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Abstract

The numerical simulation of beams and plates with embedded acoustic black holes (ABHs) is computationally
demanding because of the very thin thickness attained at the ABH central area. Semi-analytical approaches
relying on the Rayleigh-Ritz method with wavelet or Gaussian basis functions have thus revealed as an
accurate and fast alternative to determine the ABH vibration field in parametric studies. To date however,
the vast majority of works on ABHs have only dealt with ABH indentations on straight beams and flat
plates. It would be also worth exploring the feasibility of ABHs to control the vibrations of curved shells,
typically found in aerospace and naval structures. In this work, we address this issue and extend the Gaussian
expansion method (GEM) to characterize annular ABHs embedded on cylindrical shells. First, we show how
the GEM can be modified to make Gaussian shape functions satisfy periodic boundary conditions in the
circumferential direction of the cylinder. The GEM is then used to determine the vibration field of the ABH
cylindrical shell and gets validated by comparison with finite element simulations. A thorough analysis of
the performance of the annular ABH follows, which stresses the differences with the behavior of ABHs on
flat surfaces. In particular, we show the influence that waves propagating in the circumferential direction
have on the operational frequency range of the ABH. The effects of the viscoelastic layer and the inclusion of
longitudinal stiffeners to strengthen the cylinder rigidity are also analyzed by means of the proposed GEM
approach. This work broadens previous semi-analytical methods to start investigating the ABH effect on
curved structures.

Keywords: Annular acoustic black holes, Gaussian expansion method, Rayleigh-Ritz method, Cylindrical
shells, Stiffened ABHs

1. Introduction

Acoustic black holes (ABHs) have drawn increasing attention in the past decade as a passive, light-
weight and highly-efficient method for vibration [1–5] and noise [6–8] control, energy harvesting [9, 10] or
focusing [11, 12], and wave manipulation [13–15]. With the possible exception of the Archimedean spiral
ABH for beams that was investigated numerically in [16] and experimentally in [17], almost all works to
date have dealt with ABH indentations on straight beams [18, 19] and flat plates [20–22]. However, many
built-up engineering structures contain curved beams and shells. For instance, aircrafts, underwater vehicles
or pipeline systems are a few examples in which cylindrical shells are the major structural components. It
would be therefore worth exploring whereas ABHs could be designed and exploited to reduce the vibrations
of curved shells. This paper proposes a semi-analytical model for an annular ABH embedded on a cylindrical
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shell and analyzes its performance. To date, only very recent numerical simulations have been carried out
to tackle this problem [23, 24].

The ABH effect relies upon the fact that a flexural wave propagating in a structure whose thickness
decays to zero following a power-law profile slows down in such a way that the energy concentrates at its tip,
but never reaches the end [25, 26]. In theory, this would imply that no reflection could occur from the ABH
but in practice the small tip truncation thickness can result in strong wave reflection. Several strategies
have been proposed to avoid that problem and attain large energy dissipation inside the ABH. The former
comprise from placing a simple viscoelastic layer at the ABH tip [27, 28], a constrained one [19], or to extend
the ABH ending platform [29, 30], among other options. More recently, optimization algorithms have been
suggested to properly distribute the damping material or ABH profile to reduce vibration [31–34] and sound
radiation [35].

To reproduce the vibration field of an ABH, we need to resort to semi-analytical or numerical approaches.
Given that ABHs involve very thin structural elements, numerical models (e.g., a finite element model) often
become costly from a computational point of view because very fine meshes are required. Semi-analytical
methods then constitute a valuable alternative to perform parametric analyzes. As for the characterization
of vibrations of flat structures, several approaches have been successfully contemplated in the ABH context.
Geometrical acoustics, for instance, have been suggested for infinite plates [36, 37], the transfer matrix
method has been used for beam [28] and duct ABH terminations [38–41], the WKB (Wentzel-Kramers-
Brillouin) approximation has been applied to wedged beams [42] and even exact solutions for some special
Euler-Bernoulli profiled beams have been derived [43]. In addition, a large amount of work has been
performed in the framework of the Rayleigh-Ritz method: from initial attempts using trigonometric basis
functions [44] to more recent wavelet proposals for straight beams [18, 19] and flat plates [20, 21]. Tested
shape functions include Mexican hat wavelets [18], Daubechies scaling functions [20], Morlet wavelets [12]
and Gaussian functions. The use of Gaussian basis functions in the Rayleigh-Ritz method will be hereafter
referred to as the Gaussian expansion method (GEM) and was applied to beams and plates in [19, 21, 22].

None of the aforementioned methods has yet been exploited to deal with ABHs on curved shells. In
this article the GEM will be adapted to this purpose. It is to be noted that trigonometric shape functions
have been extensively and successfully used to reproduce the vibration field of uniform and rib reinforced
cylinders [45, 46]. Unfortunately, thin cuneate ABH areas are very challenging and pose limits to the
precision one could obtain with trigonometric functions [44]. This is the reason why the semi-analytical
methods based on wavelet or Gaussian shape function decompositions are favored in the ABH literature.
Our goal in this work is to extend the GEM to apply it to the annular ABHs embedded on cylindrical
shells recently suggested in [23, 24]. This implies modifying the Gaussian shape functions so that they fulfill
periodicity in the cylinder circumferential direction. Closed expressions can be derived for the GEM and
thus avoid, for example, the iterative process that is necessary for building a Mexican hat wavelet basis
for the periodic ABH beam in [47]. It will be shown that the GEM provides an accurate and fast way to
characterize annular ABHs on cylinders.

On the other hand, the GEM will be employed to investigate the functioning of the annular ABH. The
latter presents some differences with regard to its analogues in flat plates and beams. For example, given
that waves can propagate in the cylinder circumferential direction which cannot be mitigated by the annular
ABH, the standard diameter and smoothness cut-on frequencies that dictate the operational range of ABHs
in flat surfaces do not straightforwardly apply to the present situation. Other aspects will be also explored,
such as the inclusion of longitudinal stiffeners to compensate for stiffness weakening induced by the ABH
indentation [24].

