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Abstract: Assessing the performance of scheduling heuristics through simulation requires one to
generate synthetic instances of tasks and machines with well-identified properties. Carefully controlling
these properties is mandatory to avoid any bias. We consider the scheduling problem consisting
of allocating independent sequential tasks on unrelated machines while minimizing the maximum
execution time. In this problem, the instance is a cost matrix that specifies the execution cost of any
task on any machine. This report proposes two measures for quantifying the heterogeneity properties
of a cost matrix. An analysis of two classical methods used in the literature reveals a bias in previous
studies. Two new methods are proposed to generate instances with given heterogeneity properties and
it is shown that they have a significant impact on several heuristics.
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Sur le biais d’hétérogénéité dans les matrices de coût lors de l’évaluation
des algorithmes d’ordonnancement

Version 2

Résumé : Évaluer la performance des heuristiques d’ordonnancement avec des simulations nécessite
de générer des instances synthétiques de tâches et de machines avec des propriétés clairement iden-
tifiées. Contrôler ces propriétés avec soin est indispensable pour éviter tout biais. Nous considérons
le problème d’ordonnancement qui consiste à allouer des tâches séquentielles indépendantes sur des
machines indépendantes tout en minimisant le temps d’exécution maximum. Dans ce problème,
l’instance est une matrice de coût qui fournit le temps d’exécution de chaque tâche sur chaque ma-
chine. Ce rapport propose deux mesures pour quantifier les propriétés d’hétérogénéité d’une matrice
de coût. Une analyse de deux méthodes classiques utilisées dans la littérature montre un biais dans
les études précédentes. Deux nouvelles méthodes sont proposées pour générer des instances avec des
propriétés d’hétérogénéité données et nous montrons qu’elles ont un impact significatif sur plusieurs
heuristiques.

Mots-clés : ordonnancement; matrices de coût; hétérogénéité; biais; parallélisme; mesures.
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1 Introduction

Leveraging the parallelism of multi-core distributed platforms involves efficiently scheduling
applications on several machines [105]. Current studies rely on performance evaluation to
determine the best solution for any underlying problem. This process can be divided into several
categories: formal analysis, experiments, simulations, etc. In the case of simulations, a scheduling
strategy is tested in a virtual environment with a given workload. This paper focuses on the
generation of synthetic instances.

Synthetic instances of workload allow a more general evaluation than with specific traces.
They are particularly useful for sensitivity analysis [139], which consists in assessing the impact of
the instance properties on the algorithms. However, the lack of control on the instance properties
makes it difficult to confront the results of independent studies. For instance, although many
papers have compared several scheduling heuristics [22, 26, 43, 109], predicting their performance
is still an issue. These problems can be tackled by carefully controlling the instance properties.

Specifically, we consider the scheduling problem noted R||Cmax in α|β|γ notation [63]. It
consists in scheduling n independent sequential tasks on m unrelated machines. All tasks are
available simultaneously and preemption is not possible. The instance is a cost matrix where
each element ei,j is a positive integer that represents the execution cost of task i on machine j.
The objective is to allocate each task to a machine such that the maximum execution time on
any machine is minimized. More formally, we want to minimize max(

∑
π(i, j) × ei,j) where

π(i, j) is equal to one if task i is scheduled on machine j and zero otherwise.
For this problem, the range-based and CVB (Coefficient of Variation Based) methods

proposed in [17, 18] are currently the standard methods used in the literature to generate
instances. However, the properties of the matrices generated with these methods have never
been formally analysed and previous studies may thus be exposed to a bias.

This paper provides the following contributions:1

� a statistical description of the use of the range-based and CVB methods in the literature
(Section 3);

� a study of how to quantify the heterogeneity properties of a cost matrix (Section 4);

� a formal analysis of the range-based and CVB methods and the identification of a bias
that impacts several studies (Section 4);

� a new method with control over heterogeneity properties (Section 5);

� and, an assessment of the impact of these properties on several heuristics (Section 6).

2 Related Work

The concept of heterogeneity was first introduced in the context of cost matrix by Armstrong [20].
He described the heterogeneity quadrant in which cost matrices are divided into four categories
depending on their heterogeneity properties regarding tasks and machines: low/low, low/high,
high/low, and high/high. For instance low/high refers to low task heterogeneity and high
machine heterogeneity. However, no method for generating such matrices was proposed.

The range-based and CVB methods were first proposed to fill this gap in [8] and then
in [17,18]. However, task and machine heterogeneities were not formally defined and analyzed.
The methods were assumed to generate matrices with the expected properties and only validated
through some examples.

1The related code, data and analysis are available in [37].
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2 L.-C. Canon – L. Philippe

The limits of these methods were later acknowledged in [5], which proposed to consider the
average coefficient of variation2, skewness and kurtosis of the costs for each task and for each
machine. The proposed scheme (based on decision trees) uses these additional information to
predict heuristic performance. Despite a wide experimentation plan, the study lacks discussion
and interpretation in particular on the relative importance of the considered measures. Addi-
tionally, no formal analysis was provided. The exhibited decision trees suggest that the average
coefficient of variation plays a significant role, which supports the current work.

The MPH (Machine Performance Homogeneity) is introduced in [3] for capturing the
heterogeneity between the machines while its counterpart for the tasks, the TDH (Task Difficulty
Homogeneity), appears in [2]. We discuss them more extensively in Section 4. In addition, the
TMA (Task-Machine Affinity) is also defined in [3]: it quantifies the specialisation of the system
(i.e., whether some machines are particularly efficient for some specific tasks). Although the
three measures are applied to a real benchmark, no method is proposed for generating matrices
with given MPH, TDH and TMA. It is thus unclear what is the impact of the proposed measures
on heuristic performance. Finally, they show that the range-based and CVB methods do not
cover the entire range of possible values for the MPH and the TMA, which is consistent with
the conclusion of Section 4.

Friese et al [53] present a method for adding tasks in a given cost matrix while preserving
some statistical properties on each column (mean, coefficient of variation, skewness and kurtosis).
It ignores the properties on each row however.

