
HAL Id: hal-02936428
https://hal.science/hal-02936428v1

Submitted on 11 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantifying over Asynchronous Information Change
Philippe Balbiani, Hans van Ditmarsch, Saúl Fernández González

To cite this version:
Philippe Balbiani, Hans van Ditmarsch, Saúl Fernández González. Quantifying over Asynchronous
Information Change. International Conference on Advances in Modal Logic (AiML 2020), University
of Helsinki, Finland, Aug 2020, Helsinki, Finland. pp.33-52. �hal-02936428�

https://hal.science/hal-02936428v1
https://hal.archives-ouvertes.fr


Quantifying over Asynchronous Information
Change

Philippe Balbiani

IRIT, Université de Toulouse
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Abstract

We propose a logic AAA for Arbitrary Asynchronous Announcements. In this logic,
the sending and receiving of messages that are announcements are separated and
represented by distinct modalities. Additionally, the logic has a modality that repre-
sents quantification over information change in the shape of sequences of sending and
receiving events, called histories. We present a complete however infinitary axioma-
tisation, and various results for the logical semantics, wherein we consider both how
the logic is different from asynchronous announcement logic AA and how the logic
is different from arbitrary public announcement logic APAL. We also address the
expressivity and we demonstrate the preservation of an extended fragment of positive
formulas (wherein negations do not occur before epistemic modalities). Finally, we
present work in progress on the logic AAM of Asynchronous Action Models and the
logic AAAM of Arbitrary Asynchronous Action Models.

Keywords: Modal logic, dynamic epistemic logic, asynchrony, quantifying over
information change

1 Introduction

We investigate what agents know and learn in distributed systems wherein
the sending and receiving of messages are separated. Notions of asynchronous
knowledge and common knowledge have been investigated in distributed com-
puting in works such as [6,9,14,15,16] and in temporal epistemic logics in works
such as [7,12,17,19]. Our take on such matters is from within so-called Dynamic
Epistemic Logic (DEL) [18,5,22], a modal logic of knowledge and change of
knowledge (or belief and change of belief), however not in its standard incarna-
tion wherein message sending and receiving is synchronized and instantaneous,
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but in a recently investigated version by various researchers wherein these are
separated [13,3,4]. These approaches are somewhat different from the asyn-
chrony due to partial observation wherein histories (sequences of messages) of
different length may have become indistinguishable for an agent, as in [8].

In [3] a logic AA is presented wherein messages that are announcements are
still sent by an ‘outside observer’ or by the environment, but wherein they are
individually received by the agents, unlike in public announcement logic [18]
wherein all agents receive the announcement simultaneously (synchronised).
The logic contains modalities for the announcement of ϕ, as in [ϕ]ψ. This has
still as precondition that ϕ must be true when announced, but it does not have
the effect the ϕ is received by any agent. For that, there are other modalities
[a]ψ, for ‘after the agent a has received the next announcement, ψ is true’. For
example, we can now say that [p][a]Bap: after p has been sent and agent a has
received it, the agent knows/believes p. Therefore, in this logic AA we cannot
obtain common knowledge that the announcement has been received, although
we can still approach common knowledge by iterating announcements such as
announcement p, all agents received p, announcement that everybody knows p,
everybody received that, announcement that everybody knows that everybody
knows p, etc. This is as in the concurrent common knowledge of [17]. In [3], a
complete axiomatisation for such a logic is given, as well as special results on
the class of S5 models (where all relations are equivalence relations).

Subsequently, [4] investigates the wide spectrum of individual reception of
messages up to synchronised reception by all agents of messages — and partial
synchronisation for subgroups of all agents as well.

In the present work we generalize [3] in two ways: to the logic AA of asyn-
chronous announcements we now add a quantifier [!]ϕ for ‘after any sequence
of events, ϕ’. It is motivated by a similar quantifier in the logic APAL [1], that
stands for ‘after any/arbitrary announcement, ϕ’. Clearly, in the asynchronous
setting we cannot have it merely quantifying over unreceived announcements,
as this would not affect the beliefs or knowledge of agents. As the order of re-
ception of announcements may vary greatly and may take place much later after
an announcement, and possibly many subsequent announcements, have been
sent, the natural form of quantification is therefore over arbitrary sequences of
such sending and receiving events. We show that the resulting logic AAA has
a complete axiomatisation, and varies in crucial respects from the motivating
precedent APAL [1]. Such a logic of arbitrary asynchronous announcement may
be, we hope, useful for diverse tasks such as: asynchronous epistemic planning,
formalising epistemic protocols in distributed computing, and analysing the
fine structure of interacting agents independently executing informative and
other actions.

One particular further generalisation is also presented in some detail,
namely the similar quantification over asynchronous non-public events (in the
sense of events that are not known to be eventually received by all agents),
such as an agent a privately receiving information on a proposition p, where
an agent b also receives the information that a is privately receiving p although
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not necessarily simultaneous with a. From the works of Hales and collaborators
[10,11] it is known that quantification over action models behaves much better
than quantification over announcements: it is decidable, the quantifier can be
eliminated from the language, and given 〈!〉ϕ, for ‘there is an action model after
which ϕ’, an action model can be synthesised that if executable always results
in ϕ. We conjecture similar results for quantifying over asynchronous action
models. In particular, asynchronous synthesis seems a highly desirable future
goal.

In Section 2 we present Arbitrary Asynchronous Announcement logic AAA,
for which we present various semantic results in Section 3. In Section 4 we
address the expressivity, and in Section 5 the preservation (after history ex-
tension) of the fragment of positive formulas. Section 6 presents a complete
infinitary axiomatisation. Finally, Section 7 adresses the generalisation of our
results to a logic for quantification over asynchronous action models.

2 The logic AAA

Syntax. Let A be a finite set of epistemic agents and P a countable set of
propositional variables. We consider the following language L:

ϕ ::= p|>|¬ϕ|ϕ ∨ ϕ|B̂aϕ|〈ϕ〉ϕ|〈a〉ϕ|〈!〉ϕ,

where p ∈ P, a ∈ A.
We define duals Baϕ = ¬B̂a¬ϕ, [a]ϕ = ¬〈a〉¬ϕ, [ψ]ϕ = ¬〈ψ〉¬ϕ, [!]ϕ =

¬〈!〉¬ϕ.
Let L−! be the fragment of this language without the 〈!〉 modality.
Consider A∪L as an alphabet, with agents and formulas as letters. Variables

for words in this language are α, β, . . . , and ε denotes the empty word. Given
a word α over A ∪ L, |α| is its length, |α|a is the number of its a’s (for each
a ∈ A), |α|! is the number of its formula occurrences, α�! is the projection of α
to L, and α�!a is the restriction of α�! to the first |α|a formulas. These notions
have obvious inductive definitions.

For each such word, the formula 〈α〉ϕ represents an abbreviation of the se-
quence of announcement and reading modalities corresponding to the formulas
and agents which appear in α, defined recursively as follows:

〈ε〉ϕ = ϕ; 〈α.ψ〉ϕ = 〈α〉〈ψ〉ϕ; 〈α.a〉ϕ = 〈α〉〈a〉ϕ,

where ε is the empty word. Every formula in L is thus of the form 〈α〉ϕ for
some α ∈ (L ∪A)∗.

