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Abstract. We study the regularity of the Green current for semi-extremal
endomorphisms of P2. Under suitable assumptions, we show that the point-

wise lower Radon-Nikodym derivative of stable slices with respect to the one

dimensional Lebesgue measure is bounded at almost every point for the equi-
librium measure. This provides a weak amount of metric regularity for the

Green current along holomorphic discs.

1. Introduction. Let f be a holomorphic endomorphism of P2 of degree d ≥ 2.
Let T be the Green current and let µ := T ∧ T be the equilibrium measure of f ,
see [13, 26]. The measure µ is invariant and ergodic, we denote J its support. The
critical set of f satisfies µ(C) = 0. The Lyapunov exponents λ2 ≤ λ1 of µ will play
a central role in this article. They are bounded below by 1

2 log d, see [8].

1.1. Extremal and semi-extremal endomorphisms. We say that f is extremal
if λ1 = λ2 = 1

2 log d. Those endomorphisms are characterized by the four equivalent
properties: µ� LebP2 , dimH µ = 4, T is a positive smooth (1, 1)-form on some open
subset of P2, and f is a Lattès map, see [6, 4, 10]. We recall that a Lattès map on
Pk is the projection of an affine dilation on a complex k-torus by means of a finite
galoisian covering σ, see [15] for examples. Similar characterizations were proved
for rational maps on P1, in which case λ = 1

2 log d and T = µ, see [23, 24, 27].

We say that f is semi-extremal if λ1 > λ2 = 1
2 log d. Examples are provided by

endomorphisms f of P2 having an invariant pencil of lines on which f induces a one
dimensional Lattès map, see [18]. A natural question is to find characterizations
of semi-extremal endomorphisms, as we have for extremal ones. We already know
that they satisfy dimH µ = 2 + log d

λ1
, see [7, 10, 17], and that f is semi-extremal

once µ� T ∧ ω, see [14]. Here ω stands for the Fubini-Study (1, 1)-form on P2, so
that T ∧ω is the trace measure of the Green current. Dujardin asked in [14, Section
3] the following questions.

Question 1.1. Does every semi-extremal endomorphism satisfy µ � T ∧ ω? If
µ� T ∧ ω, does f contain (in some sense) a one-dimensional Lattès map?

A strategy for the first question would to show that semi-extremal endomor-
phisms have an invariant pencil of lines. Indeed, in this case the radial Lyapunov
exponent of f is ≥ log d (by [18, Theorem 1.7]), hence the Lyapunov exponent of
the action of f on the pencil of lines (which belongs to the spectrum of µ by [18,
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Theorem 1.5]) must be equal to 1
2 log d (semi-extremality is assumed). This implies

that f induces a Lattès map on the pencil of lines, which ensures that µ � T ∧ ω
by [18, Corollary 1.3].

We can make a similar observation for the second question. If µ � T ∧ ω then
1
2 log d is one of the Lyapunov exponents of µ by [14]. Using the same arguments
as before (relying on [18]), the Lyapunov exponent of the action of f on the pencil
of lines must be 1

2 log d, ensuring that f induces a Lattès map on this pencil.
In the general case (without assuming the existence of an invariant pencil of lines),

the condition µ � T ∧ ω, equivalent to T ∧ T � T ∧ ω, formally says that T � ω
with respect to T . A first step to exhibit such regular properties for T consists
in establishing regular properties for slices. Theorems 1.3 and 1.4 below provide
results in that direction: they bound the pointwise lower Radon-Nikodym derivative
of stable slices of T at µ-almost every point. In Section 1.4 we shall examine the
guideline given by polynomial lifts of Lattès mappings on P1: such regular slices of
course exist, moreover there exist regular slices which do not intersect the support
of µ (see Remark 1.6).

1.2. Statements of the results.

Definition 1.2. Let f be a holomorphic endomorphism of P2 of degree d ≥ 2.
Assume that the Lyapunov exponents of the equilibrium measure of f are different,
hence λ2 < λ1. Let vs(x) ∈ P(TxP2) denote the stable Oseledec direction, which
is defined for every x in an invariant µ-generic Borel subset A. Let R be the set
of points x ∈ A such that there exists a holomorphic disc ξx : D → P2 satisfying
ξx(0) = x, [ξ′x(0)] = vs(x) and

lim inf
r→0

ξ∗xT (D(r))

Leb(D(r))
<∞. (1.1)

In that definition [v] ∈ P(TxP2) stands for the line of TxP2 directed by v. Since
µ(C) = 0, one can assume that A does not intersect ∪n∈Zfn(C). The relation
f∗T = dT then implies that R is totally f -invariant, in particular, µ(R) ∈ {0, 1} by
ergodicity. We prove that µ(R) > 0 under two different sets of assumptions related
to semi-extremality.

Theorem 1.3. Let f be a holomorphic endomorphism of P2 of degree d ≥ 2.
Assume that µ� T ∧ ω and λ2 < λ1 < 2λ2. Then µ(R) = 1.

Theorem 1.4. Let f be a holomorphic endomorphism of P2 of degree d ≥ 2.
Assume that f is semi-extremal and that λ2 < λ1 < 2λ2. Assume also that J ∩C = ∅
and that vs is Hölder continuous on A. Then µ(R) = 1.

For the second result, we shall see in Section 2.2 that the Hölder continuity of vs
on A is satisfied when f is partially hyperbolic on J .

