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Introduction

Let X be a compact Kähler manifold such that c 1 (X) = 0 ∈ H 2 (X, R). The celebrated Beauville-Bogomolov Decomposition Theorem states that X admits an étale cover that splits as a product of a complex torus, Calabi-Yau manifolds and irreducible holomorphic symplectic manifolds, cf. [Bea83]. The proof relies in a crucial way on Yau's solution of the Calabi conjecture [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation[END_REF] that enables one to equip X with a Kähler, Ricci-flat metric ω. From there, one can use the powerful tools of differential geometry (de Rham's splitting theorem, Cheeger-Gromoll core theorem, Berger-Simons holonomy classification and Bieberbach theorem) to exhibit the sought cover.

Over the last few decades, the tremendous advances of the (algebraic) Minimal Model Program in birational geometry have highlighted the importance to understand and classify varieties with mild singularities. By variety, we mean here either a complex projective variety or a compact Kähler space.

It is in this context that a lot of attention has been drawn in recent years towards generalizing the Beauville-Bogomolov Decomposition Theorem to compact Kähler spaces X with klt singularities and trivial first Chern class. A first important step in that direction was made by [START_REF] Eyssidieux | Singular Kähler-Einstein metrics[END_REF] who generalized Yau's theorem and constructed singular Kähler-Einstein metrics ω on such varieties X. Unfortunately, these metrics viewed on X reg are geodesically incomplete, preventing most of the classical results in differential geometry from applying. However, breakthroughs relying on the algebraic MMP (e.g. [GKKP11, Xu14, GKP16a]) and the theory of algebraic foliations [START_REF] Druel | A decomposition theorem for singular spaces with trivial canonical class of dimension at most five[END_REF] allowed for a better understanding of projective varieties with klt singularities and trivial first Chern class. Down the line, this enabled [START_REF] Greb | Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups[END_REF] to compute the holonomy of the singular Ricci-flat metrics ω and shortly after, Höring and Peternell gave a proof of the decomposition theorem in the projective setting, based on an algebraic integrability result for vector bundles [HP19].

Unfortunately, these spectacular results leave the Kähler case of the decomposition theorem largely open, which may sound odd in light of the fact that the proof in the smooth case relies entirely on transcendental methods! In this paper, we prove the Kähler version of several building blocks that underly the proof of the decomposition theorem in the projective case.

Bochner principle and Albanese map. As a first step towards the above goal, we prove the so-called Bochner principle.

Theorem A (Bochner principle, Theorem 3.4). Let (X, ω X ) be a normal compact Kähler space with klt singularities such that c 1 (X) = 0 ∈ H 2 (X, R) and let ω ∈ {ω X } be the singular Ricci-flat metric. Let p, q ≥ 0 be non-negative integers. Then any holomorphic tensor τ ∈ H 0 X reg , T ⊗p X ⊗ Ω ⊗q X is parallel with respect to ω on X reg .

Quite generally, a sacrilegious bottleneck of the theory in its current state is that if X is klt, we have no way of comparing the fundamental group of the smooth locus π 1 (X reg ) to the whole π 1 (X). This is important because differential-geometric methods only control the former group. The issue is that the algebraic results of [START_REF] Greb | Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties[END_REF] about maximally quasi-étale covers are not yet available for complex spaces. See Remark 6.10 for an in-depth discussion.

In fact, a large part of the present work is devoted to finding ways to bypass the above-mentioned lamentable limitation of the literature. This can already be seen in Theorem A: even though its statement is a straightforward generalization of [GGK19, Theorem A], the proof is quite different because it needs to avoid the use of maximally quasi-étale covers. We refer to Remark 3.5 for a more thorough comparison of the two results.

Our next theorem is about the Albanese map of Kähler spaces X as above: alb X is surjective and after a finite étale base change, it becomes globally trivial (Theorem 4.1). This generalizes [Kaw85, Theorem 8.3] from the projective case, but the proof relies on the Bochner principle. An important consequence is the existence of so-called torus covers.

Theorem B (Torus covers, Corollary 4.2). Let X be a normal compact Kähler space with klt singularities such that c 1 (X) = 0 ∈ H 2 (X, R). Then there exist normal compact Kähler spaces T and Z with canonical singularities together with a quasi-étale cover γ : T × Z -→ X such that:

• T is a complex torus of dimension q(X).

• The canonical sheaf of Z is trivial, ω Z ∼ = O Z .

• The augmented irregularity of Z vanishes, q(Z) = 0.

For the definition of the augmented irregularity q(X), see Definition 2.1. Also, we remark that the torus cover is essentially unique by Proposition 4.4.

Direct applications of Theorem B include an alternative proof of the Abundance Conjecture in the setting of compact Kähler spaces with canonical singularities and trivial first Chern class (Corollary 4.5) and a characterization of torus quotients in terms of the augmented irregularity (Corollary 4.6). Concerning the further study of klt Kähler spaces with trivial first Chern class, Theorem B enables us to reduce most questions to the case of canonical singularities, trivial canonical bundle and, most importantly, vanishing augmented irregularity.

Holonomy and the flat factor. The natural next step is to understand the holonomy of the Ricci-flat metrics on X reg . This leads to a decomposition of the tangent sheaf of X that already reflects the conjectural Beauville-Bogomolov decomposition on an infinitesimal level. The missing last steps are the algebraic integrability of the summands and a splitting theorem for such foliations.

Theorem C (Holonomy covers, p. 22). Let (X, ω X ) be as in Theorem A. Then after replacing X by a finite quasi-étale cover, there exists a direct sum decomposition of the tangent sheaf of X,

T X = F ⊕ k∈K E k ,
where the reflexive sheaves F and E k satisfy the following:

• The sheaves F and E k are foliations with trivial determinant.

• The sheaf F Xreg is flat. More precisely, it is given by a special unitary representation of π 1 (X reg ).

• Each factor E k Xreg is parallel and has full holonomy group either SU(n k ) or Sp(n k /2), with respect to the pullback of the singular Ricci-flat metric ω. Here, n k = rk(E k ). Moreover, E k is strongly stable with respect to any Kähler class.

• After passing to a torus cover γ : T × Z → X as in Theorem B, the tangent sheaf of T becomes a direct summand of γ [ * ] F . If X is locally algebraic, then we have equality pr * T T T = γ [ * ] F . As far as the flat factor F is concerned, Theorem C only provides partial information. We do however have a complete understanding of X in the case where the other summands E k vanish. In particular, in this case we know that pr * T T T = γ [ * ] F without making any algebraicity assumptions:

Theorem D (Characterization of torus quotients, Theorem 5.2 and Proposition 6.8). Let X be a normal complex space with klt singularities. If T Xreg is flat, then X has only finite quotient singularities. Moreover, if X is compact and Kähler, then it is a quotient of a complex torus by a finite group acting freely in codimension one.

Theorem D would follow directly from Theorem C as soon as the maximally quasi-étale covers of [START_REF] Greb | Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties[END_REF] are available. In our non-algebraic setting, we cannot rely on that result, but capitalizing on the classical fact that isolated singularities are algebraic, we are able to prove a "generic" version of [START_REF] Greb | Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties[END_REF], cf. Proposition 5.9. Coupling this with the resolution of the (log canonical) Lipman-Zariski conjecture due to Kovács and the second author [START_REF] Graf | An optimal extension theorem for 1-forms and the Lipman-Zariski Conjecture[END_REF] and Druel [START_REF] Druel | The Zariski-Lipman conjecture for log canonical spaces[END_REF] independently, this weaker statement turns out to be sufficient to obtain Theorem D.

Varieties with strongly stable tangent sheaf. Theorems A-D, together with some standard representation theory, imply Corollary E below. This result characterizes the conjectural building blocks of compact Kähler spaces with klt singularities and trivial first Chern class via stability properties of their tangent sheaf. We refer to Section 6.D for the relevant definitions.

Corollary E (Spaces with strongly stable tangent sheaf, Corollary 6.13). Let X be as in Theorem B. If T X is strongly stable, then X admits a quasi-étale cover that is either an irreducible Calabi-Yau variety or an irreducible holomorphic symplectic variety.

Corollary E is the Kähler version of [GGK19, Theorem E]. Its proof bypasses the use of Druel's splitting result for flat summands [START_REF] Druel | A decomposition theorem for singular spaces with trivial canonical class of dimension at most five[END_REF] as well as the existence of maximally quasi-étale covers.

Fundamental groups. According to Campana's Abelianity Conjecture [Cam04, Conjecture 7.3], the fundamental group of the regular locus X reg of a compact Kähler space with klt singularities such that c 1 (X) = 0 should be virtually abelian, and finite if the augmented irregularity of X vanishes. Unfortunately, this result seems out of reach for the moment, even in the projective case. It is yet crucial to control π 1 (X reg ), for instance by relating it to π 1 (X), in order to trivialize flat subsheaves of the tangent sheaf or to clear the difference between restricted holonomy groups (which are classified by Berger-Simons) and holonomy groups (which govern the geometry of X via the Bochner principle).

The fundamental group of the whole space π 1 (X) is in general easier to understand but it might be much smaller that π 1 (X reg ), as the standard Example 6.2 shows. Our results can be combined to techniques borrowed from e.g. [GGK19,

§ 13] to derive finiteness properties of π 1 (X) in any dimension, cf. Theorem 7.2. If we restrict our attention to low dimensions, we arrive at much stronger statements.

Theorem F (Fundamental groups in dimension four, Theorem 7.3). Let X be as in Theorem B and of dimension ≤ 4. Then:

• π 1 (X) is virtually abelian. • If q(X) = 0, then π 1 (X) is finite.
Comparison with other works. All our results have previously been established in [START_REF] Greb | Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups[END_REF] under the assumption that X is projective. In loc. cit. the projectivity assumption is used in a crucial way to obtain the existence of maximally quasiétale covers [START_REF] Greb | Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties[END_REF] and to rely on Druel's splitting result [START_REF] Druel | A decomposition theorem for singular spaces with trivial canonical class of dimension at most five[END_REF]. These results are currently unavailable in the analytic setting and, as a result, our proofs of e.g. Theorem A and Theorem C follow a quite different path and are in the end somewhat more natural, if not simpler.