A method for generating matrices with varying affinities (similar to the TMA) is proposed
in [6]. It is similar to the noise-based method described in Section 5, but no formal analysis is
provided.

Khemka et al [82] propose a method for changing the TMA of an existing matrix while keeping
the same MPH and TDH. TMA is mentioned to be related to the correlation. Investigating the
correlation properties is left for future work. There is also another field of studies dedicated to
the generation of matrices with given correlation and covariance matrices [59].

3 Matrix Generation Methods

The most used methods for generating cost matrices are the range-based and the CVB (Coefficient
of Variation Based) methods [8, 17, 18]. The most frequent notations are summarized in
Appendix A.

3.1 Range-Based Method

The range-based method generates n vectors of m values that follow a uniform distribution in
the range [1, Rmach] (see Algorithm 1). Each row is then multiplied by a random value that
follows a uniform distribution in the range [1, Rtask] (Line 2). The resulting cost matrix is similar
to the following (where τ is a vector of n uniform values in [1, Rtask]):τ [1]U(1, Rmach) · · · τ [1]U(1, Rmach)

...
. . .

...
τ [n]U(1, Rmach) · · · τ [n]U(1, Rmach)


Proposition 1. When used with parameters Rtask and Rmach, the range-based method generates
costs with expected value 1

4(Rtask+1)(Rmach+1) and standard deviation 1
12 [(Rtask−1)2(Rmach−

1)2 + 3(Rmach − 1)2(Rtask + 1)2 + 3(Rtask − 1)2(Rmach + 1)2]1/2.

2Ratio of the standard deviation to the mean.
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Algorithm 1 Range-based cost matrix generation with the uniform distribution

Input: n, m, Rtask, Rmach
Output: a n×m cost matrix
1: for all 1 ≤ i ≤ n do {Generate each row}
2: τ [i]← U(1, Rtask)
3: for all 1 ≤ j ≤ m do {Generate each value of the row}
4: ei,j ← τ [i]× U(1, Rmach)
5: end for
6: end for
7: return {ei,j}1≤i≤n,1≤j≤m

Property Value

Expected value 1
4(Rtask + 1)(Rmach + 1)

Standard deviation 1
12

√
(Rtask − 1)2(Rmach − 1)2 + 3(Rmach − 1)2(Rtask + 1)2+

3(Rtask − 1)2(Rmach + 1)2

CV 1
3

√
(Rtask−1)2(Rmach−1)2

(Rtask+1)2(Rmach+1)2
+ 3 (Rtask−1)2

(Rtask+1)2
+ 3 (Rmach−1)2

(Rmach+1)2

Distribution Product of two uniform laws

Asymptotic expected value 1
4RtaskRmach

Asymptotic standard deviation
√

7
12 RtaskRmach

Asymptotic CV
√

7
3 ≈ 0.88

Table 1: Summary of the cost matrix properties with the range-based method. Asymptotic
values are when both Rtask and Rmach are large.

Proof. Each cost is the product of τ [i], which follows a uniform law in the range [1, Rtask], and a
random variable that follows a uniform law in the range [1, Rmach]. Therefore, the expected value
of the costs is the product of the expected values of both distributions, namely (Rtask + 1)/2
and (Rmach + 1)/2.

The standard deviation of the product of two random variables with means µ1 and µ2, and
standard deviations σ1 and σ2 is

√
σ2

1σ
2
2 + µ2

1σ
2
2 + σ2

1µ
2
2. With a similar argument as for the

expected value, we can derive the standard deviation of the costs.

Table 1 summarizes the properties of this method. Except for low values of Rtask and
Rmach, the CV (Coefficient of Variation) remains close to a constant. For instance, when
Rtask = Rmach = 100, then the CV is around 0.86. As shown in Section 4, this method is
not well-suited to control the heterogeneity of the resulting cost matrix. Also, given that this
method is asymmetric, it may be expected to handle task heterogeneity differently from machine
heterogeneity.

3.2 CVB Method

The CVB method is based on the same principle except it uses parameters that are distinct
from the underlying distribution parameters. In particular, it requires two CV (Vtask for the
tasks and Vmach for the machines) and one mean (µtask for the tasks). The random values follow
a gamma distribution whose parameters are computed such that the provided CV and mean are
respected.

RR-FEMTO-ST-8663



4 L.-C. Canon – L. Philippe

Algorithm 2 CVB cost matrix generation with the gamma distribution

Input: n, m, Vtask, Vmach, µtask
Output: a n×m cost matrix
1: αtask ← 1/V 2

task

2: αmach ← 1/V 2
mach

3: βtask ← µtask/αtask
4: for all 1 ≤ i ≤ n do
5: q[i]← G(αtask, βtask)
6: βmach[i]← q[i]/αmach
7: for all 1 ≤ j ≤ m do
8: ei,j ← G(αmach, βmach[i])
9: end for

10: end for
11: return {ei,j}1≤i≤n,1≤j≤m

Property Value

Expected value µtask

CV
√
V 2
taskV

2
mach + V 2

task + V 2
mach

Distribution Product of two gamma laws

Table 2: Summary of the cost matrix properties with the CVB method.

Proposition 2. When used with parameters Vtask, Vmach and µtask, the CVB method generates

costs with expected value µtask and coefficient of variation
√
V 2
taskV

2
mach + V 2

task + V 2
mach.

Proof. In order to apply the same analysis as in the proof of Proposition 1, we need to prove
that any cost is the product of two gamma distributions. More precisely, we need to prove that
the random generation on Line 8 is equivalent to multiplying q[i] by a gamma law with mean
one and CV Vmach.

Each cost ei,j is a random variable that follows a gamma distribution with mean q[i] and CV
Vmach. The probability that ei,j is no more than x is given by 1

Γ(α)γ(α, xβ ) where α = 1/V 2
mach,

β = q[i]/α, Γ(α) is the gamma function and Γ(α, xβ ) is the lower incomplete gamma function.