1.3. Outline of the proofs. To prove Theorems 1.3 and 1.4, a first step will
consist in showing

dnje−2M1 ≤ ‖Dxf
nj (~vs(x))‖2 ≤ dnje2M1 (1.2)

for every x in a subset of positive µ-measure, where (nj)j is an increasing sequence
of integers depending on x and ~vs(x) ∈ TxP2 is a unitary vector in vs(x) ∈ P(TxP2)
defined in Definition 1.2. It is crucial that no exponential error term e±nε occur
in (1.2). Such error terms are actually inherent to (our context of) non uniform
hyperbolicity, a difficulty is thus to get rid of them. A second step will be to integrate
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(1.2), namely to construct a holomorphic disc on which fnj is a multiplication by
dnj/2e±M1 . We will use for that purpose a normal form Theorem for the inverse
branches of f . Theorem 3.1 (see Section 3) summarizes both steps, it provides
workable sufficient conditions ensuring that a point belongs to R.

Let us specify how the estimates (1.2) will be obtained. The lower bound is
actually true for every endomorphism of P2 satisfying λ2 ≤ λ1 < 2λ2, it does not
need any semi-extremality assumption, see Theorem 2.7. The upper bound in (1.2)
needs semi-extremality: for Theorem 1.3 we use arguments developed by Dujardin
[14] to construct Fatou directions (see Section 4), and for Theorem 1.4 we use the
Central Limit Theorem for the logarithm of the tangent map on the stable direction
vs(x) (see Section 5).

Let us notice that the Central Limit Theorem was used in [27] to prove regularity
properties for the equilibrium measure of rational maps on P1 and in [16] to provide
a new proof of the fact that µ is absolutely continuous when f is extremal on Pk.

1.4. Study of the lifts of one dimensional Lattès mappings. The polyno-
mial lifts of Lattès mappings on P1 are the most simple examples of semi-extremal
endomorphisms of P2. In this section we verify for them µ(R) = 1 and µ � T ∧ ω
by using normal forms for their Green function.

Proposition 1.5. Let f [z : w : t] := [P (z, w) : Q(z, w) : td], where [P : Q] is a
Lattès mapping of P1 of degree d ≥ 2. Then µ(R) = 1.

Proof. The mapping f belongs to the class of regular polynomial endomorphisms of
C2 studied by Bedford-Jonsson [2]. Let L := (P,Q) and let Ln = (Pn, Qn) denote
the n-th iterate of L. The Green function of the homogeneous polynomial mapping
L is

G(z, w) := lim
n

1

dn
log ||(Pn(z, w), Qn(z, w))||.

Let us denote by Ω := {G < 0} the basin of attraction of the origin in C2, and by
∂Ω = {G = 0} the boundary of Ω. In the affine chart {t = 1}, the Green current T
of f is equal to ddcG+, where G+ := max{G, 0}. Since [P : Q] is a Lattès mapping,
the support of the equilibrium measure µ = T ∧ T of f coincides with ∂Ω.

The results [3, Theorem 1.2 and Lemma 4.2] due to Berteloot-Loeb provide
normal forms for the function G when [P : Q] is a Lattès map of P1 of degree d.
Precisely, if x does not belong to the union S of a finite number of complex lines
in C2 passing through the origin (which has zero µ-measure), then there exist a
biholomorphism p : (C2, (0, 0))→ (C2, x) and δ ∈ R such that

G ◦ p(Z,W ) = |Z|2 + <(W ) and p−1 ◦ L ◦ p(Z,W ) = (eiδ
√
dZ, dW ).

In particular, up to a holomorphic change of coordinates near x, ∂Ω is a piece of
the 3-euclidian sphere. Now observe that the function G ◦ p is strictly subharmonic
on the Z-axis (the unique complex line in the tangent space at (0, 0) of the real
hypersurface {G ◦ p = 0}), which is included in {G ◦ p ≥ 0}. Hence G+ is strictly
subharmonic along the holomorphic disc

ξx(u) := p(u, 0).

The limit of
ξ∗xT (D(r))
Leb(D(r)) when r tends to 0 then exists and is equal to ddc(G+◦ξx)(0) ∈

R∗+. The fact that [ξ′x(0)] = vs(x) comes from [3, Lemma 4.2], which lifts the Lattès
commuting diagram to line bundles, the local coordinate in the fibers being W . We
thus have verified that µ-almost every x belongs to R, as desired.



6770 CHRISTOPHE DUPONT AND AXEL ROGUE

Remark 1.6. In the preceding proof, for every W0 ∈ (C, 0) such that <(W0) > 0,
the function G+ is strictly subharmonic along the holomorphic disc ξ(u,W0) :=
p(u,W0). Such a disc is included in {G ◦ p > 0}, which does not intersect the
support of µ.

Proposition 1.7. Let f [z : w : t] := [P (z, w) : Q(z, w) : td], where [P : Q] is a
Lattès mapping of P1 of degree d ≥ 2. Then µ� T ∧ ω.

Proof. We take the notations of the proof of Proposition 1.5. It suffices to verify
µ � T ∧ ω at every point x ∈ ∂Ω \ S, since µ(S) = 0. We work with the local
coordinates provided by p. Let G0(Z,W ) := |Z|2 + <(W ), T0 := ddcG+

0 and

ω0 := i
2dZ ∧ dZ + i

2dW ∧ dW . For every test function ϕ on (C2, (0, 0)), we have by
using and adapting [22, Proposition 6.5.5]:∫

(C2,(0,0))

ϕT0 ∧ ω0 =

∫
{G0=0}

ϕdcG0 ∧ ω0 +

∫
{G0≥0}

ϕddcG0 ∧ ω0, (1.3)

∫
(C2,(0,0))

ϕT0 ∧ T0 =

∫
{G0=0}

ϕdcG0 ∧ ddcG0, (1.4)

where the orientation on {G0 = 0} is induced by the one of {G0 ≤ 0}. A straigth-
forward computation shows that

dcG0 ∧ ω0 = dcG0 ∧ ddcG0, (1.5)

on the spherical 3-manifold {G0 = 0}. Finally, one obtains T0 ∧ T0 � T0 ∧ ω0 by
using (1.5) and comparing (1.3) and (1.4).

