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As the places where most of the fuel of the cell, namely, ATP, is synthesized, mitochondria are crucial
organelles in eukaryotic cells. The shape of the invaginations of the mitochondria inner membrane, known
as a crista, has been identified as a signature of the energetic state of the organelle. However, the interplay
between the rate of ATP synthesis and the crista shape remains unclear. In this work, we investigate the crista
membrane deformations using a pH-dependent Helfrich model, maintained out of equilibrium by a diffusive flux
of protons. This model gives rise to shape changes of a cylindrical invagination, in particular to the formation of
necks between wider zones under variable, and especially oscillating, proton flux.

DOI: 10.1103/PhysRevE.102.022401

I. INTRODUCTION

Mitochondria are important organelles of eukaryotic cells
often called the “powerhouses of the cell,” due to their role in
the synthesis of adenosine triphosphate (ATP) from adenosine
diphosphate (ADP) and an inorganic phosphate (Pi). These
organelles of micrometric size comprise an inner membrane
(IM), which delimits a region called the matrix, and an
outer membrane (OM) [1,2]. The volume between the IM
and the OM is called the intermembrane space (IMS). The
inner membrane presents numerous tubular invaginations of
nanometric size, called cristae, where ATP synthesis takes
place. The liquid inside the cristae is isolated from the IMS
by the crista junction, an aggregate of proteins that limit the
diffusion [3]. Recently, it has been shown that cristae have
a higher membrane potential than the intervening boundary
membranes, involving confined proton loops and individual
functioning of each crista within the same mitochondrion [4].
It has been observed experimentally in isolated mitochondria
that the cristae assume different shapes depending on the state
of ATP production. Five stationary states (state I to state V)
have been introduced to describe the energy status of isolated
mitochondria [5], but most present research focuses on state
III and state IV, since it allows one to mimic the in vivo
situation where an increase of energy demand and energy
production occurs. Here we will consider only these two
states. A high rate of proton injection by the respiratory chain
and of ATP production (state III) is associated with bumpy and
wide crista tubules, while a low rate of proton injection and
ATP production state IV) is associated with a more regular
cylindrical shape as illustrated by Fig. 1. Moreover, recent
experiments employing superresolution imaging techniques
have directly evidenced the dynamical deformations of cristae
in cultivated cells [6].

The endothermic reaction ADP +Pi → ATP, is catalyzed
by the ATP synthase, which is located in the curved zone
of the crista membrane [7]. Traditionally, the ATP synthase
enzyme was supposed to use the bulk proton electrochemical
potential gradient, involving both the bulk pH and the electric

potential difference between the cristae and the matrix, as
energy supply [8]. More recently, it has been established that
the proton flux going down the gradient and allowing the
rotor to turn with respect to the stator in the ATP synthase
enzyme is probably localized on the surface of the crista
membrane [9,10]. This flux is established and maintained by
the respiratory chain, which injects protons from the matrix
on the IMS part of the crista membrane. The proteins of the
respiratory chain are located in the weakly curved zones of
the invagination and thus are spatially separated from the
ATP synthases. Recent in vivo pH measurement show that the
pH decreases along the crista membrane between the proton
source (the respiratory chain proteins) and the proton sink (the
ATP synthase) [11].

Membrane deformation driven by out-of-equilibrium
chemical dynamics is a ubiquitous phenomenon in living
cells. A mechanism of hydro-osmotic instabilities generated
by ion pumps has been recently suggested to describe the
dynamics of the contractile vacuole complex [12]. Surface
deformation driven by diffusion of an “active” species is
commonly observed in vivo such as the division of eukaryotic
cells by accumulations of myosin motors at the cell ring [13].
A phenomenological model has been proposed to study the
coupling between diffusion of active agents and surface shape
by introducing a modified Helfrich model associated with an
active tension coupled to the two-dimensional diffusion of the
chemical regulator on the deforming surface [14]. Note that
the coupling between a diffusive active agent and the bending
of a membrane has not been included in the model [15].

The dynamical coupling between crista shape and ATP
production rate is a recent discovery and the physicochemical
mechanism at the origin of this coupling still needs to be
characterized. The lipid composition of the IM has been
pointed out as a key point for the ATP-synthesis machinery.
Indeed, the crista membrane is enriched in cardiolipin, and
loss of mature cardiolipins affects the shape of the crista
and perturbs its function [16]. These lipids possess a protic
hydrophilic head, and in vitro experiments have shown that
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FIG. 1. Cross section of a mitochondrion in different states of
ATP production [2]. (a) State III, for which sugar in excess is
available leading to a high rate of ATP production. (b) State IV, for
which no sugar is available leading to a vanishing ATP production
rate. Mitochondria (left to right) have diameters of 1500 nm and
500 nm.

tubular invaginations can be created by an externally con-
trolled pH gradient in giant vesicles comprising cardiolipins
[17]. A theoretical description modeling these giant vesicles
as locally planar bilayer membranes with lipid density and
composition heterogeneities in each monolayer [18] has suc-
cessfully reproduced the dynamics of the membrane in the
regime of small deformations [19]. In this model, composition
can represent, e.g., the acid and the basic form of cardiolipins,
which is controlled by the local pH field. However, because
the crista membrane is enriched in proteins, representing up to
50% of its mass, a detailed model describing a pure lipid bi-
layer and including the slippage between the two monolayers
may not be necessary to describe this system. Therefore, here
we consider a simpler and more phenomenological Helfrich
model with pH-dependent parameters.