The paper is organized as follows. In Section 2 we state the problem to be solved, while in Section 3 we
present the GEM for a cylindrical shell with an embedded annular ABH. The Lagrangian of the model is
built and it is explained how to construct a proper basis of Gaussian functions to expand the displacement
field and satisfying the problem periodic boundary conditions. The GEM approach is then validated against
finite element (FEM) simulations in Section 4. The performance of the annular ABH is characterized in
Section 5, where its operational frequency range is tested, as well as the influence of the size of the viscoelastic
damping layer and the inclusion of structural stiffeners. Conclusions are drawn in Section 6. Two appendices
are respectively devoted to present the mass and stiffness matrices of the system as well as to detail the
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expression for the GEM basis.

2. Geometrical model

Throughout this paper we will consider the case of a thin cylindrical shell of length 2a, radius R and
thickness huni. The origin of coordinates is placed at the shell center. A three-dimensional sectional view
of the geometry is plotted in Fig. 1a, which is complemented with a planar sectional cut in Fig. 1b. The
cylindrical shell boundary conditions are accounted for by means of uniformly distributed springs. Assigning
different values to the spring rotational stiffness, p, and translational stiffness, k, one can represent various
boundary conditions. For instance, setting p = +∞ and k = +∞ we recover clamped boundary conditions,
while p = +∞ and k = 0 results in simply supported ones (note in Fig. 1a that p1 and k1 stand for the
springs’ stiffness at the cylinder left end, whereas p2 and k2 refer to those in the right end).

An annular ABH is embedded in the cylindrical shell occupying the region [−rabh, rabh]. The thickness
of the shell within the ABH diminishes according to the power law h(x) = εxm + hc (m ≥ 2), where
ε = (huni−hc)r−mabh . The variable hc represents the residual thickness at the ABH center and plays a critical
role to achieve a significant ABH effect. A thin viscoelastic layer of thickness hv and covering a length 2rv
(green area in Fig. 1) is attached to the ABH to dissipate the flexural vibration energy that concentrates
at its center. A cylindrical shell of constant thickness and having the same axial region than the ABH one
covered by a damping layer will also be considered for comparison purposes (see Fig. 1).

In what follows, we will deal with the case of an external point force exerted at x = xf (see the red arrow
in Fig. 1), which induces displacements, u, in the axis direction, v, in the circumferential one and w, in the
radial direction.

3. Gaussian expansion method for cylindrical shells with an annular ABH indentation

3.1. Equations of motion

In this section, a semi-analytical method is proposed for obtaining the displacement field of a cylindrical
shell with an embedded annular ABH. The equations of motion are herein derived in the framework of
Rayleigh-Ritz method using Gaussian basis functions. As mentioned in the Introduction, we will refer to
this approach as the GEM (Gaussian Expansion Method). The basis functions must be such that they
satisfy the shell periodicity conditions in the circumferential direction.

A shell model is implemented with x, y and z respectively designating coordinates in the axial, circum-
ferential and radial directions and u, v and w denoting the corresponding shell displacements (see Fig. 1a).
The displacement components (u, v, w) refer to the mid surface (the center of mass surface) and so does the
radius R. According to Love’s theory [48], the strain components at an arbitrary point of the cylindrical
shell can be expressed as,

εx = εx0 + zeκx, εy = εy0 + zκy, εxy = εxy0 + zκxy, (1)

where ze is the distance to the shell mid-surface,

εx0
=
∂u

∂x
, εy0 =

∂v

∂y
+
w

R
, εxy0 =

∂v

∂x
+
∂u

∂y
, (2)

stand for the mid-surface strain-displacement relations and

κx = −∂
2w

∂x2
, κy = −

(
∂2w

∂y2
− 1

R

∂v

∂y

)
, κxy = −2

(
∂2w

∂x∂y
− 1

R

∂v

∂x

)
, (3)

account for the mid-surface changes in curvature and torsion. Neglecting the stress components σz, σxz and
σyz, the strain potential energy of the cylindrical shell can be calculated as

Ushell =
1

2

∫ πR

−πR

∫ a

−a

∫ h(x)/2

−h(x)/2
σ>εdzdxdy, (4)
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Figure 1: Illustration of the cylindrical shell with an embedded annular ABH profile. The green shaded area corresponds to
the viscoelastic layer. (a) 3D section cut, (b) cross-sectional view. (c)-(d) uniform reference shell having the same damping
layer as the ABH shell in (a)-(b). Note that the thickness of the shells has been exaggerated in the plots to better appreciate
the geometrical details and definitions. In the considered examples the shell thickness is very thin in comparison to the shell
radius R.

with stress, σ, and strain, ε, vectors

σ = (σx, σy, σxy)
>
, ε = (εx, εy, εxy)

>
. (5)

The strain-stress relation is given by σ = Eε, with E standing for the material constitutive matrix of the
shell,

E =
E?

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 , (6)

in which ν represents the Poisson ratio and E? = E(1 + jη) a complex Young modulus to allow the inclusion
of damping through the material loss factor η.
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Combining Eqs. (1) to (6), the potential energy of the cylindrical shell can be rewritten as,

Ushell =
1

2

∫ πR

−πR

∫ a

−a
D(x, y)

[(
∂2w

∂x2

)2

+

(
∂2w

∂y2
− 1

R

∂v

∂y

)2

+ 2ν
∂2w

∂x2

(
∂2w

∂y2
− 1

R

∂v

∂y

)
+

1− ν
2

(
2
∂2w

∂x∂y
− 2

R

∂v

∂x

)2
]

dxdy

+
1

2

∫ πR

−πR

∫ a

−a
G(x, y)

{(
∂u

∂x

)2

+

(
∂v

∂y
+
w

R

)2

+ ν

[
∂u

∂x

(
∂v

∂y
+
w

R

)
+

(
∂v

∂y
+
w

R

)
∂u

∂x

]
+

1− ν
2

(
∂v

∂x
+
∂u

∂y

)2
}

dxdy, (7)

where D(x, y) = E?h3(x,y)
12(1−ν2) is the bending stiffness and G(x, y) = E?h(x,y)

1−ν2 the extensional one.

