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1 Introduction

This work is partly the continuation of [START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF][START_REF] Bui | Families of eulerian functions involved in regularization of divergent polyzetas[END_REF][START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF] where it has been established that the polylogarithms, indexed by the r-tuples (s 1 , . . . , s r ) ∈ C r , are well defined locally by

Li s 1 ,...,s r (z

) := ∑ n 1 >...>n r >0 z n 1 n s 1 1 . . . n s r r , for |z| < 1, (1) 
could be extended, in case (s 1 , . . . , s r ) ∈ N r + , to some series, over the alphabet X = {x 0 , x 1 } generating the monoid X * with the neutral element 1 X * [START_REF] Berstel | Rational series and their languages[END_REF]. More precisely, (i) we start to consider [START_REF] Ngoc | Summations of Polylogarithms via Evaluation Transform[END_REF] 

∀w = x s 1 -1 0 x 1 . . . x s r -1 0 x 1 ∈ X * x 1 , Li w = Li s 1 ,...,s r , (2) 
(ii) then extend 2 Li • as the ⊔⊔ -morphism (C X , ⊔⊔, 1 X * ) -→ (C{Li} w∈X * , ×, 1) by adding Li x 0 (z) = log(z). This morphism is injective and satisfies [START_REF] Hoang Ngoc Minh | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF] ∀S, T ∈ C X , Li S ⊔⊔ T = Li S Li T .

(iii) For the sake of symbolic calculations, it is important that, on the one hand, these series should belong to some "computable spaces" and, on the other hand, that the new domain (a) be closed by shuffle products and (b) that the Li • correspondence should preserve the shuffle identity [START_REF] Costermans | Some Results à l'Abel Obtained by Use of Techniques à la Hopf, Global Integrability of Field Theories and Applications[END_REF].

To this end a theory of global domains was presented in [START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF][START_REF] Bui | Families of eulerian functions involved in regularization of divergent polyzetas[END_REF][START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF]]. Here we focus on what happens in the neighbourhood of zero, therefore, the aim of this work is manyfold. Let us highligh the many facets of this matter.

(i) Propagate the extension to local Taylor expansions 3 as in [START_REF] Berstel | Rational series and their languages[END_REF] and the coefficients of their quotients by 1z, namely the harmonic sums, denoted H • and defined, for any w ∈ X * x 1 , as follows 4 [START_REF] Ngoc | Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series[END_REF] Li w (z)

1 -z = ∑ N≥0 H π X (w) (N)z N , (4) 
by a suitable theory of local domains which assures to carry over the computation of these Taylor coefficients and preserves the stuffle indentity, again true for polynomials over the alphabet Y = {y n } n≥1 , i.e. ∀S,

T ∈ C Y , H S T = H S H T , (5) 
2 This paper uses extensively shuffle and stuffle products (noted ⊔⊔ and respectively). For readers unfamiliar with these subjects their definitions are recalled at the end of this text, see paragraph 2.2. 3 Around zero. 4 Here, the conc-morphism π X : (C Y , conc, 1 Y * ) -→ (C X , conc, 1 X * ) is defined by π X (y n ) =

x n-1 0 x 1 and π Y its inverse on Im(π X ). See [6,5,13] for more details and a full definition of π Y .

meaning that H • : (C Y , , 1 Y * ) -→ (C{H w } w∈Y * , ×, 1), mapping any word w = y s 1 . . . y s r ∈ Y * to

H w = H s 1 ,...,s r = ∑ N≥n 1 >...>n r >0 1 n s 1 1 . . . n s r r , (6) 
is a injective -morphism [START_REF] Ngoc | Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series[END_REF].

(ii) Extend these correspondences (i.e. Li • , H • ) to some series (over X and Y , respectively) in order to preserve the identity5 [START_REF] Ngoc | Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series[END_REF] Li π X (S) (z)

1 -z ⊙ Li π X (T ) (z) 1 -z = Li π X (S T ) (z) 1 -z . ( 7 
)
true for polynomials S, T ∈ C Y .

(iii) Taking the definition of polyetas as in (1) at z = 1 or in ( 6) at +∞, one sees that, for any

s 1 > 1, Abel's theorem, one has ζ (s 1 , . . . , s r ) = lim z→1 Li s 1 ,...,s r (z) (8) 
= lim N→+∞ H s 1 ,...,s r (N) (9) = ∑ n 1 >...>n r >0 1 n s 1 1 . . . n s r r . (10) 
However, this theorem does not hold in the divergent cases. and we will recall some regularization process based on the computation of a -character with polynomial values and specialize it to obtain a character [START_REF] Costermans | Some Results à l'Abel Obtained by Use of Techniques à la Hopf, Global Integrability of Field Theories and Applications[END_REF][START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF] γ

• : (Q Y , , 1 Y * ) -→ (Z [γ], ×, 1), (11) 
where Z := span Q {ζ (s 1 , . . . , s r )} r≥1,s 1 ≥2,s 2 ,...,s r ≥1 .

(iv) To this end, we use the explicit parametrization of the conc-characters obtained in [START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF][START_REF] Bui | Families of eulerian functions involved in regularization of divergent polyzetas[END_REF][START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF] and the fact that, under stuffle products, they form a group. We show the linear independence of the Kleene stars (z k y k ) * and show that γ • provides a group morphism between the group of conc-characters (endowed with ) and that of Taylor series g (with radius R = 1) such that g(0) = 1. This morphism maps each star y * k precisely to 1

Γ y k (1 + z) = exp -∑ n≥1 ζ (kn) (-z k ) n n , for k ≥ 2. ( 12 
)
and y * 1 to the classical inverse Gamma:

Γ -1 y 1 (1 + z) = Γ -1 (1 + z). (13) 
We will prove that all these "new" functions are entire and linearly independant.

To summarize, the present work concerns the whole project of extending H • over a stuffle subalgebra of rational power series on the alphabet Y , in particular the stars of letters and some explicit combinatorial consequences of this extension.