A prefix β of α, notation β ⊆ α, is an initial sequence of α inductively
defined as: α ⊆ α, and if β ⊆ α, then for all a ∈ A and ψ ∈ L, β ⊆ αa and
β ⊆ αψ.

For a sequence of announcements and readings to be executable, it is neces-
sary that, whenever an agent is doing her n-th reading, there have been at least
n formulas announced. Words satisfying this property will be called histories.
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Histories. A word α in the language A∪L is a history if for all prefixes β ⊆ α
and for all a ∈ A, |β|! ≥ |β|a.

We denote by H the set of histories. Obviously, if β is a prefix of a history
α, then β is a history too.

View relation. Let α, β be histories and a ∈ A. We define: α .a β iff |β|a =
|α|a, β�!a = α�!a and |β|! = |α|a. (Equivalently, iff α�!a = β�!a = β�!) The
set viewa(α) := {β | α .a β} is the view of a given α. Informally, the view
of agent a given history α consists of all the different ways in which a can
receive the announcements in α. In other words, the view of a given α consists
of the histories a considers possible (but without taking the meaning of the
announcements in the history into account, which, as we will see, results in a
further restriction). Note that viewa(α) is a finite set.

Semantics. To define the semantics we will use the following well-founded
preorder. First, we define degB ϕ, deg! ϕ and ‖ϕ‖ recursively: for k = !, B,

degk p = 0 ‖p‖ = 2
degk > = 0 ‖>‖ = 1
degk(¬ϕ) = degk ϕ ‖¬ϕ‖ = ‖ϕ‖+ 1
degk(ϕ ∧ ψ) = max{degk ϕ,degk ψ} ‖ϕ ∧ ψ‖ = ‖ϕ‖+ ‖ψ‖
degk(〈a〉ϕ) = degk ϕ ‖〈a〉ϕ‖ = ‖ϕ‖+ 2
degk(〈ϕ〉ψ) = degk ϕ+ degk ψ ‖〈ϕ〉ψ‖ = 2‖ϕ‖+ ‖ψ‖
degB(B̂aϕ) = degB ϕ+ 1 ‖B̂aϕ‖ = ‖ϕ‖+ 1

deg!(B̂aϕ) = deg! ϕ
degB(〈!〉ϕ) = degB ϕ ‖〈!〉ϕ‖ = ‖ϕ‖+ 1
deg!(〈!〉ϕ) = deg! ϕ+ 1

For a word α, we set degk α :=
∑
{degk ψ : ψ occurs in α} and

‖ε‖ = 0, ‖α.a‖ = ‖α‖+ 1, ‖α.ψ‖ = ‖α‖+ ‖ψ‖.

Finally, for pairs (α,ϕ) we set: degk(α,ϕ) = degk α+degk ϕ, and ‖(α,ϕ)‖ =
‖α‖+ ‖ϕ‖, and we define a well-founded order � as a lexicographical ordering
on these quantities, i.e. (α,ϕ)� (β, ψ) iff

deg!(α,ϕ) < deg!(β, ψ), or

deg!(α,ϕ) = deg!(β, ψ) & degB(α,ϕ) < degB(β, ψ), or

deg!(α,ϕ) = deg!(β, ψ) & degB(α,ϕ) = degB(β, ψ) & ‖(α,ϕ)‖ < ‖(β, ψ)‖.

We interpret formulas on models (W,R, V ), where R : A → P(W 2), with
respect to pairs (w,α) where w ∈ W an α ∈ H. We define the relations “w
agrees with α” (w ./ α) and “(w,α) satisfies ϕ” (w,α |= ϕ) by �-induction as
it appears in Table 1. A formula ϕ is ε-valid, notation |=ε ϕ, iff for all models
(W,R, V ) and for all s ∈ W , s, ε |= ϕ. A formula ϕ is ∗-valid, notation |=∗ ϕ,
iff for all models (W,R, V ), for all s ∈W and for all histories α, s, ε |= [α]ϕ.

Note that the 〈!〉 modality only quantifies over words wherein 〈!〉 does not
occur. This is to avoid a circular definition. The dual of 〈!〉 is read as follows:
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w ./ ε always;
w ./ α.ϕ iff w ./ α

and w,α |= ϕ;
w ./ α.a iff w ./ α;

w,α |= p iff w ∈ V (p);
w,α |= > always;
w,α |= ¬ϕ iff w,α 6|= ϕ;
w,α |= ϕ1 ∧ ϕ2 iff w,α |= ϕi, i = 1, 2;
w,α |= 〈a〉ϕ iff |α|a < |α|! and w,α.a |= ϕ;
w,α |= 〈ψ〉ϕ iff w,α |= ψ and w,α.ψ |= ϕ;

w,α |= B̂aϕ iff t, β |= ϕ for some (t, β) ∈W ×H
such that Rawt, α .a β, t ./ β

w, α |= 〈!〉ϕ iff w,α |= 〈β〉ϕ for some β ∈ (L−! ∪A)∗.

Table 1
Semantics of AAA

w,α |= [!]ϕ if and only if, for every possible sequence β ∈ (L−! ∪ A)∗, it is the
case that w,α |= [β]ϕ.

Note moreover that the relation .a is not reflexive (it is however postreflex-
ive, in the sense that α .a β implies β .a β). For this reason, it is not the case
that w,α |= Baϕ implies w,α |= ϕ. Our modality is not factual and this is the
reason we favour a doxastic interpretation of it over an epistemic one.

We make the assumption that an agent forms her beliefs based on an-
nouncements she has so far received, ignoring possible future announcements
(indeed, note that Ba[a]⊥ always true: an agent never believes there are unread
announcements).

The following lemma, whose proof is straightforward, will be useful:

Lemma 2.1 Given a model (W,R, V ), w ∈ W , ϕ ∈ L, α ∈ H such that
w ./ α, and β ∈ (L ∪A)∗, the following are equivalent:

i. w,α |= 〈β〉ϕ;

ii. The concatenation α.β is a history, w ./ α.β, and w,α.β |= ϕ.

3 Semantic results for the logic AAA

Bisimulation. The notion of bisimulation in this framework is, perhaps sur-
prisingly, the usual notion of bisimulation between Kripke models: given
(W,R, V ) and (W ′, R′, V ′), a bisimulation is a relation Z ⊆ W × W ′ such
that, if wZw′:

i. w ∈ V (p) iff w′ ∈ V ′(p);
ii. if Rawv, then there exists v′ ∈W ′ such that R′aw

′v′ and vZv′;

iii. if R′aw
′v′, then there exists v ∈W such that Rawv and vZv′.