This work proposes a model for the dynamics of the
deformation for the crista membrane between state IV and
state III. We start with a reaction-diffusion system describing
the proton flux on a cylinder (representing the crista mem-
brane), which contains a proton source, a proton sink, and a
reflecting barrier. The resulting proton concentration field will
be considered as the driving force inducing the membrane de-
formation. We then propose a pH-dependent Helfrich model,
in which the bending modulus, spontaneous curvature, and
tension depend on the local proton concentration, assuming
small variations of this concentration. We derive the Green
function of the system and study the phase diagram of the
crista shape in this model. Finally we solve the hydrodynamic
equations of the system for a proton field oscillating between
state III and state IV and show that such a model generates
dynamical deformations of the membrane, as well as the
formation of necks and bumps, along the cylinder leading to
a rougher surface in state IV. The last part is devoted to the
conclusion.

II. MODEL OF A MITOCHONDRIAL CRISTA

A. Proton field along the crista

We model the crista as an axisymmetric cylinder of mem-
brane of finite length L closed by a spherical cap (see Fig. 2).

FIG. 2. Schematic representation of a crista. (a) The plots rep-
resent the proton concentration on the surface in states III and IV.
The tubes represent the shape of the invagination in state III and IV.
(b) Deformation fields of the membrane and intrinsic basis of the
deformed surface.

In experimental observations [20], cristae feature different
shapes, the most common being an elongated pancake, with
rows of ATP synthase situated at the rim of the protrusion
and respiratory chain proteins located in the flat zone. We
nevertheless chose to work in the cylindrical geometry, which
is a simple special case of this pancake shape. Indeed, this
geometry is analytically tractable, and despite its simplicity,
it captures several key ingredients of the system, such as the
nanometric confinement and the presence of zones of various
curvatures. The protons diffuse on the crista surface at the
concentration

[H+](s) = [H+]IV + h(s), (1)

where s is a coordinate parametrizing the position along
the tube, while [H+]IV represents the constant concentration
in state IV taken as a reference, and h(s) is the variation
in the proton concentration induced by the functioning of
the respiratory chain and the ATP synthases. Note that the
concentration is expressed as a number of protons per unit
of length, taking advantage of the one-dimensional symmetry
of the problem. At one end of the cylinder, s = 0, one finds a
reflecting barrier for the protons modeling the crista junction,
while at the other end, s = L, a ring-shaped proton sink
models the ATP synthases. Between the two, at s = Ls, a
ring-shaped proton source models the respiratory chain. This
model for the geometrical confinement of the ATP synthesis
machinery takes into account the spatial separation of the
proton source and sink and their respective localization in
zones of low and high curvature [20].

We assume that h(s) is small, i.e., h(s)/[H+]IV � 1, and
that the tube shape does not deviate much from a regular
cylinder. In this framework, the equation governing the proton
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TABLE I. Parameter values estimated from recent experimental
measurements.

L 150 nm R 10 nm
ksc 600 s−1 [11] ksk 2.7 × 104 s−1 [11]
D 10−7 cm2 s−1 [9] ω 0.63 s−1

σ0 10−7 N m−1 [19] κ0 10−19 N m
ηb 10−9 N s m−1 [19] ηs 5 × 10−10 N s m−1 [19]

concentration on the surface can be written as follows:

∂h(s, t )

∂t
= D

∂2h(s, t )

∂s2
+ Sin(s, t ) − Sout (s, t ) (2)

∂h(s, t )

∂s

∣∣∣∣
s=0

= 0, (3)

where Eq. (3) illustrates the reflecting barrier, D is the dif-
fusion coefficient, and Sin(s, t ) and Sout (s, t ) are the source
and the sink of the proton, respectively. We consider a system
oscillating with a period T = 2π/ω between a state IV of
homogeneous proton concentration and a state III associated
with a maximal proton flux and write

Sin(s, t ) = ksc[1 − cos(ωt )]

2
√

2π�2
1

exp

[−(s − Ls)2

2�2
1

]
, (4)

Sout (s, t ) = ksk[1 − cos(ωt )]

2
√

2π�2
2

[[H+]IV + h(s, t )]

× exp

[−(s − L)2

2�2
2

]
, (5)

with ksc the maximal rate of injection of the proton source,
ksk ([H+]IV + h(s, t )) the maximal rate of the proton sink. The
spatial extensions of the source and of the sink are modeled
by two Gaussian functions of widths �1 and �2, respec-
tively. The system oscillates between state IV (Sin(s, t ) = 0,
Sout (s, t ) = 0) for tIV = 0 modulo T, noted [T ], and state III
(where the source and the sink function at their top rates) for
tIII = T/2 [T ] with a frequency ω. We assume that there is
no proton accumulation in the cristae during a period, i.e.,∫ L

0 ds
∫ 2π/ω

0 dtSin(s, t ) = ∫ L
0 ds

∫ 2π/ω

0 dtSout (s, t ), which sets
the value of the ratio ksc/ksk .

The proton concentration h(s, t ) is obtained by solving nu-
merically Eq. (3) with an initial vanishing concentration field
h(s, 0) = 0, using the parameter values given in Table I. The
profiles of the proton concentration along the tube at different
times, shown in Fig. 3, are obtained assuming a diffusion
coefficient of D = 10−7 cm2 s−1 [9], which corresponds to
the estimated diffusion coefficient of protons along a lipid
membrane. The system oscillates between state IV, in which
the source Sin(s, t ) and the sink Sout (s, t ) vanish and the field
h(s, tIV) is uniform and equal to zero along the cylinder, and
state III, for which the proton concentration is approximately
homogeneous between the junction (L = 0) and the source
(L = Ls) and decreases between the source and the sink. Note
that protons diffuse with a characteristic time τD = L2/D =
0.25 ms between the source and the sink. An injection rate ksc

equal to 600 protons per second at the maximum rate, which
is a reasonable value for a crista of this size [11], leads to a

FIG. 3. Dynamics of the proton field along the cristae. The plots
represent the field h(s, t ) solution of Eq. (3) for parameter values
given in Table I and for tIV = 0 [T ], tIV→III = T/4 [T ], tIII = T/2 [T ],
tIII→IV = 3T/4 [T ]. The concentration h(s, t ) is expressed in proton
per nm.

concentration of 8 × 10−2 proton per nanometer. These plots
are obtained in the case of an oscillating period much longer
than the typical diffusion time along the tube, 2π/ω � L2/D.