A few months after the present article had been uploaded to the arXiv, B. Bakker, C. Lehn and the third-named author posted the preprint [BGL20] where they prove the Decomposition Theorem in full generality, i.e. for any compact Kähler space with klt singularities and trivial first Chern class. Of course, the present paper was largely motivated by the Decomposition Theorem in the Kähler setting, but we would like to point out that several of the arguments in [BGL20] crucially rely on the existence of holonomy and torus covers (Theorems B and C of the present article). Furthermore, some of the results proven here are logically independent of the splitting theorem of [BGL20] (e.g. Theorem A or Theorem D). For these reasons, we think that the two papers nicely complement each other.
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Preliminaries

In this section we gather some basic material to be used in the rest of the article. 2.A. Global conventions. Unless otherwise stated, complex spaces are assumed to be countable at infinity, separated, reduced and connected. Algebraic varieties and schemes are always assumed to be defined over the complex numbers.

2.B. General definitions.

As a courtesy to the reader, we recall the following standard definitions.

Definition 2.1 (Irregularity). The irregularity of a compact complex space X is q(X)

:= h 1 (Y, O Y ), where Y → X is any resolution of singularities. The augmented irregularity of X is q(X) := max q X X → X quasi-étale cover ∈ N 0 ∪ {∞}. Remark 2.2. If X has rational (e.g. klt) singularities, one has q(X) = h 1 (X, O X ). If additionally X is Kähler, then it follows from [KS21, Corollary 1.8] that q(X) = h 0 Y, Ω 1 Y = h 0 X, Ω [1] 
X .

Definition 2.3 (Flat sheaves). Let X be an irreducible and reduced complex space and let X → X be its universal cover. We say that a rank r vector bundle E → X is flat if there exists a linear representation ρ : π 1 (X) → GL(r, C) such that E is isomorphic to the bundle X × C r π 1 (X) → X, where π 1 (X) acts diagonally.

Definition 2.4. Let X be a complex space. We say that X is locally algebraic, or that X has algebraic singularities, if there exists a euclidean open cover {U i } i∈I of X such that for every i ∈ I, there is a quasi-projective scheme Y i , an open subset V i ⊂ Y an i and a biholomorphic map

ϕ i : U i ∼ -→ V i .
Example 2.5. Here are some (non-)examples of algebraic singularities.

(2.5.1) Every complex manifold, and more generally every complex space with quotient singularities, is locally algebraic [START_REF] Cartan | Quotient d'un espace analytique par un groupe d'automorphismes[END_REF].

(2.5.2) Every complex space with only isolated singularities is locally algebraic by [Art69, Theorem 3.8] or [Tou68, corollaire 1, §3, chapitre II].

(2.5.3) If the complex space X admits a locally trivial algebraic approximation, then it is locally algebraic (see [START_REF] Graf | Algebraic approximation of Kähler threefolds of Kodaira dimension zero[END_REF]§2.4] for the notion involved).

(2.5.4) Take a non-isotrivial family of elliptic curves over the unit disc ∆. Restrict it to the punctured disc ∆ * and pull it back along the universal cover ∆ → ∆ * . Now take a cone over this family fibrewise. We obtain a log canonical threefold with one-dimensional singular locus which is not locally algebraic, because the j-function associated to the exceptional divisor is not algebraic.

2.C. Coverings of complex spaces. We consistently use the following notation. 

Z ⊂ Y of codimension codim Y (Z) ≥ 2 such that γ Y \Z : Y \ Z → X is étale.
By purity of branch locus and the extension theorem of [DG94, Theorem 3.4], we get an equivalence of categories between the quasi-étale covers of X and the étale covers of X reg . We emphasize that with our definitions, an étale or quasi-étale cover is automatically finite.

We will use several times the fact that taking Galois closure also works in the analytic context. Compare [GK20, Lemma 7.4].

Lemma 2.8 (Galois closure). Let γ : Y → X be a covering map between normal complex spaces. Then there exists a Galois cover g : Y → Y (with Y normal) such that the composed map f = γ • g : Y → X is also Galois and we have an equality of branch loci Br(f ) = Br(γ). In particular, if γ is quasi-étale, then so is f . Proof. The morphism γ is étale over a Zariski open set X • ⊂ X and then it corresponds to a finite index subgroup H ⊂ π 1 (X • ). This subgroup has a finite number of conjugates in π 1 (X • ) and the intersection of these conjugates is a normal finite index subgroup H • in π 1 (X • ). This subgroup H • gives rise to a Galois cover

Y • -→ Y • := γ -1 (X • ) γ -→ X • .
The finite morphisms Y • -→ X • and Y • -→ Y • can be extended over the whole of X and Y to finite morphisms f : Y -→ X and g : Y -→ Y [DG94, Theorem 3.4]. The factorization f = γ•g exists (by construction) over X • and it extends naturally. The equality of the branch loci is obvious.

As a consequence, quotient singularities can be characterized in terms of smoothness of quasi-étale covers.

Lemma 2.9 (Quotient singularities). A germ of normal singularity (X, x) is a quotient singularity if and only if it admits a smooth quasi-étale cover.

Proof. If (X, x) is isomorphic to C n G , 0 , we may assume that G contains no quasi-reflections [ST54, Che55] and then the quotient map

C n → C n G is quasi- étale.
Conversely, if γ : Y → X is quasi-étale with Y smooth, then we can take a Galois closure as in Lemma 2.8, i.e. a map g : Y → Y with f = γ • g : Y → X Galois. Since f = γ • g is quasi-étale, the map g does not branch over any divisor in Y and since Y is smooth we deduce that the map g is étale by purity of the branch locus. This implies that Y is smooth as well and hence (X, x) is a quotient singularity [START_REF] Cartan | Quotient d'un espace analytique par un groupe d'automorphismes[END_REF] 1 .

1 The reference [START_REF] Cartan | Quotient d'un espace analytique par un groupe d'automorphismes[END_REF] is also available at http://www.numdam.org/article/SHC_1953-1954_ _6__A12_0.pdf.

2.D. Slope stability. Let X be a compact, normal Kähler space of dimension n and let α ∈ H 2 (X, R) be a Kähler class. We fix a resolution π : X → X which is isomorphic over X reg . Finally, let E be a torsion-free sheaf of rank r on X, and let E := π * E /tor.

The slope of E with respect to α, denoted by µ α (E ) is defined by µ α (E ) :

= 1 r c 1 ( E ) • (π * α) n-1 .
It is easy to check that the slope is independent of the chosen resolution.

Definition 2.10 (Stability). Let E be a reflexive sheaf on X. We say that (2.10.1) E is stable with respect to α if for any non-zero subsheaf F ⊂ E of rank less than r, we have µ α (F ) < µ α (E ).

(2.10.2) E is polystable with respect to α if it is a direct sum of stable sheaves with identical slope.

(2.10.3) E is strongly stable with respect to α if for any quasi-étale cover f : Y → X, the sheaf f [ * ] E := (f * E ) * * is stable with respect to f * α.

2.E. Stratifications of complex spaces. Here we just set up some notation to be used when dealing with stratifications of singular spaces. We first recall that a Whitney stratification of a closed subspace X of a smooth real manifold M is a locally finite partition S of X into smooth, connected, locally closed subsets (X λ ) λ∈Λ :

(S ) : X = λ∈Λ X λ
satisfying certain incidence conditions. The pair (X, S ) is called a stratified space and the X λ are called the strata of (X, S ). We refer to [GM88, Part I, § 1.2 and 1.3] or to [START_REF] Mather | Notes on topological stability[END_REF] for more background on this classical topic, in particular the existence of Whitney stratifications. We will mostly be interested in the situation where X is an irreducible and reduced complex space. In this case, the strata are asked to be smooth and connected locally closed analytic subsets. In particular, by dimension we will always mean the dimension as a complex space.

A stratification can alternatively be encapsulated in a filtration of X by closed analytic subsets:

S k := {λ | dim(X λ )≤k} X λ .
So defined, S k has dimension at most k and if n := dim X we have:

S 0 ⊂ S 1 ⊂ • • • ⊂ S n = X.
We will be mainly interested in what we call maximal strata.

Definition 2.11 (Maximal strata). Let S := (X λ ) λ∈Λ be a Whitney stratification of X and (S k ) 0≤k≤n be the corresponding filtration. We let d < n be the maximum index such that S d X. The strata indexed by

Λ max := {λ ∈ Λ | dim(X λ ) = d} are called the maximal (dimensional) strata.
This definition is meaningful in particular when the stratification S satisfies S d = X sg . Definition 2.12 (Refining stratifications). Let S and S be two Whitney stratifications of X. We say that S is a refinement of S if the strata of S are unions of strata of S . In this case we write S < S .

Since strata are irreducible by definition, in the above situation each S -stratum contains exactly one S -stratum as an open subset. Definition 2.13 (Stratified maps). A continous map f : X → Y is called stratified (with respect to Whitney stratifications S X and S Y of X and Y , respectively) if for each S Y -stratum A ⊂ Y , the preimage f -1 (A) is a union of S X -strata and f takes each of these strata smoothly and submersively to A.

Theorem 2.14 (Stratifications of maps, cf. [GM88, Part I, §1.7]). Let f : X → Y be a holomorphic map, X and Y being endowed with Whitney stratifications as above. Then there exist refinements S X < S X and

S Y < S Y such that f : (X, S X ) → (Y, S Y ) is a stratified map.
We finally recall that the transverse structure of a given stratum is topologically locally trivial in a rather strong sense. In the following statement, a normal (or transverse) slice N λ to a stratum X λ is a smooth submanifold of the ambient space M which is transverse to each stratum of X, intersects X λ in a single point and satisfies dim(N λ ) = codim M (X λ ). We denote by S k the euclidean unit sphere in R k+1 .

Theorem 2.15 (cf. Part I, §1.4 in [START_REF] Goresky | of Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF]). Let X λ be any stratum of (X, S ). Then there exists a stratified set L ⊂ S k for some integer k such that any point x 0 ∈ X λ has a neighborhood U in X endowed with a homeomorphism

h : U -→ (U ∩ X λ ) × c(L)
where c(L) is the cone over L. The space L is called the link of the stratum X λ and is denoted Link(X, X λ ).