Domains and extensions

All starts with the (multiindexed) polylogarithm defined, for |z| < 1, by [START_REF] Berstel | Rational series and their languages[END_REF]. It is (multi-)indexed by a list (s 1 , . . . , s r ) ∈ N r ≥1 which can be reindexed by a word

x s 1 -1 0 x 1 . . . x s r -1 0 x 1 ∈ X * x 1 . From this, introducing two differential forms ω 0 (z) = z -1 dz and ω 1 (z) = (1 -z) -1 dz, (14) 
we get an integral representation of the functions (1) as follows6 [START_REF] Ngoc | Summations of Polylogarithms via Evaluation Transform[END_REF] Li

w (z) =                  1 H (Ω) if w = 1 X * z 0 ω 1 (s) Li u (s) if w = x 1 u z 1 ω 0 (s) Li u (s) if w = x 0 u and |u| x 1 = 0, w ∈ x * 0 z 0 ω 0 (s) Li u (s) if w = x 0 u and |u| x 1 > 0, w / ∈ x * 0 , ( 15 
)
where Ω is the simply connected domain C \ (] -∞, 0] ∪ [1, +∞[), over which we consider the algebra of analytic functions, H (Ω), with the neutral element 1 H (Ω) . This provides not only the analytic continuation of [START_REF] Berstel | Rational series and their languages[END_REF] to Ω but also extends the indexation to the whole alphabet X , allowing to study the complete generating series

L(z) = ∑ w∈X * Li w (z)w (16) 
and show that it is the solution of the following first order noncommutative differential equation

     d(S) = (ω 0 (z)x 0 + ω 1 (z)x 1 )S, (NCDE) lim z∈Ω,z→0 S(z)e -x 0 log(z) = 1 H (Ω) X , asymptotic initinial condition, (17) 
where, for any S ∈ H (Ω) X , for term by term derivation, one gets [START_REF] Drinfrl'd | -On quasitriangular quasi-Hopf algebra and a group closely connected with Gal Q/Q[END_REF] 

d(S) = ∑ w∈X * d dz ( S | w )w. (18) 
This differential system allows to show that L is a ⊔⊔ -character [START_REF] Hoang Ngoc Minh | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF], i.e.

∀u, v ∈ X * , L | u ⊔⊔ v = L | u L | v and L | 1 X * = 1 H (Ω) . (19) 
Note that, in what precedes, we used the pairing • | • between series and polynomials, classically defined by, for T ∈ C X and P ∈ C X7 

T | P = ∑ w∈X * T | w P | w , (20) 
where, when w is a word, S | w stands for the coefficient of w in S. With this at hand, we extend at once the indexation of Li from X * to C X by

Li P := ∑ w∈X * P | w Li w = ∑ n≥0 ∑ |w|=n P | w Li w . (21) 
In [START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF][START_REF] Bui | Families of eulerian functions involved in regularization of divergent polyzetas[END_REF][START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF], it has been established that the polylogarithm, well defined locally by [START_REF] Berstel | Rational series and their languages[END_REF], could be extended to some series (with conditions) by the last part of formula (21) where the polynomial P is replaced by some series.

As was said previously, we focus here on what happens in the neighbourhood of zero. Therefore, the aim of this paragraph concerns the two first points of Section 1. which we summarize here (i) Propagate the extension to local Taylor expansions 8 of polylogarithms and the coefficients of their quotients by 1z, namely the harmonic sums, by a suitable theory of local domains.

(ii) Extend these correspondences (i.e. Li • , H • ) to some series in order to preserve the identity (7).

Polylogarithms: from global to local domains

The map Li • in general has been extended to a subdomain of C X , called Dom(Li • ) (see [START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF][START_REF] Bui | Families of eulerian functions involved in regularization of divergent polyzetas[END_REF][START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF]). It is the set of series 

S = ∑ n≥0 S n ,
(z) = ∑ n≥1 z n n k = Li x k-1 0 x 1 (z) = L(z) | x k-1 0 x 1 but for t ≥ 0 (real), the series (tx 0 ) * x 1 belongs to Dom(Li • ) iff 0 ≤ t < 1. Dom(Li) C rat X A C X Above A = C X ⊔⊔ C rat X and C rat X
is the set of rational series [START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF][START_REF] Bui | Families of eulerian functions involved in regularization of divergent polyzetas[END_REF][START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF].

This definition has many merits 9 and can easily be adapted to arbitrary (open and connected) domains. But this definition, based on a global condition of a fixed domain Ω, does not provide a sufficiently clear interpretation of the stable symbolic computations around a point, in particular at z = 0. One needs to consider a sort of "symbolic local germ" worked out explicitely. Indeed, as the harmonic sums (or MZV) are the coefficients of the Taylor expansion at zero of the convergent polylogarithms divided by 1z, we only need to know locally these functions. In order to gain more indexing series and to describe the local situation at zero, we reshape and define a new domain of Li around zero to Dom loc (Li • ). The first step will be provided by the following theorem.

Theorem 2.2 Let S ∈ C X x 1 ⊕ C1 X * such that S = ∑ n≥0 [S] n where [S] n = ∑ w∈X * ,|w|=n S | w w, ([S] n are the homogeneous components of S), we suppose that 0 < R ≤ 1 and that ∑ n≥0 Li [S] n is unconditionally convergent (for the standard topology) within the open disk | z |< R. Remarking that 1 1 -z ∑ n≥0 Li [S] n (z) is unconditionally convergent in the same domain, we set 1 1 -z ∑ n≥0 Li [S] n (z) = ∑ N≥0 a N z N .
Then, for all N ≥ 0,

∑ n≥0 H π Y ([S] n ) (N) = a N .
Proof. Let us recall that, for any w ∈ X * , the function

(1 -z) -1 Li w (z) is analytic in the open disk |z| < R. Moreover, one has 1 1 -z Li w (z) = ∑ N≥0 H π Y (w) (N)z N . Since [S] n = ∑ w∈X * ,|w|=n S | w w and (1 -z) -1 ∑ n≥0 Li [S]
n absolutely converges (for the standard topology 10 ) within the open disk |z| < R, one obtains 1

1 -z ∑ n≥0 Li [S] n (z) = 1 1 -z ∑ n≥0 ∑ w∈X * ,|w|=n S | w w Li w (z) = ∑ n≥0 ∑ w∈X * ,|w|=n S | w w Li w (z) 1 -z = ∑ n≥0 ∑ w∈X * ,|w|=n S | w w ∑ N≥0 H π Y (w) (N)z N = ∑ N≥0 ∑ n≥0 ∑ w∈X * ,|w|=n S | w wH π Y (w) (N)z N = ∑ N≥0 H π Y ([S] n ) (N)z N .
This implies that, for any N ≥ 0,

a N = ∑ n≥0 H π Y ([S] n ) (N).