B. Model of the membrane

To model the membrane of a mitochondrial crista, we start
from the Helfrich model for elastic membranes. Developed by
Wolfgang Helfrich in 1973 [21], this effective energy func-
tional of a membrane takes into account molecular properties
of lipid membranes such as the fluidity and the absence of
in-plane shear stress but is written at a continuous coarse-
grained scale. We modify the standard model by introducing
pH-dependent parameters,

H =
∫




{
1

2
κ (s)[C − C0(s)]2 + σ (s)

}
dA, (6)

where C is the local curvature of the surface and dA the area
of a surface element. The surface tension σ (s), the bending
modulus κ (s), and the spontaneous curvature parameter C0(s)
are assumed to depend linearly on the surface proton concen-
tration as follows:

κ (s) = κ0 + h(s)δκ, (7)

σ (s) = σ0 + h(s)δσ, (8)

C0(s) = C00 + h(s)δC0, (9)

with h(s) defined in Eq. (1). For simplicity the Gaussian
curvature is not considered here. In this chemico-mechanical
model, the chemical reaction of ATP synthesis generates a
dynamical field h(s, t ) on the membrane and will drive the
deformation of the cylinder.

III. DYNAMICAL EQUATIONS OF THE SURFACE
DEFORMATION

We consider an initial equilibrium state defined by a van-
ishing field h(s, t ) = 0 and a finite cylinder of length L and
of radius R. In this case, the Hamiltonian given in Eq. (A1)
is restricted to the Helfrich model in which the spontaneous
curvature C00 is a phenomenological parameter, illustrating an
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asymmetry in the membrane. A nonvanishing, nonhomoge-
neous proton field h(s) will lead to a deformed cylinder. The
initial surface and the deformed surface, can be respectively
parametrized by the three-dimensional vectors X0 and Xt ,
defined as follows:

Xt = X0 + δXt , (10)

with

X0 =

⎛
⎜⎝

R cos(θ )

R sin(θ )

z

⎞
⎟⎠, δXt =

⎛
⎜⎝

un(z, t ) cos(θ )

un(z, t ) sin(θ )

us(z, t )

⎞
⎟⎠

with z ∈ [0, L], θ ∈ [0, 2π ]. (11)

The surface is thus parametrized by the variables z, θ such
that any point on this surface can be uniquely represented by
a value of each of these parameters: Xt (s, θ ). The deformed
state Xt is characterized by two fields un(z, t ) and us(z, t )
defined in Fig. 2(b). In this work, we consider only small
deformations, i.e., us(z, t )/R, un(z, t )/R much smaller than 1.
In the following, we will work in the intrinsic basis of the de-
formed surface represented in Fig. 2(b) and use the curvilinear
abscissa s. To first order, the derivatives with respect to z and s
of the deformation fields are equal: ∂zui(z, t ) = ∂sui(s, t ), with
i = s, n, and we will use the second ones.

A. Some elements of differential geometry for an axisymmetric
membrane

We wish to describe the dynamics of the axisymmetric
membrane Xt driven by the concentration field h(t ). Let us
first introduce some terminology and results from differential
geometry and their expressions to the first order in the defor-
mation field. Note that to simplify the notations, we denote
the fields un(s, t ) and us(s, t ) as un and us and the spatial
derivative ∂sui(s, t ) = u′

i, with i = s, n. The tangent vectors
on the surface are defined as

es = ∂sXt =

⎛
⎜⎝

u′
n cos(θ )

u′
n sin(θ )

1 + u′
s(s)

⎞
⎟⎠,

eθ = ∂θXt =
(

−(R + un) sin(θ )$R + un) cos(θ )

0

)
.

(12)

The normal vector can be expressed as

n = eθ ∧ es

| eθ ∧ es | =

⎛
⎜⎝

cos(θ )

sin(θ )

−u′
n

⎞
⎟⎠, (13)

and the metric of the surface is defined as gab = ea · eb, with
(a = (θ, s), b = (θ, s)) and is equal to

gab ≈
(

R2 + 2Run 0

0 1 + 2u′
s

)
. (14)

The curvature tensor, also known as the second fundamen-
tal form, is defined as Kab = ea · ∂b n using the convention that
for a pointing outward normal vector, the curvature is positive
[22]. It gives

Kab =
(

R + un 0

0 −u′′
n

)
. (15)

Finally, the sum C = Ks
s + Kθ

θ of the principal curvatures can
be written as

C = 1

R
−

( un

R2
+ u′′

n

)
. (16)

using Ka
b = Kakgkb, with gab = (gab)−1.

Finally, we recall the expression of the covariant derivative
of a tangential vector xaea,

∇axb = ∂axb + b
acxc, (17)

and of a tensor t abea ⊗ eb,

∇atbc = ∂atbc + b
adtdc + c

adtbd , (18)

where the Christoffel symbols can be written as

s
ab =

(
−Ru′

n 0

0 u′′
s

)
, θ

ab =
(

0 u′
n

R
u′

n
R 0

)
. (19)

To characterize the dynamical deformation of the tube, we
introduce the flow velocity of the surface elements of the
membrane,

v(s, t ) = vs(s, t )es + vn(s, t )n, (20)

with vs = ∂t us and vn = ∂t un. It is composed of an in-plane
flow vs = vses and a term describing the deformation of the
surface vn = vnn.