Further, one must also account for the potential energy stored in the boundary springs, say Uedge. This
is given by,

Uedge =
1

2

∫ πR

−πR

{
kw1 u

2(−a, y) + kv1v
2(−a, y) + kw1 w

2(−a, y) + pw1

[
∂w

∂x
(−a, y)

]2}
dy

+
1

2

∫ πR

−πR

{
ku2u

2(a, y) + kv2v
2(a, y) + kw2 w

2(a, y) + pw2

[
∂w

∂x
(a, y)

]2}
dy. (8)

On the other hand, the kinetic energy of the shell is obtained as

Kshell =
1

2

∫ πR

−πR

∫ a

−a
ρh(x, y)

[(
∂u

∂t

)2

+

(
∂v

∂t

)2

+

(
∂w

∂t

)2
]

dxdy. (9)

In addition to the potential and kinetic energies of the shell, we have to consider those of the viscous
damping layer as well. There are different ways to deal with the latter, see e.g., [18, 19, 44]. Among them,
the fully coupled method [18] is widely adopted as it has proved fairly accurate when comparing theoretical
predictions with experiments (see e.g., [18, 49]). The method treats the damping layer as an additional
system layer with its intrinsic material properties so that its potential energy, Uvis, and kinetic energy, Kvis,
can be respectively computed from Eq. (7) and Eq. (9), by simply replacing the geometrical and material
properties of the shell with those of the viscous damping layer.

Finally, we need to take into account the work done by the external forces. In this paper, only point
forces in the radial direction will be contemplated, so we get

W = f(t)w(xf , yf , t). (10)

Note that more complex force distributions could be also examined quite easily. For instance, the external

work done by a ring force applied at the axial coordinate xf would be given by W = f(t)
∫ πR
−πR w(xf , y, t)dy.

From all the above expressions, we are now in disposition of building the Lagrangian as,

L = Kshell +Kvis − (Ushell + Uedge + Uvis) +W. (11)

To derive the equations of motion, however, let us first discretize the system by expressing the displace-
ments u, v, w as a combination of basis functions ψi(x, y), ξi(x, y), ϕi(x, y) (to be specified below), with a
priori unknown weight coefficients ai(t), bi(t), ci(t). Namely,

u(x, y, t) =
∑
i

ai(t)ψi(x, y) = a>ψ = ψ>a, (12)
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v(x, y, t) =
∑
i

bi(t)ξi(x, y) = b>ξ = ξ>b, (13)

w(x, y, t) =
∑
i

ci(t)ϕi(x, y) = c>ϕ = ϕ>c, (14)

where a, b, c,ψ, ξ and ϕ are column vectors with entries ai(t), bi(t), ci(t), ψi(x, y), ξi(x, y) and ϕi(x, y), re-
spectively. With the aid of Kronecker’s product, the vectors ψ, ξ and ϕ can be factored as

ψ(x, y) = αψ(x)⊗ βψ(y), (15)

ξ(x, y) = αξ(x)⊗ βξ(y), (16)

ϕ(x, y) = αϕ(x)⊗ βϕ(y), (17)

where αk, k = ψ, ξ, ϕ, is a column vector containing basis functions that only depend on the x direction.
Likewise, βk, k = ψ, ξ, ϕ, represents a column vector of basis functions in the y direction.[50] Our choice
has been to select Gaussian functions for the basis, so the entries αki (x) become

αki (x) = 2sx/2exp[−(2sxx− qxi)2/2], (18)

which consist of a translation plus binary dilation of the Gaussian function g(x) = exp(−x2/2). The ranges
of the scaling parameter sx and translation parameter qx are taken as

sx ≥ δx, δx = ceil

[
log2

(
8

2a

)]
, (19)

qx = [−4 + floor (−2sxa) , ceil (2sxa) + 4] , (20)

where ceil(x) stands for the largest integer smaller than x and floor(x) for the smallest integer greater than
x. Analogous expressions to Eqs. (18)-(20) can be build for the functions in the y-direction, βki (y). The
reader is referred to the authors previous work in [19, 21] for further details on the selection of the scaling
and translation ranges for the Gaussian functions.

With the above decompositions for the displacement field, the Lagrangian in Eq. (11) can be rewritten
as

L =
1

2
q̇>Mq̇ − 1

2
q>Kq + q>f , (21)

where q = Q̂ exp (jωt) accounts for the time dependent vector of unknowns with amplitude Q̂ = [Â>, B̂>, Ĉ>]>,

because a = Â exp (jωt), b = B̂ exp (jωt) and c = Ĉ exp (jωt), see Eqs. (12)-(14) above. M designates the

overall system mass matrix and K the stiffness one, while f = F̂ exp (jωt) is the force vector. The detailed
expressions and calculation details of matrices M , K and vector F are exposed in Appendix A. The matri-
ces are first computed analytically for a shell of uniform thickness huni. Then, the region where the ABH
indentation is to be placed is removed from M and K and substituted with that of the ABH profile plus
the attached viscoelastic layer. Their contribution to M and K is evaluated through numerical integration.
This approach has been termed the matrix-replacing strategy in previous works (see [21] for details). It
allows one to efficiently deal with ABH indentations on structures, like the annular one for cylindrical shells
in this paper.

Finally, applying the Euler-Lagrange equations ∂t(∂q̇L ) − ∂qL = 0 to Eq. (21) results in the system
equations of motion, which in the frequency domain read,(

−ω2M +K
)
Q̂ = F̂ . (22)
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The solution to Eq. (22) provides the ABH shell displacement field for a given frequency value. For the
examples in this work, the size of the GEM mass and stiffness matrices in Eq. (22) are not very large and
a direct solver can be used to solve the linear system. Alternatively, one could resort to iterative solvers
like the well-known generalized minimal residual method (GMRES), among others, or simply deal with
reduced order models by typically projecting onto a low-order modal basis and dealing with reduced mass
and stiffness matrices (see e.g., [51]). The modes can be computed by setting F̂ = 0 in Eq. (22), which
leaves us with a generalized eigenvalue problem,(

−ω2M +K
)
Q̂ = 0, (23)

with eigenpairs (ωn, Q̂n), Q̂n = [Â>n , B̂
>
n , Ĉ

>
n ]>. The radial components of the structural modal shapes can

be recovered through

wn(x, y) = Ĉ>n ϕ(x, y). (24)

3.2. Periodicity conditions in the circumferential direction

The developments in the previous section would suffice to characterize an open cylindrical shell with a
line discontinuity at say, y = −πR. However, they cannot be used to calculate the response of a standard
cylindrical shell unless the basis function vectors βk(k = ψ, ξ, ϕ) fulfill continuity between y = −πR and
y = πR. Note that in this work we are using Gaussian bases to reconstruct both, the displacement fields in
the axial and circumferential directions. As for the latter one could have alternatively chosen a harmonic
basis but designs with ABH embedded in the circumferential direction are also feasible (see e.g., the ABH
circular beams in [50]). The use of a Gaussian basis in both directions facilitates dealing with more complex
ABH designs and latter in this work enables the inclusion of stiffeners, which make the cylindrical shell
thickness no longer constant in the circumferential direction, for a fixed axial position.