✷

We will need the following combinatorial Lemma 2.3 For a letter "a", one has 

| (a + ) ⊔⊔ m | a n = m!S 2 (n, m) (23) 
∑ n≥0 m!S 2 (n, m) x n n! = (e x -1) m . ( 24 
)
Proof. (a + ) ⊔⊔ m is the specialization of

L m = a + 1 ⊔⊔ a + 2 ⊔⊔ . . . ⊔⊔ a + m
to a j → a (for all j = 1, 2 . . .m). The words of L m are in bijection with the surjections

[1 . . . n] → [1 . . .m], therefore the coefficient (a + ) ⊔⊔ m |a n is exactly the number of such surjections namely m!S 2 (n, m). A classical formula 11 says that ∑ n≥0 m!S 2 (n, m) x n n! = (e x -1) m . (25) 

✷

To prepare the construction of the "symbolic local germ" around zero, let us set, in the same manner as in [START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF][START_REF] Bui | Families of eulerian functions involved in regularization of divergent polyzetas[END_REF][START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF],

Dom R (Li) := {S ∈ C X x 1 ⊕ C1 X * | ∑ n≥0 Li [S] n is unconditionally convergent in H (D <R )} (26) 
and prove the following:

Proposition 2.4 With the notations as above, we have:

(i) The map ]0, 1] → C X given by R → Dom R (Li) is strictly decreasing (ii) Each Dom R (Li) is a shuffle subalgebra of C X .
Proof.

(i) It is straightforward that he map R -→ Dom R (Li) is decreasing. Set now, with

x + 1 = x 1 x * 1 = x * 1 -1, S(t) = ∑ m≥0 t m (x + 1 ) ⊔⊔ m
and let [S] n (t) be its homogeneous components, we have

∑ n≥0 Li [S] n (t) (z) = 1 -z 1 -(t + 1)z . For 0 < R 1 < R 2 ≤ 1 it is straightforward that Dom R 2 (Li) ⊂ Dom R 1 (Li).
Let us prove that the inclusion is strict. Take | z |< 1 and let us, be it finite or infinite, evaluate the sum

M(z) = ∑ n≥0 | Li [S] n (t) (z) |= ∑ n≥0 S(t) | x n 1 | Li x n 1 (z) |
then 11 See [START_REF] Stanley | Enumerative Combinatorics[END_REF], the twelvefold way, formula (1.94b)(pp. 74) for instance.

M(z) = ∑ n≥0 | S(t) | x n 1 | Li x n 1 (z) | = ∑ n≥0 ∑ m≥0 |t m (x + 1 ) ⊔⊔ m | x n 1 | Li x n 1 (z) | = ∑ m≥0 m!t m ∑ n≥0 S 2 (n, m) | Li x 1 (z) | n n! ≤ ∑ m≥0 m!t m ∑ n≥0 S 2 (n, m) Li n x 1 (| z |) n! , due to the fact that | Li x 1 (z) |≤ Li x 1 (| z |) (
Taylor series with positive coefficients). Finally, in view of equation ( 25), we get, on the one hand, for

| z |< (t + 1) -1 , M(z) ≤ ∑ m≥0 t m (e Li x 1 (|z|) -1) m = ∑ m≥0 t m ( | z | 1-| z | ) m = 1-| z | 1 -(t + 1) | z | .
This proves that, for all r ∈]0,

1 t + 1 [, ∑ n≥0 Li [S] n (t) (z) r < +∞.
On the other hand, if (t + 1) -1 ≤| z |< 1, one has M(|z|) = +∞, and the preceding calculation shows that, with t choosen such that

0 ≤ 1 R 2 -1 < t < 1 R 1 -1, we have S(t) ∈ Dom R 1 (Li) but S(t) / ∈ Dom R 2 (Li) whence, for 0 < R 1 < R 2 ≤ 1, Dom R 2 (Li) Dom R 1 (Li).
(ii) One has (proofs as in [START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF]

) (a) 1 X * ∈ Dom R (Li) (because 1 X * ∈ C X ) and Li 1 X * = 1 H (Ω) . (b) Taking S, T ∈ Dom R (Li) we have, by absolute convergence, S ⊔⊔ T ∈ Dom R (Li). It is easily seen that S ⊔⊔ T ∈ C X x 1 ⊕ C1 X * and, moreover, that Li S Li T = Li S ⊔⊔ T 12 .

✷

In Theorem 2.6 bellow, we study, for series taken in C X x 1 ⊕ C.1 X * , the correspondence Li • to some H (D <R ), first (point 1) establishes its surjectivity (in a certain sense) and then (points 2 and 3) examine the relation between summability of the functions and that of their Taylor coefficients. For that, let us begin with a very general lemma on sequences of Taylor series which adapts, for our needs, the notion of normal families [START_REF] Montel | Leçons sur les familles normales de fonctions analytiques et leurs applications[END_REF]. Lemma 2.5 Let τ = (a n,N ) n,N≥0 be a double sequence of complex numbers. Setting

I(τ) := {r ∈]0, +∞[| ∑ n,N≥0 |a n,N r N | < +∞}, one has (i) I(τ) is an interval of ]0, +∞[, it is not empty iff there exists z 0 ∈ C \ {0} such that ∑ n,N≥0 |a n,N z N 0 | < +∞ (27) 
In this case, we set R(τ) := sup(I(τ)), one has (a) For all N, the series ∑ n≥0 a n,N converges absolutely (in C). Let us note a Nwith one subscript -its limit (b) For all n, the convergence radius of the Taylor series Then I(τ) = / 0 and R(τ) ≥ R.

T n (z) = ∑ N≥0 a n,N z N is at least R(τ) and ∑ n∈N T n is summable for the standard topology of H (D <R(τ) ) with sum T (z) = ∑ n,N≥0 a N z N .
Proof.