The space c(L) is endowed with a natural stratification whose strata are the vertex of the cone and subspaces of the form A×]0, 1], with A a stratum of L. The homeomorphism h sends the strata of U into those of (U ∩X λ )×c(L). In particular, if N is any transverse slice to X λ at x 0 then (U ∩ N ) \ {x 0 } has the homotopy type of the link Link(X, X λ ).

This local picture can be turned into a global one.

Theorem 2.16 (Existence of tubular neighborhoods, [START_REF] Mather | Notes on topological stability[END_REF]). Let X λ be any stratum of (X, S ). Then there exists a closed neighborhood U λ of X λ in X and a continuous retraction f λ : U λ -→ X λ that is locally topologically trivial with fibre c(Link(X, X λ )). The natural inclusion X λ → U λ being a section of f λ , the punctured open neighborhood U • λ \ X λ is also locally topologically trivial over X λ with fibre homotopy equivalent to Link(X, X λ ).

This topological stability will be used through the following corollary.

Corollary 2.17. Let γ : Y → X be a quasi-étale cover between normal complex spaces, and let S be a Whitney stratification of X such that X sg is a union of strata. Then for any maximal stratum X λ , the following dichotomy holds: either

X λ ⊂ Br(γ) or X λ ∩ Br(γ) = ∅.
Proof. This is a direct application of [GKP16a, Corollary 3.12], where A = X sg . Let λ ∈ Λ max be any index. If X λ ⊂ A, then X λ equals an irreducible component of A by maximality. Hence we may apply said result. Otherwise, X λ must be disjoint from A, i.e. contained in X reg . So we are in the second case of the dichotomy.

Remark 2.18. The notion of stratum and thus of its normal topological type depends on a given stratification. We will not need it in the sequel, but it has to be noted that any irreducible reduced complex space X has a canonical Whitney stratification S can . This means that if S is any other Whitney stratification of X, the strata of S can are unions of strata of S . The construction of S can is explained in [Mat73, Theorem 4.9] (see also [TT81, corollaire 6.1.7] where the canonical stratification is defined in terms of polar varieties).

Bochner principle for reflexive tensors

In this section, we prove the Bochner principle, Theorem A. For generalities about Kähler metrics or currents on normal complex spaces, we refer to [Dem85, A.1], [EGZ09, § 5.2], [BEG13, § 4.6.1] or [GK20, § 3]. We work in the following setting.

Setup 3.1. Let X be an n-dimensional complex, compact Kähler space with klt singularities such that K X is numerically trivial.

We choose a Kähler resolution π : Y → X such that Exc(π) is an snc divisor F = j F j , and we fix holomorphic sections

s j ∈ H 0 (Y, O Y (F j )) cutting out the smooth component F j . We set s F := ⊗ j s j and Y • := Y \ F . Fix two integers p, q ≥ 0. We set E X := T ⊗p X ⊗Ω ⊗q X ‹ ‹
, where (-)

‹ ‹
denotes the double dual, and

E Y := T ⊗p Y ⊗Ω ⊗q Y . One has a natural inclusion of coherent sheaves π * E Y ⊂ E X and the quotient sheaf E X π * E Y is torsion, being supported on X sg . Thanks to Rückert's Nullstellensatz [GR84, Ch. 3, §2], there exists an integer k ≥ 1 such that for any reflexive tensor τ ∈ H 0 (X, E X ), the section π * Y • τ Xreg extends to an element σ ∈ H 0 (Y, E Y ⊗ O Y (kF )).
Thanks to the combination of [EGZ09, Theorem 7.5] and [Pău08, Corollary 1.1], there exists in each Kähler class α ∈ H 2 (X, R) a unique closed, positive current ω α ∈ α with bounded potentials, smooth on X reg and satisfying Ric ω α = 0 on this locus, cf. Remark 3.2 below.

The Kähler metric ω α on X reg induces a smooth, hermitian metric on T Xreg and in turn on E X Xreg , with Chern connection D E X .

Remark 3.2. Given a Kähler metric ω X on X, it follows from [EGZ09, Theorem 7.5] that there exists a unique Kähler-Einstein current ω α in the cohomology class {ω X } ∈ H 1 (X, PH X ) under the connecting map H 0 X, L ∞ X PH X -→ H 1 (X, PH X ). This cohomology group identifies two (1, 1)-currents with local (bounded) dd c -potentials if and only if they differ by the dd c of a global (bounded) function. It is however more convenient to view ω α in the more familiar cohomology space H 2 (X, R) using the connecting map arising from the natural exact sequence

0 -→ R X -→ O X Im --→ PH X -→ 0.
It was recently proved in [GK20, Proposition 3.5] that the map H 1 (X, PH X ) → H 2 (X, R) is injective whenever X has rational singularities. Therefore, a Kähler class α ∈ H 2 (X, R) is associated to a unique class of a Kähler metric {ω X } ∈ H 1 (X, PH X ). This allows us to consider without any ambiguity the unique singular Ricci-flat metric ω α in α ∈ H 2 (X, R) as stated a few lines above.

Remark 3.3. In Setup 3.1 above, the Abundance Conjecture has been proved in [CGP19, Corollary 1.18] as an application of results of B. Wang [Wan16]. So there exists a quasi-étale cover X → X such that K X is trivial and, in particular, X has canonical singularities. We do not rely on this fact to prove the Bochner principle.

Quite the opposite is true: one may use the Bochner principle to prove Abundance in Setup 3.1, at least under the slightly stronger assumption that X has canonical (as opposed to klt) singularities. The details of the argument can be found in Corollary 4.5.

Theorem 3.4 (Bochner principle). Let X be a compact Kähler space with klt singularities such that K X is numerically trivial and let α be a Kähler class. With the notation of Setup 3.1 above, any holomorphic tensor τ ∈ H 0 (X reg , E X ) is parallel with respect to ω α , i.e. D E X τ = 0 on X reg . Remark 3.5 (Comparison with earlier results). In [START_REF] Greb | Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups[END_REF], the Bochner principle is proved under the assumption that X is projective. The proof goes as follows: along the lines of [START_REF] Guenancia | Semistability of the tangent sheaf of singular varieties[END_REF], one can prove the Bochner principle for bundles [GGK19, Theorem 8.1], stating that a saturated subsheaf of slope zero of a tensor bundle F ⊂ E X is automatically parallel with respect to the Kähler-Einstein metric on the smooth locus. This does not rely on the projectivity assumption.

To go from bundles to tensors, one considers the line bundle generated by a given tensor τ on X reg . As it is parallel, the holonomy group G acts on it, yielding a character of G. The classification of the holonomy [GGK19, Theorem B] shows that up to passing to a quasi-étale cover, G is semi-simple, hence the character is trivial and τ itself is parallel. The above classification result relies on the projectivity assumption through the existence of a maximally quasi-étale cover [GKP16a, Theorem 1.5] and Druel's integrability result [START_REF] Druel | A decomposition theorem for singular spaces with trivial canonical class of dimension at most five[END_REF]Theorem 1.4].

Proof of Theorem 3.4. We first need to set up some notation. Hermitian metrics. We choose some smooth hermitian metrics h j on O Y (F j ). We denote by ϑ j the curvature form of that metric, i.e ϑ j := iΘ hj (F j ). Next, we define for any ε > 0 another smooth metric h j,ε on O Y (F j ) by

h j,ε := 1 |s j | 2
hj + ε 2 • h j . The curvature form ϑ j,ε of that metric, i.e. ϑ j,ε := iΘ hj,ε (F j ), is given by

ϑ j,ε = ε 2 (|s j | 2 + ε 2 ) 2 • Ds j ∧ Ds j =:βj,ε + ε 2 |s i | 2 + ε 2 • ϑ j =:γj,ε .
The symbol D above refers to the Chern connection induced by h j on O Y (F j ). Finally, we set

h F := j h j and h F,ε = j h j,ε = 1 j (|s j | 2 + ε 2 ) • h F ; they define smooth metrics on O Y (F ).
Approximate Kähler-Einstein metrics. We introduce the rational coefficients

a i > -1 such that K Y = π * K X + a i F i .
We fix a Kähler reference metric ω Y on Y , and consider, for each ε, t > 0, the unique Kähler metric

ω t,ε ∈ π * α + t{ω Y } solution of Ric ω t,ε = - j a j ϑ j,ε
Its existence is guaranteed by Yau's solution of the Calabi conjecture [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation[END_REF]. In terms of Monge-Ampère equations, if ω X is a smooth representative of α, then

ω t,ε = π * ω X + tω Y + dd c ϕ t,ε is solution of (π * ω X + tω Y + dd c ϕ t,ε ) n = e -ct,ε dV (|s j | 2 + ε 2 ) aj
where dV is a fixed smooth volume form such that Ric dV = a j ϑ j and c t,ε ∈ R is a normalizing constant defined by e ct,ε =

1 (π * α+t{ω Y }) n Y dV (|sj | 2 +ε 2 ) a j .

Curvature formula.