Continuity is required for the displacement field and its first and second derivatives, as observed from
Eqs. (7) and (9). The following conditions must hold,

u(x,−πR) = u(x, πR), v(x,−πR) = v(x, πR), w(x,−πR) = w(x, πR), (25)

∂u

∂y
(x,−πR) =

∂u

∂y
(x, πR),

∂v

∂y
(x,−πR) =

∂v

∂y
(x, πR),

∂w

∂y
(x,−πR) =

∂w

∂y
(x, πR), (26)

∂2u

∂y2
(x,−πR) =

∂2u

∂y2
(x, πR),

∂2v

∂y2
(x,−πR) =

∂2v

∂y2
(x, πR),

∂2w

∂y2
(x,−πR) =

∂2w

∂y2
(x, πR). (27)

To satisfy Eqs. (25)-(27), the shape functions in Eqs. (15)-(17) need to be modified. The detailed
procedure to construct a proper set of Gaussian basis functions for the cylindrical shell is explained in
Appendix B.

4. Validation of the Gaussian expansion method

In this section, we will validate the proposed GEM for ABH cylindrical shells against finite element
(FEM) simulations. The geometrical and material properties of the tested cylindrical shell and its annular
ABH indentation are summarized in Table 1. The Gaussian basis has been constructed taking δx = δy = 3 in
Eq. (19), which results in qx = [−44, 44] for Eq. (20) and qy = [−30, 30] for its analogous in the circumferential
direction. After applying the periodic boundary conditions for the latter, the range of qy gets reduced to
qy = [−27, 27]. The final dimensions of the basis function vectors become ψ4895×1 = ξ4895×1 = ϕ4895×1 =
αϕ89×1 ⊗ β

ϕ
55×1 and those of the mass and stiffness matrices M14685×14685 and K14685×14685. On the other

hand, the reference FEM model has been built using the commercial software package Comsol. A structured
mesh of quadrilaterals has been used for the cylindrical shell having a characteristic element size of 2 cm. This
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Figure 2: GEM validation against FEM. Comparison of modal frequencies.

has resulted in 79,316 quadratic elements and 317,896 nodes, corresponding to a total of 1,907,376 degrees of
freedom. The two ends of the shell have been clamped in the FEM simulations. This has been emulated in
the GEM by taking the following values for the line-distributed boundary springs: k1 = k2 = 1× 1010N/m2

and p1 = p2 = 1× 1010 N.
The computational run lasted for 528 s to recover the first 500 modes via the eigenvalue module in

Comsol, while it took only 203 s with a Matlab implementation of the proposed method (both calculations
were performed on a personal computer Intel i5 2.50 GHz). As it will be next shown, the GEM thus offers
a very good compromise between accuracy and computational cost.

To begin the validation, we have computed the resonant modes for a uniform cylindrical shell and a
cylindrical shell with an embedded annular ABH, using both the FEM and GEM approaches. The first 500
modes and their respective eigenfrequencies have been plotted in Fig. 2a. As observed, the values obtained
for the uniform and ABH cylindrical shells with the GEM are very close to those of FEM, and it becomes
difficult to distinguish any difference between them. For a better inspection, we have plotted the relative
errors between both methods in Fig. 2b. It can be seen that all errors are beneath 3% and the vast majority
hardly surpass 2%. The relative errors of the ABH shell are slightly higher than those of the uniform shell
because the same integration scheme has been used for them in the GEM, the geometry of the ABH shell
being more demanding.

Geometry parameters Material parameters
m = 3 ρ = 7800 kg/m3

a = 2.5 m E = 210 GPa
R = 1 m η = 0.005

huni = 0.02 m ν = 0.3
rabh = 1.25 m
ε = 0.0097 m−2 ρv = 950 kg/m3

hc = 0.001 m Ev = 5 GPa
rv = 1.25 m ηv = 0.5
hv = 0.005 m νv = 0.3

Table 1: Geometry and material parameters of the ABH cylindrical shell. ρ: shell density, ρv : damping layer density, E: shell
Young modulus, Ev : damping layer Young modulus, η: shell loss factor, ηv : damping layer loss factor, ν: shell Poisson ratio,
νv : damping layer Poisson ratio.
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Figure 3: Modal shapes of the ABH cylindrical shell computed with GEM and FEM.

Next, we have computed several modal shapes from Eq. (24) and plotted them in Fig. 3. The first two
rows in the figure contain the orders 1, 8, 25 and 40 for the ABH cylindrical shell, respectively computed
with the GEM and the FEM. Besides, the third and fourth rows contain the orders 50, 70, 110 and 310, again
computed with the GEM and the FEM. It is seen that the ABH indentation strongly amplifies the modal
vibration in the middle part of the shell. It can also be observed that the low order modes mainly involve
the circumferential direction (first and second rows), while higher order modes also include bending motion
in the axial direction. In all cases, the resemblance between the GEM and FEM results is remarkable. On
the other hand, and for completeness, in Fig. 4 we also present the modal shapes for the orders 1, 25, 50 and
110 of the uniform shell. As expected, in this case the amplitude is distributed along the whole structure.
Again, the GEM results match very well the FEM ones.
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(a1) GEM 1st (a2) GEM 25th (a3) GEM 50th (a4) GEM 110th

(b1) FEM 1st (b2) FEM 25th (b3) FEM 50th (b4) FEM 110th

Figure 4: Modal shapes of the uniform cylindrical shell computed with GEM and FEM.

