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Formal Synthesis from Control Programs

Vladimir Sinyakov and Antoine Girard

Abstract— We introduce a new way of specifying rich be-
haviors for discrete-time dynamical systems called control
programs. Essentially, a control program consists of a set of
elementary control tasks with a scheduler. A control task is
described by a discrete-time hybrid automaton and a ter-
mination semantics, specifying if the task must terminate in
finite time or if it is allowed to run forever. The scheduler
provides a set of rules that is used to sequence the control
tasks. Control programs also have external inputs, which makes
it possible to specify how a system must react to instructions
provided by a human user or by another system. We define
the set of executions that are accepted by the control program.
Then, we consider the problem of synthesizing a controller
for a dynamical system such that the closed-loop behavior is
an execution of the control program. Building on our recent
work on formal synthesis from specifications given by hybrid
automata, we propose two algorithms for computing controllers
based on contracting and expanding fixed-point computations.
The first algorithm computes the maximal controllable set but
needs to reach the fixed-point to provide a valid controller. The
second algorithm may not converge to the maximal controllable
set but provides a valid controller at each iteration. We illustrate
our methodology with an autonomous vehicle control example.

I. INTRODUCTION

The theory of hybrid dynamical systems has been de-
veloping during the past decades motivated, in part, by
their ability to represent cyber-physical systems: models of
digital devices interacting with “continuous” physical world.
The formal methods approach suggests considering these
dynamical systems as transition systems which are defined
by a transition relation, describing how states evolve under
the effect of inputs (see e.g. [26]). The specification describes
the desired behavior of the system, as a set of trajectories (i.e.
sequences of states and inputs), satisfying a certain criterion.
Behavior specification languages that describe rich spacial
and temporal properties of transition systems include, in par-
ticular, finite state automata [8], [20], [9], Linear Temporal
Logic formulas, Büchi and Rabin automata [27], [6], [13],
[2]. The specification may also be given by another transition
system: the closed-loop system is then required to be related
in some sense to this specification system (e.g. [26], [19],
[29], [15]). In our previous work [25], we required the
closed-loop system to alternatingly simulate the specification
system given as a discrete-time hybrid automaton, with
the possibility to consider an additional control objective
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specifying whether a set of terminal states should be reached
in finite time (reachability termination semantics) or if the
system can run forever (safety termination semantics). In
both cases, non-terminal blocking states should be avoided.

One of the prospective approaches in formal methods is
called symbolic control: continuous components (e.g. defined
by differential or difference equations) are abstracted over
a finite set of states (symbols), each symbol corresponding
to infinitely many continuous states. The resulting discrete
dynamical system is called symbolic abstraction and can
be used for controller synthesis (see e.g. [21], [30], [4],
[16], [12], [22]). In [25], a symbolic control approach was
proposed to synthesize controllers from specifications given
as discrete-time hybrid automata.

In this paper, we present a new specification language
for complex behaviors, which we call control programs,
and provide algorithms for control synthesis from these
specifications.

In Section III, we define control programs consisting of a
set of elementary control tasks with a scheduler. Each control
task, in turn, is described by a discrete-time hybrid automa-
ton with reachability or safety termination semantics. Such
control problems given by control tasks were investigated in
[25]. The scheduler provides a set of rules that is used to
sequence the control tasks. An important feature of control
programs and control tasks is the presence of external inputs:
these input parameters affect the dynamics of the specifica-
tion systems and represent interactions with human users or
other unmodeled systems. This two-level construction, which
describes the desired behavior of the system, has similarities
with the formalism of maneuver automata [7], [11], [5].
However, our formalism is richer in the sense that it makes
it possible to use different termination semantics for tasks
and to define more complex scheduling policies. One may
observe that control programs define specifications beyond
reachability and safety properties on discrete-time hybrid
autotomata, which were considered in [25]. The detailed
analysis of expressivity of control programs and how it
relates to other specification languages is beyond the scope
of this paper where we focus on the introduction of control
programs and algorithmic aspects of synthesis from control
program specification.

This is the topic of Section IV, where we introduce
the notion of program controller that essentially enforces
the closed-loop system to produce trajectories accepted by
the considered control program. In particular, it solves the
control problem of each task, guarantees the possibility of
transition between tasks according to the scheduler, and
ensures the satisfaction of the termination condition for the



program. Program controllers follow the structure of the
corresponding control program as they may be automati-
cally constructed from a set of task controllers if a certain
schedulability condition is satisfied (see Theorem 1). This
structure potentially allows one to utilize different algorithms
for reachability and safety computations for each individual
task. We then present algorithms for synthesizing program
controllers: the first one computes the maximal controllable
set and the corresponding controller via contracting fixed-
point iteration of controllable set candidates while the second
one is an anytime algorithm which produces an expanding
sequence of controllable sets where the computations may
be stopped at each iteration.

Finally, in Section V we present an illustrative example
for our framework: an autonomous vehicle control problem
where the controllable car is able to either follow or takeover
the preceding vehicle and the accepted behaviors are those
where the car follows or takes over indefinitely while avoid-
ing collisions with other vehicles.