As one might expect, we have the following:



6 Quantifying over Asynchronous Information Change

Proposition 3.1 Let Z be a bisimulation such that wZw′, and let (α,ϕ) ∈
H × L. We have:

w, ε |= 〈α〉ϕ iff w′, ε |= 〈α〉ϕ.
Proof. See Appendix. 2

Under certain constraints, if two states satisfy the same formulas, they are
bisimilar. Indeed:

Proposition 3.2 Let (W,R, V ) and (W ′, R′, V ′) be two models such that
Ra[w] and R′a[w′] are finite sets for all w ∈ W , w′ ∈ W ′. Set wZw′ iff,
for all (α,ϕ) ∈ H×L, w, ε |= 〈α〉ϕ iff w′, ε |= 〈α〉ϕ. Then Z is a bisimulation.

Proof. See Appendix. 2

Properties of belief. As discussed above, while Baϕ→ ϕ is ε-valid, (as long
as the relation Ra is reflexive) it is not ∗-valid. Other properties of our doxastic
modality, however, are ∗-valid. Let S5 denote the class of models where the
relations Ra are equivalence relations. We have:

Proposition 3.3 Let ϕ ∈ L. Then:

i. S5 |=∗ Baϕ→ ¬Ba¬ϕ
ii. S5 |=∗ Baϕ→ BaBaϕ

iii. S5 |=∗ ¬Baϕ→ Ba¬Baϕ
Proof. See Appendix. 2

Belief before and after update. If an agent will believe ϕ after a certain
sequence of events then the agent believes that there is a sequence of events
after which ϕ holds, but not the other way around. Indeed:

Proposition 3.4 |=ε 〈!〉B̂aϕ→ B̂a〈!〉ϕ, whereas 6|=ε B̂a〈!〉ϕ→ 〈!〉B̂aϕ.

Proof. See Appendix. 2

Church-Rosser and McKinsey Let us see that neither of the formulas
(CR) 〈!〉[!]ϕ→ [!]〈!〉ϕ (McK) [!]〈!〉 → 〈!〉[!]ϕ

are sound. It is known from APAL that these properties are valid for arbi-
trary announcement on the class of S5 models (where all accessibility relations
are equivalence relations) [1]. As we consider arbitrary relations, this is not
unexpected. We address the case S5 a the end of this paragraph.

First let us see (McK) is not sound. Let ϕ = [a]⊥. Then ϕ will be satisfied
at a pair w,α if and only if |α|a = |α|!. For any history β it is the case that
|β|a ≤ |β|!: let δβ = a...a be the concatenation of |β|! − |β|a times the letter
a. Then, for every β there exists a word δβ such that w, ε |= [β]〈δβ〉[a]⊥.
However, 〈!〉[!][a]⊥ is never satisfied: indeed, for any history β, let δβ be a
concatenation of the formula > enough times so that |βδβ |! > |β|a. Then we
have w, ε 6|= 〈β〉[δβ ][a]⊥.

Let us now see a counterexample for (CR). Consider the following one-agent
model 1 :

1 We thank Louwe Kuijer for this counterexample
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Let W = {w1, w2, w3}, Ra = {(w1, w2), (w2, w2), (w2, w3)} and V (p) =
{w1, w2}. We have that w1, ε |= 〈!〉[!]B̂a>. Indeed, consider the history
p.a.[a]⊥.a. We can easily prove the following by induction on ϕ:

If β is a history having p.a.[a]⊥.a as a prefix, then for all ϕ, w1, β |= ϕ iff
w2, β |= ϕ.

In particular, any β having p.a.[a]⊥.a as a prefix will be executable at w1

iff it is executable at w2. Now, take any sequence γ such that p.a.[a]⊥.a.γ
is executable at w1. There exists a β such that p.a.[a]⊥.aγ .a β and β is
executable at w1. Note that β is necessarily of the form β = p.a.[a]⊥.a.γ′ for
some γ′. But this means, by the previous remark, that β is executable at w2,
and thus w1, p.a.[a]⊥.a.γ |= B̂a>, which means w1, ε |= 〈p.a.[a]⊥.a〉[!]B̂a> and
thus w1, ε |= 〈!〉[!]B̂a>.

However, w1, ε 6|= [!]〈!〉B̂a>: indeed, consider the sequence Bap.a. It is
never the case that w1, Bap.a |= 〈β〉B̂a> for any announcement, given that,
whenever Bap.a.β .a γ, γ has Bap as its first formula, and therefore γ cannot
be compatible with w2, since w2, ε 6|= Bap.

Also in APAL (CR) is not sound in general (this can be seen via a similar
counterexample), but, as said, only with equivalence relations. Whether CR is
sound on AAA on the class of S5 models is an open question.

4 Expressivity of AAA

We assume the usual terminology to compare the expressivity of logics or log-
ical languages with respect to a semantics and a class of models. Given two
languages L1 and L2 interpreted over the same class C of models, we say that
L1 is at least as expressive as L2 with respect to C iff for all formulas ϕ2 ∈ L2,
there exists a formula ϕ1 ∈ L1 such that for all models M ∈ C, M |= ϕ1 iff
M |= ϕ2.

If L1 is at least as expressive as L2 and L2 is at least as expressive as L1

then L1 and L2 are as expressive. If L1 is at least as expressive as L2 and
L2 is not at least as expressive as L1 then L1 is more expressive than L2. In
this section we show that the language of AAA is more expressive than that of
AA, by showing that there is a formula ϕ ∈ L to which no formula ϕ′ ∈ L−!
is equivalent. This is shown somewhat similarly to proving that APAL is more
expressive than PAL [1, Proposition 3.13]. 2

Proposition 4.1 L is more expressive than L−! for multiple agents, for the
class S5 of models wherein each Ra is an equivalence relation.

Proof. Suppose that AAA is as expressive as AA in S5 for multiple agents.
Consider the formula 〈!〉(Bap∧Ba¬Bbp). Then there must be a formula ϕ ∈ L−!

2 However, with differences that may be considered of interest. In the APAL proof the prop-
erty used to demonstrate larger expressivity is 〈!〉(Bap ∧ ¬BbBap). This property uses that
in APAL an announcement results in a growth of common knowledge, it uses the synchronous
character of PAL announcements. We use another property, 〈!〉(Bap ∧ Ba¬Bbp), and on a
slightly different model.
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that is equivalent to 〈!〉(Bap∧Ba¬Bbp). Some propositional variable q will not
occur in ϕ. Now consider S5 models M and M ′ as below (indistinguishable
states are linked, and we assume transitivity of access). Of course, the states in
M also need a value for atom q, but this is irrelevant for the proof and therefore
not depicted (for example, we can assume q to be false in both).

t(¬p) s(p)

pq

M :

ab
u′(¬p¬q) v′(p¬q)

t′(¬pq) s′(pq)

M ′ :

ab

ab

b b

We note that (M, s) is bisimilar to (M ′, s′) if we restrict the clause (i) (for
corresponding valuations) to the variable p only. If we now consider formulas
ϕ ∈ L−! and histories α ∈ (L−! ∪A)∗ that do not contain the variable q, it can
be easily shown by induction on (α,ϕ) that s ./ α iff s′ ./ α and s, α |= ϕ in
M if and only if s′, α |= ϕ in M ′. As a consequence, for any ϕ ∈ L−!, we have
that s, ε |= ϕ iff s′, ε |= ϕ.