B. Stress tensor acting on the deforming surface

Next, we determine the stress tensor f acting on the surface
Xt . General surface stresses are complex objects that one can
grasp by asking the question: “What forces should be exerted
onto a membrane edge with unitary length to prevent it from
shrinking?” [22]. In this case, the stress tensor is the sum of
two contributions: a mechanical stress tensor fH deriving from
the Helfrich energy given in Eq. (A1) and a viscous stress
tensor fη.

The mechanical stress tensor fH can be written as a 3 × 2
tensor [23,24] that can be decomposed into a surface stress
tensor f ab

H generating forces tangent to the surface and a
2 × 1 tensor fn

H = f an
H n × ea generating forces normal to the

surface. To derive the expression of f, we follow the approach
developed by Guven and coworkers, presented in the Ap-
pendix. Instead of varying the shape of the membrane(Xt →
Xt + δXt ) and explicitly tracking the changes of the intrin-
sic basis, the metric, the curvature, and the energy of the
deformed membrane, this elegant approach enforces the geo-
metric relations associated with the fundamental forms of the
membrane by introducing Lagrange multipliers. We introduce
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the extended functional

Hc = H +
∫




λab(gab − ea · eb) dA

+
∫




�ab(Kab−ea · ∇bn) dA+
∫




fa · (ea − ∇aX) dA

+
∫




λa
⊥(ea · n) dA +

∫



λn(n2 − 1) dA, (21)

in which H is given in Eq. (A1), the matrices λab and �ab

enforce the definition of metric and the curvature, fa pins the
basis vector to the tangent of the surface, λa

⊥ enforces the
normal vector to be perpendicular, and λn its normalization.
The minimization of the Hamiltonian Eq. (21) with respect to
the, now, 12 independent functions gives [25]

fab
H = T ab − HacKb

c , (22)

f an
H = −(∇bHab), (23)

with

Hab = δH
δKab

, (24)

T ab = − 2√
g

δ
√

gH
δgab

, (25)

with H = 1
2κ (s)[C − C0(s)]2 + σ (s), the mechanical energy

density of the membrane. (Details of the calculation are given
in the Appendix).

In our case, the mechanical stress associated with
the surface Xt depends both on the deformation fields
(us(s, t ), un(s, t )) and on the concentration field h(s, t ). The
surface stress tensor f ab

H and the normal stress tensor f an
H

expanded to first order in the fields can be expressed as

f ab
H = f ab

H0 + f ab
H1, (26)

f an
H = f an

H0 + f an
H1, (27)

with

f ab
H0 =

(
κ0(1−X 2 )−2σ0R2

2R4 0

0 − (1−X )2κ0
2R2 − σ0

)
, (28)

and f an
H0 = 0, and where the first-order part,

f ab
H1 = f ab

h + f ab
M , (29)

f an
H1 = f an

h + f an
M , (30)

is the sum of a term f ab
1h depending on the concentration field

h(s, t ) and of a term f ab
1M depending on the deformation fields

un(s, t ), us(s, t ).
Using the expression of the Hamiltonian given in Eq. (A1),

the dependences of κ , C00, and σ on h(s, t ) given in Eqs. (7)–
(9) and the expression of the stress tensor given in Eqs. (29)
and (A13), we derive the expression of the stress tensor to first
order in the fields and find

f ab
1M =

(
[2R2σ0+(2−X 2 )κ0]un (s)−R2Xκ0u′′

n (s)
R5 0

0 1−X
R3 κ0un(s) + (1−X )2κ0+2R2σ0

R2 u′
s(s)

)
, (31)

f an
1M =

(
0,

κ0

R2
u′

n(s) + κ0u′′′
n (s)

)
, (32)

f ab
1h =

(
− 2R2δσ+2RXκ0δC0−(1−X 2 )δκ

2R5 Rh(s) 0

0 2R[(1−X )κ0δC0−Rδσ ]−(1−X )2δκ

2R2 h(s)

)
, (33)

f an
1h =

(
0,

Rκ0δC0 − (1 − X )δκ

R
h′(s)

)
. (34)

The stress tensor depending on the proton field involves
both the field h(s, t ) in its tangential component f ab

1h and its
spatial derivative h′(s, t ) in its normal component f an

1h . The
latter contribution will vanish for a constant field h. In fact,
a constant field h simply induces a renormalization of the
parameters of the Helfrich model. By contrast, a spatially
nonhomogeneous field h(s, t ) will generate forces on the
normal direction that tend to pinch or expand the tube.

The viscous stress tensor for a deforming membrane is a
surface tensor that can be obtained from the two-dimensional
strain rate,

vab = 1
2 (∇avb + ∇bva) + Kabvn, (35)

where v is given in Eq. (20), which is derived from the strain
tensor of a three-dimensional fluid shell taken in the limit of a
small thickness [26]. The viscous stress in compressible thin
films can be expressed as

fab,η = 2ηs
(
vab − 1

2vc
cgab

) + ηbv
c
cgab, (36)

which involves the two-dimensional strain rate vab and phe-
nomenological coefficients ηs and ηb that are the shear and
bulk viscosity of the film. The viscous stress fη = fab,ηea × eb

can be written as 2 × 2 matrix, whose components are given
in covariant coordinates in Eq. (36) [22]. It yields the force
generated by the flow within the membrane surface. Note
that we do not account for the bulk viscosity of the fluid
surrounding the membrane in our force balance. Indeed, its
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contribution can be neglected for strongly curved membrane
buds [27] and tubes [28] with characteristic sizes smaller than
a few micrometers, which is the appropriate regime for cristae.

In the absence of deformation, i.e., when the fields vn,
vs, un, us, h vanish, the viscous stress also vanishes and the
equilibrium shape of the surface can be obtained by setting to
zero the divergence of the stress tensor f ab

H,0 given in Eq. (28).