Remark 1.8. The measure given by (1.5) is equal to d=W ∧ i
2dZ ∧ dZ, which

belongs to the Lebesgue measure class of the 3-manifold {G0 = 0}.

2. Oseledec theorem, stable directions, normal forms.

2.1. Oseledec theorem. Let us state the Oseledec Theorem in our context.

Theorem 2.1. Let f be a holomorphic endomorphism of P2 of degree d ≥ 2. Let
λ2 ≤ λ1 be the Lyapunov exponents of the equilibrium measure µ of f .

1. If λ1 = λ2 = λ, then there exists an invariant Borel subset A of full µ-measure
and disjoint from ∪n∈Zfn(C) such that for every x ∈ A:

∀~v ∈ TxP2 \ {0} , lim
n→+∞

1

n
log ‖Dxf

n(~v)‖ = λ.

2. If λ1 > λ2, then there exists an invariant Borel subset A of full µ-measure
and disjoint from ∪n∈Zfn(C) such that for every x ∈ A, there exists vs(x) ∈
P(TxP2) satisfying:

∀~v ∈ TxP2 \ vs(x) , lim
n→+∞

1

n
log ‖Dxf

n(~v)‖ = λ1.

∀~v ∈ vs(x) \ {0} , lim
n→+∞

1

n
log ‖Dxf

n(~v)‖ = λ2.

Moreover vs is measurable and satisfies [Dxf ](vs(x)) = vs(f(x)) for every
x ∈ A, where [Dxf ] is the projectivization of the tangent map Dxf .
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Let us assume that λ2 < λ1. For every x ∈ A, we denote

ψ(x) := log ‖Dxf(~vs(x))‖ ,
where ~vs(x) ∈ {~v ∈ vs(x) ⊂ TxP2 , ‖~v‖ = 1}. We have ψ ∈ L1(µ), see [26, Section
3.7].

Lemma 2.2. For every x ∈ A and every n ≥ 1, we have

1

n

n−1∑
i=0

ψ(f i(x)) =
1

n
log ‖Dxf

n(~vs(x))‖ .

This implies
∫
ψ dµ = λ2.

Proof. The first formula follows from the definition of ψ and the relation [Dxf ]
(vs(x)) = vs(f(x)). We obtain the second formula by taking limits µ-almost every-
where: the left hand side converges to

∫
ψ dµ by Birkhoff ergodic Theorem, and the

right hand side converges to λ2 by Theorem 2.1.

2.2. Hölder continuity of the stable direction. The following result, due to
Brin, is [25, Proposition 3.9] adapted to our setting, see also [1, Section 5.3]. We
use the notation dist for the distances on P2 and P(TP2).

Theorem 2.3. Let f be a holomorphic endomorphism of P2 of degree d ≥ 2.
Assume that f is partially hyperbolic on J : that means that there exist 0 < λ− < λ+
and c ≥ 1 such that for every x ∈ J , there exist unitary vectors ~ws(x), ~wu(x) ∈ TxP2

whose angle is uniformly bounded from below on J and which satisfy

∀n ≥ 1 , ‖Dxf
n(~ws(x))‖ ≤ cλn− , ‖Dxf

n(~wu(x))‖ ≥ c−1λn+. (2.1)

Then the direction ws = [~ws] : J → P(TP2) is Hölder continuous. More precisely,
if b := max{1, ‖f‖C1} then for every a > b2 there exists Da > 1 such that:

dist(x, y) < D−1a ⇒ dist(ws(x), ws(y)) ≤ 3c2
λ+
λ−

(Da dist(x, y))
log(λ+/λ−)

log(a/λ−) .

Remark 2.4. If f is partially hyperbolic on J and if λ2 < λ1, then one verifies that
the stable Oseledec direction vs(x) provided by Theorem 2.1 coincides with ws(x)
for every x ∈ A, hence vs is Hölder continuous on A by Theorem 2.3. In particular,
every partially hyperbolic endomorphism satisfying λ2 = 1

2 log d, λ2 < λ1 < 2λ2
and J ∩ C = ∅ fulfills the assumptions of Theorem 1.4.

Actually it is not easy to find examples of semi-extremal endomorphisms partially
hyperbolic on J . For instance the lift f [z : w : t] = [z2− 2w2 : z2 : t2] of the Lattès
mapping L[z : w] = [z2 − 2w2 : z2] is not partially hyperbolic on J . To see this,
observe that the Lyapunov exponents of (f, µ) are 1

2 log 2 (coming from the Lattès

mapping L) and log 2 (coming from t2). In particular, the modulus of the multiplier
of every n-repulsive cycle of L not intersecting the critical values of σ is equal to
(
√

2)n. On the other hand, that modulus is equal to 4 for the fixed point [1 : 1]
(this is a critical value of σ, see [3, Section 3]). Hence f has n-periodic points in J
with multipliers {(

√
2)n, 2n} and {4n, 2n} respectively. It follows that no λ− < λ+

satisfy (2.1) over J .
Examples of partially hyperbolic endomorphisms should be found among uni-

formly expanding endomorphisms. Jonsson [20] obtained examples in the family of
polynomial skew products. For instance, f(z, w) = (z2, w2 + zw + cz) is uniformly
expanding on J if c is large enough (see Theorems 4.8, 8.2 and Examples 9.2 of
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this article). Corollary 8.3 of [20] moreover characterizes the Axiom A property in
terms of the dynamics of the critical set: f(z, w) = (z2− 6, w2 + 3− z) is uniformly
expanding on J . We refer to [19] for results on a family of Axiom A endomor-
phisms of P2 (called s-hyperbolic): basic sets, attractors and invariant currents are
investigated there in Sections 3, 4 and 5.