By contrast, let X be a random variable that follows a gamma distribution with mean one
and CV Vmach. Then, the probability that q[i]X is no more than x is the probability that X is

no more than x/q[i]: 1
Γ(α)γ(α, x/q[i]β ) where α = 1/V 2

mach and β = 1/α. It is thus the same as for
ei,j .

Thus, Line 8 can be replaced by the product of q[i] by a gamma law with mean one and CV
Vmach (i.e., ei,j ← q[i]G(αmach, 1/αmach)), which is the product of two gamma distributions.

The proof is then analogous to the proof of Proposition 1.

Table 2 summarizes the properties of this method, which is more adapted to control the
heterogeneity of the resulting cost matrix. However, it is still asymmetric. Note that the CV is
the same as with the range-based method when we replace Vtask by the CV of the first uniform

law,
√

12
6

Rtask−1
Rtask+1 , and Vmach by the CV of the second uniform law,

√
12
6

Rmach−1
Rmach+1 .
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3.3 Consistency Extension

Both the previous methods produce cost matrices that may not be representative of realistic
settings. For instance, the costs of a given task is not correlated to the costs of another task,
which may often be the case in practice. The consistency extension consists in reordering the
costs in the generated matrix to have an instance that is closer to the uniform case. Specifically,
the rows of a submatrix of an rows and bm columns are sorted. Thus, a machine that is faster
for a given task than another machine will likely be also faster for another task. Inconsistent
matrices have a = b = 0 while consistent matrices have a = b = 1 (other matrices are either
called semiconsistent or partially consistent).

3.4 Usage in the Literature

We covered the English articles that cite at least one of the references in which the methods were
initially presented [8,17,18] and that were freely available. For each reference, we extracted all the
distinct sets of parameters. Additionally, we differentiated between example cost matrices that
illustrate the generation methods from cost matrices that are used in actual sets of experiments
to study scheduling algorithms. However, the size was ignored as we only consider asymptotic
properties (Section 4.6 assesses the impact of the size).

Some data were not specifically provided. The parameters that could be directly inferred
from the article or from similar works are emphasized: this concerns mostly missing parameters
for the consistency extension (the ones from the cited article were taken). Otherwise, they
are treated as missing values (denoted by NA). Some articles lack enough information, which
prevented any parameter extraction.

On the 160 analysed articles, 78 provide exploitable information on the cost matrix instances.
The rest consists of 40 articles with no description, but which refer to instances described in
other articles and 42 articles with unclear descriptions or approaches that do not fit the current
study. The extracted data are provided in Appendix B and summarized below. While most
articles fail to precisely describe the used method, only the range and CV parameters are crucial
for reproducing similar instances. In the end, 342 sets of parameters were extracted in 78 articles
for a total of 210 unique settings: 37 for the range-based method and 173 for the CVB one.

Figure 1 depicts the values used with both methods. Although there is no clear agreement
on which precise parameters are the most relevant, there are some common tendencies. Values
for low heterogeneity are usually 10 and 100 for the range-based method and .1, .25 and .3
for the CVB method. Values for high heterogeneity are usually 100, 1e3, 3e3 and 1e5 for the
range-based method and .3, .35, .4, .5, .6, .7, .9, 1 and 2 for the CVB method.

4 Heterogeneity Measures

Assessing the impact of heterogeneity on heuristic performance requires a method for quantifying
the heterogeneity of the generated cost matrices.

4.1 TDH and MPH

The closest related measures are the TDH (Task Difficulty Homogeneity) and the MPH (Machine
Performance Homogeneity) [2, 3]. The TDH computation is described in Algorithm 3. The
value TD[i] represents the difficulty of task i, namely whether it has small costs. After the
ordering, the final sum computes the average ratio between similar tasks in terms of difficulty
(which lies in the interval (0, 1]). If this average is one, then tasks are all similar. If it is close to
zero, then the task heterogeneity is large.

RR-FEMTO-ST-8663
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(b) CVB method

Figure 1: Parameters used in the literature. Three points are not shown for the CVB method:
(1.4, 0.4), (1.8, 0.4) and (0.1, 2).

Algorithm 3 TDH computation

Input: a n×m cost matrix
Output: the TDH of this matrix
1: for all 1 ≤ i ≤ n do
2: TD[i]←

∑m
j=1

1
ei,j

3: end for
4: sort TD in ascending order
5: return 1

n−1

∑n−1
i=1

TD[i]
TD[i+1]

The MPH computation is analogous except that the sum on Line 2 is performed on each row
instead of each column. This results in a measure of the machine heterogeneity.

These measures have three major shortcomings (as mentioned in Section 2). First, they are
not intuitive (they require to invert costs, to order sums and to average ratios). Also, they do
not rely on classical statistical measures, which makes deriving formal results more difficult.
In particular, the ordering on Line 4 complicates formal analysis. A last notable problem is
that the resulting values depend on the size of the matrix. In particular, it is close to one when
the matrix is large (even if it is generated with the same parameters and has, intuitively, the
same characteristics). For instance, if we consider only one machine, the following matrices (cost
vectors in this case) have the same TDH: [1, 2] and [0.125, 0.25, 0.5, 1, 2, 4]. The second vector,
however, seems more heterogeneous. As another example, let the minimum TD be 1 and the
maximum TD be 100. Given Proposition 3, the TDH is always greater than 0.60 when there
are 10 tasks and it is always greater than 0.95 when there are 100 tasks. This measure is thus
relevant only for comparing small cost matrices with similar sizes.

Proposition 3. The TDH cannot be lower than e
log
(

min(TD)
max(TD)

)
/(n−1)

.

Proof. The minimum TDH is achieved when the sum
∑n−1

i=1
ai
ai+1

where ai = TD[i] is minimum.