C. Hydrodynamic equations for the tubular membrane

We now consider the response of the membrane to a time-
varying field, h(s, t ). In the absence of inertia, corresponding
to the low-Reynolds number regime which is appropriate at
the length scales considered, the dynamics of the system
derives from the force balance, which can be written in the
tangential basis of the surface as

∇a f a
b + Kab f a

n = 0, (37)

∇a f an − Kab f ab = 0, (38)

where the stress tensor f = fH + fη is the sum of the viscous
and the mechanical stress tensor. The first equation, Eq. (37),
corresponds to the force balance on the surface along es and
eθ . The second equation, Eq. (38), often called the shape
equation of the surface, is the force balance in the normal
direction. Expanding the covariant derivatives in Eqs. (37) and
(38) and collecting the first-order terms in the fields vn, vs, un,
us, h, we derive the hydrodynamic equations governing the
time evolution of the system

(ηs + ηb)∂sv
s
s + (ηb − ηs)∂sv

θ
θ + ∂s f s

H1,s

+ ( f s
H0,s − f θ

H0,θ )s
sθ + R f ns = 0, (39)

(ηs + ηb)
vs

s

R
+ (ηb − ηs)

vθ
θ

R
+ ∂s f ns

H1 − us f ss
H0 − R f ss

H1

+u′′
n f θθ

H0 = 0. (40)

The force balance along eθ vanishes for symmetry reasons.
Replacing the mechanical tensors f ab

0H , f ab
1H , f an

1H by their
expressions given in Eqs. (28), (29), and (A13), we finally
obtain the dynamical equations of the system as a function
of the velocity, displacement, and concentration fields:

a1 v′
n + a2v

′′
s + a3h′ = 0, (41)

b1vn + b2v
′
s + b3un + b4u′′

n + b5u′′′′
n + b6h + b7h′′ = 0,

(42)

where the coefficients ai, (i = 1, . . . , 7) and bi (i = 1, . . . , 3)
are given in Appendix A 2 and where u′

i and v′
i denote the

spatial derivative u′
i = ∂sui(s, t ) and v′

i = ∂svi(s, t ) for i =
s, n.

IV. STATIC GREEN FUNCTION OF AN INFINITE
MEMBRANE CYLINDER

To gain physical insight into the model and the static solu-
tions of Eqs. (39) and (40), we derive the static Green function
of the system. We consider as a reference equilibrium state an
infinite cylinder of radius R and a vanishing field h(s) = 0.

(a)

(b)

(c)

FIG. 4. (a) Stability diagram of a Helfrich cylinder as a function
of X = C00R. (b) 1. Gn(s)/R, Normalized Green functions for differ-
ent values of X = −0.9, 0, 0.9 and for δσ = 0.15 and δC0 = 0. 2.
Characteristic lengths of oscillation λ0 and decay λd as a function
of X . 3. Maximal amplitude of the deformations driven respectively
by a variation of σ , Anσ and by a variation of C0, AnC . (c) Three-
dimensional representations of a cylinder (top) deformed by h(s) =
δ(s) for (X = 0.96, δσ = 0.2, δκ = 0, δC0 = 0) (middle), and for
(X = 0.96, δσ = −0.2, δκ = 0, δC0 = 0) (bottom). All quantities
are dimensionless.

The shape equation for this system, given in Eq. (38), can be
written as

σ0 − (1 − X 2)κ0

2R2
= 0, (43)

where we have employed the expression of f ab
H0 given in

Eq. (28). Given that R, σ and κ are necessarily positive, this
equation admits a solution for

X = C00R ∈ ] − 1, 1[. (44)

In this range [see Fig. 4(a)], the radius of the equilibrium
cylinder R can be expressed as a function of the parameters
of the nonperturbed Helfrich model,

R = 1√
C2

00 + 2σ0
κ0

. (45)

The stationary shape of a deformed cylinder associated with a
perturbation field h(s) �= 0 is given by the displacement fields
(un(s), us(s)), which are solutions of Eqs. (41) and (42) where
vn and vs are set to zero. Replacing the coefficients (ai, b j) by
their expressions given in Appendix A 2, we obtain[

4Rσ0δC0

1 + X
− 2δσ − δκ (1 − X )2

R2

]
h′(s) = 0 (46)

− 2σ0

R2(1 − X 2)

[
un(s) + 2R2Xu′′

n (s) + R4u′′′′
n (s)

]
= 2[(1 + X )δσ − Rσ0δC0]

R(1 − X 2)
[h(s) + R2h′′(s)]. (47)
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The first equation corresponds to the force balance along
the vector es. The second equation is the shape equation. We
observe that this system of equations does not depend on
us. A nonhomogeneous perturbation field h(s), which yields
nonhomogeneous tension, bending rigidity, and spontaneous
curvature, can lead to a stationary shape in the cylinder
geometry only if the condition

[
4Rσ0δC0

1 + X
− 2δσ − δκ (1 − X )2

R2

]
= 0 (48)

between the perturbation parameters, (δκ , δσ , δC0), is satis-
fied. Assuming that this condition holds, we express δκ as a
function of δσ and δX ,

δκ = 4Rσ0

(1 − X )2(1 + X )
δC0 − 2R2

(1 − X )2
δσ. (49)

Let us now consider a localized perturbation in the pro-
ton concentration: h(s) = h0δ(s) with h0 = 1 introduced to
dimension h(s), and derive the Green function Gn(s) yielding
the deformation field un(s) in response to this perturbation.
Performing a Fourier transform of the shape equation given
in Eq. (47) and introducing ũn(q) = 1/2π

∫
dseiqsun(s), the

normal deformation field in the Fourier space, we find

ũn(q) ≡ G̃n(q) = R(q2R2 − 1)[(1 + X )δσ − Rσ0δC0]

σ0

√
2π (1 − 2Xq2R2 + q4R4)

.