To deduce partial hyperbolicity from uniform expansivity is also not straight-
forward. This should involve the Lyapunov exponents of µ: the stable Oseledec
direction vs(x) is a natural candidate for ws(x). Nonetheless, that direction is only
defined µ-a.e. on J , and an other difficulty comes from the fact that the Lyapunov
exponents only give an asymptotic growth rate. Hence, even if the Lyapunov ex-
ponents are distinct, the existence of c ≥ 1 and λ− < λ+ satisfying (2.1) for every
n ≥ 1 is not obvious.

Before stating the next Proposition, let us recall Remark 2.4: if f is partially
hyperbolic on J and if λ2 < λ1, then the stable Oseledec direction vs provided by
Theorem 2.1 is Hölder continuous on A.

Proposition 2.5. Let f be a holomorphic endomorphism of P2 of degree d ≥ 2.
Assume that λ2 < λ1 and that vs is Hölder continuous on A.

1. Then vs extends to a Hölder continuous map on J , still denoted vs.
2. If J ∩ C = ∅, then ψ(x) = log ‖Dxf(~vs(x))‖ is Hölder continuous on J .

Proof. The first item is classical by using Cauchy sequences and the fact that A is
dense in J . Let us write dist(vs(x), vs(y)) ≤ c′d(x, y)α on J and prove the second
item. By working in charts of TP2, let us fix a section of the unit tangent bundle
x 7→ ~vs(x) such that ~vs(x) ∈ vs(x) and ‖~vs(x)− ~vs(y)‖ ≤ c′ dist(x, y)α. We get

‖Dxf(~vs(x))−Dyf(~vs(y))‖
≤ ‖Dxf(~vs(x))−Dxf(~vs(y))‖+ ‖Dxf(~vs(y))−Dyf(~vs(y))‖
≤ ‖Dxf‖ ‖~vs(x)− ~vs(y)‖+ ‖Dxf −Dyf‖ ‖~vs(y)‖
≤ ‖f‖C2 (1 + c′)d(x, y)α.

This implies that x 7→ ‖Dxf(~vs(x))‖ is Hölder continuous. Since J ∩ C = ∅, that
function is bounded below by a constant ρ > 0 on J . By using that log is ρ−1-
Lipschitz on [ρ,+∞[, we get that ψ(x) = log ‖Dxf(~vs(x))‖ is Hölder continuous on
J .

2.3. Normal forms. Recall that the subset A defined in Definition 1.2 is invariant,
does not intersect ∪n∈Zfn(C) and satisfies µ(A) = 1 . Let

Â :=
{
x̂ = (xn)n∈Z ∈ AZ , xn+1 = f(xn)

}
and let f̂ : Â → Â be the left shift. We denote x̂n := f̂n(x̂) for every n ∈ Z. A

function ϕε : Â →]0,+∞[ is ε-tempered if e−εϕ(x̂) ≤ ϕ(f̂(x̂)) ≤ eεϕ(x̂). Let f−nx̂n
be the inverse branch of fn sending a neighbourhood of xn to a neighbourhood of
x0. The following result provides normal forms for those mappings, see [5, 21]. The

measure µ̂ stands for the unique f̂ -invariant measure on Â such that (π0)∗µ̂ = µ,
where π0(x̂) := x0. Let Bx(r) denote the ball centered at x of radius r in P2.

Theorem 2.6. [5, Proposition 4.3] For every ε > 0 there exist ε-tempered functions

ηε, ρε : Â→ ]0, 1], βε, Lε,Mε : Â→ [1,+∞[ and a function N : Â→ N satisfying the
following properties. There exist injective holomorphic mappings ξx̂ : Bx0

(ηε(x̂))→
D2(ρε(x̂)) satisfying for every x̂ ∈ Â:
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1. ξx̂(x0) = 0 and Dx0ξx̂(vs(x0)) is the vertical axis in C2,
2. ∀p, q ∈ Bx0(ηε(x̂)) , 1

2 dist(p, q) ≤ ‖ξx̂(p)− ξx̂(q)‖ ≤ βε(x̂) dist(p, q) ,

and such that the following diagram commutes for every n ≥ N(x̂):

Bx0(ηε(x̂))

ξx̂
��

Bxn(ηε(x̂n))
f−n
x̂noo

ξx̂n
��

D2(ρε(x̂)) D2(ρε(x̂n))
Rn,x̂n

oo

The mappings Rn,x̂n have the following form depending on (λ1, λ2):

1. If λ1 = λ2 = λ, then Rn,x̂n is a linear mapping satisfying

e−n(λ+ε) ‖(z, w)‖ ≤ ‖Rn,x̂n(z, w)‖ ≤ e−n(λ−ε) ‖(z, w)‖ .

2. If λ1 = kλ2 for some k ≥ 2 then Rn,x̂n(z, w) = (αn,x̂nz, βn,x̂nw)+(γn,x̂nw
k, 0).

3. If λ1 6∈ {kλ2, k ≥ 1}, then Rn,x̂n(z, w) = (αn,x̂nz, βn,x̂nw).

Moreover, in the cases 2 and 3, we have

e−n(λ1+ε) ≤ |αn,x̂n | ≤ e−n(λ1−ε) , |γn,x̂n | ≤Mε(x̂)e−n(λ1−2ε)

and

e−n(λ2+ε) ≤ |βn,x̂n | ≤ e−n(λ2−ε). (2.2)

In particular, if λ2 < λ1, the second coordinate of Rn,x̂n has the form w 7→ βn,x̂nw.