Let f : [a1, an]n−2 → (0,∞) be the corresponding multivariate function with a1 and an being

FEMTO-ST Institute
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constant. Each value ai for 1 < i < n is greater than or equal to a1 because the ai are ordered.
As a1 represents an average cost and is thus strictly greater than zero, all nominators and
all denominators are strictly greater than zero. Therefore, f is a continuous function from
the compact [a1, an]n−2. The extreme value theorem states that a continuous function from a
non-empty compact space to a subset of the real numbers attains a maximum and a minimum.
This proves the existence of a minimum.

We now show by contradiction that this minimum is achieved when the ratios ai
ai+1

are all

equal for 1 ≤ i < n. Assume it is not the case and let i be the lowest value for which ai
ai+1
6= ai+1

ai+2
,

which can be rewritten as ai+1 6=
√
aiai+2. A lower value is attained when ai+1 =

√
aiai+2

because the partial derivate of f with respect to ai+1 (i.e., −ai−1

a2i
+ 1

ai+1
) is zero with this

value. Therefore, the minimum is achieved when all ratios ai
ai+1

are equal. This is the case when

ai = e
log(TD[1])+ i−1

n−1
log
(

an
a1

)
for 1 ≤ i ≤ n.

When replacing ai by TD[i], the TDH simplifies as e
log
(

TD[1]
TD[n]

)
/(n−1)

or e
log
(

min(TD)
max(TD)

)
/(n−1)

if
the vector TD is not sorted.

4.2 Intuitive Measures of Heterogeneity

We identify below two intuitive measures of task and machine heterogeneity that rely on classic
properties:

� Assuming that the mean of each row represents a task weight, the task heterogeneity may
be defined as the CV (Coefficient of Variation) of the means of the rows (noted V µtask).
Analogously, the machine heterogeneity may be measured as the CV of the means of the
columns (noted V µmach).

CV


µ1
...
µn

 e1,1 · · · e1,m
...

. . .
...

en,1 · · · en,m


� Alternatively, the CV of one column may represent the task heterogeneity for a given

machine. Therefore, the mean of the CV of the columns may measure the task heterogeneity
(noted µVtask) while the mean of the CV of the rows may measure the machine heterogeneity
(noted µVmach).

The first measure of task and machine heterogeneity has been criticized for small instances [2].
It is argued that the MPH is better than the CV as it is less sensitive to outliers. In this case, the
CV can be replaced by the quartile coefficient of dispersion, which is a similar standard statistical
measure but is more difficult to formally analyze. Finally, the decision trees in [5] suggest that
varying this measure has an impact on the heuristic performance and is thus significant.

With both measures, it is possible to use the standard deviation instead of the CV. However,
the CV provides a relative measure that is independent from the cost mean. If an absolute
measure is deemed more meaningful, the proposed measures can be adapted by using the
standard deviation.

4.3 Coherence with the Uniform Model

The previous measures do not only rely on intuition, they are also consistent with the expectation
when we consider the uniform model. In this model, the cost of executing a task i on a machine j
is given by the product of the task weight, wi, and the cycle time, bj . The concept of task

RR-FEMTO-ST-8663
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and machine heterogeneity is easy to grasp in the uniform model: it is given by the statistical
dispersion of the weights and the speeds, respectively. We assume that the CV of the weights,
noted CVtask, is a relevant measure of the task heterogeneity. Analogously, the CV of the speeds,
noted CVmach, represents the machine heterogeneity.

It is possible to convert an instance of the uniform model to the unrelated model because this
last model is more general. The cost matrix is generated by combining both vectors {wi}1≤i≤n
and {bj}1≤j≤m such that ei,j = wibj . As we know the heterogeneity properties of a uniform
instance, we expect our proposed measures for the unrelated model to be consistent when applied
on the converted instance.

Proposition 4. Let U = ({wi}1≤i≤n, {bj}1≤j≤m) be a uniform instance and E = {ei,j}1≤i≤n,1≤j≤m
be the corresponding unrelated instance such that ei,j = wibj. Then, CVtask(U) = V µtask(E) =
µVtask(E) and CVmach(U) = V µmach(E) = µVmach(E).

Proof. By definition, CVtask(U) =

√∑n
i=1 w

2
i /n−(

∑n
i=1 wi/n)2∑n

i=1 wi/n
whereas V µtask(E) is the CV of the

means of the rows. The mean of row i is
∑m

j=1 ei,j/m = wi/m
∑m

j=1 bj . Then, V µtask(E) =√∑n
i=1(wiφ)2/n−(

∑n
i=1 wiφ/n)2∑n

i=1 wiφ/n
where φ =

∑m
j=1 bj/m is the mean of the inverse speeds. Therefore,

V µtask(E) = CVtask(U).
Remember that µVtask(E) is the mean of the CV of the columns. The CV of column j is√∑n

i=1 e
2
i,j/n− (

∑n
i=1 ei,j/n)2∑n

i=1 ei,j/n
=

√∑n
i=1(wibj)2/n− (

∑n
i=1(wibj)/n)2∑n

i=1(wibj)/n

= CVtask(U)

The mean of these CV is thus also CVtask(U).
The demonstration is analogous for the machine heterogeneity measures.

Proposition 4 shows that our proposed measures are consistent with the intuition on uniform
instances.

4.4 Heterogeneity of the Range-Based and CVB Methods

We analyse the asymptotic heterogeneity properties of the CVB method with the proposed
measures depending on the parameters Vtask and Vmach. An estimator T converges to θ when
the expected value of T tends to θ as the number of samples (n and m in our case) tends to ∞.

Proposition 5. The measure V µtask of a cost matrix generated using the CVB method with
the parameters Vtask and Vmach converges to Vtask as n→∞ and m→∞.

Proof. This proof assumes that the mean of a set of n samples (called the sample mean) of a
random variable with mean µ and standard deviation σ is a random variable with mean µ and
standard deviation σ√

n
. Moreover, the CV of a set of n samples (called the sample CV) of a

random variable with CV V converges to V as n→∞.
Let µi be the sample mean of the costs on row i. This row is the product of q[i], which is a

random variable that follows a distribution with mean µtask and CV Vtask, and m values that
follow a distribution with mean one and CV Vmach. µi is thus also the product of the first random
variable and the sample mean of the other m values, which follows a random variable with mean

one and CV Vmach√
m

. Therefore, the mean of µi is µtask and its CV is

√
V 2
task

V 2
mach
m +

V 2
mach
m + V 2

task,

which tends to Vtask as m→∞. The consistency properties have no impact on µi because only
values on the same row are ordered.

