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INFLUENCE OF BOUNDARY CONDITIONS ON TRACER DISPERSION IN AN AQUIFER

Dispersivity is often assumed to be independent of the ow boundary conditions. As dispersion of a plume is a consequence of Darcy's velocity uctuations, boundary conditions should in uence this process and, possibly, a ect the dispersivities de ned far from the boundaries.

In this work, we analyze, by means of Monte-Carlo simulations, the in uence of di erent types of boundary conditions on ow and transport statistical quantities in a bidimensional aquifer. Results show that boundary conditions have a short range in uence on velocity mean and variances, and a long range in uence on transport. For instance, transverse dispersivity is very sensitive to the nature of lateral boundary conditions : for an imposed head the range of in uence is at least eight correlation lengths. On the basis of these results, dispersivity in bidimensional aquifers appears to be dependent of boundary conditions in a zone, along the boundaries, of rather large extent.

INTRODUCTION

Contaminant transport in heterogeneous aquifers is usually modeled by an advection di usion dispersion equation. The dispersivities are often assumed to be independent of the ow boundary conditions. Whatever the modeling approach, classical or stochastic, the dispersion process is a consequence of the Darcy velocity uctuations. Therefore, boundary conditions potentially in uence this process and, possibly, a ect the dispersivities de ned far from these boundaries.

Head boundaries set head uctuation to zero while ux boundaries annuls one component of Darcy's velocity. By constraining di erent variables, di erent type of boundary do not produce the same ows in heterogeneous media. For instance, a mean uniform ow can be generated by xed head up-and down-stream, and impervious lateral borders. These latter borders with xed linear head produce the same average ow, but are not impervious anymore. It is clear that transport of a plume or of a particle should also be a ected.

If this phenomenon is well understood and accepted, the question of its importance and its range in 2D-aquifers has been partially studied. Studies have shown analytically or by Monte-Carlo simulations that log-transmissivity-head cross-correlations C yh and head variogram hh are stationary beyond a few correlation lengths from the borders 7] 8] 6] 4], but head variance is strongly determined by the boundary conditions, all over the area they delimit, in a log-like variation 2] 4]. Head statistics can then never be considered stationary, except for very large areas. Incidence on velocity is then expected to have the same extent, but this topic is less richly described in the literature. Bellin 1] observed a very clear impact of xed-ux boundaries on velocity variance. This e ect, however, is located in the vicinity of the borders, no more than 3 away from them. The in uence of other types of boundary was not investigated, nor was the study extended to velocity correlations, which are the sources of dispersion. Therefore, it can not be concluded that there should be a "boundary free" zone where head, velocity or transport would behave, from the stochastic point of view, like in an in nite domain.

The purpose of this study is to understand and to investigate by Monte-Carlo simulations if and how dispersion in a uniform mean ow is a ected by boundaries, especially lateral boundaries. Simulations were made with the code CASTEM 2000. They rely on the resolution of the ow equations by Mixed-Hybrid Finite Element method 5]. Transmissivity realizations were generated by the matrix decomposition method for an exponential transmissivity correlation, and transport was simulated by particle tracking technique.

In this work, we analyze, by means of Monte-Carlo simulations, the in uence of di erent types of boundary conditions on ow and transport statistical quantities in a bidimensional aquifer. These are the means and variances of Darcy's velocity and particle position. The velocity rst two moments are rst analyzed analytically under the linearized model.

FLOW STATISTICS IN THE VICINITY OF BOUNDARIES 1.Theoretical framework

Let axis 1 be the direction of the uniform mean ow, and let us call Y the logtransmissivity, split into a mean <Y > and a random uctuation y. Y is supposed stationary so that the log-transmissivity correlation depends only on the separation r : C yy (r) =< y(x)y(x + r)>= exp( r= ). Head is noted H =<H> +h and Darcy's Velocity is written Ũ =< Ũ> +ũ.

There are four types of boundary : xed head or xed ux on lateral -parallel to the mean ow -or longitudinal -perpendicular to the mean ow -borders. In each case, only one variable uctuation is set to zero : either h = 0 or ũ ñ = 0 (where ñ is a unitary vector normal to the boundary) respectively.