Notations: N = {0, 1, 2, . . . , } is the set of natural
numbers; |A| is the cardinality of a set A; for a set A ⊆
X1× · · · ×Xm, the projection onto Xi (1 ≤ i ≤ m) is a set
projXi

A = {xi | ∃x = (x1, . . . , xm) ∈ A, xj ∈ Xj , 1 ≤
j ≤ m}.

II. PRELIMINARIES ON TRANSITION SYSTEMS

We consider transition systems, which allow us to model
in a unique framework continuous or hybrid systems as well
as their discrete abstractions (see e.g. [26], [2]):

Definition 1: A transition system S is a tuple
(X,U, Y,∆, H), where X is a set of states; U is a
set of inputs; Y is a set of outputs; ∆ : X × U ⇒ X is a
set-valued transition map; H : X → Y is an output map.

An input u ∈ U is enabled in a state x ∈ X , denoted u ∈
enab∆(x), if and only if ∆(x, u) 6= ∅. If enab∆(x) = ∅ then
x is called a blocking state, otherwise it is a non-blocking
state. The set of non-blocking states is denoted nbs∆. S is
said to be deterministic if for all x ∈ nbs∆, for all u ∈
enab∆(x), |∆(x, u)| = 1.

Definition 2: A sequence (xk, uk)k=K
k=0 , where K ∈ N ∪

{∞}, xk ∈ X , uk ∈ U , for 0 ≤ k ≤ K, is called a trajectory
of S if and only if xk+1 ∈ ∆(xk, uk), for 0 ≤ k < K.

A trajectory is maximal if K =∞ or else if ∆(xK , uK) =
∅. A trajectory is complete if K =∞. The set of trajectories
of S is called the behavior of S, denoted B(S).

III. CONTROL PROGRAMS

In this section, we present a formalism for specifying
the intended behavior of a system. We introduce the notion
of control programs, which form a high-level language,
making it possible to specify a rich set of behaviors. Control
programs have themselves inputs to enable interaction with
external users and systems. Intuitively, a control program
consists of a set of elementary control tasks, with a scheduler
describing how these tasks must be sequenced. The semantics
of the control tasks is very similar to that of discrete-time
hybrid automata, enriched with two types of termination

semantics. While such elementary control tasks were thor-
oughly studied in our previous paper [25], the focus of this
paper is on the definition of more complex control programs
from control tasks and on the formal synthesis of controllers
implementing these programs.

A. Control tasks

Control tasks are elementary components that are used
to define a control program. They are formally specified as
follows:

Definition 3: A control task is a tuple

T = (X,P, V,G,Wf , s)

consisting of

• a system state space X;
• a finite set of modes P ;
• a finite set of external inputs V ;
• a transition relation G: X × P × V ⇒ X × P ;
• a terminal set Wf ⊆ X × P × V ;
• a task semantics s ∈ {“reachability”, “safety”}.
We define a transition system ST associated to task T as

follows:

ST = (X × P, V,X,G, projX).

To avoid confusion we will call task state space Z = X×P
as opposed to system state space X .

Control tasks are associated to sets of executions:
Definition 4: An execution of T is a triple of state, mode

and input sequences (xk, pk, vk)k=K
k=0 , where K ∈ N ∪ {∞}

such that:

1) (xk, pk, vk)k=K
k=0 ∈ B(ST);

2) one of the following condition holds:
• if s = “reachability”, then K ∈ N and

(xK , pK , vK) ∈Wf ;
• if s = “safety”, then either K ∈ N and

(xK , pK , vK) ∈Wf , or K =∞.
The set of executions of T is called the language of T and

is denoted L(T). Two tasks having the same language are
called equivalent.

The notion of a control task is reminiscent of that of
a (discrete-time) hybrid automaton [10], [14], [24], [18]
where the transition relation G captures the invariants, flows,
guards and resets simultaneously. The external inputs make
it possible to specify how the system should react to instruc-
tions received from a human user or from another system.
Compared to hybrid automata, control tasks additionally
make it possible to specify a terminal set and two distinct
semantics for termination. In the reachability semantics, it
is expected that the execution of the control task reaches
the terminal set in finite-time. In the safety semantics, the
execution may additionally last an infinite amount of time.
Thus, intuitively, control tasks allow us to specify behaviors
that can be formulated as safety or reachability properties on
hybrid automata [28], [1].



B. From control tasks to control programs

Control programs allow us to orchestrate a set of control
tasks and can be defined inductively as follows:

Definition 5: A control program P is one of the following:
• P = T where T = (X,P, V,G,Wf , s) is a control task.

Then, P has system state space X , set of modes P , set
of external inputs V , and terminal set Wf .

• P = (P,R,Wf,0) where
– P = {Pi, i ∈ L} is a finite set of control programs

with the same system state space X , sets of modes
Pi (with Pi ∩ Pj = ∅ for i 6= j), sets of external
inputs Vi, and terminal sets Wf,i ⊆ X × Pi × Vi,
i ∈ L.