(i) The fact that which proves that R(T n ) ≥ r, hence the result 13 . We also have

I(τ) ⊂]0, +∞[ is straightforward from the definition. If it exists z 0 ∈ C such that ∑ n,N≥0 | a n,N z N 0 |< +∞ then, for all r ∈]0, |z 0 |[, we have ∑ n,N≥0 | a n,N r N |= ∑ n,N≥0 | a n,N z N 0 | r | z 0 | N ≤ ∑ n,N≥0 |a n,N z N 0 | < +∞
| ∑ N≥0 a N r N |≤ ∑ N≥0 r N | ∑ n≥0 a n,N |≤ ∑ n,N≥0 | a n,N r N |< +∞ and this proves that R(T ) ≥ r, hence R(T ) ≥ R(τ).
(ii) Let 0 < r < r 1 < R and consider the path γ(t) = r 1 e 2iπt , we have

| a n,N |=| 1 2iπ γ T n (z) z N+1 dz |≤ 2π 2π r 1 T n K r N+1 1 ≤ T n K r N 1 with K = γ([0, 2π]), hence ∑ n,N≥0 | a n,N r N |≤ ∑ n,N≥0 | T n | K ( r r 1 ) N ≤ r 1 r 1 -r ∑ n≥0 T n K < +∞. ✷ Theorem 2.6 (i) Let T (z) = ∑ N≥0
a N z N be a Taylor series i.e. such that

lim sup N→+∞ | a N | 1/n = B < +∞, then the series S = ∑ N≥0 a N (-(-x 1 ) + ) ⊔⊔ N (28)
is summable (see [START_REF] Berstel | Noncommutative Rational Series with Applications, Encyclopedia of Mathematics and its Applications series[END_REF]) in C X (with sum in C x 1 ), S ∈ Dom R (Li) with R = (B + 1) -1 and Li S = T .

(ii) Let S ∈ Dom R (Li) and S = ∑ ≥0

[S] n (homogeneous decomposition), we define N -→ H π Y (S) (N) by 14 Li S (z)

1 -z = ∑ N≥0 H π Y (S) (N)z N . (iii) Moreover, ∀r ∈]0, R[, ∑ n,N≥0 | H π Y ([S] n ) (N)r N |< +∞, (29) 
and, for all N ∈ N, the series (of complex numbers),

∑ n≥0 H π Y ([S] n ) (N) converges
absolutely to H π Y (S) (N). 13 For a Taylor series T , we note R(T ) the radius of convergence of T . 14 This definition is compatible with the old one when S is a polynomial.

(iv)

Conversely, let Q ∈ C Y with Q = ∑ n≥0
Q n (decomposition by weights), we suppose that it exists r ∈]0, 1] such that

∑ n,N≥0 | H Q n (N)r N |< +∞, (30) 
in particular, for all N ∈ N,

∑ n≥0 H Q n (N) = ℓ(N) ∈ C unconditionally. Under such circumstances, π X (Q) ∈ Dom r (Li) and, for all z ∈ C, | z |≤ r, Li S (z) 1 -z = ∑ N≥0 ℓ(N)z N , (31) 
Proof.

(i) The fact that the series (28) is summable comes from the fact that ω(a N (-(-x 1 ) + ) ⊔⊔ N ) ≥ N (see [START_REF] Berstel | Noncommutative Rational Series with Applications, Encyclopedia of Mathematics and its Applications series[END_REF]). Now from the lemma, we get

(S) n = ∑ N≥0 (a N (-(-x 1 ) + ) ⊔⊔ N ) n = (-1) N+n a N N!S 2 (n, N)x n 1 .
Then, with r = sup z∈K |z| (we have indeed r = Id K ) and taking into account that Li x 1 K ≤ log(1/(1r)), we have

∑ n≥0 Li (S) n K ≤ ∑ n≥0 ∑ N≥0 | a N | N!S 2 (n, N) Li x n 1 K ≤ ∑ n≥0 ∑ N≥0 | a N | N!S 2 (n, N) Li x 1 n K n! ≤ ∑ N≥0 | a N | ∑ n≥0 N!S 2 (n, N) | Li x 1 | n K n! ≤ ∑ N≥0 | a N | (e log( 1 1-r ) -1) N = ∑ N≥0 | a N | r 1 -r N .
Now if we suppose that r ≤ (B + 1) -1 , we have r(1r) -1 ≤ 1/B and this shows that the last sum is finite.

(ii) This point and next point are consequences of Lemma 2.5. Now, considering the homogeneous decomposition

S = ∑ n≥0 [S] n ∈ Dom R (Li).
we first establish inequation (29). Let 0 < r < r 1 < R and consider the path γ(t) = r 1 e 2iπt , we have

| H π Y ([S] n ) (N) |=| 1 2iπ γ Li [S] n (z) (1 -z)z N+1 dz |≤ 2π 2π Li [S] n K (1 -r 1 )r N+1 1 , K = γ([0, 1]
) being the circle of center 0 and radius r 1 . Taking into account that, for K ⊂ comp. D <R , we have a decomposition

∑ n∈N | Li [S] n | K = M < +∞, we get ∑ n,N≥0 | H π Y ([S] n ) (N)r N | = ∑ n,N≥0 | H π Y ([S] n ) (N)r N 1 | ( r r 1 ) N = ∑ N≥0 ( r r 1 ) N ∑ n≥0 | H π Y ([S] n ) (N)r N 1 | ≤ ∑ N≥0 ( r r 1 ) N M (1 -r 1 )r 1 ≤ M (1 -r 1 )(r 1 -r) < +∞.
The series

∑ n≥0 Li [S] n (z) converges to Li S (z) in H (D <R ) (D <R is the open disk defined by |z| < R).
For any N ≥ 0, by Cauchy's formula, one has,

H π Y (S) (N) = 1 2iπ γ Li S (z) (1 -z)z N+1 dz = 1 2iπ γ ∑ n≥0 Li [S] n (z) (1 -z)z N+1 dz = 1 2iπ ∑ n≥0 γ Li [S] n (z) (1 -z)z N+1 dz = ∑ n≥0 H π Y ([S] n ) (N)
the exchange of sum and integral being due to the compact convergence. The absolute convergence comes from the fact that the convergence of

∑ n≥ Li [S] n (z)
is unconditional [START_REF] Schaefer | Topological Vector Spaces[END_REF].