FEMTO-ST Institute
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Proposition 6. The measure V µmach of a cost matrix generated using the CVB method with
the parameters Vtask and Vmach converges to a

√
bVmach as n→∞ and m→∞.

Proof. Let µj be the sample mean of the costs on column j. The measure V µmach is the ratio
of the sample standard deviation of all µj , noted σµmach, to the sample mean of all µj , noted
µµmach.

Let’s distinguish the columns where the costs are consistent (1 ≤ j ≤ bm) from the
inconsistent columns (bm < j ≤ m). For the inconsistent columns, µj is the sample mean of
n values that follow a product between a distribution with mean µtask and CV Vtask, and a
distribution with mean one and CV Vmach. Thus, µj follows a distribution with mean µtask and

CV

√
V 2
taskV

2
mach+V 2

task+V 2
mach

n for bm < j ≤ m. Therefore, the sample mean of µj converges to
µtask and its sample standard deviation converges to zero as n→∞ for bm < j ≤ m.

For the consistent columns, an rows are sorted. Let qp denotes the p-quantile of a distribution
with mean one and CV Vmach (it is the value x for which F (x) = p where F is the cumulative
distribution function). Note that ei,j → q[i]qj/(bm) as m→∞ for 1 ≤ i ≤ an and 1 ≤ j ≤ bm.
Therefore, µj can be decomposed as a weighted sum of sample means (one for the sorted rows and
another for the last rows): the first sample mean follows a distribution with mean µtaskqj/(bm) and

CV Vtask√
an

while the second follows a distribution with mean µtask and CV

√
V 2
taskV

2
mach+V 2

task+V 2
mach

(1−a)n .

Therefore, the sample mean of µj converges to aµtaskqj/(bm)+(1−a)µtask and its sample standard
deviation converges to zero as n→∞ for 1 ≤ j ≤ bm.

On one hand, µµmach = 1
m

∑m
j=1 µj = 1

m(
∑bm

j=1(aµtaskqj/(bm)+(1−a)µtask)+(1−b)mµtask) =

abµtask
1
bm

∑bm
j=1 qj/(bm) + (1− a)bµtask + (1− b)µtask as n → ∞. Note that 1

bm

∑bm
j=1 qj/(bm) =∫ 1

0 qpdp = 1 as m→∞. Thus, µµmach = µtask as n→∞ and m→∞. On the other hand, as
n→∞ and m→∞:

σµmach =

√√√√√ 1

m

m∑
j=1

µ2
j −

 1

m

m∑
j=1

µj

2

=

√√√√ 1

m

bm∑
j=1

µ2
j +

1

m

m∑
j=bm+1

µ2
j − µ2

task

=

√√√√ 1

m

bm∑
j=1

(aµtaskqj/(bm) + (1− a)µtask)2 + (1− b)µ2
task − µ2

task

= µtask

√√√√ 1

m

bm∑
j=1

(a2q2
j/(bm) + 2aqj/(bm)(1− a) + (1− a)2)− b

= µtask

√√√√a2b
1

bm

bm∑
j=1

q2
j/(bm) + 2a(1− a)b

1

bm

bm∑
j=1

qj/(bm) + (1− a)2b− b

= a
√
bµtask

√√√√ 1

bm

bm∑
j=1

q2
j/(bm) − 1

Note that 1
bm

∑bm
j=1 q

2
j/(bm) =

∫ 1
0 q

2
pdp =

∫∞
−∞ x

2f(x)dx = V 2
mach + 1 as m → ∞ with the

substitution p = F (x) and dp = f(x)dx where f is the probability density function of a
distribution with mean one and CV Vmach. This requires the distribution to be continuous,
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10 L.-C. Canon – L. Philippe

Measure Value

V µtask Vtask

µVtask

{
Φ =

√
V 2
taskV

2
mach + V 2

task + V 2
mach if a = 0

bVtask + (1− b)Φ if a = 1

V µmach a
√
bVmach

µVmach Vmach

Table 3: Summary of the heterogeneity properties of the CVB method.

which is the case for the gamma distribution. Therefore, σµmach = a
√
bµtaskVmach and V µmach =

a
√
bVmach as n→∞ and m→∞.

Proposition 7. The measure µVtask of a cost matrix generated using the CVB method with the

parameters Vtask and Vmach converges to
√
V 2
taskV

2
mach + V 2

task + V 2
mach as n→∞ if the matrix

is inconsistent and to bVtask + (1 − b)
√
V 2
taskV

2
mach + V 2

task + V 2
mach as n → ∞ and m → ∞ if

a = 1.

Proof. Let Vj be the sample CV of column j. When a = 0, the values on column j follow a
distribution that is the product of a distribution with mean µtask and CV Vtask, and a distribution

with mean one and CV Vmach. Therefore, Vj converges to
√
V 2
taskV

2
mach + V 2

task + V 2
mach as

n→∞. Since this value does not depends on j, µVtask (the sample mean of these sample CV)

also converges to
√
V 2
taskV

2
mach + V 2

task + V 2
mach as n→∞.

When a = 1, Vj still converges to
√
V 2
taskV

2
mach + V 2

task + V 2
mach as n→∞ for bm < j ≤ m.

However, µj (the sample mean of column j) converges to µtaskqj/(bm) as n→∞ and m→∞
while σj (the sample standard deviation of column j) converges to µtaskVtaskqj/(bm) as n→∞
and m→∞ for 1 ≤ j ≤ bm. Thus, Vj converges to Vtask as n→∞ and m→∞ for 1 ≤ j ≤ bm.

Therefore, µVtask converges to bCVtask + (1 − b)
√
V 2
taskV

2
mach + V 2

task + V 2
mach as n → ∞ and

m→∞.