– R = {Ri,j : X ×Pi×Vi ⇒ Pj ×Vj , i, j ∈ L} is
a scheduler;

– Wf,0 ⊆ ∪i∈LWf,i is a terminal set.
P has system state space X , set of modes P = ∪i∈LPi,
set of external inputs V = ∪i∈LVi and terminal set
Wf,0.

Executions of a control program P, defined in the second
item of Definition 5 consist in a concatenation of executions
of control subprograms in P . The scheduler R defines the
transitions between subprograms.

We define the maps R∗i,j : X×Pi×Vi ⇒ Pj×Vj , i, j ∈ L,
which result from a finite sequence of scheduling actions:
(p′, v′) ∈ R∗i,j(x, p, v) if and only if there exists a finite
sequence (ik, pk, vk)k=l

k=0 with l ≥ 1, ik ∈ L, pk ∈ P , vk ∈ V
such that (i0, p0, v0) = (i, p, v), (il, pl, vl) = (j, p′, v′) and
(pk+1, vk+1) ∈ Rik,ik+1

(x, pk, vk), for all k ∈ {0, . . . , l−1}.
We formulate the following assumption:

Assumption 1: For all i, j ∈ L, the map R∗i,j satisfies:
1) for all (x, p, v) 6∈Wf,i, R∗i,j(x, p, v) = ∅;
2) for all (x, p, v) ∈Wf,i,

(
{x}×R∗i,j(x, p, v)

)
∩Wf,0 =

∅.
The first item of the assumption states that scheduling actions
can only occur upon termination of a subprogam. The second
item states that it is not possible to reach the terminal set
directly through scheduling actions.

Remark 1: If
(
{x} × Ri,j(x, p, v)

)
∩ Wf,j = ∅ for all

(x, p, v) ∈Wf,i then R∗i,j = Ri,j .
The set of executions of P is called the language of P,

denoted L(P), and is formally defined as follows:
Definition 6: Let P be a control program:
• If P = T, then L(P) = L(T).
• If P = (P,R,Wf,0), an execution of P is a triple of

state, mode and input sequences (xk, pk, vk)k=K
k=0 where

K ∈ N ∪ {∞}, and such that there exists a sequence
(ij ,Kj)

j=J
j=0 where ij ∈ L, Kj ∈ N, J ∈ N∪{∞} such

that:
1) (xk, pk, vk)k=K0

k=0 ∈ L(Pi0);
2) if J > 0, for all j ∈ {0, . . . , J − 1}, Kj <

Kj+1 and there exists (xk, pk, vk)
k=Kj+1

k=Kj
∈

L(Pij+1
), such that for all Kj + 1 ≤ k ≤

Kj+1, pk = pk, vk = vk and (pKj
, vKj ) ∈

R∗ij ,ij+1
(xKj , pKj , vKj );

3) the following conditions hold:
– if J ∈ N then KJ = K;
– if K ∈ N then (xK , pK , vK) ∈Wf,0.

Similar to control tasks, we say that control programs are
equivalent if they have the same language.

We define the transition system SP associated to a program
P as ST if P = T or otherwise as

SP = (X × P, V,X,GP,projX)

where for all x ∈ X , i ∈ L, p ∈ Pi, GP(x, p, v) = ∅ if
v /∈ Vi, or if v ∈ Vi:

GP(x, p, v) = GPi
(x, p, v)∪

( ⋃
j∈L

GPj
({x}×R∗i,j(x, p, v))

)
.

From Definition 6, we have that L(P) ⊆ B(SP).
Definition 7: A control program is in expanded form if

P = (P,R,Wf,0) where all elements of P are control tasks.
Proposition 1: Any control program P has an equivalent

control program P′ in expanded form.
Proof: If P = T where T = (X,P, V,G,Wf , s) is

a control task, then one can define the control program
P′ = ({T},R,Wf ) where R = {R}, R(x, p, v) = ∅ for
all x ∈ X , p ∈ P , v ∈ V . P′ is in expanded form and from
Definition 6, it follows that L(P′) = L(P).

If P = (P,R,Wf,0) where P = {Pi, i ∈ L}, we reason
inductively on the structure of the program. Let us assume
that for all i ∈ L, Pi has an equivalent control program P′i
in expanded form. Let P′i = (Pi,Ri,Wf,i), where Pi =
{Ti′ , i

′ ∈ Li} and Ri = {Ri
i′,j′ , i

′, j′ ∈ Li}. Note that all
elements of Pi are control tasks. Then, let L′ =

⋃
i∈L Li and

let us define P′ = (P ′,R′,Wf,0) where P ′ = {Ti′ , i
′ ∈ L′},

and R′ = {R′i′,j′ , i′, j′ ∈ L′} where the map R′i′,j′ is
defined as follows for i′, j′ ∈ L′. Let i, j ∈ L such that i′ ∈
Li and j′ ∈ Lj , let (x, p, v) ∈ X×Pi′×Vi′ . If i = j then let
R′i′,j′(x, p, v) = Ri

i′,j′(x, p, v)∪
(
Ri,j(x, p, v)∩(Pj′×Vj′)).

