
HAL Id: hal-02936160
https://hal.science/hal-02936160

Submitted on 23 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On approximate stationary points of the regularized
mathematical program with complementarity constraints

Jean-Pierre Dussault, Mounir Haddou, Abdeslam Kadrani, Tangi Migot

To cite this version:
Jean-Pierre Dussault, Mounir Haddou, Abdeslam Kadrani, Tangi Migot. On approximate station-
ary points of the regularized mathematical program with complementarity constraints. Journal of
Optimization Theory and Applications, 2020, 186 (2), pp.504-522. �10.1007/s10957-020-01706-w�.
�hal-02936160�

https://hal.science/hal-02936160
https://hal.archives-ouvertes.fr


JOTA manuscript No.
(will be inserted by the editor)

On Approximate Stationary Points of the Regularized
Mathematical Program with Complementarity
Constraints

Dussault, Jean-Pierre · Haddou,
Mounir · Kadrani, Abdeslam · Migot,
Tangi

This paper has been accepted for publication in JOTA, find the published version here:
https://link.springer.com/article/10.1007/s10957-020-01706-w.

Abstract We discuss the convergence of regularization methods for the math-
ematical program with complementarity constraints with approximate sequence
of stationary points. It is now well accepted in the literature that, under some
tailored constraint qualification, the genuine necessary optimality condition
for this problem is the M-stationarity condition. It has been pointed out, in
Kanzow, C., and Schwartz, A., Mathematics of Operations Research (2015),
that relaxation methods with approximate stationary points fail to ensure
convergence to M-stationary points. We define a new strong approximate sta-
tionarity concept and we prove that a sequence of strong approximate station-
ary points always converges to an M-stationary solution. We also prove under
weak assumptions the existence of strong approximate stationary points in the
neighborhood of an M-stationary solution.

Keywords non-linear programming · MPCC · regularization methods ·
constraint qualification · optimization model with complementarity constraints

Mathematics Subject Classification (2000) 90C30 · 90C33 · 49M37 ·
65K05

Dussault, Jean-Pierre
Département d’informatique, Université de Sherbrooke, Sherbrooke, Canada.
Jean-Pierre.Dussault@USherbrooke.ca

Haddou, Mounir
Univ Rennes, INSA Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France.
Mounir.Haddou@insa-rennes.fr

Kadrani, Abdeslam
INSEA, Laboratoire SI2M, Rabat-Instituts, Rabat, Maroc.
kadrania@gmail.com

Tangi Migot, Corresponding author
Department of Mathematics and Statistics, University of Guelph, Guelph, Canada
tangi.migot@gmail.com



2 Dussault, Jean-Pierre et al.

1 Introduction

The Mathematical Program with Complementarity Constraints (MPCC) is a
non-linear optimization problem including a complementarity problem in the
constraints. It plays a very important role in many fields, such as engineer-
ing design, economic equilibria, transportation science, multilevel game, and
mathematical programming itself. However, this kind of problems is generally
difficult to deal with because it fails to satisfy the standard Mangasarian-
Fromovitz constraint qualification (MFCQ) at any feasible point [1]. See the
monographs [2,3] for details about the basic theory, effective algorithms, and
various applications of the MPCC.

During the past two decades, many researchers introduced necessary op-
timality conditions such as the Clarke (C-), Mordukhovich (M-), strong (S-),
and Bouligand (B-) stationarity conditions for the MPCC; see, e.g., [1,4–9].
Among these stationarities, the B-stationarity is known to be a good candi-
date for optimality, but since it is computationally difficult, it is rarely used
in algorithmic analysis; the S-stationarity is the strongest and equivalent to
the KKT conditions (see, e.g., [10,11]), but its interest is reduced since it does
not always hold for the MPCC. The M-stationarity, which has already widely
been investigated (see, e.g.,[1,4,5,7–9,12]), is the most relevant concept since
it is the weakest necessary condition holding, under suitable constraint qualifi-
cations, at any local minimizer of the MPCC and is computationaly tractable.

The feasible set of the MPCC involves a complementarity constraint equiv-
alent to G(x)=0 OR H(x) = 0. This is a thin set exhibiting some irregularity
when G(x)=0 AND H(x)=0. It is this thinness that makes constraint qualifi-
cations fail at any feasible point. In view of the constraint qualifications issues
that plague the MPCC the regularization methods provide an intuitive answer.
The complementarity constraint is regularized using a parameter so that the
new feasible domain is not thin anymore. Regularization methods drive this
parameter to zero so that the feasible set of the regularized problem converges
to the feasible set of (3) similar to an homotopy technique; see [13–18]. In
the corresponding papers it has been shown that, under suitable conditions
providing convergence of the methods, they still might converge to some spuri-
ous points, called C-stationary points, the convergence to M-stationary points
being guaranteed only under some additional second-order conditions, strict
complementarity-type condition or conditions on the sequence of iterates that
cannot be guaranteed a priori. The only exception are the methods KDB and
KS proposed respectively in [17] and [18]. In those references, the authors
prove convergence of their regularization scheme to an M-stationary point un-
der a classical constraint qualification. However, in [19], Kanzow and Schwartz
discuss convergence of the methods considering a sequence of approximate sta-
tionary points, that is points that satisfy approximately the KKT conditions.
They illustrate the fact that, for such sequences of approximate stationary
points of the regularized subproblems, the method may converge to spurious
weak-stationary points. Our motivation is to deal with this issue.
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We focus in this paper on the KDB regularization method introduced in
[17]. By defining a new kind of approximate stationary point called strong
epsilon-stationary point we prove that any cluster point of a sequence of strong
epsilon-stationary points of the KDB regularization is an M-stationary points.
Moreover, we analyze existence of the strong epsilon-stationary points in the
neighborhood of a solution. Previous studies of regularization methods require
strong assumption to guarantee the existence of stationary point [17,18]. We
show that strong epsilon-stationary points have a good behavior with this
respect by proving the existence in the neighborhood of any M-stationary
point without the need of constraint qualification.