We set E Y (kF ) := E Y ⊗ O Y (kF ) and we choose σ ∈ H 0 (Y, E Y (kF )) some meromorphic tensor on Y . The Kähler metric ω t,ε induces a smooth hermitian metric h ωt,ε on E Y . We consider the metric 

h t,ε := h ωt,ε ⊗ h ⊗k F,ε on E Y (
dd c log(|σ| 2 + 1) = 1 |σ| 2 + 1 |Dσ| 2 - | Dσ, σ | 2 |σ| 2 + 1 -iΘ ht,ε (E Y (kF ))σ, σ
Wedging this last inequality with ω n-1 t,ε and integrating it on X yields:

Y iΘ ht,ε (E Y (kF ))σ, σ |σ| 2 + 1 ∧ ω n-1 t,ε = Y 1 |σ| 2 + 1 |Dσ| 2 - | Dσ, σ | 2 |σ| 2 + 1 ∧ ω n-1 t,ε As | Dσ, σ | ≤ |Dσ|• |σ|, we obtain (3.5.2) Y iΘ ht,ε (E Y (kF ))σ, σ |σ| 2 + 1 ∧ ω n-1 t,ε ≥ Y |Dσ| 2 (|σ| 2 + 1) 2 ∧ ω n-1 t,ε Now, one has iΘ ht,ε (E Y (kF )) = iΘ hω t,ε (E Y ) ⊗ Id O Y (kF ) + Id E Y ⊗ iΘ h ⊗k F,ε (O Y (kF )).
First let us introduce a notation: let V be a complex vector space of dimension n, let p ≥ 1 be an integer, and let f ∈ End(V ). We denote by f ⊗p the endomorphism of V ⊗p defined by

f ⊗p (v 1 ⊗ • • • ⊗ v p ) := p i=1 v 1 ⊗ • • • v i-1 ⊗ f (v i ) ⊗ v i+1 ⊗ • • • ⊗ v p
Let us add that if V has an hermitian structure and if f is hermitian semipositive, then so is f ⊗p with the induced metric, and we have tr(f ⊗p ) = pn p-1 tr(f ). Now we can easily check the following identity:

niΘ(T ⊗p Y , h ωt,ε ) ∧ ω n-1 t,ε = ( Ric ω t,ε ) ⊗p ω n t,ε
where Ric ω is the endomorphism of T Y induced by Ric ω t,ε via ω t,ε . As Ric ω = -a j ϑ j,ε , we deduce that

tr ωt,ε iΘ hω t,ε (E Y ) = - j a j ( ϑ j,ε ) ⊗p ⊗ Id T * Y ⊗q -Id T Y ⊗p ⊗ ( ϑ j,ε ) ⊗q while iΘ h ⊗k F,ε (O Y (kF )) ∧ ω n-1 t,ε = k j ϑ j,ε ∧ ω n-1 t,ε .
Locally, one can choose a trivialization e of O Y (kF ) and write σ = u ⊗ e where u is a local section of E Y . Then

(3.5.3) iΘ ht,ε (E Y (kF ))σ, σ = iΘ hω t,ε (E Y )u, u |e| 2 h ⊗k F,ε (I) + (k j ϑ j,ε ) • |σ| 2 (II)

Computation of Term (I).

This part is entirely similar to [GGK19, §9]. We have the decomposition

( ϑ j,ε ) ⊗p = ( β j,ε ) ⊗p + ( γ j,ε ) ⊗p
along with the inequalities

(3.5.4) 0 ≤ ( β j,ε ) ⊗p ≤ tr End ( β j,ε ) ⊗p Id T ⊗p Y ≤ pn p-1 tr ωt,ε β j,ε • Id T ⊗p Y and (3.5.5) ± ( γ j,ε ) ⊗p ≤ Cε 2 |s j | 2 + ε 2 • ( ω Y ) ⊗p ≤ Cpn p-1 • ε 2 |s j | 2 + ε 2 • tr ωt,ε ω Y • Id T ⊗p Y
as soon as C > 0 is large enough so that ±ϑ j ≤ Cω Y for any j. From (3.5.4), one deduces

0 ≤ ( β j,ε ) ⊗p ⊗ Id T * Y ⊗q u, u |e| 2 h ⊗k F,ε |σ| 2 + 1 ≤ pn p-1 tr ωt,ε β j,ε |σ| 2 |σ| 2 + 1 ≤ pn p-1 tr ωt,ε β j,ε
while from (3.5.5), one deduces

± ( γ j,ε ) ⊗p ⊗ Id T * Y ⊗q u, u |e| 2 h ⊗k F,ε |σ| 2 + 1 ≤ Cpn p-1 • ε 2 |s j | 2 + ε 2 • tr ωt,ε ω Y |σ| 2 |σ| 2 + 1 ≤ Cpn p-1 • ε 2 |s j | 2 + ε 2 • tr ωt,ε ω Y so in conclusion, one gets ± ( ϑ j,ε ) ⊗p ⊗ Id T * Y ⊗q u, u |e| 2 h ⊗k F,ε |σ| 2 + 1 ≤ C tr ωt,ε β j,ε + ε 2 |s j | 2 + ε 2 • tr ωt,ε ω Y for some C large enough. Performing the same computations with Id T Y ⊗p ⊗ ( ϑ j,ε ) ⊗q , one eventually obtains (3.5.6) ± iΘ hω t,ε (E Y )u, u |e| 2 h ⊗k F,ε |σ| 2 + 1 ∧ ω n-1 t,ε ≤ C (β j,ε + ε 2 |s j | 2 + ε 2 • ω Y ) ∧ ω n-1 t,ε

Computation of Term (II).

By the same token as before, one can decompose

ϑ j,ε • |σ| 2 |σ| 2 + 1 ∧ ω n-1 t,ε = |σ| 2 |σ| 2 + 1 • β j,ε ∧ ω n-1 t,ε (III) 
+ |σ| 2 |σ| 2 + 1 • γ j,ε ∧ ω n-1 t,ε (IV) 
and write 0

≤ (III) ≤ β j,ε ∧ ω n-1 t,ε and ±(IV) ≤ Cε 2 |sj | 2 +ε 2 • ω Y ∧ ω n-1 t,ε to obtain (3.5.7) ϑ j,ε • |σ| 2 |σ| 2 + 1 ∧ ω n-1 t,ε ≤ C (β j,ε + ε 2 |s j | 2 + ε 2 • ω Y ) ∧ ω n-1 t,ε
Putting (3.5.6) and (3.5.7) together, one sees from (3.5.3) that

(3.5.8) ± iΘ ht,ε (E Y (kF ))σ, σ |σ| 2 + 1 ∧ω n-1 t,ε ≤ C   j β j,ε + ε 2 |s j | 2 + ε 2 • ω Y ∧ ω n-1 t,ε   Finally, one has Y β j,ε ∧ ω n-1 t,ε = Y ϑ j,ε ∧ ω n-1 t,ε - Y γ j,ε ∧ ω n-1 t,ε ≤ F j • (π * α + tω Y ) n-1 + C Y ε 2 |s j | 2 + ε 2 ω Y ∧ ω n-1 t,ε
so that (3.5.8) combined with [GGK19, Claim 9.5] show that (3.5.9)

lim t→0 lim ε→0 Y iΘ ht,ε (E Y (kF ))σ, σ |σ| 2 + 1 ∧ ω n-1 t,ε = 0.

Conclusion.

When ε, t go to zero, ω t,ε converge weakly to π * ω α , and the convergence is smooth on Y • . Inequality (3.5.2) combined with Fatou lemma ensure that σ has zero covariant derivative on Y • with respect to the smooth hermitian metric h π * ωα ⊗h ⊗k

F,0 on E Y (kF )| Y •
. Now, it follows from the definition of h F,0 that |s F | h F,0 ≡ 1 on Y so that s F is parallel with respect to h F,0 on Y • . This implies that σ/s ⊗k F is parallel with respect to h π * ωα on Y • , hence τ is parallel with respect to h ωα on X reg .

Remark 3.6. In Theorem 3.4 above, if

E X = T X or E X = Ω [p]
X for some 1 ≤ p ≤ n, then one can choose the resolution π such that the tensor τ pulls back to a holomorphic tensor on the resolution (i.e. it does not acquire any poles along F ). This follows from the existence of a functorial resolution of singularities in the first case (see e.g. [Kol07, Proposition 3.9.1]) and from [KS21] in the second one. In such a case, the term (II) in the proof above disappears and the proof reduces to the computations of [START_REF] Guenancia | Semistability of the tangent sheaf of singular varieties[END_REF]. We do, however, need the Bochner principle also for more general tensors.

Structure of the Albanese map

For generalities on the Albanese map for singular spaces, see [START_REF] Graf | Algebraic approximation of Kähler threefolds of Kodaira dimension zero[END_REF]§3]. We prove here the exact analogue of [Kaw85, Theorem 8.3] in the Kähler setting. See also [Gra18, Theorem 1.10] for the three-dimensional case. We then proceed to prove the existence of torus covers (Theorem B) and some immediate corollaries.

Theorem 4.1 (Albanese splits after base change). Let X be a normal compact Kähler space with canonical singularities such that c 1 (X) = 0. Let α : X -→ A := Alb(X) be the Albanese map of X. Then there exists a finite étale cover A 1 → A such that X × A A 1 is isomorphic to F × A 1 over A 1 , where F is connected. In particular, α is a surjective analytic fibre bundle with connected fibres, and q(X) ≤ dim X.

Remark. Under the stronger assumption that K X is torsion, the fact that α is surjective with connected fibres has already been shown in [Kaw81, Theorem 24] and [Cam04, Theorem 5.1 and Proposition 5.3]. Since these results are stated for manifolds, one needs to apply them to a smooth model Y → X. This is possible since K Y is a Q-effective exceptional divisor and so Y has vanishing Kodaira dimension.

On the other hand, we can use Theorem 4.1 to prove that K X is torsion under the assumptions of that theorem. See Corollary 4.5.

Proof of Theorem 4.1. By the universal property of the Albanese torus, for every g ∈ Aut(X) there exists a unique ϕ g :

A → A such that ϕ g • α = α • g. If g ∈ Aut • (X)
, the identity component, then g acts trivially on H 1 (X, C) and in particular on H 0 X, Ω

[1] X ‹ . Consequently, the linear part of ϕ g is the identity.

That is, ϕ g is a translation by some element ϕ(g) ∈ A. We have thus defined a homomorphism of complex Lie groups ϕ : Aut • (X) → A, which we will now show to be the desired cover A 1 → A. First of all, since X has canonical singularities, it is not uniruled. Hence Aut • (X) is a complex torus by [Fuj78, Proposition 5.10]. It is thus sufficient to show that the induced Lie algebra map dϕ : H 0 (X, T X ) → H 0 X, Ω

[1] X ‹ is an isomorphism. One checks easily that dϕ is given by the natural contraction pairing (4.1.1)

H 0 (X, T X ) × H 0 X, Ω [1] X -→ H 0 (X, O X ) = C.
Fix a Kähler class a ∈ H 2 (X, R) and consider the associated Ricci-flat metric ω a as in Section 3. Let 0 = v ∈ H 0 (X, T X ) be a nonzero holomorphic vector field. Due to the Bochner principle, Theorem 3.4, v is parallel with respect to the Chern connection D induced by ω a . Dualizing using this metric, v gives rise to a parallel (hence holomorphic, as D 0,1 = ∂) 1-form α on X. Clearly the contraction ι v α = 0.