2.4. Estimates from pluripotential theory. The following result holds for ev-
ery endomorphism of P2 satisfying λ1 < 2λ2. The proof relies on Briend-Duval’s
strategy [8] by taking into account λ2 ≥ 1

2 log d: the arguments use the facts that T
has continuous potentials, satisfies f∗T = dT and defines µ by the Monge-Ampère
equation µ = T ∧ T . Let us set

Bn(ρ) :=
{
x ∈ P2 , u 7→ fn ◦ (x+ (Dxf

n)−1(u)) : D2(ρ)→ P2 is injective
}
,

Rn(τ) :=
{
x ∈ P2 ,

∥∥(Dxf
n)−1

∥∥−1 ≥ τ−1dn/2} .
For the definition of Bn(ρ), we used charts of TP2 so that the mapping x+(Dxf

n)−1

is defined on D2(ρ) and takes its values in a neighbourhood of x in P2.

Theorem 2.7. [6, Propositions 1 and 2] Let f be a holomorphic endomorphism of
P2 of degree d ≥ 2. If λ1 < 2λ2, then for every β > 0,

1. ∃ρ > 0, ∀n ≥ 1, µ(Bn(ρ)) ≥ 1− β,
2. ∃ρ > 0, ∀n ≥ 1, ∀τ > 0, µ(Bn(ρ) ∩Rn(τ)) ≥ 1− β − (ρτ)−2.
3. In particular, ∀a > 0, ∃τ > 0, ∀n ≥ 1, µ(Rn(τ)) ≥ 1− a.

The following Corollary will be used to prove Proposition 5.2.

Corollary 2.8. Let f be a holomorphic endomorphism of P2 of degree d ≥ 2 satis-
fying λ2 < λ1 < 2λ2. For every β > 0 let ρ > 0 given by Theorem 2.7. There exists
a Borel set H of full µ-measure satisfying for every x ∈ H, there exists n(x) ≥ 1
such that

∀n ≥ n(x), x 6∈ Bn(ρ) or ‖Dxf
n(~vs(x))‖ ≥ dn/2

n
.
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Proof. According to Theorem 2.7, we have
∑
n≥1 µ(Bn(ρ)∩Rn(n)c) ≤ ρ−2

∑
n≥1

1
n2 .

By Borel-Cantelli’s Lemma, there exists H such that µ(H) = 1 and

∀x ∈ H, ∃n(x) ≥ 1, ∀n ≥ n(x), x ∈ Bn(ρ)c ∪Rn(n).

Let x ∈ H. If x ∈ Bn(ρ)c, the proof is complete. If not, x ∈ Rn(n), and since ~vs(x)

is unitary we get ‖Dxf
n(~vs(x))‖ ≥

∥∥(Dxf
n)−1

∥∥−1 ≥ dn/2

n .

3. A criterion for bounded Radon-Nikodym derivatives. The following the-
orem gives sufficient conditions ensuring that a point x belongs to the set R defined
in Definition 1.2. The integer N(x̂) is defined in Theorem 2.6.

Theorem 3.1. Let f be a holomorphic endomorphism of P2 of degree d ≥ 2.
Assume that λ1 > λ2 and let x̂ ∈ Â. If there exist η0,M1,M2 > 0 and an increasing
sequence (nj)j∈N of integers such that n0 = 0 and n1 ≥ N(x̂) satisfying:

1. ηε(x̂nj ) ≥ 4η0, βε(x̂nj ) ≤ eM2 ,

2. e−M1dnj/2 ≤ ‖Dxf
nj (~vs(π0(x̂)))‖ ≤ eM1dnj/2,

then x := π0(x̂) ∈ R: there exists a holomorphic disc ξx : D → P2 satisfying
ξx(0) = x, [ξ′x(0)] = vs(x) and

lim inf
r→0

ξ∗xT (D(r))

Leb(D(r))
<∞. (3.1)

Proof. Let us apply Theorem 2.6 which gives normal forms for the inverse branches
of f . Since ηε(x̂nj ) ≥ 4η0, the image of Bxnj (ηε(x̂nj )) by ξx̂nj contains D2(2η0).

Similarly, the image of Bx0
(ηε(x̂)) by ξx̂ contains D2(2η0). Let V be the vertical

disc

V :
D(2η0) → D(2η0)× D(2η0)
w 7→ (0, w)

,

and let us set
ξ̃0 := (ξx̂)−1 ◦ V and ξ̃nj := (ξx̂nj )−1 ◦ V.

By pulling back (fnj )∗T = dnjT by ξ̃0, we get

(fnj ◦ ξ̃0)∗T = dnj ξ̃∗0T on D(η0). (3.2)

Let us observe that

fnj ◦ ξ̃0 = fnj ◦ (ξx̂)−1 ◦ V = (ξx̂nj )−1 ◦R−1nj ,x̂nj ◦ V,

where the first equality comes from the definition of ξ̃0 and the second one from
Theorem 2.6. If βnj : C → C denotes the multiplication by βnj ,x̂nj , we also have

the relation
R−1nj ,x̂nj

◦ V = V ◦ β−1nj ,
since the second coordinate of Rnj ,x̂nj is linear. Hence we get:

fnj ◦ ξ̃0 = ξ̃nj ◦ β−1nj on βnj (D(η0)).

Equation (3.2) restricted to βnj (D(η0)) ⊂ D(η0) then implies:

ξ̃∗njT = dnj (β−1nj )∗ξ̃
∗
0T on D(η0),

which gives
ξ̃∗njT (D(η0)) = dnj ξ̃∗0T (D(η0 · |βnj ,x̂nj |)). (3.3)

Now we bound from below the right hand side of Equation (3.3). This is where we
use the second hypothesis of Theorem 3.1.
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Lemma 3.2. We have |βnj ,x̂nj | ∈ [d−nj/2e−M , d−nj/2eM ], where M := M1 +M2 +

ln 2.