Finally, it is worth mentioning that for simplicity in building the FEM models, no damping layers have
been considered in this section. As regards validation however, it should be noted that the fully coupled
scheme implemented for them in the theoretical GEM model has already been proved accurate by comparison
with numerical models and experiments in [18]. All things considered, one may conclude that the GEM
offers an accurate and efficient procedure to determine the vibrations of cylindrical shells with embedded
annular ABHs.

5. Simulation results

5.1. Annular ABH effects: energy focusing and vibration attenuation

Let us next analyze the benefits of inserting an annular ABH indentation on a cylindrical shell, in terms
of energy concentration and vibration attenuation. To that purpose, we have computed the displacement
response of the uniform and ABH shells up to 1000 Hz, when a point force of amplitude 1 N/m is exerted at
(xf , yf ) = (1.875, 0) m. This point excitation will be assumed in all subsequent simulations unless otherwise
specified.

Prior to starting the analysis, however, let us review the role of three threshold frequencies that could
have a significant impact on the annular ABH performance. It is well known that an ABH starts functioning
beyond the so-called diameter cut-on frequency, fr ≈ (πhuni/4rabh)(E/3ρ)1/2, which essentially determines
that the wavelength of the incident wave must be smaller than the ABH diameter. Nonetheless, the ABH
profile needs to be also smooth enough for proper impedance matching of the incident wave, so in practice
the ABH effect only becomes fully operative well passed the so-called smoothness cut-on frequency, fε0 ≈
(ε/2π)(E/3ρ)1/2 (typically 3fε0 works well, see e.g., [21]). For the problem at hand we are considering a
very large ABH (see Table 1) that results in very low diameter and smoothness cut-on frequencies. Actually,
we get fr ≈ 37.6 Hz and 3fε0 ≈ 15.9 Hz. Note that in most ABH designs 3fε0 � fr but the situation
is reversed in this example because of the very big dimensions of the ABH. Taking into account that the
analysis of the results reported below in this section will start at 50 Hz, one would a priori expect the ABH
to become effective for the whole considered frequency range. Another important frequency to contemplate
for cylindrical shells is the ring frequency, fR ≈ (1/2πR)(E/3ρ)1/2. It turns out that fR ≈ 865 Hz in
the current case, which means that beyond this frequency the curvature of the cylinder becomes negligible
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Figure 5: Mean square velocity (MSV) for (a) the uniform portion of the cylindrical shell, (b) the ABH portion and (c) the
MSV ratio Γ between the ABH portion and the uniform one, (d) MSV for the overall surface. The legend UNI refers to the
uniform cylindrical shell and ABH to the ABH cylindrical shell. The reference velocity is v0 = 1 m/s.

because the shell circumference is much longer than the longitudinal wavelength. Therefore, the cylinder
basically behaves as a flat plate for f > fR.

Having the above in mind, we can begin the analysis of the simulations. In Fig. 5, we have plotted
the surface mean square velocity (MSV) defined as 〈v2〉 = 1/S

∫
S
ω2w2dS (and in decibels 〈v2〉(dB) =

10 log(〈v2〉/v20) with v0 = 1 m/s), of different portions S of the ABH cylindrical shell. The latter are
compared with the MSV of the correspondig portions S in a uniform cylindrical shell (reference) to illustrate
the effects of the annular ABH. As said in section 2, the reference shell has the same amount of damping
than the ABH shell for a fair comparison. The MSV for the uniform portion (〈v2uni〉 in the region (x, y) ∈
[(−a,−rabh)∪ (rabh, a)]× (−πR, πR)) of the ABH cylindrical shell is compared with that of the reference in
Fig. 5a. A noticeable MSV reduction is appreciated as one could expect. Remarkably, however, this takes
place for frequencies well beyond 3fε0. The reason for that will be explained below. Besides, in Fig. 5b
we show the comparison between the MSV in the ABH area (〈v2abh〉 in the region (x, y) ∈ (−rabh, rabh) ×
(−πR, πR)) of the shell and the reference. The MSV level for the former is clearly higher, indicating that
a large amount of energy concentrates in the ABH where it can be dissipated by the viscoelastic layer.
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force is applied.

The MSV ratio defined by Γ = 10 log
(
〈v2abh〉/〈v2uni〉

)
illustrates more clearly this outcome in Fig. 5c. For

completion, in Fig. 5d, we plot the overall MSV values, 〈v2overall〉, for the ABH and reference shells. As
observed, some improvement can be appreciated for frequencies above 250 Hz. For instance, a 4 dB peak
reduction is experienced at ∼ 300 Hz and ∼ 550 Hz and at higher frequencies the ABH MSV is smaller
than that of the uniform shell. Yet, the overall MSV of the ABH shell does not exhibit a striking reduction
if compared to that of uniform one. The reason for that is that 〈v2overall〉 is the combination of 〈v2abh〉 and
〈v2uni〉, so the MSV reduction in the uniform part (see Fig. 5a) gets compensated by the augment in the
ABH region (see Fig. 5b). One should be careful though in seeing the overall MSV value as a clear indicator
of the good performance of ABH structures. The main effect of an ABH is that of extracting vibrational
energy from the uniform portion of the shell and transferring it to the central ABH region, where it can be
dissipated by the damping layer. This can be exploited in several ways. For instance, having low vibration
regions in a structure could be beneficial for coupling to other structural elements. Also, ABHs in plates
are known to strongly diminish their sound radiation efficiency as flexural waves become subsonic when
propagating inside the ABH region (see e.g., [6]). Such interesting phenomena become masked if one only
looks at the overall MSV value of an ABH structure.