(iii) Fixing N ∈ N, from inequation (30), we get

∑ n≥0 | H Q n (N) |< +∞ which proves the absolute convergence. Remark now that (π X (Q)) n = π X (Q n ) and π Y (π X (Q n )) = Q n , one has, for all | z |≤ r | Li π X (Q n ) (z) |=| ∑ N∈N H Q n (N)z N |≤| ∑ N∈N H Q n (N)r N |, in other words Li π X (Q n ) D≤r ≤| ∑ N∈N H Q n (N)r N | and ∑ n∈N Li π X (Q n ) D≤r ≤| ∑ n,N∈N H Q n (N)r N |< +∞ which shows that π X (Q) ∈ Dom r (Li). The equation (31) is a consequence of point 2, taking S = π X (Q). ✷ Definition 2.7 We set Dom loc (Li) = 0<R≤1 Dom R (Li); Dom(H • ) = π Y (Dom loc (Li))
and, for S ∈ Dom loc (Li),

Li S (z) = ∑ n≥0 Li [S] n (z) and Li S (z) 1 -z = ∑ N≥0 H π Y (S) (N)z N .
Observe that, from this definition, theorem (2.8), will show that Dom(H

• ) is a stuffle subalgebra of C Y . (i) The series T = ∞ ∑ n=1 (-1) n-1 y n /n ∈ C Y is not in Dom(H • ) because, for all 0 < r < 1, one has ∑ n,N | T n (N)r N |≥ ∑ n≥0 1 1 -r = +∞ (32) 
However one can get unconditional convergence using a sommation by pairs (odd + even).

(ii) For all s ∈]1, +∞[, the series

T (s) = ∞ ∑ n=1 (-1) n-1 y n n -s ∈ C Y is in Dom(H • ).
We can now state the Theorem 2.8 Let S, T ∈ Dom loc (Li), then

S ⊔⊔ T ∈ Dom loc (Li), π X (π Y (S) π Y (T )) ∈ Dom loc (Li)
and for all N ≥ 0,

Li S ⊔⊔ T = Li S Li T ; Li 1 X * = 1 H (Ω) , (33) H π Y (S) π Y (T ) (N) = H π Y (S) (N)H π Y (T ) (N). ( 34 
) Li S (z) 1 -z ⊙ Li T (z) 1 -z = Li π X (π Y (S) π Y (T )) (z) 1 -z . ( 35 
)
Proof. For equation (33), we get, from lemma 2.4 that Dom loc (Li) is the union of an increasing set of shuffle subalgebras of C X . It is therefore a shuffle subalgebra of the latter.

For equation (34), suppose S ∈ Dom R 1 0 (Li) (resp. T ∈ Dom R 2 0 (Li)). By [START_REF] Hadamard | Théorème sur les séries entières[END_REF] and theorem 2.6, one has

Li S (z) 1 -z ⊙ Li T (z) 1 -z ∈ Dom R 1 R 2 0 (Li),
where ⊙ stands for the Hadamard product [START_REF] Hadamard | Théorème sur les séries entières[END_REF]. Hence, for |z| < R 1 R 2 , one has

f (z) = Li S (z) 1 -z ⊙ Li T (z) 1 -z = ∑ N≥0 H π Y (S) (N)H π Y (T ) (N)z N (36)
and, due to theorem 2.6 point (iii), for all N, ∑ p≥0 

H π Y (S p ) (N) = H π Y (S) (N) and ∑ q≥0 H π Y (T q ) (N) = H π Y (T ) (N) (absolute convergence) then,
H π Y (S) (N)H π Y (T ) (N) = ∑ p≥0 H π Y (S p ) (N) ∑ q≥0 H π Y (T q ) (N) = ∑ p,q≥0 H π Y (S p ) (N)H π Y (T q ) (N) = ∑ n≥0 ∑ p+q=n H π Y (S p ) π Y (T q ) (N) = ∑ n≥0 H (π Y (S) π Y (T )) n (N). (37) 
Remains to prove that condition of Theorem 2.6, i.e. inequation (30) is fulfilled. To this end, we use the well-known fact that if ∑ m≥0 c m z m has radius of convergence R > 0, then

∑ m≥0 |c m | z m has the same radius of convergence (use 1/R = lim sup m≥1 | c m | -m ), then from the fact that S ∈ Dom R 1 0 (Li) (resp. T ∈ Dom R 2 0 (Li))
, we have (29) for each of them and, using the Hadamard product of these expressions, we get

∀r ∈]0, R 1 .R 2 [, ∑ p,q,N≥0 |H π Y (S p ) (N)H π Y (T q ) (N) r N | < +∞,
and this assures, for |z| < R 1 R 2 , the convergence of

f (z) = ∑ n,N≥0 H (π Y (S) π Y (T )) n (N)z N (38) applying theorem 2.6 point (iv) to Q = π Y (S) π Y (T ) (with any r < R 1 R 2 ), we get π X (Q) = π X (π Y (S) π Y (T )) ∈ Dom loc (Li) and f (z) = ∑ N≥0 ∑ n≥0 H (π Y (S) π Y (T )) n (N) z N = Li π X (π Y (S) π Y (T )) (z) 1 -z .
hence (34). ✷

Stuffle product and stuffle characters

For the some reader's convenience, we recall here the definitions of shuffle and stuffle products. As regards shuffle, the alphabet X is arbitrary and ⊔⊔ is defined by the following recursion (for a, b ∈ X and u, v ∈ X * )

u ⊔⊔ 1 X * = 1 X * ⊔⊔ u = u, ( 39 
) au ⊔⊔ bv = a(u ⊔⊔ bv) + b(au ⊔⊔ v). ( 40 
)
As regards stuffle, the alphabet is Y = Y N ≥1 = {y s } s∈N ≥1 and is defined by the following recursion

u 1 Y * = 1 Y * u = u, (41) y s u y t v = y s (u y t v) + y t (y s u v) + y s+t (u v). (42) 
Be it for stuffle or shuffle, the noncommutative 15 polynomials equipped with this product form an associative commutative and unital algebra namely

(C X , ⊔⊔, 1 X * ) (resp. (C Y , , 1 Y * )).
Example 2.9 As examples of characters, we have already seen

• Li • from (Dom loc (Li • ), ⊔⊔ , 1 X * ) to H (Ω) • H • from (Dom(H • ), , 1 Y * ) to C N (arithmetic functions N -→ C)
In general, a character from a k-algebra16 (A , * 1 , 1 A ) with values in (B, * 2 , 1 B ) is none other than a morphism between the k-algebras A and a commutative algebra 17 B. The algebra (A , * 1 , 1 A ) does not have to be commutative for example characters of (C X , conc, 1 X * )i.e. conc-characters -where all proved to be of the form [START_REF] Duchamp | Towards a noncommutative Picard-Vessiot theory[END_REF] 