Proof. By Theorem 2.6, we can write fnj = (ξx̂nj )−1 ◦ R−1nj ,x̂nj ◦ ξx̂. We study the

differential of that composition. By using

∀~v ∈ Tfni (x)P2 ,
1

2
‖~v‖ ≤

∥∥Dfni (x)ξx̂ni (~v)
∥∥ ≤ eM2 ‖~v‖

for i = 0 and i = j (provided by Theorem 2.6) and the fact that the differential of
ξx̂ (resp. ξx̂nj ) at x (resp. fnj (x)) sends the line vs(x) ⊂ TxP2 (resp. vs(f

nj (x)) ⊂
Tfnj (x)P2) on the vertical axis, we obtain

‖Dxf
nj (~vs(x))‖ (2eM2)−1 ≤

∣∣∣βnj ,x̂nj ∣∣∣−1 ≤ ‖Dxf
nj (~vs(x))‖ (2eM2).

Now we use the assumption e−M1dnj/2 ≤ ‖Dxf
nj (~vs(x))‖ ≤ eM1dnj/2 to deduce

d−nj/2e−M1(2eM2)−1 ≤
∣∣∣βnj ,x̂nj ∣∣∣ ≤ d−nj/2eM1(2eM2),

which concludes the proof.

The right hand side term of Equation (3.3) hence satisfies:

dnj ξ̃∗0T (D(η0 · |βnj ,x̂nj |)) ≥
ξ̃∗0T (D(η0 d

−nj/2 e−M ))

d−nj
= c0

ξ̃∗0T (D(η0 d
−nj/2 e−M ))

π(η0 d−nj/2 e−M )2
,

(3.4)
where c0 = π(η0e

−M )2. By setting rj = η0 d
−nj/2 e−M , we obtain:

dnj ξ̃∗0T (D(η0 · |βnj ,x̂nj |)) ≥ c0
ξ̃∗0T (D(rj))

Leb(D(rj))
.

Now Lemma 3.3 below bounds the left hand side term of Equation (3.3), hence

lim inf
r→0

ξ̃∗0T (D(r))

Leb(D(r))
<∞.

To conclude the proof of Theorem 3.1, we set ξx : D→ P2 by ξx(z) := ξ̃0(η0z).

Lemma 3.3. There exists a constant M3 > 0 such that for every j ≥ 0,

ξ̃∗njT (D(η0)) ≤M3.

Proof. Let (Bi)i∈I be a finite open covering of P2 by small balls, such that T
admits for every i ∈ I a bounded continuous plurisubharmonic potential Gi on
the 4η0-tubular neighbourhood B̃i of Bi. Let ‖G‖∞ := maxi∈I ‖Gi‖∞ and let
ψ : D(2η0)→ R+ be a function with compact support which is equal to 1 on D(η0).

Let us fix j ≥ 0 and let i ∈ I be such that xnj ∈ Bi, hence Bxnj (4η0) ⊂ B̃i. Since

ξ̃nj = (ξx̂nj )−1 ◦ V , we get

ξ̃nj (D(2η0)) ⊂ (ξx̂nj )−1(D2(2η0)) ⊂ Bxnj (4η0).

We deduce

ξ̃∗njT (D(η0)) ≤
∫
D(2η0)

∆(Gα ◦ ξ̃nj )ψ =

∫
D(2η0)

Gα ◦ ξ̃nj∆ψ ≤ ‖G‖∞ max
D(2η0)

∆ψ.

We complete the proof by setting M3 := ‖G‖∞maxD(2η0) ∆ψ.
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4. Proof of Theorem 1.3.

4.1. Decomposable currents. This subsection is borrowed from Dujardin’s arti-
cle [14]. Let ω be the Fubini-Study (1, 1)-form on P2 and let S be a closed positive
current of bidegree (1, 1) on P2. Let σS = S ∧ω denote the trace measure of S, this
is a positive measure on P2. We shall denote S(ϕ) =

∫
P2 S ∧ ϕ for every (1, 1)-test

form ϕ on P2. Locally, one can write S as

S =
∑

j,k∈{1,2}

Sj,k idzj ∧ dzk. (4.1)

where S1,1 and S2,2 are positive measures and S1,2 = S2,1 are complex measures.
Let (e1, e2) be a basis of C2. Let us recall that a (1, 1)-positive vector of C2 is an
element of Λ1,1C2 of the form i

∑
j,k∈{1,2} tj,kej ∧ ek where (tj,k)(j,k) is a positive

hermitian matrix. A positive vector of C2 is decomposable if it is equal to iu∧u for
some u ∈ C2. In Equation (4.1), since S is a positive current, the measures |S1,2|
ans |S2,1| are dominated by the trace measure σS = S1,1 + S2,2. By the Radon-
Nikodym Theorem, there exists a measurable field ΛS of (1, 1)-positive covectors of
trace 1 such that

S = ΛSσS .

By duality, there exists a measurable field tS of (1, 1)-positive vectors of trace 1
such that

∀η (1, 1)− test form on P2 , S(η) =

∫
P2

< tS , η > σS . (4.2)

By the Lebesgue density Theorem, there exists E ⊂ SuppS such that S ∧ω(E) = 1
and for every x ∈ E,

lim
r→0

1

σS(Bx(r))

∫
Bx(r)

tS(y)σS(y) = tS(x).

We say that S is decomposable at x ∈ E if the (1, 1)-positive vector tS(x) is decom-

posable. For instance, if S = [L] where L is a smooth curve, then tS(x) = i~ux ∧ ~ux
where ~ux is a unitary tangent vector of L at x. The laminar currents are also
examples of decomposable currents.

In [14], Dujardin established the following nice property: if f is not a Lattès map,
then the Green current T is decomposable σT -almost everywhere, in particular it
carries a directional information. This is the content of the following result.