If i 6= j then let R′i′,j′(x, p, v) = Ri,j(x, p, v)∩ (Pj′ × Vj′).
All elements of P ′ are control tasks so P′ is in expanded
form. Moreover, it follows from Definition 6 that L(P′) =
L(P).
Let us remark that the proof of Proposition 1 is constructive
and allows us for any control program P to compute induc-
tively an equivalent control program P′ in expanded form.
P′ is called the expansion of P. It is also important to note
that if Assumption 1 is satisfied for P and for all programs
P′i, i ∈ L, then it is also satisfied for the expansion P′.

Control programs in expanded form describe how control
tasks must be sequenced. It has therefore some similarities
with the notion of maneuver automaton [7], [11], which is
used to describe how a set of elementary motion primitives
can be sequenced. More closely related is the work of [5],
where the motion primitives are specified by hybrid automa-
ta. However, in general, maneuver automata do not allow the
choice of the next maneuver to depend on how the previous
maneuver terminates, which is possible for control programs
using the scheduler R and the user inputs v. Moreover,
maneuver automata assumes that all maneuver terminates in
finite time, which excludes the use of control tasks with



safety semantics. Finally, contrarily to control programs,
maneuver automata are not defined inductively.

IV. SYNTHESIS FROM CONTROL PROGRAMS

In this section, we formalize the synthesis problem. Let
us consider a system S = (X,U, Y, F,H) and a control
program P with set of modes P , set of inputs V and terminal
set Wf,0 ⊆ X ×P ×V , specifying the intended behavior of
S. In the following, we use the notation v ∈Wf,0(x, p), for
(x, p, v) ∈Wf,0.

A. Problem formulation

We consider a program controller given by a pair of set-
valued maps θ: X×P×V ⇒ U and π: X×P×X×V ⇒ P .
Controller (θ, π) is said to be compatible with S if for all
x ∈ X , p ∈ P , v ∈ V ,

θ(x, p, v) ⊆ enabF (x) and
∀x′ ∈ F (x, θ(x, p, v)), π(x, p, x′, v) 6= ∅.

Then, the dynamics of the closed-loop system Scl is given
by: {

xk+1 ∈ F (xk, θ(xk, pk, vk)),
pk+1 ∈ π(xk, pk, xk+1, vk).

(Scl)

and formally described by the transition system

Scl = (X × P, V,X,∆cl,projX)

where for all x ∈ X , p ∈ P , v ∈ V ,

∆cl(x, p, v) =

{
(x′, p′)

∣∣∣∣ x′ ∈ F (x, θ(x, p, v))
p′ ∈ π(x, p, x′, v)

}
.

Let us remark that if (θ, π) is compatible with S then v ∈
enab∆cl

(x, p) if and only if θ(x, p, v) 6= ∅.
The synthesis of controllers from control programs can be

formalized as follows:
Problem 1: Synthesize a program controller (θ, π) com-

patible with S and a controllable set Zc ⊆ X × P such
that for every (x0, p0) ∈ Zc, for every maximal trajectory
(xk, pk, vk)Kk=0 of Scl, one of the following condition holds:

1) (xk, pk, vk)Kk=0 ∈ L(P);
2) (xk, pk, vk)Kk=0 is a maximal trajectory of SP, K ∈ N

and Wf,0(xK , pK) ∪ enabGP(xK , pK) 6= ∅.
If Problem 1 is solved, then it follows that for every

maximal trajectory (xk, pk, vk)Kk=0 of Scl, where for all
0 ≤ k ≤ K, vk ∈ Wf,0(xk, pk) ∪ enabGP(xk, pk), we have
(xk, pk, vk)Kk=0 ∈ L(P). In other words, it means that if at all
times, the external inputs vk belong to the inputs enabled by
the control program P, then the closed-loop system produces
a trajectory which is accepted by the program.

We call a program controller for P maximal if the corre-
sponding controllable set Zc is maximal by inclusion, i.e. if
Z ′c is a controllable set for some other program controller
then Z ′c ⊆ Zc. We say that a pair (θ, π) is a task controller
T, if it solves Problem 1 for P = T. Let us remark that the
synthesis of task controllers can be done using a symbolic
control approach as presented in our previous work [25].
Therefore, in the following, we will assume that we have
a method to synthesize task controllers and we show how

these controllers can be glued in order to obtain program
controllers.