The results presented in this paper are theoretical and present the advan-
tages of strong epsilon-stationary points. In particular, we cover two impor-
tant questions in the study of regularization methods for the MPCC namely
the global convergence of strongly epsilon-stationary points to M-stationary
solutions and weak assumptions allowing to prove the existence of such ap-
proximate stationary points. This study paves the way to further studies on
an algorithm able to compute strong epsilon-stationary points.

The rest of the paper is organized as follows. In the next section, we sum
up some stationarity concepts and constraint qualifications for the standard
non-linear program and the MPCC. In Section 3, we recall the regularization
method from [17] and motivate the difficulty arising when dealing with ap-
proximate stationary points of the regularized subproblems. We introduce our
new strong epsilon-stationary point and prove convergence of the method to
an M-stationary point in Section 4. In Section 5, after introducing the regu-
larization method with slack variables, we prove our main existence result of
strong epsilon-stationary point. Finally, we present some perspectives of this
work in Section 6.

2 Preliminaries

2.1 Non-Linear Programming

Let a general non-linear program be

min
x∈Rn

f(x) s.t. g(x) ≤ 0, h(x) = 0, (1)

with g : Rn → Rm, h : Rn → Rp and f : Rn → R. Denote F the feasible region
of (1), the set of active indices Ig(x) := {i ∈ {1, ...,m} : gi(x) = 0} at x
and the Lagrangian L(x, λ) := f(x)+g(x)Tλg +h(x)Tλh with λ = (λg, λh). A
fundamental tool to address such problems is a necessary optimality condition,
the best known being the Karush-Kuhn-Tucker (KKT) condition. Let x∗ ∈ F
be a local minimum of (1) that satisfies a constraint qualification, then there
exists λ ∈ Rm×Rp such that (x∗, λ) satisfy the equation ∇xL(x∗, λ) = 0, with
the conditions λg ≥ 0, supp(λg) := {i : λgi 6= 0} ⊆ Ig(x∗). A couple (x∗, λ)
satisfying the above conditions is called a KKT point; it is a stationary point
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of the Lagrangian function, its gradient vanishes. The stationary condition is
often expressed as follows.

∇xL(x∗, λ) = 0,
gi(x

∗) ≤ 0, λgi ≥ 0, λgi gi(x
∗) = 0, ∀i ∈ {1, . . . ,m},

hi(x
∗) = 0, ∀i ∈ {1, . . . , p}.

(2)

Algorithms to solve (1) aim at computing a stationary point. In a practical
context, it can be difficult, even impossible, to compute such stationary points,
therefore approximate, or epsilon-stationary points are usually considered. We
refer the reader for instance to [19] or [20] for a deeper motivation on this
condition.

Definition 2.1 Let ε ≥ 0. We say that x∗ is an ε-stationary point of (1), if
there exists λ ∈ Rm × Rp satisfying

‖∇xL(x∗, λ)‖∞ ≤ ε,
gi(x

∗) ≤ ε, λgi ≥ 0, |λgi gi(x∗)| ≤ ε, ∀i ∈ {1, . . . ,m},
|hi(x∗)| ≤ ε, ∀i ∈ {1, . . . , p}.

At ε = 0 we get the usual definition (2).

2.2 The Mathematical Program with Complementarity Constraints

We consider the Mathematical Program with Complementarity Constraints
(MPCC)

min
x∈Rn

f(x) s.t. g(x) ≤ 0, h(x) = 0,

0 ≤ G(x) ⊥ H(x) ≥ 0,
(3)

with f : Rn → R, g : Rn → Rm, h : Rn → Rp and G,H : Rn → Rq. All these
functions are assumed to be continuously differentiable through this paper.
The notation 0 ≤ u ⊥ v ≥ 0 for two vectors u and v in Rq is a shortcut for
u ≥ 0, v ≥ 0 and uT v = 0. Let Z be the set of feasible points of (3). Given
x ∈ Z, we denote

I+0(x) := {i ∈ {1, . . . , q} : Gi(x) > 0 and Hi(x) = 0},
I0+(x) := {i ∈ {1, . . . , q} : Gi(x) = 0 and Hi(x) > 0},
I00(x) := {i ∈ {1, . . . , q} : Gi(x) = 0 and Hi(x) = 0}.

We define the MPCC-Lagrangian function of (3) as

LMPCC(x, λ) := f(x) + g(x)Tλg + h(x)Tλh −G(x)TλG −H(x)TλH ,

with λ := (λg, λh, λG, λH). We introduce more stationary concepts as in [8,9,
7,12,6,21,2]. Those concepts are needed for two reasons:

– unless assuming a restrictive constraint qualification, a local minimizer x∗

may fail to be a KKT point, so that (2) needs to be weakened in order to
obtain a necessary condition;
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– when analyzing cluster points of algorithms, other weak stationarity con-
ditions appear naturally.

Definition 2.2 x∗ ∈ Z is said

– W-stationary if there exists λ ∈ Rm × Rp × Rq × Rq such that

∇xLMPCC(x∗, λ) = 0,
λg ≥ 0, λgi = 0,∀i /∈ Ig(x∗),
λGi = 0,∀i ∈ I+0(x∗), and, λHi = 0,∀i ∈ I0+(x∗);

– C-stationary, if it is W-stationary and λGi λ
H
i ≥ 0 for all i ∈ I00(x∗);

– M-stationary, if it is W-stationary and either λGi > 0, λHi > 0 or λGi λ
H
i = 0

for all i ∈ I00(x∗);
– S-stationary, if it is W-stationary and λGi ≥ 0, λHi ≥ 0 for all i ∈ I00(x∗).

As pointed out in [10], strong stationarity is equivalent to the standard
KKT conditions of an MPCC. In order to guarantee that a local minimum x∗

of (1) is a stationary point in any of the previous senses, one needs to assume
that a constraint qualification (CQ) is satisfied in x∗. Since most standard CQs
are violated at any feasible points of (3), many MPCC-analogues of these CQs
have been developed. Here, we mention only those needed later.