The argument can also be read backwards, hence (4.1.1) is a perfect pairing and dϕ is an isomorphism. Next, we show that the family f 1 :

X × A A 1 → A 1 is trivial. To this end, set F := α -1 (0). Recalling that A 1 = Aut • (X), we define a map η : F × A 1 → X × A 1 by sending (x, g) → g(x), g . Since α(g(x)) = ϕ g (α(x)) = ϕ g (0) = ϕ(g), the map η factors through the fibre product as η : F × A 1 → X × A A 1 .
The latter map has an inverse given by η -1 (x, g) = g -1 (x), g . By construction, η is a morphism over A 1 , i.e. it preserves the fibres of the projections to

A 1 . It follows that X × A A 1 is isomorphic to F × A 1 over A 1 , as claimed.
What we have observed so far already implies that X → A is a surjective analytic fibre bundle, because the base change to A 1 has these properties. It remains to see that the fibre F is connected. For this, consider the Stein factorization

X β --→ B γ --→ A of α.
We claim that γ is étale. The question is local on A, so we may pass to a small open subset

U ⊂ A such that α -1 (U ) ∼ = U × F over U . Then there is an isomorphism α * O α -1 (U ) ∼ = O ⊕N U in the category of finitely presented O U -algebras,
where N is the number of connected components of F . By construction of the Stein factorization, it follows that γ -1 (U ) is a disjoint union of N copies of U . In particular, γ is étale.

Consequently, B is a complex torus too. By the universal property of A, the map X β --→ B factors via A and we get a section A → B of γ. This means that γ is an isomorphism, i.e. B = A. By the definition of Stein factorization, X → A = B has connected fibres.

The last statement, q(X) ≤ dim X, follows from the surjectivity of α as follows:

q(X) = h 1 (Y, O Y ) = h 0 Y, Ω 1 Y = dim Alb(Y ) = dim A ≤ dim X, where Y → X is a resolution of singularities.
Corollary 4.2 (Torus covers). Let X be a normal compact Kähler space with klt singularities such that c 1 (X) = 0. Then: (4.2.1) The augmented irregularity q(X) ≤ dim X. In particular, it is finite. Furthermore, there exist normal compact Kähler spaces T and Z with canonical singularities together with a quasi-étale cover γ : T × Z -→ X such that: (4.2.2) T is a complex torus of dimension q(X).

(4.2.3) The canonical sheaf of Z is trivial, ω Z ∼ = O Z .
(4.2.4) The augmented irregularity of Z vanishes, q(Z) = 0.

Any cover γ as above will be called a torus cover of X.

Proof. The proof closely follows along the lines of [GGK19, Proposition 7.5], but with different references. For later reference, and also as a courtesy to the reader, we give the argument here.

To begin with, note that by [CGP19, Corollary 1.18], the canonical divisor K X is torsion. We may thus consider an index one cover X 1 → X. This has the additional property that K X1 is trivial (in particular, Cartier) and hence X 1 has canonical singularities. That is, X 1 satisfies the assumptions of Theorem 4.1.

For (4.2.1), note that q(X) = q(X 1 ) by Lemma 4.3. It is therefore sufficient to prove q(X 1 ) ≤ dim X 1 = dim X. But any quasi-étale cover X → X 1 reproduces the assumptions of Theorem 4.1, hence q(X ) ≤ dim X = dim X 1 by that result. The claim follows by taking the supremum over all quasi-étale covers of X 1 .

Next, we construct a torus cover γ as a sequence of quasi-étale covers as follows:

T × Z = X 3 -→ X 2 -→ X 1 -→ X.
The first map, X 1 → X, is still the index one cover. We have already seen that q(X 1 ) is finite. Choose now a quasi-étale cover X 2 → X 1 that realizes this augmented irregularity, q(X 2 ) = q(X 1 ). Finally, apply Theorem 4.1 to X 2 in order to obtain a further cover X 3 → X 2 that splits off a torus as X 3 = T × Z. We need to show that (4.2.2)-(4.2.4) hold. By construction, dim(T ) = q(X 3 ) = q(X 2 ) = q(X 1 ) = q(X), which proves (4.2.2). For (4.2.3), since ω X1 is already trivial, the same is true of ω T ×Z and hence also of ω Z . Finally, if there was a cover Z → Z with q(Z ) > 0, then T × Z → X would be a cover with irregularity dim T + q(Z ) > q(X), which contradicts the definition of q(X). This shows (4.2.4).

Lemma 4.3 (Invariance of q). Let Y → X be a quasi-étale cover of normal compact complex spaces. Then q(Y ) = q(X).

Proof. Every quasi-étale cover Y → Y is, by composition, also a quasi-étale cover of X. The inequality q(Y ) ≤ q(X) is therefore obvious. For the other direction, let X → X be any quasi-étale cover of X, and consider the normalized fibre product

diagram Z / / Y X / / X.
Since all the maps in this diagram are quasi-étale covers, we obtain q(Y ) ≥ q(Z) ≥ q(X ).

The claim follows by taking the supremum over all quasi-étale X → X.

Proposition 4.4 (Uniqueness of torus cover). In the setting of Corollary 4.2, the spaces T and Z are unique up to quasi-étale cover, in the following sense: Suppose that γ : T × Z → X is another torus cover of X. Then: (4.4.1) The complex tori T and T are isogeneous.

(4.4.2) There is a common quasi-étale cover Z ← Z → Z , where Z is likewise compact, connected and has canonical singularities.

Proof. Consider the normalized fibre product diagram

Y p / / p T × Z γ T × Z γ / / X.
Since q(T × Z) is already maximal, q(Y ) = q(T × Z) and hence alb(p) : Alb(Y ) -→ Alb(T × Z) = T is finite, i.e. an isogeny. The same argument applies to T × Z . So both T and T are isogeneous to Alb(Y ). This implies (4.4.1) because isogeny is an equivalence relation.

We turn to (4.4.2). Consider an arbitrary s ∈ Alb(Y ). Set t := alb(p)(s) ∈ T and Z t := {t}×Z ⊂ T ×Z. We claim that we can take Z := alb -1 Y (s). By Theorem 4.1, Z is connected and has canonical singularities. It is clear that p(Z ) ⊂ Z t . Then they are equal, because they have the same dimension and Z t is irreducible. Hence the restriction of p is a quasi-étale cover Z → Z t ∼ = Z. The same argument also shows that p restricts to a quasi-étale cover Z → Z . This proves the claim.

The Abundance conjecture for compact Kähler spaces with canonical (or klt) singularities and vanishing first Chern class has been established recently (cf. e.g. [CGP19, Corollary 1.18] and references therein) building upon delicate results on jump loci for cohomology. Below, we explain how to recover the result based solely on the Albanese splitting, i.e. Theorem 4.1.

Corollary 4.5 (Special case of Abundance). Let X be a normal compact Kähler space with canonical singularities and c 1 (X) = 0. Then ω X is torsion, i.e. ω

[m] X ∼ = O X for some m > 0.

Proof. It follows from Theorem 4.1 that q(X) ≤ dim X is finite (cf. the proof of Corollary 4.2). Choose a quasi-étale cover X 1 → X such that q(X 1 ) = q(X), and apply Theorem 4.1 to X 1 . This yields an étale cover X 2 → X 1 that splits as X 2 = T × Z, where T is a complex torus of dimension q(X 1 ). As q(T ) + q(Z) = q(X 2 ) = q(X 1 ) = q(T ), we see that q(Z) = 0. Now note that h 1 (Z, O Z ) ≤ q(Z) by the Leray spectral sequence. (In fact, equality holds because Z has rational singularities.) Thus q(Z) = 0 implies, via the exponential sequence, that any line bundle on Z with vanishing integral first Chern class is trivial. Consequently, for any Q-Cartier reflexive rank one sheaf A on Z with vanishing real first Chern class, there is m > 0 such that

A [m] ∼ = O Z .
We may apply this observation to A = ω Z and combine it with the fact that ω T is trivial. The conclusion is that ω X2 = ω T ×Z is torsion as well. Then the same is true of ω X .

Corollary 4.6 (Characterization of torus quotients via q). Let X be a normal compact Kähler space with klt singularities such that c 1 (X) = 0. Then the following conditions are equivalent: (4.6.1) The augmented irregularity attains its maximum possible value, namely q(X) = dim X.

(4.6.2) There exists a complex torus T and a holomorphic action of a finite group G T , free in codimension one, such that X ∼ = T G .

Proof. "(4.6.1) ⇒ (4.6.2)": Consider a torus cover γ : T × Z → X. The dimension of Z equals dim X -dim T = dim X -q(X) = 0, so Z is a point. This means that γ is a finite quasi-étale cover of X by the complex torus T . The claim follows by taking Galois closure, cf. Lemma 2.8 and [GK20, Lemma 7.4]. "(4.6.2) ⇒ (4.6.1)": Obvious, as q(X) ≥ q(T ) = dim T = dim X.

Spaces with flat tangent sheaf on the smooth locus

The aim of this section is to prove the following result, which comes in a local as well as a global version. This is an important step towards Theorem D.

Theorem 5.1 (Compact spaces with flat tangent sheaf). Let X be a normal compact complex space with klt singularities. Assume that the tangent sheaf of the smooth locus T Xreg is flat in the sense of Definition 2.3. Then X admits a quasiétale Galois cover X → X with X smooth.

Theorem 5.2 (Germs with flat tangent sheaf). Let (X, x) be a germ of a klt singularity such that T Xreg is flat. Then (X, x) is a quotient singularity.

The notion of maximally quasi-étale covers, defined next, is central to the proof. Definition 5.3. Let X be a normal complex space. A maximally quasi-étale cover of X is a quasi-étale Galois cover γ : X → X satisfying the following equivalent conditions:

(5.3.1) Any étale cover of X reg extends to an étale cover of X.

(5.3.2) Any quasi-étale cover of X is étale.

(5.3.3) The natural map of étale fundamental groups π1 ( X reg ) → π1 ( X) induced by the inclusion X reg → X is an isomorphism.

The equivalence of conditions (5.3.1)-(5.3.3) is discussed in [GKP16a, Theorem 1.5] and its proof.

Remark 5.4. If X → X is a maximally quasi-étale cover, then it follows from Malcev's theorem that any linear representation of π 1 ( X reg ) factors through π 1 ( X), or equivalently, any flat bundle over X reg extends to a flat bundle on X, cf. [GKP16a, § 8.1].