Proposition 8. The measure µVmach of a cost matrix generated using the CVB method with
the parameters Vtask and Vmach converges to Vmach as m→∞.

Proof. Let Vi be the sample CV of row i. The values on row i follow a distribution that is the
product of q[i] and a distribution with mean one and CV Vmach. Therefore, Vi converges to
Vmach as m → ∞. Since this value does not depend on i, µVmach (the sample mean of these
sample CV) also converges to Vmach as m→∞.

Table 3 synthesises the previous formal results. They can be extended to the range-based

method by replacing Vtask by the CV of the first random variable (
√

12
6

Rtask−1
Rtask+1) and Vmach by

the CV of the second one (
√

12
6

Rmach−1
Rmach+1). Indeed, the proofs only use the mean and the CV of

the underlying distributions. Moreover, the uniform distribution is also continuous. Although
the formal analysis of µVtask for arbitrary values of a was unsuccessful, the following formula

provides a close estimate: a2bVtask + (1− a2b)
√
V 2
taskV

2
mach + V 2

task + V 2
mach.

In the case of complete consistency (i.e., when a = b = 1), V µtask = µVtask = Vtask and
V µmach = µVmach = Vmach, which supports the proposed heterogeneity measures. This special
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Generating Matrices 11

case is due to the fact that consistent cost matrices are closer to uniform instances than
inconsistent ones and both measures are equivalent for uniform instances.

However, the CVB method has two issues. As a consequence of the asymmetry of the
generation method, the task heterogeneity is not symmetric to the machine heterogeneity.

For instance, we have µVtask =
√
V 2
taskV

2
mach + V 2

task + V 2
mach, whereas V µmach = Vmach for

inconsistent matrices. This makes the generation method less direct as the parameters must be
chosen such as to circumvent this asymmetry. In particular, if a high machine heterogeneity is
required, then the task heterogeneity will also be high.

The second issue is related to the impact of the consistency parameters on the heterogeneity
properties. It biases comparisons of scheduling methods when cost matrices are used with different
consistency settings because these matrices will also have different heterogeneity properties.

The range-based method presents an even stronger bias as both Vtask and Vmach tend to
√

12
6 as

Rtask →∞ and Rmach →∞ (the heterogeneity properties are thus often similar).

4.5 Task and Machine Heterogeneity in Previous Studies

For each of the instances summarized in Section 3, we computed both heterogeneity measures
using the formulas of Table 3 and the input parameters: Rtask and Rmach for the range-based
method; Vtask and Vmach for the CVB method; and the consistency parameters, a and b, for
both methods. For the case when 0 < a < 1, µVtask was measured on a single 1000× 1000 cost
matrix that was generated with the range-based or the CVB method. When the consistency
values are missing, matrices are assumed to be inconsistent. Finally, the mean is set to 1 when
it is not given with the CVB method because it has no impact on any measure.

Figures 2 and 3 depict the values for the measures proposed above. The range-based method
has a clear bias because many heterogeneity properties have never been obtained. Also, the
consistency parameters invalidate the claimed properties of the cost matrices relatively to the
heterogeneity quadrant for both heterogeneity measures: some hihi instances have the same
machine heterogeneity as lolo instances on Figure 2, whereas some lohi instances have the same
task heterogeneity as hilo instances on Figure 3.

This analysis is also consistent with the observation made in [3] about the fact that the
range-based and CVB methods do not cover the entire range of possible values for the MPH.

As mentioned in Section 4, both proposed heterogeneity measures are relative. This allows
a direct comparison between each heterogeneity value. Using the standard deviation instead
would require normalizing them for this analysis.

4.6 Non-asymptotic properties

The previous analysis only considers asymptotic heterogeneity properties (i.e., when n→∞ and
m→∞). We study how far are these properties from the asymptotic ones by generating several
small cost matrices for each setting used in the literature and by applying all the measures on
them. Figure 4 depicts the heterogeneous properties of cost matrices with different sizes. We
see that the column corresponding to 256 tasks with 64 machines is close to the asymptotic
properties presented in Figures 2 and 3. Although the properties of smaller cost matrices are
more dispersed, their central tendency remain similar to the asymptotic ones and the previous
biases also occur with small matrices.
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(a) Range-based method

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
V µtask

V
 µ

m
ac

h

Heterogeneity hihi lohi hilo lolo medmed NA

(b) CVB method

Figure 2: Heterogeneity properties (V µtask and V µmach) of cost matrices used in the literature.
Two points are not shown for the CVB method: (1.4, 0) and (1.8, 0).
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(b) CVB method

Figure 3: Heterogeneity properties (µVtask and µVmach) of cost matrices used in the literature.
The x-scale is twice as large as in Figure 2 for the CVB method because large values of Vmach
tends to increase the measure µVtask. One point is not shown for the CVB method: (2.01, 2).
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Figure 4: Heterogeneity properties (with respect to all measures) of cost matrices used in the
literature. For each setting, 10 cost matrices are generated with different sizes: 16 tasks and 4
machines; 64 tasks and 16 machines; and, 256 tasks and 64 machines. The logarithmic scale is
the same that is used in the figures of Section 6.
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5 Controlling the Heterogeneity

We are interested in generating cost matrices that have specific heterogeneity properties according
to the measures introduced in Section 4. We propose two methods that both alter a cost matrix
generated from uniform instances for which we control the task and machine heterogeneities.
These cost matrices have specific properties in terms of consistency and correlation between
each row and each column, and the proposed methods introduce some randomness in it. They
both possess the same time complexity (i.e., O(nm)).

5.1 Shuffling Method

The first proposed method shuffles the costs in the matrix that corresponds to a uniform instance
(see Algorithm 4). It first generates the task weights on Line 2 and the inverse of the machine
speeds on Line 5. The corresponding matrix is computed on Line 9 before starting the shuffling
part. For each cost ei,j , another cost ei′,j′ is selected on a different row and column (Lines 14
and 15). The same amount is then removed from these costs and is added to two other costs,
ei,j′ and ei′,j (one that is on the same row as the first cost and on the same column as the second,
and another one that is on the same row as the second cost and on the same column as the first).
This step (Lines 25 to 28) preserves the mean of each row and the mean of each column. The
heterogeneity properties thus remain the same.