Definition 2.3 A feasible point x∗ of (3), i.e. x∗ ∈ Z, is said to satisfy

1. MPCC-linear independence CQ (MPCC-LICQ), if the gradients

∇gi(x∗) (i ∈ Ig(x∗)), ∇hi(x∗) (i = 1, . . . , p),
∇Gi(x∗) (i ∈ I00(x∗) ∪ I0+(x∗)), ∇Hi(x

∗) (i ∈ I00(x∗) ∪ I+0(x∗)),

are linearly independent.
2. MPCC-Mangasarian Fromovitz CQ (MPCC-MFCQ), if the only solution

to the equation

∑
i∈Ig

λgi∇gi(x
∗) +

p∑
i=1

λhi∇hi(x∗) +
∑

i∈I00(x∗)∪I0+(x∗)

λGi ∇Gi(x∗) +
∑

i∈I00(x∗)∪I+0(x∗)

λHi ∇Hi(x
∗) = 0

with λgi ≥ 0 is the trivial solution, i.e.λg=λh=λG=λH = 0.

Note that each of these CQs implies that a local minimum is M-stationary,
see [22,8], but only MPCC-LICQ is sufficient to guarantee strong stationarity
of a local minimum, see [10,2,23]. The MPCC-LICQ is among the first MPCC-
tailored constraint qualifications and may already be found in [2] and [6], the
MPCC-MFCQ was introduced in [6] and presented in the form above in [24].

The following example due to Scheel and Scholtes [6] exhibits a situation
where the global minimizer is not an S-stationary point but an M-stationary
point. We will return to this example later on.
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Example 2.1

min
x∈R3

x1 + x2 − x3 s.t. −4x1 + x3 ≤ 0,

−4x2 + x3 ≤ 0,
0 ≤ x1 ⊥ x2 ≥ 0.

The global solution is (0, 0, 0)T but is not an S-stationary point. Indeed, the
gradient of the Lagrangian equal to zero yields

0 =

 1
1
−1

+ λg1

−4
0
1

+ λg2

 0
−4
1

− λG
1

0
0

− λH
0

1
0

 ,

and since λg1 +λg2 = 1(third line), summing the first two lines yields 2−4(λg1 +
λg2)−λG−λH = 0 and therefore λG +λH = −2; both cannot be non-negative.

All in all, unless MPCC-LICQ is assumed, devising algorithms to provably
reach stationary points (equivalent to S-stationary point) is not possible in
general, and we must satisfy ourselves in devising algorithms reaching M-
stationary points.

3 The KDB Regularization Method and Its Convergence

Any complementarity constraint represents a thin geometric locus troublesome
with respect to CQ. A regularization introduces a parametric way to thicken
these thin constraints and hopefully the regularized subproblem will satisfy a
CQ.

Given a map Φ : Rq × Rq × R → Rq regularization methods consider the
following parametric non-linear program Rt,t̄ parametrized by two positive
parameters t and t̄:

min
x∈Rn

f(x) s.t. g(x) ≤ 0, h(x) = 0,

G(x) ≥ −t̄1l, H(x) ≥ −t̄1l, Φ(G(x), H(x); t) ≤ 0.
(4)

In [17], Kadrani, Dussault and Benchakroun introduced a method which
enjoys the desired goal to converge to an M-stationary point without additional
assumptions such as second-order conditions. Their method considers an ap-
proximation of the complementarity constraints defined for all i ∈ {1, . . . , q}
as

Φi(G(x), H(x); t) := (Gi(x)− t)(Hi(x)− t). (5)

The only difference here compared to the initial presentation of the method
in [17] is that t̄ might be different from t, i.e. thicken asymetrically the com-
plementarity constraints. In the sequel we use the following notations. The
Lagrangian function of (4) is defined as

LRt,t̄
(x, ν) := f(x) + g(x)T νg + h(x)T νh − (G(x) + t̄1l)T νG

−(H(x) + t̄1l)T νH + Φ(G(x), H(x); t)T νΦ,
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with ν := (νg, νh, νG, νH , νΦ) ∈ Rm × Rp × Rq × Rq × Rq.
Denote by IΦ(x; t) := {i : Φi(G(x), H(x); t) = 0} the set of active indices

of the regularization constraint.
The method has been shown to converge to an M-stationary point as re-

called in the following theorem from [24] (the original convergence result from
[17] being stated with MPCC-LICQ). The extension of [24, Theorem 3.5] to
the case t̄ 6= t is straightforward.

Theorem 3.1 Let {tk} ↓ 0, {t̄k} ↓ 0, and {xk} be a sequence of stationary
points of (4). If xk → x∗ and MPCC−MFCQ holds in x∗, then x∗ is an
M-stationary point of (3).

This result was a clear improvement over other existing methods such as
[13–16], which only converge to a C-stationary point with similar assumptions.
An additional necessary second order condition is often required to ensure con-
vergence to an M-stationary point. Only the method developed in [18], extend-
ing the KDB method as a regularization, shares the same strong convergence
property.

However, as shown in [19], the situation is different when considering se-
quence of approximate stationary points. We recall here the corresponding
result, where the extension to the case t̄ 6= t is again straightforward.

Theorem 3.2 (Theorem 9 and 10 [19]) Let {tk} ↓ 0, {t̄k} ↓ 0,{εk} ↓ 0,
{xk} be a sequence of εk-stationary points of (4). If xk → x∗ and MPCC−MFCQ
holds in x∗, then x∗ is a W-stationary point of (3).

Suppose further that εk = o(t̄k) and there is a constant c > 0 such that, for
all i ∈ I00(x∗) and all k sufficiently large, the iterates (Gi(x

k), Hi(x
k)) satisfy

(Gi(x
k), Hi(x

k)) /∈ ](1− c)tk, (1 + c)tk[2 \ ](1− c)tk, tk[2. (6)

Then x∗ is an M-stationary point.

Note that the authors also gave similar type of conditions to get convergence
to a C- or an S-stationary point. The drawback of condition (6), however, is
that it cannot be checked a priori and the strong convergence result of the
method no longer holds.

In [18, Example 3], the authors provide an example satisfying MPCC-LICQ
and exhibiting convergence to a W-stationary point. One of the main reason
for this behavior being that if we perturb the relation |νΦi Φi(x1, x2; t)| ≤ ε
(leaving the other conditions νΦ ≥ 0, Φ(x1, x2; t) ≤ 0), νΦ may be positive
when the constraint Φ(x1, x2; t) is not active.