Theorem 4.1. [14, Theorem 3.3] Let f be a holomorphic endomorphism of P2 of
degree d ≥ 2 and let T be its Green current. If f is not a Lattès map, then there
exists E′ ⊂ E of full σT -measure satisfying the following property. For every x ∈ E′,
there exists ~vx ∈ TxP2 satisfying ‖~vx‖ = 1 and

tT (x) = i~vx ∧ ~vx.

Moreover the vectors ~vx satisfy the following property.

Proposition 4.2. [14, Section 3.2] Let f be a holomorphic endomorphism of P2

of degree d ≥ 2. We assume that f is not a Lattès map (hence tT (x) = i~vx ∧ ~vx
σT -almost everywhere, with ‖~vx‖ = 1). Then,

∀n ≥ 1,

∫
P2

‖Dxf
n(~vx)‖2 dσT (x) ≤ dn.



ON THE REGULARITY OF THE GREEN CURRENT 6777

Markov’s inequality then implies:

∀n ≥ 1, ∀a > 0, (σT )
{
x ∈ P2, ‖Dxf

n(~vx)‖2 ≥ adn
}
≤ 1

a
.

Proof. For σT -almost every x, we have

‖Dxf
n(~vx)‖2 ≤ Trace (Dxf

n)∗(i~vx ∧ ~vx).

We use tT (x) = i~vx ∧ ~vx and the definition of the trace to get:

‖Dxf
n(~vx)‖2 ≤ 〈 (Dxf

n)∗(tT (x)), ω(fn(x)) 〉
≤ 〈 tT (x), (Dxf

n)∗ω(fn(x)) 〉
since Dxf

n is invertible σT -almost everywhere. By integrating this inequality on
P2: ∫

P2

‖Dxf
n(~vx)‖2 σT (x) ≤

∫
P2

〈 tT (x), (Dxf
n)∗ω(fn(x)) 〉σT (x).

By using Equation (4.2), we obtain∫
P2

‖Dxf
n(~vx)‖2 σT (x) ≤

∫
P2

T ∧ (fn)∗ω = dn,

where the last equality uses the fact that (fn)∗ω is cohomologous to dnω, see for
instance Sections 1.2 and A.3 of [13].

4.2. Application of Theorem 3.1 to prove Theorem 1.3.

Proposition 4.3. Assume that f is not a Lattès map (hence tT (x) = i~vx ∧ ~vx
σT -almost everywhere, with ‖~vx‖ = 1). We also assume that µ� σT . Then, there
exist q ≥ 1 and γ > 0 such that

∀n ≥ 1, µ

{
x ∈ P2, ‖Dxf

n(~vx)‖2 ≤ 4

γ
dn
}
≥ γ

4q
.

Proof. Let us write µ = ϕσT where ϕ ∈ L1(σT ) and ϕ ≥ 0. Let us set γ :=
σT {ϕ > 0}. It satisfies γ > 0 since 1 = µ(P2) = µ {ϕ > 0} =

∫
{ϕ>0} ϕσT . Moreover

σT

{
1
q ≤ ϕ

}
tends to σT {0 < ϕ} = γ by Lebesgue convergence Theorem. Let us

set q ≥ 1 such that

σT

{
1

q
≤ ϕ

}
≥ γ/2. (4.3)

For every n ≥ 1, we denote

An :=

{
x ∈ P2, ‖Dxf

n(~vx)‖2 ≤ 4

γ
dn
}
.

We want to show µ(An) ≥ γ
4q . Proposition 4.2 gives with a = 4/γ

∀n ≥ 1, σT (An) ≥ 1− γ/4. (4.4)

Equations (4.3) and (4.4) imply σT (An ∩
{

1
q ≤ ϕ

}
) ≥ γ

4 . Coming back to µ,

µ(An) ≥ µ(An ∩
{

1

q
≤ ϕ

}
) =

∫
An∩{ 1

q≤ϕ}
ϕσT .

We deduce

µ(An) ≥ 1

q
(σT )(An ∩

{
1

q
≤ ϕ

}
) ≥ 1

q

γ

4
,

which is the desired lower bound.
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Now let us prove Theorem 1.3. We assume that µ� σT and λ2 < λ1 < 2λ2. Let

Bn :=

{
x ∈ P2,

1

τ20
dn ≤ ‖Dxf

n(~vx)‖2 ≤ 4

γ
dn
}
.

By combining Proposition 4.3 and the third item of Theorem 2.7 (with a = γ
8q and

using ‖Dxf
n(~vx)‖ ≥

∥∥(Dxf
n)−1

∥∥−1), we get µ(Bn) ≥ γ
8q . The set B̂n := π−10 (Bn)

then satisfies µ̂(B̂n) ≥ γ
8q . Let M2 be large enough and η0 be small enough such

that

Ê :=
{
βε(x̂) ≤ eM2 , ηε(x̂) ≥ 4η0

}
satisfies µ̂(Ê∩f̂−n(E)) ≥ 1− γ

16q . Therefore the µ̂-measure of Ĉn := B̂n∩Ê∩f̂−n(Ê)

is larger than γ
16q , and the same property holds for Ĉ := lim sup Ĉn.

Lemma 4.4. Every x̂ ∈ Ĉ satisfies the hypothesis of Theorem 3.1.

Proof. Let x̂ ∈ Ĉ and x = π0(x̂). By definition of Ĉ, there exists (nj)j depending

on x̂ such that n0 = 0, n1 ≥ N(x̂) and x̂ ∈ Ĉnj for every j ≥ 0. In particular,

ηε(x̂nj ) ≥ 4η0, βε(x̂nj ) ≤ eM2 , and

1

τ20
dnj ≤ ‖Dxf

nj (~vx)‖2 ≤ 4

γ
dnj .