However, this is not the case in the full language L. We then have that
s, ε 6|= 〈!〉(Bap ∧ Ba¬Bbp) in M , whereas s′, ε |= 〈!〉(Bap ∧ Ba¬Bbp) in M ′.
The former is because in M , for any history α only executable in s, for any
announcement in α received by a, a considers it possible that b also received
this announcement and thus believes p. The latter is because in M ′ it holds
that s′, (p ∨ ¬q).a.b |= Bap ∧Ba¬Bbp.

This is a contradiction. 2

It seems likely, although we did not prove this, that on class S5 for a
single agent the 〈!〉 modality is definable in AA, such that AAA is then as
expressive as AA. However, without any frame properties single-agent AAA is
more expressive than AA, again shown similarly to the previous proposition
and [1, Prop. 3.14]

Proposition 4.2 L is more expressive than L−! for a single agent.

Proof. See Appendix. 2

A logic is called compact if a set of formulas is satisfiable whenever any
finite subset is satisfiable.

Proposition 4.3 The logic AAA is not compact.

Proof. Using the expressivity results, this can be shown by considering the
set of formulas

{〈!〉(Bap ∧Ba¬Bbp)} ∪ {¬〈β〉(Bap ∧Ba¬Bbp) : β ∈ (L−! ∪A)∗}.

This set is not satisfiable, but any finite subset is satisfiable, where we use that
some variable q must necessarily not occur in such a subset. We then consider
M , M ′ as above. The q-less finite subset will be satisfied at s′. 2
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5 Positive formulas

In modal logic, the fragment of the language where negations do not bind epis-
temic modalities is known as the positive fragment [20,21,1]. It corresponds
to the universal fragment in first-order logic. It has the property that it pre-
serves truth under submodels. In AAA, preservation under submodels is for-
malised by preservation after history extension. A formula ϕ ∈ L is preserved
iff |=∗ ϕ → [!]ϕ. We wish therefore to identify a fragment of the language L
that guarantees preservation.

For AA, it is shown in [3, Prop. 44] that the fragment ϕ ::= p | ¬p | ⊥ |
ϕ ∧ ϕ | ϕ ∨ ϕ | Baϕ, that corresponds in a very direct way to the universal
fragment, is preserved.

For AAA we wish to expand that frontier, in the direction earlier taken in
[21] for synchronous announcements, where a further inductive clause [¬ϕ]ϕ is
added, which is further expanded in [1] with an inductive clause [!]ϕ (where
[!] is the APAL quantifier over announcements). We will only define a fairly
minimal extension and subsequently present some of the difficulties in obtaining
a result analogous to those in [21,1], and what the desirable final goal seems to
be.

The proof uses a lemma that we therefore present first. Let preorder � on
histories be defined as follows: α � β iff α�! ⊆ β�!, for all a ∈ A |α|a ≤ |β|a,
and for any state s in any model s ./ β implies s ./ α. Note that α ⊆ β implies
α � β, but not vice versa.

Lemma 5.1 ([3, Lemma 42]) Let histories α, β and a ∈ A be given. Suppose
α � β and β .a δ. Then there is a history γ such that γ � δ and α .a γ.

Consider the following positive formulas L+:

ϕ ::= p | ¬p | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | Baϕ | [!]ϕ.

We show that positive formulas are preserved.

Proposition 5.2 (Positive implies preserved)
Let ϕ ∈ L+. Then �∗ ϕ→ [!]ϕ.

Proof. We need to prove the following proposition:

Let ϕ ∈ L+. For all models M = (W,R, V ) and s ∈ W , and for all histories
α: s, ε |= [α](ϕ→ [!]ϕ).

This is equivalent to

Let ϕ ∈ L+. For all models M = (W,R, V ) and s ∈ W , and for all histories
α, β such that α ⊆ β: s, ε |= [α]ϕ implies s, ε |= [β]ϕ.

A standard inductive proof on the structure of ϕ fails because in the case Baϕ
we would need that if α ⊆ β and β .a δ, then there is a γ with γ ⊆ δ and
α .a γ. Such a γ may not exist, namely if many yet unread announcements in
δ precede the a in δ that corresponds to the last a in α. However, we can then
still find a γ such that γ � δ. Therefore, it suffices to show:
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Lemma 5.3 Let ϕ ∈ L+. For all models M = (W,R, V ) and s ∈ W , and for
all histories α, β such that α � β: s, ε |= [α]ϕ implies s, ε |= [β]ϕ.

A proof of this Lemma can be found in the Appendix. 2

With this definition of preservation we cannot include an obvious clause
for announcement into the inductive definition of positive formulas, where the
obvious analogue of the [¬ϕ]ψ from [21] would be [¬ϕ.A]ψ (and where A rep-
resents an arbitrary permutation of all agents in A). 3 For example, consider a
model M for one agent a and two variables p, q consisting of four worlds for the
four valuations of p and q, and such that these are all indistinguishable for a.
Let w be the world where p and q are true. We now have that: w, ε |= [q.a]Baq
whereas w, p 6|= [q.a]Baq, because the a in history q.a reads announcement q
in the first case whereas it reads announcement p in the second case. As long
as agent a has not received announcement q, she remains uncertain about the
value of q.

According to some such clause [¬ϕ.A]ψ (and other clauses for atoms, their
negation, and belief), [q.a]Baq should be a positive formula. But then we no
longer have |=∗ ϕ→ [!]ϕ.

Beyond having [¬ϕ.A]ψ, that would also make [p.a.p.a]Bap positive (which
is the same as [p.a][p.a]Bap), should we then not want [p.p.a.a]Bap to be posi-
tive, where both announcements are only read after they have been announced?

It seems that the definition of preservation as |=∗ ϕ→ [!]ϕ, where [!] quanti-
fies over words instead of over histories, and where histories may contain unread
announcements, effectively rules out the inclusion of announcements and read
modalities in a positive fragment. It may even be that the positive fragment
as defined syntactically characterizes the preserved formulas (with respect to
∗-validity), analogous to van Benthem’s result for the (usual) positive fragment
[20]. This we do not know yet. Alternatively, a definition of preserved with re-
spect to ε-validity (so, ε-preserved) might well be |=ε ϕ→ [!](

∧
a∈A[a]⊥ → ϕ).

This would allow a more liberal fragment of positive formulas including the
above examples. We also wish to investigate that in future research, and where
again the ultimate goal is a syntactic characterisation of ε-preservation.

Before moving on, let us point out another property of the positive fragment:
when the believed formula ϕ is positive, and the accessibility relation reflexive,
belief becomes factive.

Proposition 5.4 Let ϕ ∈ L+. For any model (W,R, V ) such that Ra is re-
flexive, for all s ∈ W and α such that s ./ α, we have s, α |= Baϕ → ϕ. As a
consequence, S5 |=∗ Baϕ→ ϕ.