B. Schedulability condition

In this section, we provide a sufficient condition for the
synthesis of program controllers:

Theorem 1: Consider a program P = (P,R,Wf,0). Sup-
pose we have program controllers (θi, πi) and sets Zc,i

solving Problem 1 for programs Pi, i ∈ L. Let us assume
that the following schedulability condition holds for all
(x, p, v) ∈ ∪i∈LWf,i \Wf,0:

(∪j∈L{x} ×R∗i,j(x, p, v)) ∩ dom(θj) 6= ∅. (1)

Let Zc =
⋃

i∈L Zc,i and (θ, π) be given for (x, p, v) ∈ X ×
P × V , x′ ∈ X by

• if (x, p, v) ∈ dom(θi)

θ(x, p, v) =θi(x, p, v)

π(x, p, x′, v) =πi(x, p, x
′, v)

• else, if (x, p, v) ∈Wf,i \Wf,0

θ(x, p, v) =θj(x, p, v)

π(x, p, x′, v) =πj(x, p, x
′, v)

where (x, p, v) ∈ ({x} ×R∗i,j(x, p, v)) ∩ dom(θj)
• else, θ(x, p, v) = ∅ and π(x, p, x′, v) = ∅.

Then, (θ, π) and Zc solve Problem 1 for program P.
Proof. The fact that (θ, π) is compatible with S is a
consequence of (θi, πi) being compatible with S. Then,
consider a maximal trajectory (xk, pk, vk)Kk=0 of Scl with
(x0, p0) ∈ Zc. By construction of (θ, π), we get that if
K = ∞ then (xk, pk, vk)Kk=0 ∈ L(P). Let us now assume
that K ∈ N. Then from the definitions of (θ, π) and of GP,
we get that (xk, pk, vk)Kk=0 ∈ B(SP). Moreover, there are
three posibilities for (xK , pK , vK).

First, if (xK , pK , vK) ∈ Wf,0, then (xk, pk, vk)Kk=0 ∈
L(P).

Assuming that (xK , pK , vK) 6∈ Wf,0, let i ∈ L be such
that pK ∈ Pi. If (xK , pK , vK) ∈ Wf,i \Wf,0, then by the
schedulability condition and the definition of (θ, π) we get
(xK , pK , vK) ∈ dom(θ) which contradicts the maximality
of (xk, pk, vk)Kk=0.

Consider now the third posibility: (xK , pK , vK) 6∈
Wf,i. Since (θi, πi) solves Problem 1 for program Pi,
we get GPi

(xK , pK , vK) = ∅, and Wf,i(xK , pK) ∪
enabGPi

(xK , pK) 6= ∅. It follows that GP(xK , pK , vK) = ∅
which implies that (xk, pk, vk)Kk=0 is a maximal trajectory
of SP. Moreover, if enabGPi

(xK , pK) 6= ∅ then it follows
that enabGP(xK , pK) 6= ∅. If Wf,i(xK , pK) 6= ∅ then by
the schedulability condition we get that Wf,0(xK , pK) ∪
enabGP(xK , pK) 6= ∅. Hence, (θ, π) and Zc solve Problem 1
for program P. �



C. Algorithms

In this section, we present fixed-point type algorithms
(see Algorithm 1 below) for controller synthesis based on
Theorem 1. The termination Let Combine be the procedure,
described in Theorem 1, of constructing program controller
(θ, π) and the respective controllable set Zc from subprogram
controllers and controllable sets. There are two versions:
“maximal” and “anytime” synthesis which we discuss below.
For finite systems S, the termination of both versions is
guaranteed by Theorem 1. For infinite systems, abstraction
based methods can be used to get finite symbolic abstractions
of S and of all tasks found in the subprograms of P.

For the algorithms to work we make the following as-
sumption: for every subprogram Pi ∈ P of a program
P = (P,R,Wf,0), we have Wf,i(x, p) ⊆ enabGPi

(x, p).
Remark 2: The assumption above does not limit generali-

ty since one may add an additional mode pibad to subprogram
Pi such that for all x ∈ X , (x, pibad) is blocking and
Wf,i(x, p

i
bad) = ∅. The transitions (x, pibad) ∈ GPi

(x, p, v)
are added for all (x, p, v) ∈ Wf,i. After such modification
the program satisfies the assumption but the language L(P)
remains unchanged.

1) Maximal synthesis: In this algorithm we first initialize
individual subprogram controllers by solving the respective
synthesis subproblems. Then on each iteration we construct
so called effective terminal sets Ŵf,i by removing the states
w = (x, p, v) which do not satisfy the schedulability condi-
tion. The subprogram controllers are then updated using the
new candidate effective terminal sets which are contracting
from iteration to iteration until a fixed-point is reached. Func-
tion Solve calls itself recursively to perform computations of
subprogram controllers utilizing the supplied effective termi-
nal sets instead of the actual terminal sets of the respective
subprograms. For subprograms that are tasks, function Solve
is given by two fixed-point algorithms: one for safety and
one for reachability. For details on specification abstractions
and task controller computations we refer to the previous
paper [25].

If condition (1) is satisfied for more restrictive controller,
it is also satisfied for a more permissive one. By induction,
all states z which are removed in the algorithm are uncontrol-
lable by any program controller. Thus, the controller which
is constructed in this algorithm is maximal.