(50)
Performing the inverse Fourier transform of G̃n given in

Eq. (50), we obtain the expression of the Green function in
real space,

Gn(s) = GnR sin

(
|s|
R

√
1 + X

2

)
exp

(
−|s|

R

√
1 − X

2

)
,

(51)
where we have introduced

Gn = Gnσ (X )
δσ

σ
+ GnC (X )RδC0,

with

Gnσ (X ) = − (1 + X )√
2
√

1 + X
, GnC (X ) = 1√

2
√

1 + X
. (52)

The deformation induced by a localized perturbation is thus
an oscillating and exponentially decaying function, as shown
in Fig. 4(b), panel 1. The characteristic lengths of oscillation

λo and decay λd are given, respectively, by

λo = R
√

2
1+X , (53)

λd = R
√

2
1−X , (54)

for X satisfying the condition given in Eq. (44).
Figure 4(b), panel 2, represents λo and λd as functions of

X for the range of possible equilibrium cylinders. The decay
length λd is an increasing function of X that diverges for
X = 1. Thus, cylinders with larger spontaneous curvatures
are deformed on a longer range by a heterogeneous h. The
oscillation length λo, on the contrary, is a decreasing function
of X .

The limit X = 1 is associated with a phenomenon of buck-
ling (λd = 0, λo = R), i.e., an infinite oscillating deformation
wave. Indeed, X = 1 corresponds to a cylinder with curvature
along eφ equal to the spontaneous curvature of the membrane.
A sphere of radius R is an equilibrium shape of such a
membrane. A perturbation of the cylinder will tend toward
such shapes by forming a succession of drops. Conversely,
the limit X = −1 corresponds to a cylinder folded in the
direction opposite to that of the spontaneous curvature. The
deformation induced by a perturbation will then be purely
decaying with a characteristic length λd = R, thus minimizing
the energy of deformation.

The respective amplitudes Anσ , AnC of the deformations
induced by perturbations in σ or in C0, and defined as

Anσ (X ) = Gnσ (X )
Gn(sm)

Gn
, (55)

AnC (X ) = GnC (X )
Gn(sm)

Gn
(56)

are plotted with respect to X in Fig. 4(b), panel 3. Here
we have introduced sm = √

2/
√

1 + X sin−1 (
√

X + 1/
√

2),
which is the coordinate of the maximum of Gn(s)/Gn. The
absolute values of the amplitudes Anσ , AnC are increasing
functions of X but possess opposite signs. An increase of
the tension [δσ > 0, h(s) > 0] leads to a constriction of the
cylinder (since Anσ < 0). On the other hand, an increase
of the spontaneous curvature (δC0 > 0, h(s) > 0) leads to
a dilatation of the cylinder (since AnC > 0). A perturbation
in the spontaneous curvature δC0R = 0.1 (respectively in the
surface tension δσ/σ = 0.1) will induce a variation of the
radius of 5% (respectively, 10% ), for X → 1. For X negative
or 0 < X � 1, the deformation induced by a variation of h is
negligible.

Figure 4(c) shows three-dimensional representations of the
nonperturbed and of the perturbed cylinder for X = 0.9, and
with δσ > 0 and δσ < 0, respectively. This illustrates that the
model proposed in Eq. (A1) can generate tubular membrane
shapes of various curvature that can resemble mitochondrial
cristae.

Using the expression of the Green function given in
Eq. (51), we can find the stationary shapes generated by any
proton concentration field h(s) through

un(s) =
∫ ∞

−∞
h(x)Gn(s − x) dx. (57)
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(a)

(b)

(c)

FIG. 5. Infinite cylinder submitted to a step of proton concen-
tration. (a) Proton concentration h(s) along the cylinder. (b) De-
formation field un(s) induced by a step of proton for X = 0.9,
δσ = 0.1, δC0 = −0.1. (c) Three-dimensional representation of the
corresponding shape. All quantities are dimensionless.

As a practical illustration, in Fig. 5, we consider a step
function for h(s),

h(s) = −1 s < 0, = 1 s > 0 (58)

[see Fig. 5(a)]. The corresponding deformation field un(s)
obtained using Eq. (57) is continuous, unlike the input step
function, and is an odd function of s that oscillates before
reaching a plateau of constant value, as shown in Fig. 5(b).
The resulting stationary shape of the tube, represented in Fig.
5(c), corresponds to two cylinders of different radii welded
together through an oscillating neck.

V. APPLICATION TO MITOCHONDRIA CRISTAE

In this section, we describe the dynamical deformation of
a finite tube of membrane of length L submitted to the proton
field h(s, t ) solution of Eq. (3) and represented in Fig. 3, which
models a crista oscillating between state IV and state III.

To do so, we first specify the external mechanical forces
exerted on the axisymmetric membrane. Here we do not take
into account extra external pressures or viscous forces that
could be applied to the membrane and we consider that a
constant tension fext is exerted by the rest of the mitochondria
on the tubule boundary rings in s = 0 and in s = L. This force,

fext (0) = −
[
σ + (1 − X 2)

κ0

2R2

]
es,

fext (L) =
[
σ + (1 − X 2)

κ0

2R2

]
es (59)

balances the effective tension of the undeformed Helfrich
cylinder, defined by X0 in Eq. (11), and derives from the
zero-order stress tensor fH0 given in Eq. (28). Consequently,
the first-order forces deriving from the cylinder deformation

vanish at the boundary of the tubule, and the first-order stress
tensors satisfy

f s
1,s(0, t ) = 0, f s

1,s(L, t ) = 0, (60)

f sn
H1(0, t ) = 0, f sn

H1(L, t ) = 0, (61)

where f s
1,s = f s

H1,s + f s
η,s, and where the expression of the

stress is given in Eqs. (29), (A13), and (36). Moreover, the
edges of the cylinder are assumed to be pinned in s = 0 and
s = L, which leads to a vanishing tangential velocity vs in
s = 0 and s = L,

vs(0, t ) = 0, vs(L, t ) = 0. (62)