Now, if the complementarity constraint is satisfied approximately, but an
approximate complementarity condition of the form νΦi (Φi(x1, x2; t) − ε) = 0
is guaranteed, convergence may occur to C-stationary points as shown in the
following example.

Example 3.1 Consider the problem

min
x∈R2

1
2 ((x1 − 1)2 + (x2 − 1)2) s.t. 0 ≤ x1 ⊥ x2 ≥ 0.
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We specialize the relations in Definition 2.1 for (4) as the following∥∥∥∥(x1 − 1
x2 − 1

)
− νG

(
1
0

)
− νH

(
0
1

)
+ νΦ

(
x2 − t
x1 − t

)∥∥∥∥
∞
≤ ε,

0 ≤ νG, (x1 + t̄) ≥ 0, νG(x1 + t̄) ≤ ε,
0 ≤ νH , (x2 + t̄) ≥ 0, νH(x2 + t̄) ≤ ε,
0 ≤ νΦ, (x1 − t)(x2 − t) ≤ ε, νΦ [(x1 − t)(x2 − t)− ε] = 0.

The points (t +
√
ε, t +

√
ε)T together with νG = νH = 0 and νΦ = 1−t−

√
ε√

ε

satisfy the above relations. The limit point when t, ε −→ 0 is the origin, which
is a C-stationary point with λG = λH = −1.

Epsilon-stationary points have two main drawbacks considering our goal
of computing an M-stationary point. The difficulties may come from the ap-
proximation of the complementarity condition as shown by [18, Example 3]
or from the approximation of the feasibility of the regularized constraint as
illustrated in Example 3.1.

We focus in this paper on studying approximate stationary points. Note
that an alternative but complementary approach would be to study sequential
optimality conditions. This approach first designed for nonlinear programming
[20] has recently been extended to the MPCC in [25] or in [26].

4 Convergence of Strong Epsilon-Stationary Sequences

We now address the convergence of sequences of epsilon–stationary points. The
previous section motivates the definition of a new kind of epsilon-stationary
point called strong epsilon-stationary point, which is more stringent regarding
the complementarity constraint.

Definition 4.1 Let ε ≥ 0. We say that x is a strong ε-stationary point for
(4) if there exists ν ∈ Rm × Rp × Rq × Rq × Rq such that∥∥∇LRt,t̄

(x, ν)
∥∥
∞ ≤ ε,

gi(x) ≤ ε, νgi ≥ 0, |gi(x)νgi | ≤ ε, ∀i ∈ {1, . . . ,m},
|hi(x)| ≤ t̄+ 3ε, ∀i ∈ {1, . . . , p},
Gi(x) + t̄ ≥ −ε, νGi ≥ 0,

∣∣νGi (Gi(x) + t̄)
∣∣ ≤ ε, ∀i ∈ {1, . . . , q},

Hi(x) + t̄ ≥ −ε, νHi ≥ 0,
∣∣νHi (Hi(x) + t̄)

∣∣ ≤ ε, ∀i ∈ {1, . . . , q},
Φi(G(x), H(x); t) ≤ 0, νΦi ≥ 0,

∣∣νΦi Φi(G(x), H(x); t)
∣∣ = 0, ∀i ∈ {1, . . . , q}.

Note that we are less demanding on the equality constraint. This will become
clearer when considering slack variables to the MPCC to get our result on
existence of strong epsilon-stationary point in Section 5.

Since a strong epsilon-stationary point is, in particular, an epsilon-stationary
point, we can deduce from the first part of Theorem 3.2 the following result.

Lemma 4.1 Let {tk} ↓ 0, {t̄k} ↓ 0,{εk} ↓ 0, {xk} be a sequence of strong
εk-stationary points of (4). If xk → x∗ and MPCC−MFCQ holds in x∗, then
x∗ is a W-stationary point of (3).
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We can now move to our main convergence result.

Theorem 4.1 Let {tk} ↓ 0, {t̄k} ↓ 0, εk = o(t̄k), and {xk} be a sequence of
strong εk-stationary points of (4). If xk → x∗ and MPCC−MFCQ holds in
x∗, then x∗ is an M-stationary point of (3).

Proof The proof of [19, Theorem 9] shows that the sequence {ηg,k, ηh,k, ηG,k, ηH,k}
is bounded with ηg,k := νg,k, ηh,k := νh,k and for all i

ηG,ki := νG,ki − νΦ,ki (Hi(x
k)− tk),

ηH,ki := νH,ki − νΦ,ki (Gi(x
k)− tk).

(7)

Up to a subsequence, the limit point of this sequence is a mutliplier, denoted
(ηg,∗, ηh,∗, ηG,∗, ηH,∗), such that x∗ is a W-stationary point. We now consider

indices i ∈ I00(x∗). Our aim here is to prove that either ηG,∗i > 0, ηH,∗i > 0 or

ηG,∗i ηH,∗i = 0 by showing that ηG,∗i < 0 =⇒ ηH,∗i = 0.

Assume that ηG,∗i < 0, then for k sufficiently large it holds that

ηG,ki < 0⇐⇒ νG,ki − νΦ,ki (Hi(x
k)− tk) < 0 =⇒ νΦ,ki > 0 and Hi(x

k) > tk,

since νG,k and νΦ,k are non-negative. Using the complementarity condition∣∣∣νΦ,ki (Gi(x
k)− tk)(Hi(x

k)− tk)
∣∣∣ = 0 it follows that Gi(x

k) = tk. Moreover,

using that Hi(x
k) > tk, we obtain

εk ≥
∣∣∣νH,ki (Hi(x

k) + t̄k)
∣∣∣ ≥ ∣∣∣νH,ki t̄k

∣∣∣ ,
therefore νH,ki ↓ 0 as εk = o(t̄k). Finally, since Gi(x

k) = tk and νH,ki ↓ 0 it

holds that ηH,∗i = 0. ut
Further work may focus on weakening the constraint qualification necessary

to prove this convergence theorem. In the literature, MPCC-RCPLD [27] or
MPCC-CCP [26] have been used to prove convergence results involving M-
stationary points.