Those estimates combined with the definition of the stable Oseledec direction given
in Theorem 2.1 imply vs(x) = vx (recall that λ2 < λ1). By taking M1 large enough
such that e−2M1 ≤ 1

τ2
0
≤ 4

γ ≤ e
2M1 , we get

e−M1dnj/2 ≤ ‖Dxf
nj (~vs(x))‖ ≤ eM1dnj/2,

which completes the proof of the Lemma.

Lemma 4.4 ensures that C := π0(Ĉ) ⊂ R. But C has positive µ-measure, since

µ(C) ≥ µ̂(Ĉ) ≥ γ
16q . Finally µ(R) > 0, completing the proof of Theorem 1.3.

5. Proof of Theorem 1.4.

5.1. Central Limit Theorem. The dynamical system (P2, f, µ) satisfies a Central
Limit Theorem, see [9, 11, 12, 16].

Theorem 5.1. Let f be a holomorphic endomorphism of P2 of degree d ≥ 2 and
let µ be its equilibrium measure. Let φ : J → R be a Hölder continuous function
such that

∫
φdµ = 0 and let Sn(φ) :=

∑n−1
i=0 φ ◦ f i. Then the asymptotic variance

σφ := lim
n

1√
n
‖Sn(φ)‖2

exists and the following alternative holds:

1. if σφ = 0 there exists u ∈ L2(µ) such that φ = u ◦ f − u.
2. if σφ > 0 then 1√

n
Sn(φ) converges in law towards the Gaussian N (0, σφ).
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5.2. The asymptotic variance of ψ vanishes. We assume that λ2 < λ1 and
consider

ψ(x) = log ‖Dxf(~vs(x))‖

where vs(x) is the stable direction at x ∈ A. By Proposition 2.5, if J ∩C = ∅ and if
vs is Hölder continuous on A, then ψ extends to a Hölder continuous function on J .
If moreover λ2 = 1

2 log d, then ψ0 := ψ− 1
2 log d satisfies

∫
ψ0 dµ = 0 by Lemma 2.2.

Proposition 5.2. Assume that λ2 = 1
2 log d and that λ2 < λ1 < 2λ2. Assume also

that J ∩C = ∅ and that vs is Hölder continuous on A. Then σψ0 = 0. In particular,
there exists u ∈ L2(µ) such that for µ-almost every x:

log ‖Dxf(~vs(x))‖ = λ2 + u ◦ f − u. (5.1)

Proof. Assume to the contrary that σψ0 > 0. By Lemma 2.2 one can write

1

σψ0

√
n
Sn(ψ0) =

1

σψ0

√
n

(
log ‖Dxf

n(~vs(x))‖ − n log d

2

)
.

Theorem 5.1 ensures that 1
σψ0

√
n
Sn(ψ0) converges in law towardsN (0, 1). By setting

β0 :=
1√
2π

∫ −1
−∞

e−u
2/2 du and Gn :=

{
x ∈ J | Sn(ψ0)(x) ≤ −σψ0

√
n
}
,

we get

lim
n→∞

µ(Gn) = β0.

Let N ≥ 1 such that µ(Gn) ≥ β0

2 for every n ≥ N . Let ρ > 0 provided by

Theorem 2.7 with β = β0

4 . We have µ(Bn(ρ)) ≥ 1 − β0

4 for every n ≥ 1. Let us
define

Fn := Bn(ρ) ∩Gn, F := lim supFn.

For every n ≥ N , we have µ(Fn) ≥ β0

4 . We also have µ(F ) ≥ β0

4 . Let H be given
by Corollary 2.8. Since µ(H) = 1 and µ(F ) > 0, there exists x ∈ F ∩ H. Let
(ni)i be an increasing sequence of integers such that x ∈ Fni for every i ∈ N. Since
Fni ⊂ Gni , we have:

Sni(ψ0)(x) = log ‖Dxf
ni(~vs(x))‖ − ni

log d

2
≤ −σψ0

√
ni,

which implies

dni/2e−σψ0

√
ni ≥ ‖Dxf

ni(~vs(x))‖ . (5.2)

But x belongs to H and to Fni ⊂ Bni(ρ), hence Corollary 2.8 ensures for every
ni > n(x):

‖Dxf
ni(~vs(x))‖ ≥ dni/2

ni
. (5.3)

By combining (5.2) and (5.3), we obtain e−σψ0

√
ni ≥ 1

ni
for every i large enough.

This contradiction implies σψ = 0 and completes the proof of Proposition 5.2.
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5.3. Application of Theorem 3.1 to prove Theorem 1.4. By summing Equa-
tion (5.1) over an orbit of length n and using Lemma 2.2, we obtain:

∀x µ− a.e. , ∀n ≥ 1, log ‖Dxf
n(~vs(x))‖ = nλ2 + u ◦ fn − u.

The µ-measure of {|u| ≤ R} tends to 1 when R tends to infinity. The same property
holds for {|u| ≤ R} ∩ {|u ◦ fn| ≤ R} since µ is invariant. Therefore, there exists
R > 0 such that

Bn :=
{
x ∈ P2 , dn/2e−2R ≤ ‖Dxf

n(~vs(x))‖ ≤ dn/2e2R
}

satisfies µ(Bn) ≥ 1/2 for every n ≥ 1. Hence B̂n := π−10 (Bn) satisfies µ̂(B̂n) ≥ 1/2.
Now, to complete the proof of Theorem 1.4, it suffices to repeat the end of Section
4.2, namely to introduce the subsets

Ê :=
{
βε(x̂) ≤ eM2 , ηε(x̂) ≥ 4η0

}
,

Ĉn := B̂n ∩ Ê ∩ f̂−n(Ê), Ĉ := lim sup Ĉn and to apply similarly Theorem 3.1.

Acknowledgments. We thank the referees for their cautious readings. Their sug-
gestions enable us to improve the exposition, with for instance the addition of
Section 1.4 and the development of Section 2.2.
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