∑ x∈X α x x * (43) 
i.e. Kleene stars of the plane [START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF][START_REF] Bui | Families of eulerian functions involved in regularization of divergent polyzetas[END_REF][START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF]. They are closed under shuffle and stuffle and endowed with these laws, they form a group. Expressions like (43) (i.e. homogeneous series of degree 1) form a vector space noted C.Y . As a consequence, given P = ∑ i≥1 α i y i and Q = ∑ j≥1 β j y j , we know in advance that their stuffle is a conc-character i.e. of the form ( ∑ n≥1 c n y n ) * . Examining the effect of this stuffle on each letter (which suffices), we get the identity [START_REF] Duchamp | Towards a noncommutative Picard-Vessiot theory[END_REF] 

∑ i≥1 α i y i * ∑ j≥1 β j y j * = ∑ i≥1 α i y i + ∑ j≥1 β j y j + ∑ i, j≥1 α i β j y i+ j * (44)
which suggests to take an auxiliary variable, say q, and code "the plane" C.Y , i.e. expressions like (43), like in Umbral calculus by

π Umbra Y : ∑ n≥1 α n q n -→ ∑ n≥1 α n y n (45) 
which is linear and bijective 18 from

C + [[q]] to C.Y .
With this coding at hand and for S, T ∈ C + [[q]], identity (44) reads

(π Umbra Y (S)) * (π Umbra Y (T )) * = (π Umbra Y ((1 + S)(1 + T ) -1)) * (46) 
This shows that if one sets, for z ∈ C and

T ∈ C + [[x]], G(z) = (π Umbra Y (e zT -1)) * (47) 
we get a one-parameter stuffle group 19 , drawn on 1+C[z] + Y (a Magnus group), i.e. such that every coefficient is polynomial in z. Differentiating it we get

d dz (G(z)) = (π Umbra Y (T ))G(z) (48) 
and (48) with the initial condition G(0) = 1 Y * integrates as

G(z) = exp (zπ Umbra Y (T )) (49) 
where the exponential map for the stuffle product is defined, for any

P ∈ C Y such that P | 1 Y * = 0, is defined by exp (P) := 1 Y * + P 1! + P P 2! + . . . + P n n! + . . . . (50) 
In particular, from (49), one gets, for k ≥ 1,

(zy k ) * = exp -∑ n≥1 y nk (-z) n n . (51) 
This expression and that of

1 Γ(1 + z) = exp γz -∑ n≥2 ζ (n) (-z) n n ( 52 
)
18 Its inverse will be naturally noted π Umbra q

. 19 i.e. G(z 1 + z 2 ) = G(z 1 ) G(z 2 ); G(0) = 1 Y * .
suggests to consider lacunary analogues of the inverse Gamma function together with a character which sends y 1 to γ and y n , n ≥ 2 to ζ (n). This -character is provided by asymptotic analysis of the Harmonic Sums. Indeed, one can show that, w ∈ Y * being given, the asymptotic expansion of N -→ H w (N), along the asymptotic scale (log(N) p N -q ) p,q∈N , at any rate 20 , can be written

∑ q≥0 Q w,q (log(N))N -q , ( 53 
)
where Q w,q ∈ C[X ] (univariate polynomials) and, in particular,

Q w,0 ∈ Q[γ][X ] [3].
From this and the fact that H • is a -character, one gets that w -→ Q w,q (resp.

γ • : w -→ Q w,q (0)) is a -character with values in Q[γ][X ] (resp. Q[γ][X ]
). Now, a domain 21 Ω being given, it is easy to see that any -character χ (with general complex values and in particular γ • ) classically extends H (Ω) Y by

χ(P) = ∑ w∈Y * P | w χ | w (54) 
as a -character from H (Ω) Y with values in H (Ω). Now, we can extend χ to some series, over Y . For that, let us set as above and as in [START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF][START_REF] Bui | Families of eulerian functions involved in regularization of divergent polyzetas[END_REF][START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF], Definition 2.10 For any T ∈ H (Ω) Y , we note [T ] n the homogeneous compo-

nent 22 ∑ |w|=n T | w w of T Dom(χ, Ω) = {T ∈ H (Ω) Y |(χ(T n )) n∈N is summable in H (Ω)} (55) 
The result, ∑ n≥0 χ(T n ) will be noted χ(T ).

This being defined, we have the following theorem ) 20 This means that the following expression is the limit of all partial asymptotic expansions. 21 Open, nonempty and connected subset of C. 22 The weight (w) of w ∈ Y * is just the sum of its indices 23 We will still note its extension to H (Ω) Y by χ. 24 In fact Dom(χ, Ω) is a subalgebra of (H (Ω) Y , ,

1 Y * )
Proof.

(i) By finitely supported sum.

(ii) S, T ∈ Dom(χ, Ω) then (χ(S p )) p≥0 , (χ(T q )) p≥0 are summable. But, as is graded for the weight, one has [S T ] n = ∑ p+q=n [S] p [T ] q . Take any K nonempty compact within Ω, then

∑ n≥0 χ([S T ] n ) K = ∑ n≥0 χ ∑ p+q=n [S] p [T ] q K = ∑ n≥0 ∑ p+q=n χ([S] p )χ([T ] q ) K ≤ ∑ n≥0 ∑ p+q=n χ([S] p ) K χ([T ] q ) K = ∑ p,q≥0 χ([S] p ) K χ([T ] q ) K < +∞.
The same computation without the seminorm proves (56).