Proof. Suppose s, α |= Baϕ. Consider β = α.ϕ.ak, as constructed in the proof
of Prop. 3.3. We have Rass, α .a β, and s ./ β, and thus s, β |= ϕ. Moreover,

3 The possibly strange form of this clause wherein a negation appears has to do with the
semantics of public announcement. In PAL, M,w |= [¬ϕ]ψ iff (M,w |= ¬ϕ implies M ′, w |=
ψ) iff (M,w |= ϕ or M ′, w |= ψ), where M ′ is the model restriction to the states where ϕ is
true. In the disjunctive description, the negation has disappeared.
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since δ.ϕ ⊆ α and |β|a = |α|a, we have β � α. By Lemma 5.3, this entails
s, α |= ϕ. 2

6 Axiomatisation of AAA

The axiomatisation of AAA and its completeness proof is based on the axioma-
tisation of AA [3] and on that of APAL [1] and its completeness uses the method
pioneered in [2].

We will say that a formula ϕ ∈ L is ε-valid if, for every model (W,R, V )
and every w ∈ W , it is the case that w, ε |= ϕ, and ϕ is ∗-valid if, for every
model (W,R, V ) and w ∈ W , and for every history α such that w ./ α, it
is the case that w,α |= ϕ. In the the present section we provide a complete
axiomatization of the logic of ε-validities.

Given a symbol # we define a set AF of admissible forms as follows:

L ::= #|BaL|ϕ→ L|〈α〉L,

where ϕ ∈ L, a ∈ A, α ∈ H, L ∈ AF . Given L ∈ AF and ϕ ∈ L, the formula
L(ϕ) is the result of substituting the unique occurrence of # in L by ϕ.

The following holds:

Lemma 6.1 Let L be an admissible form. For all M ∈ AF and for all modal
formulas ϕ,ψ, if L([!]ϕ) = M([!]ψ) then L = M and ϕ = ψ.

Proof. By induction on L. 2

The logic AAA consists of the following axioms and rules, for α ∈ H, p ∈ P ,
a ∈ A, L(#) ∈ AF

(MP) If ` ϕ and ` ϕ→ ψ, then ` ψ
(NecB) If ` ϕ, then ` Baϕ
(KB) Ba(ϕ→ ψ)→ (Baϕ→ Baψ)
(R>1) 〈α.a〉> ↔ 〈α〉> if |α|a < |α|!
(R>2) 〈α.a〉> ↔ ⊥ otherwise;
(R>3) 〈α.ϕ〉> ↔ 〈α〉ϕ;
(Rp) 〈α〉p↔ (〈α〉> ∧ p);
(R¬) 〈α〉¬ϕ↔ (〈α〉> ∧ ¬〈α〉ϕ);
(R∨) 〈α〉(ϕ ∨ ψ)↔ (〈α〉ϕ ∨ 〈α〉ψ);

(RB) 〈α〉B̂aϕ↔ (〈α〉> ∧
∨
α.aβ

B̂a〈β〉ϕ);

([!]-elim) L([!]ϕ)→ L([β]ϕ) (where β ∈ (L−! ∪A)∗);
([!]-intω) If ` L([β]ϕ) for all β ∈ (L−! ∪A)∗, then ` L([!]ϕ)

Remark 6.2 If we remove the last two lines of the above table we obtain the
logic AA, defined in [3] for the language L−!.
Completeness proof. A theory is a set of formulas T such that:

i. AAA ⊆ T ;

ii. T is closed under Modus Ponens: if ϕ,ϕ→ ψ ∈ T , then ψ ∈ T ;

iii. T is closed under the following rule:
If L([β]ϕ) ∈ T for all β ∈ (L−! ∪A)∗, then L([!]ϕ) ∈ T .
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A theory is consistent if ⊥ /∈ T . Note that AAA is the least consistent theory,
and L is the only inconsistent theory.

A consistent theory is maximal if no proper superset of T is a consistent
theory.

The following holds:

Lemma 6.3 Given a theory T , a formula ψ, and an agent a ∈ A, the sets
TBa

= {ϕ : Baϕ ∈ T} and Tψ = {ϕ : ψ → ϕ ∈ T} are also theories.
Moreover, T ⊆ Tψ, ψ ∈ Tψ and, if ¬ψ /∈ T , then Tψ is consistent.

Proof. See Appendix. 2

We also have:

Proposition 6.4 (Lindenbaum’s Lemma) A consistent theory can be ex-
tended to a maximal consistent theory.

Proof. See Appendix. 2

Now we define a relation between maximal consistent theories as: TRaS iff,
for all ϕ, Baϕ ∈ T implies ϕ ∈ S (equivalently, iff TBa

⊆ S).

Proposition 6.5 (Diamond Lemma) Suppose B̂aϕ ∈ T . Then there exists
a maximal consistent theory S such that TRaS and ϕ ∈ S.

Proof. Consider the theory (TBa
)ϕ. First, note that TBa

is a consistent theory,

because ` B̂aϕ→ ¬Ba⊥, so Ba⊥ /∈ T and thus⊥ /∈ TBa . Moreover, Ba¬ϕ /∈ T ,
thus ¬ϕ /∈ TBa . By Lemma 6.3, we thus have that TBa ⊆ (TBa)ϕ, ϕ ∈ (TBa)ϕ
and (TBa

)ϕ is consistent. It then suffices to extend (TBa
)ϕ by Lindenbaum’s

lemma to the desired successor. 2

Now we can defined our canonical model: let W be the family of maximal
consistent theories, let Ra be defined as above and let V (p) = {T ∈W : p ∈ T}.
We have:

Proposition 6.6 (Truth Lemma) For any history α and formula ϕ, we
have: T, ε |= 〈α〉ϕ iff 〈α〉ϕ ∈ T .

Proof. See Appendix. 2

We will say that a formula ϕ is consistent if 0 ¬ϕ and that a set of formulas
Γ is consistent if it can be extended to a consistent theory. Note that ϕ is
consistent if and only if the singleton set {ϕ} is consistent (for if ¬ϕ /∈ AAA,
we can extend {ϕ} to the consistent theory AAAϕ).

We have:

Theorem 6.7 AAA is strongly complete with respect to Kripke models.

Proof. Let Γ be a consistent set of formulas. Then there exists a consistent
theory T0 ⊇ Γ and, by Lindenbaum’s lemma, a maximal consistent theory
T ⊇ T0. We construct the canonical model as above and we have that T, ε |= ϕ
for all ϕ ∈ Γ. 2
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7 Asynchronous Action Models

In this final section we shortly present two logics for asynchronous reception
of partially observed actions, including quantification over such actions. The
reason to present these logics is that they contrast in, we think, interesting
ways with the logic AA and with the logic AAA, the main subject of this paper.

7.1 Asynchronous Action Model Logic

Action model logic was proposed by Baltag, Moss and Solecki in [5]. An action
model is like a relational model but the elements of the domain are called ac-
tions instead of states, and instead of a valuation a precondition is assigned to
each domain element. A public announcement corresponds to a singleton ac-
tion model where the precondition is the formula of the announcement. Under
synchronous conditions, executing an action model into a Kripke model means
constructing what is known as the restricted modal product. This product en-
codes the new state of information, after action execution. Under asynchronous
conditions we do not construct the product model but calculate the belief conse-
quences of actions from the histories, just as for the particular singleton action
model that is the public announcement we do not construct model restrictions
in AA but instead use the history.