The linearized model 3] gives expressions of Darcy's velocity mean and uctuation :

< Ũ>= T G h (1 + 2 Y =2) J0 + <y rh> + r <H (2) > i (1) ũ = T G h y J0 + rh i (2)
given the equations on rst order head uctuations h = H (1) and second order head H (2) : h = J0 ry with the proper boundary conditions

H (2) = rh ry ; H (2) equals zero on the boundaries (4)

The numbers in parenthesis are the y orders in the linearized development (written till order 2). The zeroth order head gradient has been written J0 , and the geometric mean of transmissivity T G . We de ne also the zeroth order mean velocity U 0 = T G J 0 . Each of these expressions takes di erent forms depending on the boundary conditions (from eq. ( 2)) : -a xed head longitudinal boundary sets h = 0 and @ 2 h = 0, so u 2 = 0, -a xed ux longitudinal boundary sets u 1 = 0, so @ 1 h = y J 0 , -a xed head lateral boundary sets h = 0 and @ 1 h = 0, so u 1 = y U 0 , -an impervious lateral boundary sets u 2 = 0, so @ 2 h = 0.

Mean Velocity

The analytical steps in the calculation of mean velocity are the determination of < y rh> from (3) and of r <H (2) > from (4), taking advantage of the symmetries generated by the boundaries. This has been made for lateral boundaries only. In the following, the origin is taken on the boundary itself.

Resolution of eq. ( 3) with head lateral boundary can be done using a composed Green function G(x; x0 ) = G 1 (x 1 ; x 2 ; x 0 1 ; x 0 2 ) G 1 (x 1 ; x 2 ; x 0 1 ; x 0 2 ), where G 1 is the Green function for the laplacian in an in nite 2D medium. This case can be described by a ctitious in nite domain where y would be anti-symmetrical in relation to the boundary. Multiplying (3) by h(x 0 ) and then taking ensemble mean gives :

<y(x)h( x0 )>= J 0 Z r2half plane G(x 0 ; x + r)@ r1 C yy (r)dr (5) 
The particular symmetry of G associated to the parity of C yy (r) is such that this integral is null when x 1 = x 0 1 , whatever x 2 and x 0 2 , so that < y(x 1 ; x 2 ) @ x2 h(x 1 ; x 2 ) >= 0 too. Furthermore, due to the nature of the boundary, @ 1 h(x 1 ; 0) = 0. So : <y rh> (x 1 ; 0) = 0 (6) Moreover, H (2) being null on the boundary, @ x1 <H (2) >= 0. Mean longitudinal velocity in the vicinity of a head lateral boundary, expressed by (1), has then the following form : <U 1 > (x 1 ; 0) = (1 + 2 y = 2) U 0 (7) Mean velocity should then be increased by the proximity of head lateral boundaries, with a magnitude varying linearly with log-transmissivity variance. The range of the in uence, however, is not determined a priori.

Fixed-ux lateral boundary does not a ect mean velocity, because this situation corresponds to a ctitious in nite domain where y would be symmetrical in relation to the boundary. In this case, eq. ( 5) is identical to the expression of C yh in an unbounded domain. H (2) , <y rh> and nally < Ũ> are then unchanged.

Velocity variances

Velocity variances on boundaries are obtained directly from eq. (2). Some of them are expressed in relation to head derivative standard-deviation on the boundary. Those latter were not analytically calculated. It has been found that : -for xed head longitudinal boundary, u1 = T G @ x1 h (0; x 2 ) and u2 = 0 -for xed ux longitudinal boundary, u1 = 0 and u2 = y U 0 , -for impervious lateral boundary, u1 = T G @ x1 h (x 1 ; 0) and u2 = 0 -for head lateral boundary, u1 = y U 0 and u2 = T G @ x2 h (x 1 ; 0)

Monte-Carlo simulations

Four values of y have been investigated : 0.1, 0.5, 1.0 and 1.5. The number of realizations necessary to reach a satisfactory convergence were made. The grid re nement is =4 on a 21 13 wide area. Simulations have been performed for the two di erent lateral boundaries with xed head on the in-ow and the out-ow borders. Results are summarized in table 1 1: E ect and range of boundaries in a uniform ow Detailed values are not shown, but the simulated increase of <U 1 > in the vicinity of a xed-head lateral boundary is exactly the one predicted by eq. ( 7) except for y =1.5 (the linearized model usually requires y < 1). The t is not as good for longitudinal velocity variance increase near the same boundary. An overestimation of no more than 25% is observed. The results show that velocity variability tends to zero where expected, and increase signi cantly otherwise. Symmetrically, studies of Dagan 2] and Osnes 4] showed how head uctuations tend to zero on xed-head boundaries but increase near impervious lines. In any case, the range of the in uence of the boundaries on mean and variances of velocity does not exceed a few correlation lengths. To this point, nothing can be said on how, and how far, can velocity correlations be a ected by the boundaries.