The transferred amount is the largest value (in absolute) such that no cost among the four
considered costs becomes lower than the minimum one among them (this prevents costs to be
arbitrarily low). For instance, if ei,j is the minimum cost (i.e., ei,j = min(ei,j , ei′,j , ei,j′ , ei′,j′)),
there are two cases: if ei,j′ < ei′,j , then ei,j′ becomes the new minimum and the added value to
ei,j and to ei′,j′ is ei,j′ − ei,j ; otherwise, it is ei′,j − ei,j .

Maintaining both the minimum and the maximum cost is not possible because the cost
matrix is generated from a uniform instance. This method focuses only on preventing costs to
be arbitrarily low because it is critical to guarantee positive costs.

Proposition 9. When used with parameters Vtask and Vmach, the shuffling method generates
costs with expected value 1.

Proof. Costs in the matrix corresponding to the uniform matrix follow a distribution that is the
product of two distributions with mean one. Therefore, the expected value of the costs in the
matrix before the shuffling step is also one. The shuffling step does not change the expected
value of the costs because the amount that is taken on any cost is given to another cost.

Proposition 10. The measure V µtask of a cost matrix generated using the shuffling method
with the parameters Vtask and Vmach converges to Vtask as n→∞.

Proof. Analogously to the proof of Proposition 9, the shuffling step has no impact on the mean
of each row and each column. The measure V µtask is thus the same for the final cost matrix as
for the intermediate matrix that corresponds to a uniform instance.

As a corollary of Proposition 4, the sample CV of the sample means of all rows in this
intermediate matrix is equal to the sample CV of the vector {wi}1≤i≤n. This last sample CV
converges to Vtask as n→∞.

Proposition 11. The measure V µmach of a cost matrix generated using the shuffling method
with the parameters Vtask and Vmach converges to Vmach as m→∞.

Proof. Due to the symmetry of the shuffling method, the proof is analogous to the proof of
Proposition 10.

Table 4 summarizes the formal results related to the shuffling method.
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Algorithm 4 Shuffling cost matrix generation with gamma distribution

Input: n, m, Vtask, Vmach
Output: a n×m cost matrix
1: for all 1 ≤ i ≤ n do
2: wi ← G(1/V 2

task, V
2
task)

3: end for
4: for all 1 ≤ j ≤ m do
5: bj ← G(1/V 2

mach, V
2
mach)

6: end for
7: for all 1 ≤ i ≤ n do
8: for all 1 ≤ j ≤ m do
9: ei,j ← wibj

10: end for
11: end for
12: for all 1 ≤ i ≤ n do
13: for all 1 ≤ j ≤ m do
14: i′ ← (U(1, n− 1) + i− 1 mod n) + 1
15: j′ ← (U(1, n− 1) + j − 1 mod m) + 1
16: if ei,j = min(ei,j , ei′,j , ei,j′ , ei′,j′) then
17: d← min(ei′,j − ei,j , ei,j′ − ei,j)
18: else if ei′,j = min(ei′,j , ei,j′ , ei′,j′) then
19: d← −min(ei,j − ei′,j , ei′,j′ − ei′,j)
20: else if ei,j′ = min(ei,j′ , ei′,j′) then
21: d← −min(ei,j − ei,j′ , ei′,j′ − ei,j′)
22: else
23: d← min(ei′,j − ei′,j′ , ei,j′ − ei′,j′)
24: end if
25: ei,j ← ei,j + d
26: ei′,j ← ei′,j − d
27: ei,j′ ← ei,j′ − d
28: ei′,j′ ← ei′,j′ + d
29: end for
30: end for
31: return {ei,j}1≤i≤n,1≤j≤m

Property Value

Expected value 1
V µtask Vtask
V µmach Vmach

Table 4: Summary of the cost matrix properties with the shuffling method.

5.2 Noise-Based Method

The second method, described in Algorithm 5, relies on a simple idea, which was also used in [6]:
each cost of a matrix, which corresponds to a uniform instance, is multiplied by a matrix with a
random variable with mean one (Line 9).
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Algorithm 5 Noise-based cost matrix generation with gamma distribution

Input: n, m, Vtask, Vmach, Vnoise
Output: a n×m cost matrix
1: for all 1 ≤ i ≤ n do
2: wi ← G(1/V 2

task, V
2
task)

3: end for
4: for all 1 ≤ j ≤ m do
5: bj ← G(1/V 2

mach, V
2
mach)

6: end for
7: for all 1 ≤ i ≤ n do
8: for all 1 ≤ j ≤ m do
9: ei,j ← wibj ×G(1/V 2

noise, V
2
noise)

10: end for
11: end for
12: return {ei,j}1≤i≤n,1≤j≤m

Proposition 12. When used with parameters Vtask, Vmach and Vnoise, the noise-based method

generates costs with expected value one and CV
√
V 2
taskV

2
machV

2
noise + V 2

taskV
2
mach + V 2

taskV
2
noise

+V 2
machV

2
noise + V 2

task + V 2
mach + V 2

noise.

Proof. Each cost is the product of three random variables that have all the same mean one.
Additionally, their CV (and standard deviations in this case) are Vtask, Vmach and Vnoise. The
global CV can be derived by remarking that the CV of the product of two random variables
with CV V1 and V2 is

√
V 2

1 V
2

2 + V 2
1 + V 2

2 .

Proposition 13. The measure V µtask of a cost matrix generated using the noise-based method
with the parameters Vtask, Vmach and Vnoise converges to Vtask as n→∞ and m→∞.