In general, a normal space X will not admit a maximally quasi-étale cover (for an easy example, take a cone over an elliptic curve). It was shown in [GKP16a, Theorem 1.1] that such a cover exists if X is an algebraic variety with klt singularities. Also, it is relatively easy to see that existence of the cover would imply Theorem 5.1, cf. Proposition 5.5 below. Our Proposition 5.9 is a weaker version of [START_REF] Greb | Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties[END_REF] for complex spaces: we construct a maximally quasi-étale cover "generically", i.e. only over general points of the singular locus X sg . This, however, is sufficient to prove the main result. 5.A. Technical preparations. As mentioned above, Theorem 5.1 is easy to prove if a maximally quasi-étale cover is already known to exist.

Proposition 5.5. Let X be a normal complex space with log canonical singularities, and assume that the tangent sheaf of the smooth locus T Xreg is flat. Then any maximally quasi-étale cover of X is smooth (if it exists).

Proof. Let γ : X → X be a maximally quasi-étale cover. The pullback γ * T Xreg is a flat sheaf on γ -1 (X reg ), which satisfies γ -1 (X reg ) ⊂ X reg and the complement has codimension at least two. Hence γ * T Xreg extends to a flat sheaf on X reg and we can extend this sheaf further, to a flat sheaf F on all of X, cf. Remark 5.4. By reflexivity, F ∼ = T X and in particular T X is locally free. The solution of the Lipman-Zariski conjecture for log canonical spaces ([GK14, Corollary 1.3], [Dru14, Theorem 1.1]) then shows that X is smooth.

The following lemma describes the étale fundamental group of the link of maximal dimensional strata of a klt space.

Lemma 5.6. Let X be a klt complex space and let us choose a Whitney stratification S of X. The maximum dimensional strata are denoted by X λ , λ ∈ Λ max , as in Definition 2.11. For any λ ∈ Λ max , the group π1 (Link(X, X λ )) is finite.

Proof. Pick a normal slice N of X λ cutting the stratum in the unique point p. Set N X := N ∩ X and N * := N X \ {p}. From Theorem 2.15 we know that N * has the homotopy type of Link(X, X λ ) and in particular π1 (Link(X, X λ )) = π1 (N * ). But now according to [KM98, Lemma 5.12], (N X , p) is an isolated klt singularity, hence algebraic (2.5.2). We can now appeal to [Xu14, Theorem 1] and conclude that the algebraic local fundamental group π1 (N X \ {p}) is finite.

Remark 5.7. The lemma above should apply to any stratum, not only to the maximal dimensional ones. Unfortunately, Xu's result is only available in the algebraic setting, see also Remark 6.10. This is why we stick to maximal dimensional strata: they are the ones whose slices have only isolated singularities.

We now observe that quasi-étale covers are well understood over the maximal dimensional strata.

Lemma 5.8. Let γ : Y → X be a quasi-étale Galois cover between klt complex spaces, X being endowed with a Whitney stratification S . Fix an index λ ∈ Λ max with respect to S . Then: (5.8.1) The cover γ naturally induces a subgroup G λ (γ) ⊂ π1 (Link(X, X λ )), welldefined up to conjugation.

(5.8.2) If g : Z → Y is any further quasi-étale cover such that the composition

γ • g : Z → X is also Galois, then G λ (γ • g) ⊂ G λ (γ)
. Furthermore, there is a dense Zariski open subset U λ ⊂ X λ , which depends on γ but not on g, such that X λ \ U λ is analytic and the following holds:

(5.8.3) We have equality

G λ (γ • g) = G λ (γ) if and only if g is étale over γ -1 (U λ ).
Proof. By Theorem 2.14, we can choose Whitney stratifications S < S and S Y of X and Y , respectively, such that γ : (Y, S Y ) → (X, S ) is a stratified map. We denote by X λ ⊂ X λ the unique stratum of S contained in X λ as an open subset.

The map γ being stratified, γ -1 (X λ ) is a union of strata of S Y that are of maximum dimension. Let us fix a normal slice N of X λ such that γ -1 (N ) is still a union of normal slices. We pick a component T of γ -1 (X λ ) and denote by N T the corresponding slice. The map induced on the punctured slices (cut with X and Y , respectively) N * T → N * is finite étale and thus corresponds to a finite index subgroup

G λ (γ) ⊂ π1 (N * ) = π1 (Link(X, X λ )) = π1 (Link(X, X λ )).
The morphism γ being Galois, this subgroup is independent of the choice of the component T . It does however depend on the choice of a basepoint in N * T , which as usual we have suppressed. This is why G λ (γ) is only well-defined up to conjugation. This proves the first assertion, and the second one is then clear by construction.

Concerning the third assertion, we claim that we can take U λ = X λ . Indeed, it is clear that the groups in question are equal if g is étale over γ -1 (U λ ). For the other direction, pick stratifications S Z of Z and S Y of Y such that S Y is a refinement of S Y and g becomes stratified, as above. Write γ -1 (U λ ) as a union of S Y -strata,

γ -1 (U λ ) = µ∈M Y µ ,
and let Y µ be the unique S Y -stratum that is open in Y µ . It follows from Corollary 3.16 in the preprint version of [GKP16a] that g is étale over Y µ , for each µ ∈ M . But then g is even étale over all of Y µ , by Corollary 2.17 applied to the original stratification S Y . In other words, g is étale over γ -1 (U λ ), as desired.

With the previous results at hand, we can prove the existence of maximally quasi-étale covers, at least after discarding a sufficiently small analytic subset. Proposition 5.9. Let X be a klt complex space. Assume that X is either compact or a germ. Then there exists an analytic subset Z ⊂ X sg with dim Z ≤ dim X sg -1 such that X • := X \ Z admits a maximally quasi-étale cover.

If X is compact with only isolated klt singularities, then we have dim Z = -1 in the above statement, which means Z = ∅. Hence X itself admits a maximally quasi-étale cover.

Proof of Proposition 5.9. Fix a Whitney stratification S of X such that S d = X sg . If X is compact, then Λ and in particular Λ max are finite sets. If X is a germ, we may assume Λ to be finite after shrinking X, by the local finiteness of S . First we show the following.

Claim 5.10. There exists a quasi-étale Galois cover γ : Y → X such that for every further cover g : Z → X with γ • g Galois and any λ ∈ Λ max , we have

G λ (γ • g) = G λ (γ).
Proof. Assuming that the claim is false, we can construct an infinite tower of quasiétale covers

X = Y 0 γ1 ← --Y 1 γ2 ← --Y 2 γ3 ← --• • • such that for each i ≥ 1, the map η i = γ 1 • • • • • γ i : Y i → X is Galois and for some index λ(i) ∈ Λ max , the inclusion G λ(i) (η i+1 ) ⊂ G λ(i) (η i ) is strict.
Because Λ max is finite, some λ 0 ∈ Λ max has to appear as λ(i) for infinitely many values of i. This yields a contradiction to the finiteness of π1 (Link(X, X λ0 )) given by Lemma 5.6.

Applying (5.8.3) to the cover γ given by Claim 5.10 and to all λ ∈ Λ max , we obtain dense open subsets U λ ⊂ X λ with the following property: any quasi-étale cover W → Y such that W → X is Galois is étale over each γ -1 (U λ ). If W → X is not Galois, the conclusion still holds because we may replace W by its Galois closure, cf. Lemma 2.8. We now consider X • = X \ Z, with

Z := S d-1 ∪ λ∈Λmax (X λ \ U λ ),
and claim that Y • := γ -1 (X • ) → X • is a maximally quasi-étale cover. Noting that Z ⊂ X sg has dimension less than dim X sg , this will finish the proof.

We aim to verify condition (5.3.2) for Y • . That is, we need to show that any quasi-étale cover g • : W • → Y • is in fact étale. Given such a cover, we may extend it to a quasi-étale cover g : W → Y . As we have seen above, g is étale over each γ -1 (U λ ). But we can write Y as a disjoint union

Y = γ -1 (Z) ∪ λ∈Λmax γ -1 (U λ ) ∪ γ -1 (X reg )
and hence also Y • = λ γ -1 (U λ ) ∪ γ -1 (X reg ). Recalling from purity of branch locus that γ -1 (X reg ) ⊂ Y reg and that g is étale over Y reg , we conclude that g is étale over all of Y • . In other words, g • is étale. This ends the proof. 5.B. Proof of Theorem 5.1. We proceed by induction on the dimension of the singular locus X sg . If dim X sg = -1, i.e. X sg is empty, then we may simply take X = X. Otherwise we apply Proposition 5.9 to obtain an open subset X reg ⊂ X • ⊂ X which has a maximally quasi-étale cover γ

• : X • → X • and satisfies dim(X \ X • ) ≤ dim X sg -1.
We may restrict γ • to an étale cover γ of X reg , and then in turn extend γ to a quasi-étale cover of X, say γ : X → X. By the uniqueness part of [DG94, Theorem 3.4], the map γ will be an extension of γ • .

X / / γ X • / / γ • X γ X reg / / X • / / X
The space X • is smooth thanks to Proposition 5.5. Thus we see that dim X sg ≤ dim X sg -1. Since T Xreg is still flat, the induction hypothesis applied to X yields a quasi-étale cover X → X with X smooth. We arrive at the desired smooth cover of X by taking the Galois closure of the composed map X → X.

5.C. Proof of Theorem 5.2. We still argue by induction on dim (X, x) sg as above. If (X, x) is smooth, there is nothing to show. We just have to check that we can apply the induction hypothesis: to start with, we choose X as a small neighborhood of x with a finite Whitney stratification. We can then find a quasiétale cover f : X → X with dim( X sg ) < dim(X sg ). It is enough to pick a point x ∈ f -1 (x) ⊂ X: this x has a neighborhood U that is a quotient singularity. The open neighborhood U := f ( U ) of x has a smooth quasi-étale cover and (X, x) is then a quotient singularity according to Lemma 2.9.

Holonomy of singular Ricci-flat metrics

The goal of this section is to prove Theorem C, which combined with the Bochner principle leads to Corollary E.

6.A. A vanishing lemma.