(iii) If S ∈ Dom(χ, Ω) and we have to examine (and prove) the summability of the family (χ([exp (S)] n )) . Setting S = ∑ q≥0 [S] q , we have

[exp (S)] n = ∑ m≥0 ∑ q 1 +2q 2 +•••mq m =n [S] q 1 1 • • • [S] q m m q 1 !q 2 ! • • • q m ! . (57) 
Hence, with all q i > 0,

∑ n≥0 χ([exp (S)] n ) K ≤ 1 + ∑ n>0 ∑ m>0 ∑ q 1 +2q 2 +•••mq m =n (58) χ([S] 1 q 1 K • • • χ([S] m ) q m K q 1 !q 2 ! • • • q m ! ≤ ∏ q≥1 e χ([S] q K = e ∑ q≥1 χ([S] q K = e M < +∞. (59) 
because, as S ∈ Dom(χ, Ω), we have ∑ q≥1 χ([S] q ) K = M < +∞. ✷

A remarkable set of exponents

On the formal side, from (51), we have [START_REF] Duchamp | Towards a noncommutative Picard-Vessiot theory[END_REF] (z k y k ) * = exp

-∑ n≥1 y nk (-z) nk n , for z ∈ C, | z |< 1, (60) 
as G r = G r otherwise it is an orbit as G r = ξ G r , where ξ is any solution of ξ r = -1 (this is equivalent to ξ ∈ G 2r and ξ / ∈ G r ). For r, q ≥ 1, we will need also a system X of representatives of G qr /G r , i.e. X ⊂ G qr such that

G qr = τ∈X τG r . (65) 
It can also be assumed that 1 ∈ X as with X = {e 2ikπ/qr } 0≤k≤q-1 .

Proposition 2.13 ([5]) (i) For r ≥ 1, χ ∈ G r and z ∈ C, |z| < 1, the functions ℓ r and e ℓ r have the symmetry, ℓ r (z) = ℓ r (χz) and e ℓ r (z) = e ℓ r (χz) . In particular, for r even, as -1 ∈ G r , these functions are even.

(ii) For |z| < 1, we have (iii) For any odd r ≥ 2,

Γ -1 y r (1 + z) = e ℓ r (z) = Γ -1 (1 + z) ∏ χ∈G r {1}
e ℓ 1 (χz)

(iv) and, in general, for any odd or even r ≥ 2, ℓ r (z) = ∏ χ∈G r e ℓ 1 (χz) = ∏ n≥1

(1 + z r /n r ).

(v) For r ≥ 1, the function ℓ r is holomorphic on the open unit disc, D <1 , (vi) For r ≥ 1, the function e ℓ r (resp. e -ℓ r ) is entire (resp. meromorphic), and admits a countable set of isolated zeroes (resp. poles) on the complex plane which is expressed as χ∈G r χZ ≤-1 .

Proof. The results are known for r = 1 (i.e. for Γ -1 ). For r ≥ 2, we get (i) By (61), with χ ∈ G r , we get

ℓ r (χz) = -∑ n≥1 ζ (kr) (-χ r z r ) k k = -∑ k≥1 ζ (kr) (-z r ) k k = ℓ r (z),
thanks to the fact that, for any χ ∈ G r , one has χ r = 1. In particular, if r is even then ℓ r (z) = ℓ r (-z), i.e. ℓ r is even.

(ii) If r is odd, as G r = G r and, applying the symmetrization principle 26 , we get 26 Within the same disk of convergence as f , one has,

f (z) = ∑ n≥1 a n z n and ∑ χ∈G r f (χz) = r ∑ k≥1 a rk z rk . 22 -∑ χ∈G r ℓ 1 (χz) = -∑ χ∈G r ℓ 1 (χz) = r ∑ k≥1 ζ (kr) (-z) kr kr = ∑ k≥1 ζ (kr) (-z r ) k k .
The last term being due to the fact that, precisely, r is odd. If r is even, we have the orbit G r = ξ G r (still with ξ r = -1) and then, by the same principle,

-∑ χ∈G r ℓ 1 (χξ z) = r ∑ k≥1 ζ (kr) (-ξ z) kr kr = ∑ k≥1 ζ (kr) (-ξ z) r k k = ∑ k≥1 ζ (kr) -z r k k .
(iii) Straightforward.

(iv) Due to the fact that the external product is finite, we can distribute it on each factor and get

e ℓ r (z) = =1 ∏ χ∈G r e γ χz ∏ n≥1 χ∈G r 1 + χz n e -χz n = =1 ∏ n≥1 χ∈G r e -χz n ∏ n≥1 χ∈G r 1 + χz n .
Using the elementary symmetric functions of G r , we get the expected result.

(v) One has e ℓ 1 (z) = Γ -1 (1 + z) which proves the claim for r = 1. For r ≥ 2, note that 1 ≤ ζ (r) ≤ ζ (2) which implies that the radius of convergence of the exponent is 1 and means that ℓ r is holomorphic on the open unit disc. This proves the claim.

(vi) The function e ℓ r (z) = Γ -1 y r (1 + z) (resp. e -ℓ r (z) = Γ y r (1 + z)) is entire (resp. meromorphic) as finite product of entire (resp. meromorphic) functions, for r ≥ 1. The factorization in Proposition 2.13 yields the set of zeroes (resp. poles).

✷

As an example of projection, through γ• of an algebraic identity let us mention, for any z ∈ C, | z |< 1, one has, from (51), [START_REF] Duchamp | Towards a noncommutative Picard-Vessiot theory[END_REF] (z k y k ) * (-z k y k ) * = (-z 2k y 2k ) * , Γ y 2r (1 + z) = Γ y r (1 + ρz)Γ y r (1 + ρξ z),

where ρ is a 2r th -root of (-1) and ξ a primitive 2r th root of unity.

It is well known that the function e ℓ 1 (z) = Γ -1 (1 + z) is entire. In fact, all functions (64) are so (see Proposition 2.12). From this, ones get that (67) holds on the whole plane.

Example 2.14 [[12,11]] Let us give examples relating to polyzetas. For that, we use the following identities, for z ∈ C, | z |< 1, (see [START_REF] Duchamp | Towards a noncommutative Picard-Vessiot theory[END_REF]) (-zx 1 ) * ⊔⊔ (zx 1 ) * = 1 and (-zy 1 ) * ) * (zy 1 ) * = (-z 2 y 2 ) * , (-z 2 x 0 x 1 ) * ⊔⊔ (z 2 x 0 x 1 ) * = (-z 4 One can show (with a suitable extension of ζ , see [START_REF] Ngoc | Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series[END_REF][START_REF] Ngoc | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF]) that 27 γ(-z 2 y 2 ) * = ζ ((-z 2 x 0 x 1 ) * ). Then, identifying the coeffients of z 2k , we get Again, with a suitable extension of 28 ζ (see [START_REF] Ngoc | Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series[END_REF][START_REF] Ngoc | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF]) 27 Recall that, for any w ∈ Y * \ y 1 Y * , one has γ w = ζ (π X (w)) [START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF] and then it can be extended over series. 28 idem.