In order to facilitate the numerical resolution of the hydrody-
namical equations given in Eqs.(41) and (42), the deformation
fields un(s, t ), us(s, t ) are expressed as function of the velocity
fields vn(s, t ) and vs(s, t ) and of the deformation field at
the time t − dt , using the backward Euler method and a
discretization of the time with a time step dt ,

ut
s = ut−dt

s + dt × vt
s, (63)

ut
n = ut−dt

n + dt × vt
n, (64)

where we have introduced the notation (ut
i , v

t
i ) for

(ui(s, t ), ui(s, t )). Inserting the expressions in Eqs. (63)
and (64) the deformation fields into Eqs. (41) and (42) leads
to the following coupled system of equations for vt

s and vt
n:

a1 ∂sv
t
n + a2∂

2
s vt

s + a3∂sh
t = 0, (65)

(b1 + b3 × dt )vt
n + b4 × dt∂sv

t
n + b5 × dt∂4

s vn

+ b2∂sv
t
s + b3ut−dt

n + b4∂
2
s ut−dt

n

+ b5∂su
t−dt
n + a6ht + a7∂

2
s ht = 0. (66)

Assuming that the geometry of the system at the time
t − dt is known, the system to solve is a couple of ordinary
differential equations in space for vt

s and vt
n for which the six

necessary boundary conditions are given in Eqs. (60)–(62).
The complete dynamic of the system is obtained by solving
Eqs. (65) and (66) starting at t = 0, when all the fields,
h0, u0

i , v
0
i , vanish. Then, knowing the geometry of the system

at the time t − dt , i.e., the deformation fields ut−dt
i , and the

concentration field at the time t , ht , the velocities (vt
s(s), vt

n(s))
are determined as solutions of Eqs. (65) and (66). Next, the de-
formation fields ut

n, ut
s at time t are calculated using Eqs. (63)

and (64). The procedure can then be iterated to obtain the state
of the system at time t + dt , and so forth. Further details on
the numerical resolution are given in Appendix A 3.

Figure 6(a) represents the shape of the tube for the oscillat-
ing proton field given in Fig. 3. The tube alternates between a
quasinondeformed cylinder for a quasivanishing proton field
(see Fig. 3) and a tubular invagination presenting a bump
and a neck for the top proton flux. These oscillations are
obtained in the regime of a fast mechanical relaxation time
τ0 = 2ηsηb/σ0(ηs + ηb) compared to the oscillation period
between state III and IV, T = 2π/ω. It is thus the dynamics of
the diffusive process that governs the shape change dynamics
in this case. Figure 6(b) represents the deformation fields
associated with these shapes. We compute the bump-to-neck
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(a)

(b)

FIG. 6. Model crista oscillating between states IV and III. A
finite membrane tube is submitted to the proton field h(s, t ) repre-
sented in Fig. 3. (a) Representation of the shape of the cylinder at
different times of the period (the same ones as in Fig. 3). (b) Defor-
mation fields un(s, t ) and us(s, t ) associated with these shapes (same
colors as in Fig. 3). The plots are obtained for values given in Table I,
X = 0.8, δσ = −0.35σ per h(s, t ), δC0 = 1.05 per h(s, t ).

ratio obtained in this framework and obtain 1.6. Measuring the
projected sizes of the bumps and necks in state III on the eight
best visible cristae on Fig. 1 yields an average bump-to-neck
ratio of 1.9 (standard error of the mean: 0.3). The theoretical
prediction is in agreement with the measures. This shows
that the model developed in this work captures the salient
features of the shape of the cristae in state III and IV observed
experimentally and represented in Fig. 1 (regular tubes in state
IV, bumpy tubes in state III).

VI. CONCLUSION

Mitochondrial cristae are membrane protrusions that con-
fine the ATP-synthesis machinery. Experimental observations
have shown that the shape of these protrusions is coupled to
the energetic state of mitochondria, as seen in Fig. 1. However,
the underlying physical mechanisms controlling this coupling
remain to be elucidated.

We considered the hypothesis that the shape of the in-
vagination is driven by the flux of protons diffusing on
the membrane. Indeed, the absence of cardiolipins in the
crista membrane induces anomalous crista shapes, and local
pH heterogenities induce crista-like deformations of GUVs
comprising cardiolipins [17]. We described the mechanical
properties of the mitochondrial crista membrane using a
pH-dependent Helfrich model coupled to a diffusive proton
concentration field on the surface. We first derived the sta-
tionary Green function of this system and showed that it can
qualitatively reproduce the bumpy shapes of the mitochondrial
invaginations observed experimentally. We then studied the
dynamical shape change of the invagination for a membrane
tubule subjected to an oscillating proton concentration field,
modeling the oscillations between state IV (no ATP synthesis)
and state III (high rate of ATP synthesis). We showed that,

for appropriate values of the parameters, it can reproduce
the salient features of the experimentally observed shapes of
the mitochondrial cristae, oscillating between regular tubes in
state IV and bumpy tubular protrusions in state III.

As a next step, for more realism, less symmetric mor-
phologies closer to experimental observations of crista shapes,
such as flat balloons with proton sinks on the rim and proton
sources on flat zones, could be considered [20].