The following lemma will be used repeatedly. The upshot is that a vanishing assumption on X implies a certain vanishing result on X reg . Lemma 6.1 (Vanishing lemma). Let X be a compact Kähler space with klt singularities such that q(X) = 0. Then one has

H 1 (X reg , C) = 0.
If X additionally satisfies q(X) = 0, then any representation ρ : π 1 (X reg ) → G with virtually abelian image actually has finite image. Example 6.2. The example of the (simply connected) singular Kummer surface X = T ±1 where T is a complex 2-torus shows that one can have q(X) = 0 while π 1 (X reg ) is virtually abelian, yet infinite. Indeed, there is a short exact sequence

0 -→ Z 4 -→ π 1 (X reg ) -→ Z 2Z -→ 0.
Of course, in this example q(X) = 2 > 0.

Remark 6.3. The proof of the Lemma combined with [KS21] shows more generally that if X is compact Kähler with klt singularities and X → X is a resolution, then one has a (non-canonical) isomorphism

H 1 (X reg , C) = H 1 X \ E, C ∼ = H 0 X, Ω [1] X ⊕ H 1 (X, O X ) .
On the other hand, since X has only rational singularities, one also has

H 1 (X, C) ∼ = H 1 X, C = H 0 X, Ω 1 X ⊕ H 1 X, O X canonically. Hence the restriction map H 1 (X, C) → H 1 (X reg , C) is an isomorphism.
Equivalently, the abelianization of the natural surjection π 1 (X reg ) → π 1 (X) has finite kernel. Cf. Example 6.2 above.

Proof of Lemma 6.1. Let X → X be a projective log resolution of X, isomorphic over X reg , and let E = i E i be the exceptional divisor. In what follows, one will identify X reg with X \ E. One has (6.3.1) H 1 X, O X = 0 since q(X) = 0, cf. Definition 2.1. Since X is a compact Kähler manifold, one also has H 0 X, Ω 1 X = 0. By [KS21], this implies that H 0 X, Ω

[1] X = H 0 X \ E, Ω 1 X = 0 and, in particular, one gets (6.3.2) H 0 X, Ω 1 X (log E) = 0. By Deligne's theorem [Voi02, Theorem 8.35(b)], there is a short exact sequence

0 -→ H 0 X, Ω 1 X (log E) -→ H 1 X \ E, C -→ H 1 X, O X -→ 0 
, so that (6.3.1) and (6.3.2) yield the requested vanishing

(6.3.3) H 1 (X reg , C) = H 1 X \ E, C = 0.
Using the universal coefficient theorem, this implies that the finitely generated abelian group H 1 (X reg , Z) has rank zero, hence is finite.

Let us now move on to the second part of the lemma. Without loss of generality, one can assume that ρ is surjective, i.e. ρ π 1 (X reg ) = G. Under the assumptions, there exists a finite index normal subgroup H π 1 (X reg ) such that ρ(H) ⊂ G is abelian. The group H is realized as the fundamental group of a Kähler manifold Y • equipped with an étale cover f

• : Y • → X reg , i.e. f • * π 1 (Y • ) = H. One can extend f • to a quasi-étale cover f : Y → X with Y a compact Kähler space with klt singularities. The inclusion Y • ⊂ Y reg induces an isomorphism π 1 (Y • ) ∼ = π 1 (Y reg ) since Y reg \ Y • ⊂ f -1 (X sg ) has codimension at least two in Y reg .
Now, one has q(Y ) = q(X) = 0, hence H 1 (Y reg , Z) is finite by the first part of the lemma. Since the image of the representation τ :

= ρ • f • * of π 1 (Y • ) ∼ = π 1 (Y reg ) is abelian, it factors through H 1 (Y reg , Z)
and is therefore finite. The following diagram visualizes the argument.

π 1 (Y • ) f • * τ ' ' π 1 (X reg ) ρ / / G The lemma follows since f • * π 1 (Y • ) π 1 (X reg ) has finite index.
6.B. Holonomy of the non-flat factors. We fix the following setup.

Setup 6.4. Let X be a n-dimensional complex, compact Kähler space with canonical singularities and trivial canonical sheaf, K X ∼ 0. Next, we fix a Kähler class α ∈ H 2 (X, R) and consider the unique singular Ricci-flat metric ω α ∈ α as in Setup 3.1.

It follows from [Gue16, Theorem A] (see also [START_REF] Greb | Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups[END_REF]Theorem 8.1], where the assumption on the projectivity of X is not used, cf. Remark 3.5) that one can decompose the tangent sheaf as (6.4.1)

T X = i∈I E i
where the E i are stable bundles with slope zero (with respect to α) and are such that E i Xreg is a parallel subbundle of T Xreg with respect to ω α . We set n i := rk(E i ). The holonomy group G := Hol T Xreg , ω α can be decomposed as a product G = i G i where G i = Hol E i Xreg , ω α is irreducible. By [GGK19, Proposition 7.3], there exists a quasi-étale cover f : Y → X such that the decomposition induced by the standard representation of the holonomy group G Y := Hol T Yreg , f * ω α is a refinement of the one of the identity component G • Y . Note that the construction of this so-called weak holonomy cover above is independent of the projectivity assumption in [START_REF] Greb | Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups[END_REF]. From now on, we will replace X by Y and work with the following Additional Assumption 6.5. The restricted holonomy G • i of each factor E i in (6.4.1) is either trivial or irreducible.

By [GGK19, Proposition 5.3], there are only three possibilities for G • i : one has

G • i =      {1} or SU(n i ), n i ≥ 3, or Sp(n i /2), n i ≥ 2 even. We set J := i ∈ I G • i = {1} , K := I \ J and F := j∈J E j .
In other words, one has (6.5.1)

T X = F ⊕ k∈K E k with Hol • F Xreg , ω α = {1} while the full holonomy group G k = Hol E k Xreg , ω α satisfies G • k = SU(n k ) or G • k = Sp(n k /2).
In either case, one has (6.5.2)

G k G • k ⊂ U(1) by the proof of [GGK19, Lemma 7.8]. Consider a torus cover γ : T × Z → X; then pr * T T T is a direct summand of γ [ * ] F , so that γ [ * ]
E k is canonically identified with a direct summand of pr * Z T Z . Hence one can realize G k as an irreducible factor of the holonomy group of Z reg . Since q(Z) = 0, the canonical surjection

ρ : π 1 (Z reg ) G k G • k
combined with Lemma 6.1 leads to the following Proposition 6.6. For any k ∈ K, the group G k G • k is finite. Corollary 6.7. In Setup 6.4 and up to performing a quasi-étale cover, the full holonomy group of a non-flat, irreducible factor E k in the decomposition (6.5.1) is either SU(n k ) or Sp(n k /2).

We can now move on to the Proof of Theorem C. Starting from Setup 6.4, we pass to an additional cover of X so that the conclusion of Corollary 6.7 holds.

First item. Recall that the sheaves E i from (6.4.1) are such that E i Xreg are parallel with respect to ω. Since the Chern connection D is torsion-free, we have [u, v] = D u v -D v u for any local smooth vector fields u, v on X reg . Applying this formula to local sections of E i Xreg and keeping in mind that the latter subbundle is parallel, we see that E i Xreg is preserved under Lie bracket. Moreover, E i is saturated in T X , being a direct summand of T X . Combining those two facts, we get that the image of the Lie bracket [-, -] :

2 E i → T X E i is a torsion-free sheaf supported on X sg , hence it vanishes. This shows that E i defines indeed a foliation on X. Although a direct sum of foliations needs not be integrable in general, the argument above still applies and shows that F = j∈J E j is a foliation as well. Next, we know that K X is a trivial line bundle and that for any k ∈ K, one has det E k ∼ = O X since the holonomy of E k lies in SU(n k ) by Corollary 6.7. This implies that det F ∼ = O X .

Note that to prove that the sheaves E i are foliations, we could have used the last result (i.e. det E i ∼ = O X ) and reproduced the arguments of [GKP16b, Theorem 7.11] instead of appealing to the Bochner principle.

Second item. This is clear from the definition of F and the first item.

Third item. The statement on the holonomy groups is contained in Corollary 6.7. Now, we claim that E k is strongly stable with respect to α. Since restricted holonomy does not change after passing to a quasi-étale cover, it is enough to show that E k is stable with respect to α. But if it were not the case, any saturated destabilizing subsheaf would be parallel with respect to ω α on X reg by Bochner's principle for bundles, cf. Remark 3.5. Therefore, the group Hol(E k | Xreg , ω α ) would not act irreducibly on C n k , which is a contradiction. Note that if one only wants to show strong stability of E k (and not compute its holonomy), then the argument becomes quite simpler and relies only on the polystability of T X , cf. [GKP16b, Corollary 7.3]. Now, let β ∈ H 2 (X, R) be a Kähler class and let us show that E k is strongly stable with respect to β. As before, it is enough to show stability. Let ω β ∈ β be the singular Ricci-flat metric. Since c

1 (E k ) = 0, a (saturated) β-destabilizing subsheaf 0 = G E k satisfies c 1 (G ) • β n-1 = 0.
By polystability of T X with respect to β, we have a holomorphic splitting T X = G ⊕ G ⊥ over X reg which extends over X by reflexivity, cf. proof of [Gue16, Theorem A] or [GGK19, Claim 9.16]. Here, ⊥ is meant with respect to ω β . Since T X is semistable with respect to α, we have necessarily c 1 (G ) • α n-1 = 0. This contradicts the α-stability of E k established earlier.

Fourth item. Assume that X = T × Z, where T is a complex torus and q(Z) = 0. We need to show that the decomposition T X = pr * T T T ⊕pr * Z T Z is such that pr * T T T is a direct summand of F . The Bochner principle for bundles (cf. Remark 3.5) shows that over X reg = T × Z reg , both summands are parallel subbundles and, in particular, ω can be decomposed as ω α = pr * T ω T ⊕ pr * Z ω Z where ω T (resp. ω Z ) is a Kähler Ricci-flat metric on T (resp. Z reg ). Since a Ricci-flat Kähler metric on a torus is necessarily flat, we have Hol • pr * T T T Xreg , ω α = Hol • (T, ω T ) = {1}. The first part of the statement now follows easily. The second part follows from Proposition 6.9 below. 6.C. On the flat factor. Since T T is a direct summand of F , it is clear that q(X) ≤ rk F . We conjecture that equality always holds. In particular, if q(X) = 0 then the flat factor F in the decomposition (6.5.1) should be zero. In the projective case, the conjecture was established by [GGK19, Corollary 7.2] as a consequence of Druel's algebraic integrability result for flat sheaves [START_REF] Druel | A decomposition theorem for singular spaces with trivial canonical class of dimension at most five[END_REF]. We are able to prove two partial results in this direction: (6.7.1) If rk F = n := dim X, then also q(X) = n. This is a direct consequence of Proposition 6.8 below, since rk F = n means that T Xreg is flat and torus quotients obviously have q(X) = n.