5 Existence of Strong Epsilon-Stationary Points for the Relaxation
with Slack Variables

5.1 On Lagrange Multipliers of the Relaxation

Beyond the convergence of a sequence of (approximate) stationary points of
the regularization, another important question is wether such points exist in
a neighborhood of an M-stationary point.

Following Example 2.1, we can encounter a situation where the regularized
subproblems have no stationary point.
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Example 5.1 The KDB regularized problem for Example 2.1 is

min
x∈R3

x1 + x2 − x3 s.t. −4x1 + x3 ≤ 0,−4x2 + x3 ≤ 0,

x1 ≥ −t̄, x2 ≥ −t̄, (x1 − t)(x2 − t) ≤ 0.

The point (t, t, 4t)T is feasible so that the minimum value of this program is
≤ −2t. Moreover, whenever x1 > t, we must have x2 ≤ t to satisfy (x1 −
t)(x2 − t) ≤ 0. This allows to conclude that (t, t, 4t)T is the global minimum
of the regularized problem. νG = νH = 0 and the gradient of the Lagrangian
equal to zero yields

0 =

 1
1
−1

+ νg1

−4
0
1

+ νg2

 0
−4
1

+ νΦ

0
0
0

 ,

which cannot be satisfied.

This last example seems to contradict Theorem 4.6 in [18], but MPCC-LICQ
is not satisfied at the origin.

It has been pointed out earlier that a practical algorithm may not be
able to compute stationary points of the regularized subproblem, but only
some approximate stationary point. In the previous section, in particular, we
underline the interest for strong epsilon-stationary points. An intuitive idea
would be that a weaker constraint qualification (like MPCC-MFCQ) would
guarantee existence of such points in the neighborhood of an M-stationary
point. However, the following one-dimensional example shows that things are
not that simple.

Example 5.2 Consider the one-dimensional MPCC

min
x∈R
−x s.t. 0 ≤ x ⊥ x ≥ 0.

The constraint set involves only linear functions, and the objective is linear.
There is only one feasible point, x∗ = 0. Moreover, it is not hard to verify that
this point is an M-stationary point.

Given 1 > ε > 0, let us now verify that there is no strong ε-stationary point
for this problem. The condition on the gradient of the Lagrangian yields

| − 1− νG − νH + 2νΦ(x− t)| ≤ ε, (8)

since in this case ∇Φ(G(x), H(x); t) = 2(x − t). Since x must be feasible, we
get (x− t)2 ≤ 0, therefore x = t. Hence, there is no x satisfying (8) as νG and
νH are non-negative.

The previous example shows that existence of a strong epsilon-stationary
point is not ensured in the neighborhood of an M-stationary point even so a
constraint qualification holds. However, by reformulating (3) with slack vari-
ables things could be slightly different as shown by the continuation of the
example.
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Example 5.3 (Example 5.2 continued) Given ε > 0 and t ≤ t̄. We now
verify that there is a strong epsilon-stationary point of the approximation KDB
written with slack variables for this example,

min
x∈R
−x s.t. sG = x, sH = x , sG ≥ −t̄, sH ≥ −t̄, (sG − t)(sH − t) ≤ 0.

Let δ be a constant satisfying 2ε ≥ δ > 0. Consider the point x = 0 and
(sG, sH) = (t, t+δ) with Lagrange multiplier (νsG , νsH , νG, νH , νΦ) = (−1, 0, 0, 0, 1

δ ).
Let us verify that this point is a strong epsilon-stationary point of the regular-
ization:

– Condition on the gradient of the Lagrangian:

|∇xL(x, s, ν)| = | − 1− νsG − νsH | = 0,
|∇sGL(x, s, ν)| = |νsG − νG + νΦ(sH − t)| = 0,
|∇sHL(x, s, ν)| = |νsH − νH + νΦ(sG − t)| = 0.

– Condition on the feasibility: |x− sG| = t ≤ t̄+ 2ε, |x− sH | = t+ δ ≤ t̄+ 2ε,
sG + t̄ = t+ t̄ ≥ −ε, sH + t̄ = t+ t̄+ δ ≥ −ε, and (sG − t)(sH − t) = 0.

– Condition on the complementarity: |(sG+ t)νG| = 0, |(sH + t)νH | = 0, and
|(sG − t)(sH − t)νΦ| = 0.

This example shows that the formulation with slack variables has a strong
epsilon-stationary point.

5.2 The Regularization with Slack Variables

Consider the following MPCC reformulated with slacks variables:

min
(x,s)∈Rn×R2q

f(x) s.t. g(x) ≤ 0, h(x) = 0,

sG = G(x), sH = H(x),
0 ≤ sG ⊥ sH ≥ 0.

(9)

Consider now the following parametric non-linear program with t, t̄ ≥ 0:

min
(x,s)∈Rn×R2q

f(x) s.t. g(x) ≤ 0, h(x) = 0,

sG = G(x), sH = H(x),
sG ≥ −t̄1l, sH ≥ −t̄1l, Φ(sG, sH ; t) ≤ 0.

(10)

The Lagrangian function of (10) is defined as

LRs
t,t̄

(x, s, ν) := f(x)+g(x)T νg+h(x)T νh−(G(x)−sG)T νsG−(H(x)−sH)T νsH

−(sG + t̄1l)T νG − (sH + t̄1l)T νH + Φ(sG, sH ; t)T νΦ.

The following result is a direct corollary of Theorem 4.1 stating that the
reformulation with slack variables does not alter the convergence result.
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Corollary 5.1 Let {tk} ↓ 0, {t̄k} ↓ 0, εk = o(t̄k), {xk, sk} be a sequence
of strong epsilon-stationary points of (10). If xk → x∗ and MPCC−MFCQ
holds at x∗, then x∗ is an M-stationary point of (3).

Proof Let h̃(x) : Rn → Rp×Rq×Rq be such that h̃(x) := (h(x), sG−G(x), sH−
H(x)) and x̃ := (x, sG, sH). It is clear that the non-linear program (10) fall
under the formulation (4). Moreover, MPCC-MFCQ for (9) is equivalent to
MPCC-MFCQ applied to (3) with slack variables. Therefore, we can apply
Theorem 4.1 to conclude this proof. ut

The following lemma giving an explicit form of the gradient of the La-
grangian function of (10) can be deduced through direct computations.