The nature of an asynchronous non-public action is that it is partially ob-
served by the agents, just as in action model logic, but that it is unclear when
the different agents partially observe the action, just as in AA. An example of
an asynchronous partially observed action when two agents Anne and Bill, who
are both ignorant about p, are informed that Anne will receive the truth about
some proposition p but not Bill. Suppose that Anne is going to receive the in-
formation that p (is true). By the time Bill learns that Anne will be informed
in this way, he considers it possible that Anne has already been informed, in
which case she now believes p or believes ¬p, but he also considers it possible
that she has not yet been informed and thus remains igorant about p. Dually,
by the time Anne learns that p but Bill has not yet learnt that Anne will be
informed about p, Bill incorrectly believes that Anne is ignorant about p.

Action model Formally, an action model E = (E,S, pre) consists of a domain
E of actions e, f, . . . , an accessibility function S : A → P(E2), where each Sa
is an accessibility relation, and a precondition function pre : E → L, where L
is a logical language. A pointed action model is a pair (E , e) where e ∈ E, for
which we write Ee. We abuse the language and also call a pointed action model
an action.

Syntax Similarly to AA we can conceive a modal logical language with 〈Ee〉ϕ
as an inductive language construct, for action models E with finite domains.
The class of finite pointed action models is called AM.

Histories are words in (AM∪A)∗. Much like in AA, we will use α�! to refer
to the projection of α to AM and use α �!a, |α|!, |α|a as usual.

View relation The definition of the .a relation in this setting incorporates
the partial observablity of action models: given α .a β, we demand that the
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action models appearing in α and β are the same. However, for agent a the
actions in α (points of these action models) may be different from the actions
in β. That is, α .a β iff |α|a = |β|a = |β|!, and for all i ≤ |α|a, if Ee is the i-th
action of α and Fe is the ith action of β, then E = F and Saef . This relation
.a is post-reflexive, transitive and post-symmetric if we are dealing with S5
action models (wherein all accessibility relations Sa are equivalence relations).

Semantics We define an executibility relation ./ as follows:

• w ./ ε,

• w ./ α.a iff w ./ α,

• w ./ α.Ee iff w ./ α and w,α |= pre(e).

With this, the semantics for belief and action model execution are what one
might expect, namely:
w,α |= 〈Ee〉ϕ iff w,α |= pre(e) and w,α.Ee |= ϕ.

w,α |= B̂aϕ iff t, β |= ϕ for some (t, β) such that t ./ β,Rawt, and α .a β.
We call this Asynchronous Action Model Logic AAM.

Reduction axioms and axiomatisation We recall that the axiomatisation
AAA presented in Section 6 consists of the rules and axioms of AA plus an
axiom and a rule dedicated to the quantifier (Remark 6.2).

It is straightforward to see that the axiomatisation of AAM is as the axioma-
tisation of AA where only axiom R>3 needs to be (analogously) reformulated
for action models, whereas the axiom RB is the same in AA and in AAM, except
that, clearly, the relation .a used in that axiom now refers to the much more
involved view relation for partial observability defined above, where an agent
considers all actions possible that are accessible for her given the actual action.
These two relevant axioms are:

(R′>3) 〈α.Ee〉> ↔ 〈α〉pre(e);
(R′B) 〈α〉B̂aϕ↔ (〈α〉> ∧

∨
α.aβ

B̂a〈β〉ϕ).

Just as for AA we can show that this axiomatisation is complete with respect to
the class of models with empty histories, and that this is again a reduction sys-
tem, such that every formula in the logical language is equivalent to a formula
without dynamic modalities 〈Ee〉 for action execution and 〈a〉 for receiving that
information.

To prove that this system is a complete axiomatisation of AAM, we need to
define a total preorder � from a complexity measure |.| which takes into con-
sideration the precondition formulas present in action models Ee. It therefore
seems that this demands that

|(E , e)| =
∑
e′∈E |pre(e′)|

|α| =
∑
{|(E , e)| : (E , e) occurs in α}.

We wish to investigate this later and thus show completeness.
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7.2 Arbitrary Asynchronous Action Model Logic

A further generalisation is the extension of the logical language with a quantifier
〈⊗〉 over action models, such that 〈⊗〉ϕ means that ϕ is true after the execution
of some finite action model in the current (s, α) pair of the given model.

Let AM−⊗ be the class of finite pointed action models where 〈⊗〉 does not
occur in the preconditions. We then get that

w,α |= 〈⊗〉ϕ iff there exists β ∈ (AM−⊗ ∪A)∗ such that w,α |= 〈β〉ϕ.

Let us call the logic with this quantifier AAAM (an extra A, for Arbitrary).
Although work on this logic is also very much work in progress, it is illumi-
nating to compare this extension AAAM of AAM with the logic AAA of this
submission, wherein we quantify over histories containing announcements. For
the synchronous version of arbitrary action model logic, Hales showed in [10]
that the restriction to quantifier-free precondition formulas in action models
can be relaxed, and that we can prove the property (not the definition) of this
logic that

w,α |= 〈⊗〉ϕ iff there exists β ∈ (AM∪A)∗ such that w,α |= 〈β〉ϕ.

He also showed that we can synthesize a multi-pointed action model EF
(where F ⊆ D(E)) from ϕ such that 〈⊗〉ϕ is equivalent to 〈EF 〉ϕ.

It it were possible to prove similar results for the logic AAAM of arbitrary
asynchronous action models, that would be of great interest, as this would then
show that AAAM is as expressive as AAM (without quantification), by reduc-
ing every formula to one without quantifiers, unlike the larger expressivity of
quantifying over asynchronous announcements in AAA; and it would also show
decidability of AAAM. Even independent from that, synthesis of asynchronous
partially observable actions, and the complexity of such tasks, seems of interest
to investigate further.

8 Conclusion

We presented the logic AAA of arbitrary asynchronous announcements, that
can be used to reason about agents receiving and sending each other infor-
mation under asynchronous conditions. We investigated the properties of the
arbitrary announcement quantifier, demonstrated bisimulation invariance, the
larger expressivity of the logical language with the quantifier, and we showed
preservation after history extension of the fragment of the positive formulas.
Then, we provided a complete infinitary axiomatisation. Finally, we tentatively
described a further generalisation to quantification over action models.

Appendix

Proof of Prop. 3.1. By �induction on (α,ϕ). Trivial for the cases where
(α,ϕ) = (ε,>) and (ε, p). For the case where (α,ϕ) = (β.a,>), we note that
w ./ β.a iff w ./ β and w, β.a |= > iff w, β |= >, and thus we can apply
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induction hypothesis, for (β,>)� (β.a,>). For the case (α,ϕ) = (β.ψ,>), we
note that (β, ψ)� (β.ψ,>).