As mentioned before, one would predict the ABH to start functioning beyond max{fr, 3fε0} ≈ 50 Hz,

12



100 250 400 550 700 850 1000
-130

-120

-110

-100

-90

-80

M
S

V
 (

d
B

)

Frequency (Hz)

f
R
=865

100 250 400 550 700 850 1000
-130

-120

-110

-100

-90

-80

M
S

V
 (

d
B

)
Frequency (Hz)

f
R
=865

r
v
=r

abh
r
v
=0.5r

abh

 r
v
=0.2r

abh

 
r
v
=0

r
v
=r

abh
r
v
=0.5r

abh

 r
v
=0.2r

abh

 
r
v
=0

(a) (b)

Figure 8: Influence of the size of the damping layer. Mean square velocity (MSV) for (a) the uniform portion of the cylindrical
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but in the present example we have recognized that this only occurs for f > 250 Hz. The reason for that is
that the annular ABH fundamentally attenuates waves in the axial direction while for f � fR most modes
of the ABH cylindrical shell are circumferential. To prove this assertion, we have calculated the modal loss
factors ηn = Im(ω2

n)/Re(ω2
n) for both the ABH shell and the reference one. These are presented in Fig. 6,

which reveals that the modal loss factors of the ABH shell are much higher than those of the reference.
Most importantly, it is observed in the figure that the higher modal loss factors always correspond to local
modes in the ABH region. For f � fR, the local modes take place in the circumferential direction and
do not trigger the ABH effect. In addition, the vibration amplitude gets amplified because of the stiffness
reduction in the ABH portion, which results in larger MSV values over the whole surface at low frequencies
observed in Fig. 5d. On the other hand, the axial modes appear at high frequencies and get damped by
the ABH effect. Further evidence of this behavior can be grasped from the forced vibration shapes of the
ABH and reference shells in Fig. 7. One can readily check how the vibration shapes at 82 Hz distribute in
the circumferential direction (see Fig. 7a) resulting in little energy absorption by the damping layers. As
opposed, at a higher frequency like 700 Hz (see Fig. 7b), bending waves propagate and the annular ABH
increases its efficiency in reducing vibrations (compare the forced shapes of the ABH and uniform shells in
the figure). Getting back to Fig. 5, it is interesting to note how in all subfigures the MSV decreases once
surpassed the ring frequency fR = 865 Hz, when the cylinder starts behaving like a flat plate.

5.2. Influence of the size of the viscoelastic damping layer

It is well-known that the viscous damping layer plays a critical role in the ABH effect by dissipating the
energy that concentrates at its center. The influence of the size, shape and thickness of the damping layer
has been widely studied in previous works on straight beams [18, 19] and flat plates [21]. In a nutshell, the
larger and thicker the damping layer the better, though beyond a certain limit augmenting the damping layer
size is no longer beneficial. The latter is confirmed here for the case of annular ABH in cylindrical shells.
To this aim, results are presented in Fig. 8 for four different cases characterized by rv/rabh = [0, 0.2, 0.5, 1].
The MSV values in Figs. 8a and 8b indicate that a small amount of damping (e.g. rv = 0.2rabh) makes
a big difference with respect to the bare case. Increasing rv/rabh results in better energy dissipation but
values rv/rabh > 0.5 induce negligible improvements. For instance, doubling the damping layer material to
rv/rabh = 1 results in negligible variations. This is consistent with previous conclusions on the influence of
the damping layer [21].

To better illustrate the above considerations, in Fig. 9 we present the deflection shapes for the four tested
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Figure 10: Sketch of the ABH cylindrical shell reinforced with longitudinal stiffeners.
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shells.

damping layer configurations at 750 Hz. The figure confirms the uselessness of incrementing the size of the
damping layer beyond rv = 0.5rabh because dissipation takes place in a much smaller area closer to the ABH
center. Therefore, for practical implementations taking rv = 0.5rabh would suffice.

5.3. Inclusion of longitudinal stiffeners

ABHs have the ability of reducing the vibrations of a structure with the remarkable property of dimin-
ishing its mass. However, this also poses a disadvantage in terms of structural stiffness. If the thickness at
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the ABH central section is too thin, an ABH cylindrical shell could collapse under excessive external load.
To prevent that situation one can insert longitudinal stiffeners in the structure. The inclusion of stiffeners
in ABHs was analyzed for the case of annular ABHs in plates in [22] and numerically tested for cylindrical
shells in the very recent work [24]. Hereafter, we will use the GEM in combination with the matrix-replacing
strategy [21] to characterize the insertion of longitudinal stiffeners having the thickness of the uniform part
of the shell, the same length of the ABH and width ws. A 3D sketch of the proposed annular ABH with
stiffeners is presented in Fig. 10.

To begin with, we compare the MSV of a point forced ABH with 4 uniformly distributed stiffeners of
width ws = 0.08 m, with that of an ABH without stiffeners and with the reference uniform shell. The
results are plotted in Fig. 11a. It is seen in the figure that the stiffeners help attenuating the vibration
below 500 Hz, especially in the frequency range [150,300] Hz. The MSV of the ABH stiffened shell decreases
∼ 7 dB at some frequencies when compared to that of the non-stiffened ABH shell. This result is logical
since the high MSV levels encountered for the ABH shell at that frequency range were attributed to weak
structural rigidity and to the excitation of circumferential modes. Both aspects are compensated with the
inclusion of the stiffeners. This is a significant result because a priori one would not automatically infer that
the stiffeners do not only reinforce the structure but also help diminishing low frequency vibrations. In fact,
this behavior was recently reported in [24] though no physical explanation was given for it. Nonetheless,
beyond 600 Hz, where the ABH is fully operative, the presence of the ABHs is slightly detrimental. This
is recognized in Fig. 11b as the number of stiffeners increases. The ABH dissipation area diminishes and
vibrations can be transmitted through them.

For completion, in Fig. 12, we have plotted the forced vibration shapes at 250 Hz of the stiffened ABH,
non stiffened ABH and reference shell analyzed in Fig. 11a. At this frequency the overall MSV value of the
stiffened ABH is ∼ 7− 8 dB lower than that of the non stiffened ABH.

6. Conclusions

In this paper, we have shown how the Gaussian expansion method (GEM) can be applied to a cylindrical
shell with an embedded annular acoustic black hole (ABH). The GEM uses Gaussian shape functions in
the framework of the Rayleigh-Ritz method and has the feature of accurately reproducing the vibration
field in the thinner portion of an ABH, at a very reasonable computational cost. The key for the GEM to
work properly for cylindrical shells is that of building a basis of Gaussian functions that satisfy the periodic
boundary conditions in the circumferential direction. This can be done quite straightforwardly within the
GEM.