2) Anytime synthesis: In this algorithm the effective ter-
minal sets are initialized to the respective subsets of Wf,0.
Then on each iteration they are expanded by adding the states
which satisfy the schedulability condition. The subprogram
controllers are then updated with respect to the new effective
terminal sets.

One may observe that the schedulability condition holds
for all (x, p, v) ∈ ∪i∈LŴf,i \ Wf,0 at every iteration.
Therefore, the computation may be stopped at any iteration
to obtain a valid program controller.

The controllable set produced by this algorithm may be
not maximal. Indeed, if the algorithm terminated after M it-
erations and a state (x0, p0) is controllable then an execution

Algorithm 1: (θ, π, Zc) := Solve(S, P, A)

Input: Finite transition system S, control program
P = (P,R,Wf,0) where P = {Pi, i ∈ L} and
Pi = (Pi,Ri,Wf,i), algorithm
A ∈ {“maximal”, “anytime”}

Output: Controller (θ, π) for program P compatible
with S and the controllable set Zc

begin
foreach i ∈ L do

if A = “maximal” then
Ŵf,i := Wf,i;

else
Ŵf,i := Wf,i ∩Wf.0;

P̂i := (Pi,Ri, Ŵf,i);
(θi, πi, Zc,i) := Solve(S, P̂i, A);

fixedPoint := false;
while ¬fixedPoint do

fixedPoint := true;
foreach i ∈ L do

W := ∅;
if A = “maximal” then

Wmax := Ŵf,i \Wf,0;

else
Wmax := Wf,i \ Ŵf,i;

foreach w = (x, p, v) ∈Wmax do
if
(∪j{x}×R∗i,j(x, p, v))∩dom θj = ∅
then

if A = “maximal” then
W := W ∪ {w};
fixedPoint := false;

else
if A = “anytime” then

W := W ∪ {w};
fixedPoint := false;

if A = “maximal” then
Ŵf,i := Ŵf,i \W ;

else
Ŵf,i := Ŵf,i ∪W ;

P̂i := (Pi,Ri, Ŵf,i);
(θi, πi, Zc,i) := Solve(S, P̂i, A);

(θ, π, Zc) := Combine({(θi, πi, Zc,i), i ∈ L});
return (θ, π, Zc);

with no more than M subprogram switching moments may
be enforced from it.

Remark 3: An analysis of fixed-point algorithms in [25]
suggests that the complexity of task controller computation
is O(|X||P |2|V |2|U ||T |) where T is the maximal number of



transitions corresponding to a state-input pair of S (see also
[3]). Without loss of generality, one may consider the pro-
gram in the expanded form since the total number of modes
and transitions for it is the same as for the original program.
Thus, we may estimate the complexity of Algorihm 1 as
O(|X|2|P |3|V |3|U ||T |) since at least one of the effective
terminal sets is reduced (increased) on each iteration of
the outer loop of the maximal synthesis (anytime synthesis,
respectively). The program controller may be represented by
a boolean array of |X||P |2|V |2|U ||T | elements. The choice
of the algorithm depends on the available resources and
the size of the problem. For a very large problem, anytime
controller synthesis may be preferred as it allows to obtain
at least some solution. For a smaller problem, a maximal
controller is preferred as it is generally more permissive.

Algorithm 1 could be parallelized to a certain extent.
Particularly, the controller synthesis algorithms for each
subprogram Pi could run in parallel. This, however, may
increase the number of iterations of the main loop.

V. EXAMPLE

A. The system

Let us consider a model of several vehicles moving in one
lane on a two-lane infinite straight road. The controllable
vehicle is described by the following discrete-time transition
system:

x0
k+1 = x0

k + β(u2,k, v
0
k, hk)T0,

v0
k+1 = χ

(
v0
k + α(u1,k, v

0
k)T0, [0, v0

max]
)
,

hk+1 = u2,k.

Here x0 is the position, v0 is velocity, and h is the current
lane of the controllable vehicle. The controllable parameter
u1,k is the torque applied to the wheels, u1,k ∈ [umin, umax],
and the controllable parameter u2,k is the lane at the next
time instant.

α(u, v) = u−M−1(f0 + f1v + f2v
2),

β(u, v, h) =

{
v, u = h,

1
T0

√
(vT0)2 − r2, u 6= h, v ≥ v∗,

χ(v, [v1, v2]) = min{max{v, v1}, v2}.

The vector of parameters f = (f0, f1, f2) ∈ R3
+ describes

road friction and vehicle aerodynamics whose numerical
values are taken from [17].

We assume that every vehicle has the length dcar and is
responsible for not colliding with the vehicles in front of
them. Next, we assume that the controllable vehicle has the
information about the next two vehicles in front of it (vehicle
1 and vehicle 2 respectively) which are described by the
equations (j = 1, 2):

xjk+1 = xjk + vjkT0,

vjk+1 = χ
(
vjk + α(wj

k, v
j
k)T0, [0, vmax]

)
.

Here xj is the position and vj is the velocity of the
uncontrollable vehicle j. It is assumed that x1 < x2. The
uncertain parameters wj represent the torque applied to the
wheels of the uncontrollable vehicles.