For the cases (α,ϕ) = (α,¬ψ) and (α,ψ) = (α,ψ1 ∧ ψ2), we note that
(α,ψ)� (α¬ψ) and (α,ψi)� (α,ψ1 ∧ ψ2).

For the case (α,ϕ) = (α, B̂aψ), we have: w ./ α iff w′ ./ α by induction
hypothesis applied to (α,>). If w,α |= B̂aψ, then there is some v ∈ W and
some history β such that Rawv, α .a β, v ./ β and v, β |= ψ. But then there is
some v′ ∈W ′ with vZv′ and Raw

′v′ and thus, by induction hypothesis applied
to (β, ψ) � (α, B̂aψ), we have v′ ./ β, v′, β |= ψ and thus w′, α |= B̂aψ. The
converse is analogous.

For the cases (α,ψ) = (α, 〈a〉ψ) and (α,ψ) = (α, 〈θ〉ψ), we note that
(α.a, ψ)� (α, 〈a〉ψ) and (α.θ, ψ)� (α, 〈θ〉ψ).

For the case (α,ϕ) = (α, 〈!〉ψ), we have: on the one hand, w ./ α iff
w′ ./ α by induction hypothesis applied to (α,>). On the other hand, suppose
w,α |= 〈!〉ψ. Then w,α |= 〈β〉ψ for some history β which does not contain any
occurrences of 〈!〉. Therefore deg!〈β〉ψ < deg!〈!〉ψ, and thus by induction hy-
pothesis w′, α |= 〈β〉ψ, which entails w′, α |= 〈!〉ψ. The converse is analogous.2

Proof of Prop. 3.2. It is obvious that condition i. is satisfied. Now, suppose
condition ii. fails. That is, for some v ∈ W , we have Rawv but for all (the
finitely many) v′ such that Raw

′v′ it is not the case that vZv′. Let R′a[w′] =
{v′1, ..., v′n}. For each v′i there exists some pair (αi, ϕi) such that either v, ε |=
〈αi〉ϕi but v′i, ε 6|= 〈αi〉ϕi, or v, ε 6|= 〈αi〉ϕi but v′i, ε |= 〈αi〉ϕi . Let θi = 〈αi〉ψi
in the former case and θi = ¬〈αi〉ψi in the latter, and call ψ =

∧n
i=1 θi. Note

that v, ε |= ψ and thus w, ε |= B̂aψ. But then by the definition of Z we
have that w′, ε |= B̂aψ, and thus w′ has a successor satisfying each formula θi:
contradiction. Condition iii. is proven similarly. 2

Proof of Prop. 3.3. Let Ra be a relation defined on the set of pairs (s, α)
with s ./ α as follows:

(s, α)Ra(t, β) iff sRat, α .a β, and t ./ β.

Note that s, α |= Baϕ iff t, β |= ϕ for all (t, β) such that (s, α)Ra(t, β). The
proof of this result, then consists in showing that Ra is serial, transitive and
Euclidean.

Seriality. Let us see that, for all α, there exists a history β such that α.a β
and s ./ α implies s ./ β. Let n := |α|a ≤ |α|! and let ϕ be the n-th occurrence
of a formula in α, so that α = δ.ϕ.γ for some δ, γ. Let β = δ.ϕ.ak, where k is
a natural number such that |δ.ϕ|a + k = n. Then clearly α .a β, for β contains
n times a and exactly the first n formulas of α, and, if s ./ α, we have that
s ./ δ.ϕ, because δ.ϕ ⊆ α, and thus s ./ α.ϕ.ak. Since Ra is reflexive, this gives
that, for any s such that s ./ α, (s, α)Ra(s, β).

Transitivity. Since Ra and .a are both transitive, then, clearly, so is Ra.
Euclidicity. Again, since Ra and .a are Euclidean, so is Ra.

Proof of Prop. 3.4. Let model M = (W,R, V ) and s ∈W be given, and let
α ∈ (L−!∪A)∗ be such that s, ε |= 〈α〉B̂aϕ. Therefore α is a history, s ./ α and
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s, α |= B̂aϕ, so that there are t, β such that Rast, α .a β, t ./ β, and t, β |= ϕ.
As t ./ β and t, β |= ϕ, it follows that t, ε |= 〈β〉ϕ. It therefore follows that
t, ε |= 〈!〉ϕ. Finally, as Rast, ε .a ε and t ./ ε we conclude s, ε |= B̂a〈!〉ϕ.

On the other hand, B̂a〈!〉ϕ → 〈!〉B̂aϕ is not ε-valid. Consider the model
M = (W,R, V ) for a single agent a and atom p and where W = {s, t},
Ra = W 2, and V (p) = {s}. We then have that s, ε |= B̂a〈!〉Ba¬p, be-
cause s, ε |= B̂a〈¬p.a〉Ba¬p (because t, ε |= 〈¬p.a〉Ba¬p), whereas clearly
s, ε 6|= 〈!〉B̂aBa¬p. 2

Proof of Prop. 4.2. For a single agent we consider the formula 〈!〉(Bap ∧
Ba¬Bap) and proceed as in Prop. 4.1, where in this case we observe that in
model N ′ it holds that s′, (p ∨ ¬q).a |= Bap ∧Ba¬Bap.

t(¬p) s(p)

pq

N :

a
a a u′(¬p¬q) v′(p¬q)

t′(¬pq) s′(pq)

N ′ :

a

a

a a

Proof of Lemma 5.3. We show the following: Let ϕ ∈ L+. For all models
M = (W,R, V ) and s ∈ W , and for all histories α, β with α � β: if s ./ α and
s, α |= ϕ, then if s ./ β it holds that s, β |= ϕ.

The proof is by induction on the structure of (simple positive) ϕ.

Case ⊥. If s, ε |= [α]⊥, then s 6./ α, and thus s 6./ β, by definition of �,
which means s, ε |= [β]⊥.

Case atoms. If s, ε |= [α]p, then either s 6./ α, in which case s 6./ β and
thus s, ε |= [β]p, or s ./ α and s ∈ V (p), in which case s, ε |= [β]p as well. The
case for ϕ = ¬p is analogous.

Case conjunction. If s, ε |= [α](ϕ1 ∧ ϕ2), and assuming s ./ β (for
otherwise it is trivial), we have that s, α |= ϕi for i = 1, 2 and thus, by induction
hypothesis, s, β |= ϕi, whence s, ε |= [β](ϕ1 ∧ ϕ2).

Case disjunction. Analogous.
Case belief. Suppose s, ε 6|= [β]Baϕ. Then s, ε |= 〈β〉B̂a¬ϕ, which means

there exist t, δ with Rast, β .a δ and t, δ 6|= ϕ. By Lemma 5.1, there is a γ
with α .a γ and γ � δ, which gives, by induction hypothesis, t, δ 6|= ϕ and thus
s, α 6|= Baϕ.