Lemma 5.1 The gradient of LRs
t,t̄

(x, s, ν) is given by

∇xLRs
t,t̄

(x, s, ν) = ∇LMPCC(x, νg, νh, νsG , νsH ),

∇sGLRs
t,t̄

(x, s, ν) = νsG − νG +∇sGΦ(sG, sH ; t)T νΦ,

∇sHLRs
t,t̄

(x, s, ν) = νsH − νH +∇sHΦ(sG, sH ; t)T νΦ.

There are two direct consequences of this result. First, it is easy to see from
this lemma that computing a stationary point of LRs

t,t̄
(x, s, ν) is equivalent to

computing a stationary point of LRt,t̄
(x, ν). Secondly, a stationary point of

LRs
t,t̄

(x, s, ν) satisfies ∇LMPCC(x, νg, νh, νsG , νsH ) = 0, which is one of the

conditions of W-stationarity for (3).

5.3 Existence

The following lemma proves that given any M-stationary point x∗ there is a
neighborhood such that for all x in this neighborhood there exists s such that
(x, s) is a strong epsilon-stationary point for the regularized problem.

Lemma 5.2 Assume that f, g, h,G,H have Lipschitz continuous gradients.
Let x∗ be an M-stationary point of (3) and ε > 0 be small enough. Then,
there exist positive constants c, δ, t̄∗ ≥ cε, t∗ such that, for all t̄ ∈]cε, t̄∗[ and
t ∈]0,min(t∗, t̄+ cε)[, it holds that

∀x ∈ Bδ(x∗),∃ŝ ∈ Bε((G(x∗), H(x∗))T ),

(x, ŝ) is a strong epsilon-stationary point of (10) .

Proof The proof is conducted in two steps. First, taking any x̂ ∈ Bδ(x∗) we
construct a point that is a candidate to be strong epsilon-stationary. Then, we
verify that this candidate is actually a strong epsilon-stationary point.

Let x∗ be an M-stationary point. Therefore, x∗ is feasible for (3) and there
exists λ = (λg, λh, λG, λH) such that:

∇xLMPCC(x∗, λ) = 0,
λg ≥ 0, λgi = 0 (i /∈ Ig(x∗)), λGi = 0 (i ∈ I+0(x∗)), λHi = 0 (i ∈ I0+(x∗)),
either λGi > 0, λHi > 0 or λGi λ

H
i = 0 (i ∈ I00(x∗)).
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Let c be the positive constant defined as follows

c := sup
i∈supp(λG),j∈supp(λH),k∈supp(λg)

1

|λGi |
+

1

|λHj |
+

1

|λgk|
,

with the convention that c := 0 if supp(λG) ∪ supp(λH) ∪ supp(λg) = ∅.
Besides, all of the functions involved here are assumed to have Lipschitz

continuous gradients, thus there exist constants L1 and L2 such that

L1 := sup
i,j,k,l

‖∇f(x∗)‖∞+‖∇gi(x∗)‖∞+‖∇hj(x∗)‖∞+‖∇Gk(x∗)‖∞+‖∇Hl(x
∗)‖∞,

and for ν̂ depending of x∗ and λ defined below

L2 := ‖∇2
xxLRs

t,t̄
(x∗, G(x∗), H(x∗), ν̂)‖∞.

Let δ > 0 be a constant satisfying

max
(
L1, L1‖λ‖∞, L2

)
δ + o(δ) ≤ ε. (11)

In other words, δ = O(ε).

Construction of the point (x̂, ŝ, ν̂) For any x̂ ∈ Bδ(x∗), let us construct a point
(x̂, ŝ, ν̂) that satisfies Definition 4.1. Set

ξ := x̂− x∗, ν̂g := λg, ν̂h := λh, ν̂sG := λG, ν̂sH := λH ,

where ‖ξ‖2 < δ. Using the following notations

I00
−0 := {i ∈ I00 : λGi ≤ 0, λHi = 0}, I00

0− := {i ∈ I00 : λGi = 0, λHi ≤ 0},
I+0
− := {i ∈ I+0 : λGi = 0, λHi < 0}, I+0

+ := {i ∈ I+0 : λGi = 0, λHi ≥ 0},
I0+
− := {i ∈ I0+ : λGi < 0, λHi = 0}, I0+

+ := {i ∈ I0+ : λGi ≥ 0, λHi = 0},
I00

++ := {i ∈ I00 : λGi > 0, λHi > 0},

let ŝG, ŝH , ν̂
G, ν̂H and ν̂Φ be as follows:

ŝG :=



t, i ∈ I00
−0,

t̄+ cε, i ∈ I00
0−,

ε/2−t̄λG
i

λG
i

, i ∈ I00
++,

Gi(x̂), i ∈ I+0,

t, i ∈ I0+
− ,

−t̄, i ∈ I0+
+ .

ŝH :=



t̄+ cε, i ∈ I00
−0,

t, i ∈ I00
0−,

t, i ∈ I00
++,

t, i ∈ I+0
− ,

−t̄, i ∈ I+0
+ ,

Hi(x̂), i ∈ I0+,

(12)

ν̂G :=

{
λGi , i ∈ I00

++ ∪ I0+
+ ,

0, otherwise,
ν̂H :=

{
λHi , i ∈ I

+0
+ ,

0, otherwise,

ν̂Φ :=


−λG

i

ŝH,i−t , i ∈ I
00
−0 ∪ I0+

− ,
−λH

i

ŝG,i−t , i ∈ I
00
0− ∪ I00

++ ∪ I+0
− ,

0, otherwise.
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(x̂, ŝ, ν̂) satisfy the stationarity: We verify that (x̂, ŝ, ν̂) satisfies the strong
epsilon-stationarity conditions, that we divide into the next 6 parts:

I.
∥∥∥∇xLRs

t,t̄
(x̂, ŝ, ν̂)