After validating the proposed GEM approach with a finite element model, we have applied it to charac-
terize the vibration attenuation and energy concentration of the annular ABH. Whereas the cut-on frequency
at which the ABH effect is fully operational in flat plates is roughly dictated by three times the smoothness
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frequency, this is not the case for the annular ABH. The latter is essentially designed to reduce waves prop-
agating in the axial direction of the cylindrical shell. However, the low frequency range of the ABH mean
square velocity spectrum in the analyzed example is governed by waves in the circumferential direction.
The ABH is useless for them and it is not until bending modes get excited that the annular ABH starts
functioning well. This is the reason why including some stiffeners to strengthen the shell has turned out
to be beneficial at low frequencies: the structural rigidity increases and exciting circumferential modes be-
comes more difficult. For higher frequencies, though, the stiffeners worsen the ABH effect. For the example
at hand, it has been found that inserting a total of four stiffeners provides a good balance between the
performance at lower and higher frequencies. On the other hand, the amount of damping needed for proper
energy dissipation at the ABH center has also been investigated. Here, the same as for ABHs on flat surfaces
can be concluded. Covering the central half of the ABH area totally suffices for dissipation purposes, the
inclusion of additional viscous material being useless.

The current work contributes to showing the potential of ABH designs and methods for curved structural
elements commonly found in many areas of engineering. Future optimized ABH profiles that contemplate,
for instance, the coupling among flexural, extensional and shear waves due to curvature, could be worth
exploring.
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Appendix A: Mass matrix, stiffness matrix and force vector

The mass matrix M is given by

M =

 Muu 0 0
Mvv 0

sym. Mww

 , (A1)

where

Muu = ρ

∫ πR

−πR

∫ a

−a
h(x, y)ψ(x, y)ψ>(x, y)dxdy = ρ

∫ πR

−πR

∫ a

−a
h(x, y)

(
αψαψ

>)⊗ (βψβψ>) dxdy, (A2)

Mvv = ρ

∫ πR

−πR

∫ a

−a
h(x, y)ξ(x, y)ξ>(x, y)dxdy = ρ

∫ πR

−πR

∫ a

−a
h(x, y)

(
αξαξ

>)⊗ (βξβξ>) dxdy, (A3)

Mww = ρ

∫ 2πR

−πR

∫ a

−a
h(x, y)ϕ(x, y)ϕ>(x, y)dxdy = ρ

∫ πR

−πR

∫ a

−a
h(x, y)

(
αϕαϕ>

)
⊗
(
βϕβϕ>

)
dxdy. (A4)

The components of αk(x), k = ψ, ξ, ϕ, are obtained from Eq. (18) and analogous expressions can be derived
for βk(y), k = ψ, ξ, ϕ. Explicit expressions for them satisfying the periodicity in the circumferential direction
are derived in Appendix B.

On the other hand, the stiffness matrix K is composed of four parts, namely

K = Kbe +Kex +Kco +Ked. (A5)
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Here, Kbe, Kex, Kco and Ked respectively represent the contributions to the stiffness matrix caused by the
bending motion, the extensional motion, the coupling motion and the boundary conditions at the shell edge.

The bending stiffness matrix is

Kbe =

 0 0 0
0 0

sym. Kww
be

 , (A6)

where

Kww
be =

∫ πR

−πR

∫ a

−a
D(x, y)

[(
αϕαϕ>

)
⊗

(
d2βϕ

dy2
d2βϕ>

dy2

)
+

(
d2αϕ

dx2
d2αϕ>

dx2

)
⊗
(
βϕβϕ>

)
+ ν

(
d2αϕ

dx2
αϕ>

)
⊗

(
βϕ

d2βϕ>

dy2

)
+ ν

(
αϕ

d2αϕ>

dx2

)
⊗
(

d2βϕ

dy2
βϕ>

)

+ 2(1− ν)

(
dαϕ

dx

dαϕ>

dx

)
⊗

(
dβϕ

dy

dβϕ>

dy

)]
dxdy. (A7)

Besides, the extensional stiffness matrix has the expression

Kex =

 Kuu
ex Kuv

ex Kuw
ex

Kvv
ex Kvw

ex

sym. Kww
ex

 , (A8)

with

Kuu
ex =

∫ πR

−πR

∫ a

−a
G(x, y)

[
1− ν

2

(
αψαψ

>)⊗(dβψ

dy

dβψ
>

dy

)
+

(
dαψ

dx

dαψ
>

dx

)
⊗
(
βψβψ

>)]
dxdy, (A9)

Kuv
ex =

∫ πR

−πR

∫ a

−a
G(x, y)

[
ν

(
dαψ

dx
αξ
>
)
⊗

(
βψ

dβξ
>

dy

)
+

1− ν
2

(
αψ

dαξ
>

dx

)
⊗
(

dβψ

dy
βξ
>
)]

dxdy,

(A10)

Kuw
ex =

∫ πR

−πR

∫ a

−a
G(x, y)

ν

R

(
dαψ

dx
αϕ>

)
⊗
(
βψβϕ>

)
dxdy, (A11)

Kvv
ex =

∫ πR

−πR

∫ a

−a
G(x, y)

[(
αξαξ

>)⊗(dβξ

dy

dβξ
>

dy

)
+

1− ν
2

(
dαξ

dx

dαξ
>

dx

)
⊗
(
βξβξ

>)]
dxdy, (A12)

Kvw
ex =

∫ πR

−πR

∫ a

−a
G(x, y)

1

R

(
αξαϕ>

)
⊗
(

dβξ

dy
βϕ>

)
dxdy, (A13)

Kww
ex =

∫ πR

−πR

∫ a

−a
G(x, y)

1

R2

(
αϕαϕ>

)
⊗
(
βϕβϕ>

)
dxdy. (A14)

The coupling stiffness matrix is built as

Kco =

 0 0 0
Kvv
co Kvw

co

sym. 0

 , (A15)
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in which

Kvv
co =

∫ πR

−πR

∫ a

−a
D(x, y)

1

R2

[(
αξαξ

>)⊗(dβξ

dy

dβξ
>

dy

)
+ 2(1− ν)

(
dαξ

dx

dαξ
>

dx

)
⊗
(
βξβξ

>)]
dxdy,

(A16)

and

Kvw
co =−

∫ πR

−πR

∫ a

−a
D(x, y)

1

R

[(
αξαϕ>

)
⊗

(
dβξ

dy

d2βϕ>

dy2

)
+ ν

(
αξ

d2αϕ>

dx2

)
⊗
(

dβξ

dy
βϕ>

)

+ 2(1− ν)