(6.7.2) The conjecture can be derived from the complex space version of [GKP16a], cf. Proposition 6.9 and Remark 6.10.

Proposition 6.8. Let X be a normal compact Kähler space that has only klt singularities. If T Xreg is flat, then X is a torus quotient.

Proof. According to Theorem 5.1, X has a smooth quasi-étale cover X. This compact space X is still Kähler [Var89, Corollary 3.2.2] and, by construction, the tangent bundle of X is flat. We can then apply the classical characterization of torus quotients derived from Yau's theorem [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation[END_REF] and the uniformization theorem, cf. e.g. [Tia00, Theorem 2.13], to conclude that X is a torus quotient. Hence, so is X by combining Lemma 2.8 with the fact that an étale cover of a torus is again a torus. Proposition 6.9. In Setup 6.4, assume that X admits a maximally quasi-étale cover. Then the equality rk F = q(X) holds.

Proof. After replacing X with a maximally quasi-étale cover, we can assume that π1 (X reg ) ∼ = π1 (X). We may furthermore replace X by a torus cover T × Z → X.

It is then sufficient to show that T Z has no flat factor. In other words, we may replace X by Z and we need to show that q(X) = 0 implies rk F = 0.

The flat factor F is given by a finite dimensional representation ρ : π 1 (X reg ) → SU(r), with r := rk F . This representation factors thus through the fundamental group of X (see Remark 5.4) and it yields ρ X : π 1 (X) → SU(r). Let us consider X → X a desingularization of X: this compact Kähler manifold has vanishing Kodaira dimension and is thus special (in the sense of Campana, cf. [Cam04, Theorem 5.1]). Since X has canonical singularities, we know that its fundamental group is unchanged 2 when passing to a smooth model by [Tak03, Theorem 1.1] hence we can interpret the representation ρ X as a representation ρ X : π 1 ( X) → SU(r). The manifold X being special, we know that none of its étale covers dominate a variety of general type and [CCE15, Theorem 6.5] implies that the image of ρ X is virtually abelian and, in particular, im ρ is virtually abelian as well. By Lemma 6.1, ρ has finite image. This means that one can construct a quasi-étale cover f : Y → X such that the direct summand f

[ * ] F of T Y satisfies f [ * ] F ∼ = O ⊕r Y .
As q(Y ) = 0, this can only occur if r = 0. Remark 6.10. The existence of maximally quasi-étale covers should be true for any compact complex space with klt singularities (or even for Zariski open subsets of such spaces). In [START_REF] Greb | Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties[END_REF], the algebraicity assumption is mainly used when appealing to [Xu14] where it is shown that π1 (Link(X, x)) is finite for (X, x) klt. In that article, it is proven that it is possible to extract a Kollár component, i.e. a birational morphism µ : Y → X such that the fiber µ -1 (x) has a natural structure of Q-Fano variety. This is achieved by considering a (projective) desingularization μ : X → X and running a well-chosen MMP X Y over X. It is thus an urgent task to generalize the known results [BCHM10] to obtain a relative MMP for projective morphisms between normal complex spaces. 6.D. Varieties with strongly stable tangent sheaf. The following definition originates in the projective setting from [START_REF] Greb | Singular spaces with trivial canonical class[END_REF]. Definition 6.11 (ICY and IHS varieties). Let X be a compact Kähler space of dimension n ≥ 2 with canonical singularities and ω X ∼ = O X . (6.11.1) We call X irreducible Calabi-Yau (ICY) if H 0 Y, Ω

[p] Y = 0 for all integers 0 < p < n and all quasi-étale covers Y → X, in particular for X itself. (6.11.2) We call X irreducible holomorphic symplectic (IHS) if there exists a holomorphic symplectic two-form σ ∈ H 0 X, Ω

[2] X such that for all quasi-étale 2 [Tak03, Theorem 1.1] is only stated for projective varieties but it holds in the complex analytic setting, its proof being completely local (in the Euclidean topology). It can also be noted that the corresponding result for the étale fundamental group is [Kol93, Theorem 7.5] and that this result is explicitly stated for normal analytic spaces.

covers γ : Y → X, the exterior algebra of global reflexive differential forms is generated by γ [ * ] σ. Definition 6.12 (Strong stability). Let X be a compact Kähler space of dimension n ≥ 2 with klt singularities and trivial first Chern class. We say that T X is strongly stable if for any quasi-étale cover f : Y → X, the tangent sheaf T Y is stable with respect to any Kähler class a ∈ H 2 (Y, R).

Using Definition 2.10, one can rephrase the above definition by saying that T X is strongly stable with respect to any Kähler class. One can show along the same lines as the proof of the third item of Theorem C that T X is strongly stable if and only if it is strongly stable with respect to a single Kähler class.

Putting together Theorem 3.4, Corollary 6.7 and Proposition 6.8, we get the following result. Corollary 6.13 (Spaces with strongly stable tangent sheaf). Let X be a compact Kähler space with klt singularities and trivial first Chern class of dimension n ≥ 2. If T X is strongly stable, then X admits a quasi-étale cover that is either a ICY or an IHS variety.

Proof. By Remark 3.3 one can assume that X has trivial canonical bundle and canonical singularities. Given that T X is strongly stable, the decomposition (6.5.1) on a cover Y → X reduces to a single factor. If that factor is the flat factor F , then X is a torus quotient by Proposition 6.8, which is impossible since T X is strongly stable and dim X ≥ 2. Therefore, we can apply Corollary 6.7 to see that the holonomy of Y reg is either SU(n) or Sp(n/2). By standard results of representation theory of the latter groups, the statement follows from the Bochner principle, i.e. Theorem 3.4. Remark 6.14. For the proof of Corollary 6.13 above, we do not need the full Bochner principle since we only need to understand reflexive differential forms, cf. Remark 3.6. The Bochner principle for more general tensors will however be applied in the proof of Proposition 7.1.

Fundamental groups

This section is devoted to obtaining consequences about the fundamental groups of X and of X reg , where X has vanishing first Chern class. In a first step, we provide a sufficient criterion for π 1 (X) to be finite. This is the analogue of [GKP16b, Proposition 8.23] for Kähler spaces, and as in the projective case the proof is an application of [Cam95, Corollary 5.3]. However, instead of using Miyaoka's Generic Semipositivity Theorem, we rely on the Bochner principle, Theorem 3.4. Proposition 7.1 (Finiteness criterion for π 1 ). Let X be a compact Kähler space of dimension n ≥ 1 with klt singularities and c 1 (X) = 0. Assume moreover that χ(X, O X ) = 0. Then π 1 (X) is finite, of cardinality

π 1 (X) ≤ 2 n-1 |χ(X, O X )| .
The proof is completely parallel to the one of [Cam21, Theorem 3.5] (for X projective) once we have Bochner's principle at our disposal, and we do not include it here for sake of brevity.

In terms of spaces with strongly stable tangent sheaf (Corollary 6.13), this criterion already applies to all even-dimensional spaces (see below). For odd-dimensional ICYs, we have no results about π 1 (X) itself, but only about its representation theory (and the one of π 1 (X reg )). These results are actually valid for all spaces with vanishing augmented irregularity.

Theorem 7.2 (Fundamental groups of Ricci flat spaces). Let X be a compact Kähler space with klt singularities and c 1 (X) = 0. (7.2.1) If dim X is even and T X is strongly stable, then π 1 (X) is finite. If X is IHS or an even-dimensional ICY, then X is even simply connected.

(7.2.2) If q(X) = 0, any complex linear representation π 1 (X) → GL(r, C) has finite image, regardless of the parity of dim X.

This first two items in the statement above is a straightforward consequence of [GGK19, Theorem I] and Bochner's principle.

Restricting ourselves to dimension four, we have a completely unconditional result:

Theorem 7.3 (Fundamental groups in dimension four). Let X be a compact Kähler space of dimension ≤ 4 with klt singularities and c 1 (X) = 0. Then: (7.3.1) π 1 (X) is virtually abelian, i.e. it contains an abelian (normal) subgroup Γ π 1 (X) of finite index.

(7.3.2) All finite index abelian subgroups of π 1 (X) have even rank at most 2 q(X) ≤ 8. In particular, if q(X) = 0 then π 1 (X) is finite.

Proof of Theorem 7.3. Recall from [Gra18, Corollary 1.8] that all statements are well-known if dim X ≤ 3. We can therefore assume for the remainder that X is of dimension four. Let γ : T ×Z → X be a torus cover (Corollary 4.2). By e.g. [Cam91, Proposition 1.3], the image of π 1 (T × Z) = π 1 (T ) × π 1 (Z) in π 1 (X) has finite index, and π 1 (T ) is free abelian of rank 2 q(X). It is therefore sufficient to show that π 1 (Z) is finite.

If dim Z ≤ 3, this holds by [Gra18, Corollary 1.8] again. It remains to consider the case where dim Z = 4, i.e. where X = Z and ω X ∼ = O X and q(X) = 0. By Remark 2.2, the last property implies H 1 (X, O X ) = 0 and then also H 3 (X, O X ) ∼ = H 3 (X, ω X ) = H 1 (X, O X ) ‹ = 0 by Serre duality [BS76, Chapter VII, Theorem 3.10]. So χ(X, O X ) = 1 + h 2 (X, O X ) + h 4 (X, O X ) =1 ≥ 2.

By Proposition 7.1, π 1 (X) is finite (of cardinality at most 4). This settles (7.3.1).

We have already exhibited a finite index abelian subgroup of π 1 (X) of rank at most 2 q(X), namely the image of π 1 (T ) → π 1 (X). It is well-known that all such subgroups have the same rank. Claim (7.3.2) follows easily.

  kF ) with Chern connection D and set |σ| := |σ| ht,ε . We have the following Poincaré-Lelong type formula (3.5.1)
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