INFLUENCE OF LATERAL BOUNDARIES ON TRANSPORT IN A UNIFORM FLOW

The in uence of the type of lateral boundaries on transport has been studied by Monte-Carlo simulations. We investigate here the particle displacement variances in a uniform ow generated in a 17 square medium discretized =4. From 800 up to 2000 realizations were performed for each value of y investigated. Figure 1: Normalized displacement variances functions of dimensionless abscissa s= for di erent boundary conditions : longitudinal head (thin) or ux (bold) conditions, and lateral head (small dashes) or ux (long dashes) boundaries.

We present the position variances as functions of mean travel distance s, of a particle released 3 from the up-stream border, on the symmetry axis of the medium. Results are quite similar for the four values of y . For the sake of clarity, X 11 is presented with y =1, and X 22 with y =0.1 (See Figure 2). Longitudinal dispersion seems not to be a ected by lateral boundaries, nor by head longitudinal boundaries ; but xed-ux longitudinal boundaries induce a signi cant, though light, decrease of X 11 . On the other hand, transverse dispersion is clearly dependent on the nature of all four boundaries. Lateral ux boundaries increase X 22 while lateral head boundaries lower it. After a travel distance of only 7 , the plume is no more than 0:3 wide, so still about 8 away from the lateral borders, but the di erence has already got up to 20%. Moreover, X 22 seems extremely sensitive to longitudinal ux boundaries.

These results suggest that velocity correlations are a ected on a very long range (more than 10 like other not included calculations showed), while velocity variances are not affected on more than a few . Thus, velocity correlation lengths for longitudinal separations seem to be a ected by the boundaries on long distances. Within this assumption, transverse velocity correlation length would decrease in the vicinity of a head lateral or ux longitudinal boundary, and increase in the vicinity of a ux lateral boundary. The explanation according to which e ective log-transmissivity correlation length doubles near a xed-ux boundary due to the ctitious symmetry of Y relatively to it, is not pertinent. If the boundary is parallel to the mean ow, then only correlation length for transverse separations is concerned ; and if the boundary is orthogonal to the mean ow, an increase of longitudinal position variance should be observed, which is not the case. The same remark applies to head boundaries. So the observed in uence of boundaries on particle position variances remains unexplained, yet indubitable.

It is commonly accepted that boundaries a ect ow and transport in their vicinity. That is why every modeler chooses, somewhat arbitrarily or on the strength of studies not plainly devoted to the topic, an area that he thinks is "boundary free". It has been showed here that boundaries determine ow and transport in a very wide area, at least 10 logtransmissivity correlation lengths away from them. For instance, with lateral boundaries 8 away from the release point, itself 3 from the in-ow boundary, the di erences in position variances go up to 30% after only 7 traveled. Longitudinal boundaries exert the more important in uence on transport. The in uence of transverse boundaries is also certain, though limited to transverse dispersion. This could not be expected on the basis of velocity mean and variances, which reach their in nite-domain values after a short distance. Velocity correlation lengths could be responsible of the e ect of boundaries on transport, by being a ected on very long ranges. Other explanations could be suggested, like highorder e ect not included in the linearized model used here. More analytical research are necessary to understand the long-range e ect of boundaries on transport.

From a practical point of view, it must be understood that, unless boundaries are very far apart, they take a full part in the modelization and should be subject to a careful choice. Real eld boundaries should be preferred, and if not available, boundary e ects should be kept in mind when interpreting results. Finally, the nature of boundaries might be of critical importance in other types of ow, like single or multi-pumping, where the nature ( xed draw-downs or xed pumping rates) of the wells must be chosen.

Table

  .

	Type of boundary Lateral, head Lateral, ux Long., head Range for all types E ect on h ! 0 high ! 0 everywhere
	E ect on <U 1 > E ect on u1 E ect on u2	(1 + 2 y = 2) strong increase strong increase	slight decrease -! 0	-strong increase ! 0	4 3 3