The phenomelogical model introduced here is a coarse-
grained description of a membrane containing different lipids,
proteins, etc. It will be interesting to consider a more mi-
croscopic model of the membrane to gain insight into the
values of the parameters δκ , δC0, δσ of this model, and test
whether realistic values yield membrane shapes resembling
experimental observations.

Finally, a coupling between the shape and the concentra-
tion field could be introduced by considering the advection of
the protons on the deformed membrane.

In vivo, the model could be tested with super-resolution
imaging techniques by changing the energy demand and by
monitoring crista morphology variation within mitochondria.
Alternatively, experiments on biomimetic membranes can be
performed where a local proton flux is introduced and mem-
brane fluctuations are followed. ATP synthase and complexes
of the respiratory chain can be co-reconstituted in liposomes
to closely mimic the functioning of the respiratory chain
[29]. Finally, proton diffusion along membranes mimicking
the lipid composition of inner mitochondrial membranes can
be estimated using lipid-anchored pH sensor fluorescent dye.
Such experiments should bring measurements allowing us to
test the ability of our model to predict crista morphology.

APPENDIX

1. Covariant stress tensor for a membrane

In this subsection we derive the stress tensor associated
with the Hamiltonian

H =
∫




{
1

2
κ (s)[C − C0(s)]2 + σ (s)

}
dA. (A1)

We consider an infinitesimal deformation of the surface
X → X + δX. Instead of tracking the variation of the intrinsic
basis and the fundamental forms of the surface induce by
this deformation, we enforce these geometrical constraints
by introducing Lagrange multipliers, and we work with a
generalized Hamiltonian Hc,

Hc = H +
∫




λab(gab − ea · eb)dA+
∫




�ab(Kab − ea · ∇bn)

× dA +
∫




fa · (ea − ∇aX) dA (A2)

+
∫




λa
⊥(ea · n) dA +

∫



λn(n2 − 1) dA, (A3)

in which the matrices λab and �ab enforce the definition of
metric and the curvature, fa pins the basis vector to the tangent
of the surface, λa

⊥ enforces the normal vector to be perpen-
dicular, and λn is its normalization. The minimization of the
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Hamiltonian (A3) with respect to the, now, 12 independent
functions gives the following equations:

δHc

δX
= ∇afa, (A4)

δHc

δea
= −fa + (

�acKb
c + 2λab

)
eb − λa

⊥n, (A5)

δHc

δn
= (∇b�

ab + λa
⊥)ea + (2λn − �abKab)n, (A6)

δHc

δKab
= �ab + Hab, (A7)

δHc

δgab
= λab + λρρ

√
g

gab

2
+ λφρφ

√
g

gab

2
− 1

2
T ab, (A8)

where Hab and T ab are defined as the functional derivatives of
the Hamiltonian density, H = 1

2κ (s)[C − C0(s)]2 + σ (s) with
respect to the two fundamental forms:

Hab = δH
δKab

, (A9)

T ab = − 2√
g

δ
√

gH
δgab

. (A10)

We notice that the Lagrange multiplier fa obeys a conser-
vation law (∇afa = 0). Using that Eqs. (A4)–(A8) vanish, we
eliminate the Lagrange multipliers present in Eq. (A5) and
find

fa = (
T ab − HacKb

c

)
eb − (∇bHab

)
n. (A11)

The quantity fa can be identified as the surface stress tensor
[22,30]. The surface stress tensor is a 2 × 3 matrix and its
coordinates in the intrinsic basis of the surface can be written
as

fab
H = T ab − HacKb

c , (A12)

f an
H = −(∇bHab). (A13)

2. Coefficients for dynamical force balance equations

The full expression for the dynamical force balance equa-
tions Eqs. (41) and (42) can be obtained by inserting the
coefficients, which are given as follows:

a1 = ηb − ηs

R
, (A14a)

a2 = ηb + ηs, (A14b)

a3 = − (1 − X )2

2R2
δκ − δσ + 2Rσ0

1 + X
δC0, (A14c)

b1 = ηb + ηs

R2
, (A14d)

b2 = ηb − ηs

R
, (A14e)

b3 = 2σ0

R2(1 − X 2)
, (A14f)

b4 = 4Xσ0

1 − X 2
, (A14g)

b5 = 2R2σ0

1 − X 2
, (A14h)

b6 = − (1 − X 2)

2R3
δκ + 1

R
δσ + 2Xσ0

1 − X 2
δC0, (A14i)

b7 = 1

R(1 − X 2)
[2R3δC0σ0 − (1 − X )2(1 + X )δκ].

(A14j)

Here κ0 has already been substituted in terms of σ0, R,
and X using the relation between the Helfrich parameters
(45). If we set a1, a2, b1, and b2 to zero (i.e., no viscosities),
we obtain the steady-state force balance equations for the
Helfrich cylinder model.

3. Details of the numerical resolution of hydrodynamics
equations

The system of equations (65) and (66) is solved numeri-
cally at time t using the command NDSolve of the Mathe-
matica. The solutions obtained for vt

s and vt
n are discretized

in space on a regular grid with a step equal to 10−2 for a
cylinder with radius R = 1. The discrete spatial derivatives of
the velocities [v(i),vect

n , (i = 1, . . . , 4), v( j),vect
s , ( j = 1, 2)] are

derived on this grid.
The vectors are interpolated using polynomials of de-

gree 18 to obtain analytical functions (∂ i
sv

pol
n , ∂

j
s v

pol
s , i =

1, . . . , 4, j = 1, . . . , 2), which are used to derive the defor-
mation fields and their derivatives at the time step t ,

∂ i
su

t
s(s) = ∂ i

su
t−dt
s + dt × ∂ i

sv
pol
s , i = 1, . . . , 2, (A15)

∂ j
s ut

n(s) = ∂ j
s ut−dt

n + dt × ∂ j
s vpol

n , j = 1, . . . , 4. (A16)
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