Case [!]ϕ. Suppose s, ε 6|= [β][!]ϕ. This means that s, ε |= 〈β〉〈!〉¬ϕ, i.e.
there exists a word δ ∈ (L−! ∪ A)∗ such that s ./ β.δ and s, β.δ 6|= ϕ. Since
α � β.δ, this gives that s ./ α and s, α 6|= ϕ, and thus s, ε 6|= [α][!]ϕ. 2

Proof of Lemma 6.3. Checking the first item is easy: if ϕ ∈ AAA, then
Baϕ ∈ AAA (by necessitation) and ψ → ϕ ∈ AAA (by classical propositional
logic). Therefore Baϕ ∈ T and ψ → ϕ ∈ T , and thus ϕ ∈ TBa ∩ Tψ.

TBa is closed under modus ponens because if ϕ → θ ∈ TBa and ϕ ∈ TBa ,
then Ba(ϕ → θ), Baϕ ∈ T , which by the K axiom plus modus ponens gives
Baθ ∈ T and thus θ ∈ TBa

. For Tψ, suppose ϕ→ θ, ϕ ∈ Tψ. Then ψ → (ϕ→
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θ) ∈ T and ψ → ϕ ∈ T . But note that the former is logically equivalent to
(ψ → ϕ) → (ψ → θ), and, since T is closed under logical equivalence, this
means by modus ponens that ψ → θ ∈ T and thus θ ∈ Tψ.

For the third condition, suppose L([β]ϕ) ∈ TBa
for all β. Then BaL([β]ϕ) ∈

T for all β and, since BaL(#) is an admissible form, then BaL([!]ψ) ∈ T , and
thus L([!]ϕ) ∈ TBa . If L([β]ϕ) ∈ Tψ for all β, then ψ → L([β]ϕ) ∈ T for all β
and, again, since ψ → L(#) is an admissible form, this entails ψ → L([!]ϕ) ∈ T
and therefore L([!]ϕ) ∈ Tψ.

With respect to the last statement: ψ ∈ Tψ because ψ → ψ is a tautology; if
¬ψ /∈ T , then ψ → ⊥ /∈ T thus ⊥ /∈ Tψ, and if ϕ ∈ T , then (since ϕ→ (ψ → ϕ)
is a tautology) ψ → ϕ ∈ T and thus ϕ ∈ Tψ. 2

Proof of Prop. 6.4. Let T0 be a consistent theory. Let {ϕk : k ∈ ω} be an
enumeration of the formulas in L where each formula appears infinitely many
times. For k ∈ ω we will construct a consistent theory Tk+1, which is a superset
of Tk, as follows:

i. If ¬ϕk /∈ Tk, then Tk+1 = (Tk)ϕk
;

ii. If ¬ϕk ∈ Tk and ϕk is of the form L([!]ψ), then there must exist some
β ∈ (L−! ∪ A)∗ such that L([β]ψ) /∈ Tk (for otherwise, by rule iii., we
would have that ϕk ∈ Tk: contradiction). We set Tk+1 = (Tk)¬L([β]ψ).

iii. If ¬ϕk ∈ Tk and ϕk is not of the form L([!]ψ), then Tk+1 = Tk.

Each Tk is consistent due to the last statement in the previous Lemma.
Then T =

⋃
k∈ω Tk is consistent. T is trivially closed under modus ponens. For

any formula ϕk, either ¬ϕk was already in the k-th step of the construction,
or ϕk was added to Tk+1; therefore T cannot have proper consistent supersets
closed under modus ponens. Finally suppose L([β]ψ) ∈ T for all β. If L([!]ψ) /∈
T , then ¬L([!]ψ) ∈ T and thus ¬L([!]ψ) ∈ Tk for some k. Let m > k such that
ϕm = L([!]ψ). By construction there exists a β such that ¬L([β]ψ) ∈ Tm+1 ⊆
T : contradiction. Therefore T is a maximal consistent theory. 2

Proof of Prop. 6.6. By induction on (α,ϕ).
The case (α,ϕ) = (ε,>) is trivial. The cases (α,ϕ) = (α′.ψ,>) and (α′.a,>)

follow from the axioms R>1, R>2
and R>3 and the fact that (α′, ψ)� (α′.ψ,>)

and (α′,>)� (α′.a,>).
The case (α, p) follows from the definition of V (p) and axiom Rp combined

with the fact that (α,>)� (α, p).
The cases (α,¬ψ) and (α,ψ1∨ψ2) follow from R¬ and R∨, respectively, plus

the fact that (α,ψi) � (α,ψ1 ∨ ψ2) (for the first case), and (α,ψ) � (α,¬ψ)
(for the second case).

Let us see the case (α, B̂aϕ): if T, ε |= 〈α〉B̂aϕ, then on the one hand we
have that T ./ α (i.e., T, ε |= 〈α〉>, which by induction hypothesis paired
with the fact that (α,>) � (α, B̂aψ) gives us that 〈α〉> ∈ T ), and on the
other hand, S, β |= ϕ by some S, β such that RaTS, α .a β and S ./ β. This
means that S, ε |= 〈β〉ψ and thus (by induction hypothesis due to the fact that
(β, ψ) � (α, B̂aψ), we have that 〈β〉ψ ∈ S. This entails that B̂a〈β〉ψ ∈ T



Balbiani, van Ditmarsch, and Fernández González 19

and thus 〈α〉> ∧
∨
α.aβ

B̂a〈β〉ψ ∈ T , which by RB gives 〈α〉B̂aψ ∈ T . For the
converse, we use RB and the Diamond Lemma.

The cases (α, 〈a〉ψ) and (α, 〈θ〉ψ) follow directly from the fact that
(α.x, ψ)� (α, 〈x〉ψ) for x ∈ L ∪A.

Let us see the case (α, [!]ψ). If T, ε |= 〈α〉[!]ψ, then T ./ α and T, α |= [!]ψ,
which means that, for all β ∈ (L−!∪A)∗, T, ε |= 〈α〉[β]ψ. By induction hypoth-
esis, noting that (α, [β]ψ)� (α, [!]ψ) whenever β does not contain occurrences
of [!], we have that 〈α〉[β]ψ ∈ T for all β and thus 〈α〉[!]ψ ∈ T . Conversely,
if 〈α〉[!]ψ ∈ T , then 〈α〉> ∈ T (and thus, by IH, T, ε |= 〈α〉ψ, which means
T ./ α), and, for all β ∈ (L−! ∪ A)∗, 〈α〉[β]ψ ∈ T , which again by induc-
tion hypothesis gives T, ε |= 〈α〉[β]ψ for all β and thus T, α |= [!]ψ, whence
T, ε |= 〈α〉[!]ψ. 2

References

[1] Balbiani, P., A. Baltag, H. van Ditmarsch, A. Herzig, T. Hoshi and T. D. Lima,
‘Knowable’ as ‘known after an announcement’, Review of Symbolic Logic 1(3) (2008),
pp. 305–334.

[2] Balbiani, P. and H. van Ditmarsch, A simple proof of the completeness of APAL, Studies
in Logic 8(1) (2015), pp. 65–78.

[3] Balbiani, P., H. van Ditmarsch and S. Fernández González, Asynchronous
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