By introducing the signed relative distances d1 = x0−x1

and d2 = x1 − x2, we represent the system of 3 vehicles as
a 6-dimensional transition system:

d1
k+1 = d1

k + (β(u2,k, v
0
k, hk)− v1

k)T0,
d2
k+1 = χ

(
d2
k + (v1

k − v2
k)T0, (−∞,−dcar]

)
,

v0
k+1 = χ

(
v0
k + α(u1,k, v

0
k)T0, [0, v0

max]
)
,

v1
k+1 = χ

(
v1
k + α(w1

k, v
1
k)T0, [0, vmax]

)
,

v2
k+1 = χ

(
v2
k + α(w2

k, v
2
k)T0, [0, vmax]

)
,

hk+1 = u2,k.

One may observe that d2 always stays negative due to the
above assumption about collision avoidance.

Let z denote the state variable: z = (d1, d2, v0, v1, v2, h).
The system may be written in a compact form as follows:

zk+1 = f(zk, uk, wk).

The equation above hold for zk 6∈ Zjump where

Zjump = {z | d1 ≥ dcar, d
1 + d2 ≤ −dcar, h < 1}.

Set Zjump describes the state space configurations where the
controllable vehicle took over vehicle 1 and returned to
the first lane. For configurations zk ∈ Zjump, the system is
reinitialized as follows:

d1
jump = d1

k + d2
k,

d2
jump ∈ (−∞,−dcar],

v0
jump = v0

k,

v1
jump = v2

k,

v2
jump ∈ [0, v1

max],

hjump = hk.

The state zk+1 is then determined by

zk+1 = f(zjump, uk, wk)

where zjump = (d1
jump, d

2
jump, v

0
jump, v

1
jump, v

2
jump, hjump).

We now define the state space of the considered transition
system: Z = (−∞,+∞) × (−∞,−dcar] × [0, v0

max] ×
[0, vmax]× [0, vmax]× [0, 2].

For the simulations below we choose the following pa-
rameters: T0 = 0.1 s, M = 1370 kg, f0 = 51.0709 N ,
f1 = 0.3494 Ns/m, f2 = 0.4161 Ns2/m2, dcar = 2 m,
r = 2 m, v0

max = 30 m/s, vmax = 20 m/s, v∗ = 20 m/s,
umin = wmin = −20 m/s2, umax = wmax = 10 m/s2.

B. The specification

The specification is given by the control program depicted
below. Here T1 is a safety task “cruise control” and T2

Cruise control Takeover

R1,2

R2,1

T1 T2

Fig. 1: Control program graphical representation.

is a reachability task “takeover”. Note that P cannot be



represented by a single hybrid automaton with a safety or
a reachability specification or by a single task.

The hybrid automaton for T1 has two modes: p1 and p2

(“track velocity” and “avoid collision”). In the mode p1,
vehicle 0 has to track the desired velocity v∗, which is
provided by an external user. If the distance between vehicle
0 and vehicle 1 is too short, mode p2 is activated in order to
avoid collision. When a longer distance is restored, mode p1

is reactivated. The discrete dynamics of the hybrid automaton
is shown in Figure 2.

d1 + dcar ≤ 0
d1 + dsafe ≥ 0

p1 p2

d1 + dsafe ≤ 0
d1 + dsafe ≤ 0

Fig. 2: Graphical representation of discrete dynamics for
T1.

The associated continuous dynamics is then given by{
v0
k+1 ≥ v0

k + C, if v0
k ≤ v∗k − ε,

v0
k+1 ≤ v0

k − C, if v0
k ≥ v∗k + ε

for pk+1 = p1 and

v0
k+1 ≤ v0

k − C, if v0
k ≥ v∗k + ε

for pk+1 = p2. Input parameter v∗ (“target velocity”) in the
specification belongs to the following set:

V = { 1
Nm

v0
max, . . . ,

Nm−1
Nm

v0
max}.

The terminal set for T1 is given by

Wf,1 = {(z, p, v∗) | d1 ≤ −dcar, v
1 ≤ v∗, h < 1}.

For the simulation we choose the following numerical val-
ues for the parameters of this specification: Nm = 6, ε =
3 m/s, C = 0.1 m/s, dsafe = 50 m.

The hybrid automaton (z′, p′) ∈ GT2
(z, p) for task T2

is defined by the following constraints on the continuous
dynamics: z′ ∈ Z and by the discrete variable evolution
which is depicted on Fig. 3. This automaton has three modes:
p3, p4, and p5 (“change to lane 2”, “takeover vehicle 1”, and
“change to lane 1”, respectively).

h ≥ 1

p3 p4

d1 ≤ −dcar

h ≥ 1

p5
d1 ≤ −dcar d1 ≥ dcar

d1 + d2 ≤ −dcar

h ≥ 1

d1 ≥ dcar
d1 + d2 ≤ −dcar

Fig. 3: Graphical representation of discrete dynamics for T2.