∥∥∥
∞
≤ ε, gi(x̂) ≤ ε, ν̂gi ≥ 0, |gi(x̂)ν̂gi | ≤ ε ∀i ∈ {1, . . . ,m}

and |hi(x̂)| ≤ t̄+ (1 + c)ε ∀i ∈ {1, . . . , p};
II.
∥∥∥∇sLRs

t,t̄
(x̂, ŝ, ν̂)

∥∥∥
∞
≤ ε;

III. |Gi(x̂)− ŝG,i| ≤ t̄+ (1 + c)ε, |Hi(x̂)− ŝH,i| ≤ t̄+ (1 + c)ε ∀i ∈ {1, . . . , q};
IV. ŝG,i + t̄ ≥ −ε,

∣∣ν̂Gi (ŝG,i + t̄)
∣∣ ≤ ε, ŝH,i + t̄ ≥ −ε,

∣∣ν̂Hi (ŝH,i + t̄)
∣∣ ≤ ε ∀i ∈

{1, . . . , q};
V. Φi(ŝG, ŝH ; t) ≤ 0,

∣∣ν̂Φi Φi(ŝG, ŝH ; t)
∣∣ = 0 ∀i ∈ {1, . . . , q};

VI. ν̂G ≥ 0, ν̂H ≥ 0, ν̂Φ ≥ 0.

Let us now run through these 6 conditions. Note that the cases i ∈ I00
−0 (resp.

i ∈ I+0) and i ∈ I00
0− (resp. i ∈ I0+) are symmetric, hence it is sufficient to

verify these conditions for i ∈ I00
−0 ∪ I00

++ ∪ I+0.

I. Since (ν̂g, ν̂h, ν̂sG , ν̂sH ) = (λg, λh, λG, λH) it holds that∥∥∥∇xLRs
t,t̄

(x∗, ŝ, ν̂)
∥∥∥
∞

= 0,

gi(x
∗) ≤ 0, ν̂gi ≥ 0, |gi(x∗)ν̂gi | = 0 ∀i ∈ {1, . . . ,m},

|hi(x∗)| = 0 ∀i ∈ {1, . . . , p}.

Now, since x̂ = x∗ + ξ and ‖ξ‖ ≤ δ, using Taylor theorem at x∗ yields

gi(x̂) = gi(x
∗) + ξig

′
i(x
∗) + o(ξi) ≤ δL1 + o(δ) ≤ ε,

where the last inequality follows by definition of δ in (11). We can proceed in
the same way to prove that |hi(x̂)| ≤ ε, |gi(x̂)ν̂gi | ≤ ε and ‖∇xLRs

t,t̄
(x̂, ŝ, ν̂)‖∞ ≤

ε.

II. As pointed in Lemma 5.1, the gradient of the Lagrangian with respect
to s is given by

∇sG,i
LRs

t,t̄
(x̂, ŝ, ν̂) = ν̂sGi − ν̂Gi + ν̂Φi (ŝH,i − t),

∇sH,i
LRs

t,t̄
(x̂, ŝ, ν̂) = ν̂sHi − ν̂Hi + ν̂Φi (ŝG,i − t).

(13)

It is sufficient to verify these conditions for i ∈ I00
−0 ∪ I00

++ ∪ I+0
+ ∪ I+0

− . The
following tables summarize the relevant quantities to prove that the gradient
(13) vanishes.

∇sG,i
LRs

t,t̄
ν̂sGi ν̂Gi ν̂Φi (ŝH,i − t) ∇sG,i

LRs
t,t̄

I00
++ λGi λGi

−λH
i

ŝG,i−t 0 0

I00
−0 λGi 0

−λG
i

ŝH,i−t ŝH,i − t 0

I+0
+ λGi = 0 0 0 ŝH,i − t 0

I+0
− λGi = 0 0

−λH
i

ŝG,i−t 0 0
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set ν̂sHi ν̂Hi ν̂Φi (ŝG,i − t) ∇sH,i
LRs

t,t̄

I00
++ λHi 0

−λH
i

ŝG,i−t ŝG,i − t 0

I00
−0 λHi = 0 0

−λG
i

ŝH,i−t 0 0

I+0
+ λHi λHi 0 ŝG,i − t 0

I+0
− λHi 0

−λH
i

ŝG,i−t ŝG,i − t 0

III. Using the same technique as in I. it holds that

|Gi(x̂)− ŝG,i| ≤ ε+ |ŝG,i|,∀i ∈ I0+ ∪ I00,

|Hi(x̂)− ŝH,i| ≤ ε+ |ŝH,i|,∀i ∈ I+0 ∪ I00,

while |Gi(x̂) − ŝG,i| = 0 for i ∈ I+0 and |Hi(x̂) − ŝH,i| = 0 for i ∈ I0+.
For i ∈ I00

−0 ∪ I00
0−, |ŝG,i| ≤ t̄ + cε follows from ŝG,i = t or ŝG,i = t̄ + cε. For

i ∈ I00
++,| ε/2−t̄λ

G
i

λG
i
| ≤ t̄+ cε.

IV. By construction, ŝG,i + t̄ ≥ 0 and ŝH,i + t̄ ≥ 0. Now, we verify the
complementarity condition for i ∈ I00

++ ∪ I0+
+ as otherwise ν̂Gi = 0 (the other

case follows by symmetry).

∣∣ν̂Gi (ŝG,i + t̄)
∣∣ =

{
0, for i ∈ I0+

+ ,∣∣∣λGi ε
2λG

i

∣∣∣ = ε
2 , for i ∈ I00

++.

V. By construction of ŝG and ŝH , we have Φi(ŝG, ŝH ; t) = 0 for i ∈ I00 ∪
I0+
− ∪ I+0

− and Φi(ŝG, ŝH ; t) < 0 for the remaining indices taking t sufficiently

small such that Gi(x̂) > t for i ∈ I+0
+ and Hi(x̂) > t for i ∈ I0+

+ . For indices

I+0
+ ∪ I0+

+ , where Φi(ŝG, ŝH ; t) 6= 0 the complementarity condition is satisfied
as ν̂Φi = 0.

VI. By construction it is clear that ν̂Gi ≥ 0, ν̂Hi ≥ 0. Consider indices i

∈ I00
0− ∪I00

++ ∪I+0
− , i.e. ν̂Φi =

−λH
i

ŝG,i−t , as i ∈ I00
−0 ∪I0+

− will follow by symmetry.