Conclusion

Noncommutative symbolic calculus allows to get identities easy to check and to implement. With some amount of complex and functional analysis, it is possible to bridge the gap between symbolic, functional and number theoretic worlds. This was the case already for polylogarithms and polyzetas. This is the project of this paper and will be pursued in forthcoming works.

(

  ii) Conversely, we suppose that it exists R > 0 such that (a) Each Taylor series T n (z) = ∑ N≥0 a n,N z N converges in H (D <R ). (b) The series ∑ n∈N T n converges unconditionnally in H (D <R ).

  in particular I(τ) = / 0 and it is an interval of ]0, +∞[ with lower bound zero. (a) Take r ∈ I(τ) (hence r = 0) and N ∈ N, then we get the expected result asr N ∑ n≥0 | a n,N |= ∑ n≥0 | a n,N r N |≤ ∑ n,N≥0| a n,N r N |< +∞. (b) Again, take any r ∈ I(τ) and n ∈ N, then ∑ N≥0 | a n,N r N |< +∞

Theorem 2 . 11

 211 Let χ : C Y -→ C be a -character 23 (i) H (Ω) Y ⊂ Dom(χ, Ω) (ii) If S, T ∈ Dom(χ, Ω) then S T ∈ Dom(χ, Ω) 24 and χ(S T ) = χ(S) χ(T )(56)(iii) If S ∈ Dom(χ, Ω), then exp (S) ∈ Dom(χ, Ω) and χ(exp (S)) = e χ(S

( 1 +

 1 ℓ r (z) = -∑ χ∈G r log(Γ(1 + χz)) and e ℓ r (z) = ∏ χ∈G r e γ χz ∏ n≥1 χz/n)e -χz/n .

  which, transformed by γ• and for | |z |< 1 and k ≥ 1, amounts to Euler's reflection formula (generalized to arbitrary k)[START_REF] Bui | Families of eulerian functions involved in regularization of divergent polyzetas[END_REF] 

x 2 0 x 2 1 )

 1 * and (-z 2 y 2 ) * (z 2 y 2 ) * = (-z 4 y 4 ) * .• From (67) and for r = 1, we haveγ(-z 2 y 2 ) * = γ(zy 1 ) * γ(-zy 1 ) * Γ -1 y 2 (1 + iz) = Γ -1 y 1 (1 + z)Γ -1 y 1 (1z) e -∑ n≥2 ζ (2n)z 2n /n = sin(zπ) zπ = ∑ k≥1 (ziπ) 2k (2k)! .

•

  Now, with r = 2, letting ρ 4 = -1, we have γ(-z 4 y 4) * = γ(z 2 y 2 ) * γ(-z 2 y 2 ) * Γ -1 y 4 (1 + z) = Γ -1 y 2 (1 + ρz)Γ -1 y 2 (1 + iρz),

γ(-z 4 y 4 )x 2 0 x 2 1 )

 41 * = ζ ((-z 4 y 4 ) * ), γ(-z 2 y 2 ) * = ζ ((-z 2 y 2 ) * ), γ(z 2 y 2 ) * = ζ ((z 2 y 2 ) * )then, using the poly-morphism ζ , we obtainζ ((-z 4 y 4 ) * ) = ζ ((-z 2 y 2 ) * )ζ ((z 2 y 2 ) * ) = ζ ((-z 2 x 0 x 1 ) * )ζ ((z 2 x 0 x 1 ) * )) = ζ ((-4z 4 * ).It follows then, by identification the coeffients of z 4k , that ζ (

  where S n := ∑

	Li k	
		S | w	(22)
		|w|=n
	such that ∑ n≥0	Li S n is unconditionally convergent for the standard topology on H (Ω)
	[17].	
	Example 2.1 [[10]] For example, the classical polylogarithms: dilogarithm Li 2 ,
	trilogarithm Li 3 , etc... are defined and obtained through this coding by

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.04-2017.320 

Here ⊙ stands for the Hadamard product[START_REF] Hadamard | Théorème sur les séries entières[END_REF].

Given a word w ∈ X * , we note |w| x 1 the number of occurrences of x 1 within w.

Here R is any commutative ring (like H (Ω), C, Z [γ], ...).

Around zero.

As the fact that, due to special properties of H (Ω) (it is a nuclear space[START_REF] Schaefer | Topological Vector Spaces[END_REF], see details in[START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF][START_REF] Bui | Families of eulerian functions involved in regularization of divergent polyzetas[END_REF][START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF]), one can show that Dom(Li) is closed by shuffle products.

For this topology, unconditional and absolute convergence coincide[START_REF] Schaefer | Topological Vector Spaces[END_REF] 

Proof by absolute convergence as in[START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF].

For concatenation.

Here we will use k = Q or C.

In this context all algebras are associative and unital.

A family (g i ) i≥1 is said to be triangular if the valuation of g i , ϖ(g i ), equals i ≥ 1. It is easy to check that such a family is C-linearly free and that is also the case of families such that (g i -g(0)) i≥1 is triangular.
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and transform it through the -character γ• . First of all, we compute the radius of convergence of the image of the exponent (for coherence with the "bullet-notation", we will note γ y n the image of y n by the character γ • ) which gives [START_REF] Bui | Families of eulerian functions involved in regularization of divergent polyzetas[END_REF] for

(61)

Then, from the fact that 1 

are all in Dom( γ• , Ω) and therefore linearly independent. • and their transforms through γ• follow exponentiation (for z ∈ C, |z|< 1), i.e. [START_REF] Bui | Families of eulerian functions involved in regularization of divergent polyzetas[END_REF] γ(zy k

This leads us to set, for all k ≥ 1 and for

Proposition 2.12 ([5]) The families (ℓ r ) r≥1 and (e ℓ r ) r≥1 are C-linearly free and free from 1 H (Ω) .

Proof. Since (ℓ r ) r≥1 is triangular 25 then (ℓ r ) r≥1 is C-linearly free. So is (e ℓ re ℓ r (0) ) r≥1 , being triangular, we get that (e ℓ r ) r≥1 is C-linearly independent and free from 1 H (Ω) . ✷ Now, for any r ≥ 1, let G r (resp. G r ) denote the set (resp. group) of solutions, {ξ 0 , . . . , ξ r-1 }, of the equation z r = (-1) r-1 (resp. z r = 1). If r is odd, it is a group