(
dαξ

dx

dαϕ>

dx

)
⊗

(
βξ

dβϕ>

dy

)]
dxdy. (A17)

As regards the contribution of the springs at the shell edge to the overall stiffness matrix, this becomes

Ked =

 Kuu
ed 0 0

Kvv
ed 0

sym. Kww
ed

 , (A18)

where

Kuu
ed = ku1

∫ πR

−πR

[
αψ(−a)αψ(−a)

>]⊗ (βψβψ>) dy + ku2

∫ πR

−πR

[
αψ(a)αψ(a)

>]⊗ (βψβψ>)dy, (A19)

Kuu
ed = kv1

∫ πR

−πR

[
αξ(−a)αξ(−a)

>]⊗ (βξβξ>) dy + kv2

∫ πR

−πR

[
αξ(a)αξ(a)

>]⊗ (βξβξ>)dy, (A20)

Kww
ed =kw1

∫ πR

−πR

[
αϕ(−a)αϕ(−a)

>
]
⊗
(
βϕβϕ>

)
dy + kw2

∫ πR

−πR

[
αϕ(a)αϕ(a)

>
]
⊗
(
βϕβϕ>

)
dy

+ pw1

∫ πR

−πR

[
dαϕ

dx
(−a)

dαϕ>

dx
(−a)

]
⊗
(
βϕβϕ>

)
dy + pw2

∫ πR

−πR

[
dαϕ

dx
(a)

dαϕ>

dx
(a)

]
⊗
(
βϕβϕ>

)
dy.

(A21)

Finally, the force vector F̂ has the expression

F̂ =
[
0>,0>, F̂w>

]>
. (A22)

where

F̂w = ϕ(xf , yf ) = αϕ(xf )⊗ βϕ(yf ). (A23)

All matrices in the above expressions have been computed by means of the matrix-replacing strategy
in [21] (see section 2.3.2 in that paper). The integrals for the uniform shell have been carried out analytically
while a numerical 2D composite Gaussian integration scheme has been used for the ABH shells. The
mathematical software MATLAB has been employed to perform all computations.

Appendix B: Gaussian basis functions satisfying circumferential periodic conditions

As quoted in the main text, the same Gaussian basis functions can be used for the three displacement
variables, i.e. αψ = αξ = αϕ and βψ = βξ = βϕ. Therefore, in what follows it will suffice to present how
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to make the basis functions satisfy the periodic conditions in the y direction for the radial displacement w,
the procedure being analogous for u and v.

In the case of a cylindrical shell with a line aperture (i.e. disconnected at y = −πR), the radial
displacement w(x, y, t) can be decomposed in terms of Gaussian basis functions, as described by Eqs. (14),
(17) and (18),

w(x, y, t) = c(t)>ϕ(x, y) =

n∑
i=1

m∑
j=1

αϕi (x)βϕj (y)cij(t), (B1)

where cij(t) = cxi (t)cyj (t) stand for the unknown time dependent coefficients (superscripts x and y respectively
designate the coefficients multiplying αϕi (x) and βϕj (y)). n and m are the number of basis functions in the
x and y directions.

Imposing the condition w(x,−πR) = w(x, πR) of Eq. (25) using the factorization Eq. (B1) results in∑m
j=1 β

ϕ
i (πR)cyj =

∑m
j=1 β

ϕ
j (−πR)cyj , from which follows

m∑
j=1

[
βϕj (πR)− βϕj (−πR)

]
cyj = 0. (B2)

Expanding the m-th term in Eq. (B2) as a combination of the remaining m− 1 ones provides

m−1∑
j=1

[
βϕj (πR)− βϕj (−πR)

]
cyj = − [βϕm(πR)− βϕm(−πR)] cym, (B3)

which allows one to compute the m-th coefficient, cym, as

cym = −
m−1∑
j=1

βϕj (πR)− βϕj (−πR)

βϕm(πR)− βϕm(−πR)
cyj . (B4)

If we next substitute cym into Eq. (B1), it turns out that
∑m
j=1 β

ϕ
j c

y
j =

∑m−1
j=1 βϕj c

y
j + βϕmc

y
m. We can then

define new basis functions βϕ1j satisfying w(x,−πR) = w(x, πR) as follows

βϕ1j = βϕj − C
1
j β

ϕ
m (j = 1, 2, 3, ...,m− 1), (B5)

where the superscript 1 of βϕ1j indicates the number of periodic conditions being considered (in this case

that of Eq. (25)). The rule also applies to subsequent formulas. In Eq. (B5), the coefficient C1
j is given by

C1
j =

[
βϕj (πR)− βϕj (−πR)

]/
[βϕm(πR)− βϕm(−πR)] .

We can proceed in analogous manner to impose the additional periodicity conditions of Section 3.2.
Applying ∂yw(x,−πR) = ∂yw(x, πR) of Eq. (26) to the new basis βϕ1j , we can get cym−1 from the remaining
m− 2 coefficients,

cym−1 = −
m−2∑
j=1

∂yβ
ϕ1
j (πR)− ∂yβϕ1j (−πR)

∂yβ
ϕ1
m−1(πR)− ∂yβϕ1m−1(−πR)

cyj . (B6)

New basis functions now satisfying the above two periodic boundary on w(x, y, t) can be build as

βϕ2j = βϕ1j − C
2
j β

ϕ1
m−1 (j = 1, 2, 3, ...,m− 2), (B7)

where C2
j =

[
∂yβ

ϕ1
j (πR)− ∂yβϕ1j (−πR)

]/[
∂yβ

ϕ1
m−1(πR)− ∂yβϕ1m−1(−πR)

]
.

Finally, prescribing condition ∂2yyw(x,−πR) = ∂2yyw(x, πR) of Eq. (27) yields,

βϕ3j = βϕ2j − C
3
j β

ϕ2
m−2 (j = 1, 2, 3, ...,m− 3), (B8)

where C3
j =

[
∂2yyβ

ϕ2
j (πR)− ∂2yyβ

ϕ2
j (−πR)

]/[
∂2yyβ

ϕ2
m−2(πR)− ∂2yyβ

ϕ2
m−2(−πR)

]
.

The Gaussian basis βϕ3j in Eq. (B8) is the final one we were looking for. It fulfills all periodic conditions
in the cylindrical shell circumferential direction.
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