L1⊗L2

υ. Let υ′ be a {1, 2}-substitution such that σk ◦ υ′ '
{x}
L1⊗L2

υ. Thus, υ′(σk(x)) ↔ υ(x) ∈ L1 ⊗ L2. By Lemma 17, σk(x) → �k⊥ ∈ L1 ⊗ L2.
Consequently, υ′(σk(x)) → �k⊥ ∈ L1 ⊗ L2. Since υ′(σk(x)) ↔ υ(x) ∈ L1 ⊗ L2,
υ(x)→ �k⊥ ∈ L1 ⊗ L2.

(c) ⇒ (a): Suppose υ(x) → �k⊥ ∈ L1 ⊗ L2. Since υ is an L1 ⊗ L2-unifier of ϕ,
by Lemma 27, υ(x) → �<kυ(x) ∈ L1 ⊗ L2. Since υ(x) → �k⊥ ∈ L1 ⊗ L2, υ(x) →
�<kυ(x) ∧ �k⊥ ∈ L1 ⊗ L2. By Lemma 14, �<kx ∧ �k⊥ → σk(x) ∈ L1 ⊗ L2. Hence,
�<kυ(x) ∧ �k⊥ → υ(σk(x)) ∈ L1 ⊗ L2. Since υ(x) → �<kυ(x) ∧ �k⊥ ∈ L1 ⊗ L2,
υ(x) → υ(σk(x)) ∈ L1 ⊗ L2. By Lemma 15, σk(x) → x ∈ L1 ⊗ L2. Thus, υ(σk(x)) →
υ(x) ∈ L1 ⊗ L2. Since υ(x) → υ(σk(x)) ∈ L1 ⊗ L2, υ(σk(x)) ↔ υ(x) ∈ L1 ⊗ L2.
Consequently, σk ◦ υ '

{x}
L1⊗L2

υ.

Suppose υ is an L1 ⊗ L2-unifier of ψ. Let k ≥ 0.

(d)⇒ (e): Suppose τk ◦ υ '
{x}
L1⊗L2

υ. Hence, τk �
{x}
L1⊗L2

υ.

(e)⇒ (f): Suppose τk �
{x}
L1⊗L2

υ. Let υ′ be a {1, 2}-substitution such that τk ◦ υ′ '
{x}
L1⊗L2

υ. Thus, υ′(τk(x)) ↔ υ(x) ∈ L1 ⊗ L2. By Lemma 17, ¬τk(x) → �k⊥ ∈ L1 ⊗ L2.
Consequently, υ′(¬τk(x)) → �k⊥ ∈ L1 ⊗ L2. Since υ′(τk(x)) ↔ υ(x) ∈ L1 ⊗ L2,
¬υ(x)→ �k⊥ ∈ L1 ⊗ L2.

(f) ⇒ (d): Suppose ¬υ(x) → �k⊥ ∈ L1 ⊗ L2. Since υ is an L1 ⊗ L2-unifier of ψ, by
Lemma 27, ¬υ(x)→ �<k¬υ(x) ∈ L1 ⊗ L2. Since ¬υ(x)→ �k⊥ ∈ L1 ⊗ L2, ¬υ(x)→
�<k¬υ(x)∧�k⊥ ∈ L1⊗L2. By Lemma 14, �<k¬x∧�k⊥ → ¬τk(x) ∈ L1⊗L2. Hence,
�<k¬υ(x)∧�k⊥ → υ(¬τk(x)) ∈ L1⊗L2. Since¬υ(x)→ �<k¬υ(x)∧�k⊥ ∈ L1⊗L2,
¬υ(x) → υ(¬τk(x)) ∈ L1 ⊗ L2. By Lemma 15, ¬τk(x) → ¬x ∈ L1 ⊗ L2. Thus,
υ(¬τk(x)) → ¬υ(x) ∈ L1 ⊗ L2. Since ¬υ(x) → υ(¬τk(x)) ∈ L1 ⊗ L2, υ(τk(x)) ↔
υ(x) ∈ L1 ⊗ L2. Consequently, τk ◦ υ '

{x}
L1⊗L2

υ.
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