−λH
i

ŝG,i−t is non-negative since ŝG,i > t when λHi < 0 and ŝG,i < t when λHi ≥ 0.

For the case I00
0−, λHi ≤ 0 and ŝG,i = t̄+ cε > t. For the case I+0

− , λHi < 0 and
ŝG,i = Gi(x̂) > Gi(x

∗)−L1δ− o(δ) > Gi(x
∗)− ε > t as t is chosen sufficiently

small. For the case I00
++, λHi > 0 and ŝG,i = ε

2λG
i
− t̄ < 0 < t.

ut
This result cannot be extended to a general neighborhood for s due to the

definition of strong epsilon-stationary point. However, we prove that s can live
in a neighborhood of ŝ (defined in Lemma 5.2) on the boundary of the feasible
set.

Theorem 5.1 Assume that f, g, h,G,H have Lipschitz continuous gradients.
Let x∗ be an M-stationary point of (3) and ε > 0 be small enough. Then,
there exist positive constants c, δ, δ′, t̄∗ ≥ cε, t∗ such that, for all t̄ ∈]cε, t̄∗[ and
t ∈]0,min(t∗, t̄+ cε)[, any point in the following set

(x, s) ∈ Bδ(x∗)× Bδ′(ŝ) ∩ {(sG, sH) : Φi(sG, sH ; t) = 0, ∀i ∈ IΦ(x∗; t)},
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with ŝ defined in (12), is a strong epsilon-stationary point of the regularization
(10).

Proof First we stress that we keep the multipliers ν̂ as defined in lemma 5.2

The proof is an adaptation of the one of Lemma 5.2, where are unchanged
the parts I, V, VI. Part I remains true since s only appears in ∇xLRs

t,t̄
which

is actually independent on s by Lemma 5.1. Part V remains true as the ac-
tive constraints remain active for all s ∈ Bδ′((G(x∗), H(x∗))T ) ∩ {(sG, sH) :
Φi(sG, sH ; t) = 0 for all i ∈ IΦ(x∗; t)}. Part VI remains true as we keep the
definition of multipliers ν̂Φ using ŝ.

Hence, we discuss only the parts II, III and IV.

Let δ′ be such that

max

(
1, 2‖λ‖∞,

‖λ‖∞
min(mini∈I+0{Gi(x∗)} − t− ε, t̄+ t, t̄+ cε− t)

)
δ′ < ε,

and s̃ = ŝ+ α with ‖α‖ < δ′.

II. In Lemma 5.2, we proved stronger than strong-epsilon stationarity since
we obtained vanishing gradient of the Lagrangian with respect to s, stronger
than normwise bounded by ε. Now, our use of ν̂ introduces perturbations in
the second line of first table and lines one and four of the second table in the
proof of II in previous Lemma 5.2. Hence, by (13) with respect to sG (the case
sH follows in the same way), we have ∇sG,i

LRs
t,t̄

(x̂, s̃, ν̂) = ∇sG,i
LRs

t,t̄
(x̂, ŝ, ν̂)+

ν̂Φi αi. Therefore, ‖∇sG,i
LRs

t,t̄
(x̂, s̃, ν̂)‖ < ‖∇sG,i

LRs
t,t̄

(x̂, ŝ, ν̂)‖+ |ν̂Φi |δ′ < ε.

III. In Lemma 5.2, we proved that ∀i ∈ {1, . . . , q}, |Gi(x̂) − ŝG,i| ≤ t̄ +
(1 + c)ε, |Hi(x̂) − ŝH,i| ≤ t̄ + (1 + c)ε. So, using that δ′ ≤ ε gives ∀i ∈
{1, . . . , q}, |Gi(x̂) − s̃G,i| ≤ t̄ + (2 + c)ε, |Hi(x̂) − s̃H,i| ≤ t̄ + (2 + c)ε, which
proves III.

IV. From Lemma 5.2, when ŝG,i + t̄ ≥ 0 (resp. ŝH,i + t̄ ≥ 0) we deduce
s̃G,i + t̄ ≥ −ε (resp. s̃H,i + t̄ ≥ −ε) as δ′ < ε.

Now, we verify the complementarity condition for i ∈ I00
++ ∪ I0+

+ :∣∣ν̂Gi (s̃G,i + t̄)
∣∣ ≤ ∣∣ν̂Gi (ŝG,i + t̄)

∣∣+∣∣ν̂Gi s̃G,i∣∣ =

{
δ′λGi ≤ ε

2 , for i ∈ I0+
+ ,

ε
2 + δ′λGi ≤ ε, for i ∈ I00

++. ut
We can now deduce the following result.

Theorem 5.2 For any M-stationary point of (3) that satisfies MPCC−MFCQ,
there exists a sequence of strong epsilon-stationary points of the regularization
(10) that converges to that point.

Proof Theorem 5.1 gives more relations between the parameters that are com-
patible with Corollary 5.1. Indeed for a chosen sequence of arbitrarily small
parameters {εk}, Corollary 5.1 requires that εk = o(t̄k) and Theorem 5.1 re-
quires that t̄k > cε and tk must be sufficiently small.

Thus, a straightforward application of both of these results allows to con-
clude. ut
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6 Conclusions

We studied in this paper a regularization method for the MPCC with approx-
imate stationary points. Motivated by the recent discussion in [19], we intro-
duced a new type of stationary point for the regularized subproblem, called
strong epsilon-statonary point, whose sequence converges to an M-stationary
point of the MPCC. Additionally, we proved that for any M-stationary point
there exists a sequence of strong epsilon-statonary points in its neighborhood.
These two theoretical results pave the way to a regularization method with
strong properties.

The main perspective of this work is now to study an optimization algo-
rithm able to compute a strong epsilon-stationary point for given t, t̄ and ε.
This algorithm must satisfy at each step exactly the feasibility of the regular-
ized complementarity constraint as well as the complementarity condition of
this constraint. We would like to mention that a possible direction is to adapt
the active-set strategy studied in [28] since the active-set approach will be able
to maintain the feasibility at each step.
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