The terminal set for T2 is given by

Wf,2 = {(z, p, v∗) | d1 ≥ dcar, d
1+d2 ≤ −dcar, h < 1, p = p5}.

Finally, the reset maps R1,2 and R2,1 are defined as
follows

R1,2(z, p, v∗) = p3,

R2,1(z, p) =

{
{p1} × V, d1 + d2 ≤ −dsafe,
{p2} × V, d1 + d2 > −dsafe.

C. Numerical results

The simulations were done in MATLAB R2019a using
Intel Core i7 4.20GHz CPU, 32 GB RAM. To compute the
controller we utilized symbolic abstractions of the system
and the specifications [25] and compositionality reasoning
similar to [23]. Particularly, we divide the 6-dimensional
transition system into two subsystems:

d1
k+1 = d1

k + (β(u2,k, v
0
k, hk)− v1

k)T0,
v0
k+1 = χ

(
v0
k + α(u1,k, v

0
k)T0, [0, v0

max]
)
,

v1
k+1 = χ

(
v1
k + α(w1

k, v
1
k)T0, [0, vmax]

)
,

hk+1 = u2,k

and

d2
k+1 = χ

(
d2
k + (v1

k − v2
k)T0, (−∞,−dcar]

)
,

v1
k+1 = χ

(
v1
k + α(w1

k, v
1
k)T0, [0, vmax]

)
,

v2
k+1 = χ

(
v2
k + α(w2

k, v
2
k)T0, [0, vmax]

)
.

Task T1 is unaffected by this change because it does not
impose restriction on the dynamics of d2 and v2 and due
to system S structure. For T2 the terminal set for the first
subsystem is then given by the following:

{(d1, v0, v1, h, p, v∗) | d1 ≥ dcar, d
1 ≤ d∗, h < 1, p = p5}.

The transitions from p4 to p5 and from p5 to p5 are changed
accordingly. The second subsystem is used essentially to
estimate the maximal number of time steps for takeover
maneuver for given values of d2, v1, v2 at the start of the
maneuver. To do this we evaluate the number of time steps
needed by the second subsystem to reach {(d2, v1, v2) | d2 ≥
−d∗ − dcar}. For numerical computations we utilized the
value d∗ = 20 m.

The total computation runtime for the maximal synthesis
is 2.5 hours of which 1% is spent on abstracting the system,
31% on computing task abstractions, and 68% on the max-
imal program controller synthesis algorithm. The synthesis
algorithm terminates after 2 iterations.

On Figure 4 we compare the controllable set of task T2

to the respective controllable region of program P. Figure 5
depicts the simulated trajectory of the system. Here the top
figure shows the relative distance d1 depending on time t.
The second figure shows the velocities of the three vehicles.
Finally, the bottom figure depicts the current mode and task
of the realized program execution. For this trajectory the
desired velocity is set by the user to 25 m/s for the first 30
seconds and to 5 m/s afterwards. The controllable vehicle
takes over 3 vehicles in front of it because it cannot maintain
the desired velocity. After the first 30 seconds it stays in the
cruise control mode.

VI. CONCLUSION

We introduced a new control specification language called
control programs. A control program is decomposable into
control tasks which are elementary control problems. Each
task is defined by a transition system, which must be simu-
lated by the closed-loop system, and a termination semantic,
which is reminiscent of safety and reachability property
of temporal logic. The provided algorithms for computing



Fig. 4: Controllable region comparison for T2 and P (h < 1,
p = p5, d2 = −100 m).
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Fig. 5: Distance d1, velocities v0, v1, v2 and v∗, and the
current program modes and tasks for the simulated trajectory.

program controllers limit the complexity of synthesis by
polynomial time in their data. Theorem 1 may act as an
instrument to reuse tasks and subprograms in a similar way
one reuses functions in a programming language. We also
present an example related to autonomous driving which
illustrates how the formalism may be used in applications.

REFERENCES

[1] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli. Effective
synthesis of switching controllers for linear systems. Proceedings of
the IEEE, 88(7):1011–1025, 2000.

[2] C. Belta, B. Yordanov, and E. A. Gol. Formal Methods for Discrete-
Time Dynamical Systems. Springer, 2017.

[3] D. Berwanger. Graph games with perfect information. MPRI, 2012/13.
[4] S. Coogan and M. Arcak. Efficient finite abstraction of mixed mono-

tone systems. In Proceedings of the 18th International Conference on
Hybrid Systems: Computation and Control, pages 58–67. ACM, 2015.

[5] J. Eilbrecht and O. Stursberg. Optimization-based maneuver automata
for cooperative trajectory planning of autonomous vehicles. In Pro-
ceedings European Control Conference, ECC 2018, Limassol, Cyprus,
June 12-15 2018.

[6] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas. Temporal
logic motion planning for dynamic robots. Automatica, 45(2):343–352,
2009.

[7] E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-based motion
planning for nonlinear systems with symmetries. IEEE transactions
on robotics, 21(6):1077–1091, 2005.
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