Proof. Let µi be the sample mean of row i. This row is the product of wi, which follows a
distribution with mean one and CV Vtask, and m values that are each the product of a random
variable with mean one and CV Vmach and a random variable with mean one and CV Vnoise.
µi is thus also the product of wi and the sample mean of the other m values, which follows

a random variable with mean one and CV

√
V 2
machV

2
noise+V 2

mach+V 2
noise

m . Therefore, the mean of

µi is one and its CV is

√
V 2
task

V 2
machV

2
noise+V 2

mach+V 2
noise

m + V 2
task +

V 2
machV

2
noise+V 2

mach+V 2
noise

m , which
tends to Vtask as m→∞. Therefore, the sample CV of all µi converges to Vtask as n→∞ and
m→∞.

Proposition 14. The measure V µmach of a cost matrix generated using the noise-based method
with the parameters Vtask, Vmach and Vnoise converges to Vmach as n→∞ and m→∞.

Proof. Due to the symmetry of the noise-based method, the proof is analogous to the proof of
Proposition 13.

Proposition 15. The measure µVtask of a cost matrix generated using the noise-based method

with the parameters Vtask, Vmach and Vnoise converges to
√
V 2
taskV

2
noise + V 2

task + V 2
noise as n→∞.

Proof. Let Vj be the sample CV of column j. Each column is the product of bj and n values
that are each the product of a random variable with mean one and CV Vtask and a ran-
dom variable with mean one and CV Vnoise. Thus, Vj converges to the CV of this product
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Property Value

Expected value 1

CV

√
V 2
taskV

2
machV

2
noise + V 2

taskV
2
mach + V 2

taskV
2
noise+

V 2
machV

2
noise + V 2

task + V 2
mach + V 2

noise

Distribution Product of three gamma laws
V µtask Vtask

µVtask

√
V 2
taskV

2
noise + V 2

task + V 2
noise

V µmach Vmach

µVmach

√
V 2
machV

2
noise + V 2

mach + V 2
noise

Table 5: Summary of the cost matrix properties with the noise-based method.

(i.e.,
√
V 2
taskV

2
noise + V 2

task + V 2
noise) as n → ∞. Therefore, the measure µVtask converges to√

V 2
taskV

2
noise + V 2

task + V 2
noise as n→∞.

Proposition 16. The measure µVmach of a cost matrix generated using the noise-based method

with the parameters Vtask, Vmach and Vnoise converges to
√
V 2
machV

2
noise + V 2

mach + V 2
noise as

m→∞.

Proof. Due to the symmetry of the noise-based method, the proof is analogous to the proof of
Proposition 15.

Table 5 summarizes the formal results related to the noise-based method.

This method requires one additional parameter: Vnoise. When the objective is to have cost
matrices with specific values of V µtask and V µmach (for large n and m), we propose to set Vnoise
to min(Vtask, Vmach). This limits the amount of noise in the costs.

Contrary to the shuffling method, the noise-based method can also generate cost matrices with
specific values of µVtask and µVmach (asymptotically). The parameters can be fixed as follow: if

µVtask < µVmach, then Vtask = 0, Vnoise = µVtask and Vmach =
√

(µV 2
mach − µV 2

task)/(µV
2
task + 1);

otherwise, Vmach = 0, Vnoise = µVmach and Vtask =
√

(µV 2
task − µV 2

mach)/(µV 2
mach + 1). This

setting maximizes the amount of noise.

Even though the shuffling method has less formal results (probably due to its combinatoric
operations), the noise-based method has two drawbacks: the additional parameter is not trivial
to determine and the method introduces more variation in the costs than the shuffling method.
This makes this method more complex to use.

6 Impact on Scheduling Heuristics

This section assesses the impact of the heterogeneity properties defined in Section 4 on the
relative performance of some classic heuristics.

6.1 Scheduling Heuristics

Our intention here is not to find the best heuristic but rather to show the impact of the cost
matrix generation method on the performance results. We use classical heuristics from the
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Name Ref Complexity Remark Algo

OLB [26] nm Opportunistic Load Balancing 6
MET [26] nm Minimum Execution Time 7
MCT [26] nm Minimum Completion Time 8
Min-min [26] n2m Earliest finish time of smallest task 9
Max-min [26] n2m Earliest finish time of largest task 10
Suff [38] n2m Task that will suffer most first 11
GA [26] – Genetic Algorithm 12
HLPT [62] nm+ n log(n) Heterogeneous version of LPT 13
GreedySuff nm log(m) Greedy allocation based on sufferage 14
BalSuff – Reconsider MET mapping 15
BalEFT – Reconsider MET mapping 16

Table 6: Summary of the scheduling heuristics for the R||Cmax problem.

literature summarized in Table 6. Most of them (OLB, MET, MCT, Min-min, Max-min, HLPT3,
Suff) are list-based algorithms. The Genetic Algorithm (GA) relies on an initial population
containing a solution obtained with Min-min. In addition to these classic heuristics, we added
two more elaborated methods (the Bal prefixed methods) that try to reconsider an initial
mapping obtained from MET (Minimum Execution Time) mapping: any task is moved to the
machine that will finish it the earliest if it does not increase the maximum completion time.
These heuristics are described in Appendix C.

Getting reference values (lower bounds on the makespan) for our performance measures is
not straightforward in practice due to the heterogeneity of the problem. We thus rely on a
variation of the genetic algorithm to provide an estimation of these values. The initial population
is initialized, in addition to other random individuals, with all the solutions obtained by the
other algorithms. The population evolution is based on the algorithm description given in [26].
An elite chromosome is maintained so that the resulting solution cannot be worse than any of
the initial solutions and thus the genetic algorithm is no worse than any of the other algorithms.

6.2 Settings

Cost matrices are generated with three different methods: the shuffling method and the noise-
based method with two approaches to set the noise (see Section 5.2). In all cases, there are two
parameters: V µtask and V µproc for the first two methods and µVtask and µVproc for the last one.
These two parameters are distributed in the range [0.001, 10] with 30 equidistant values using a
probit scale (i.e., 0.001, 0.0014, 0.0019, 0.0026, . . . , 5.3, 7.3, 10).

For each pair of parameters, 200 cost matrices are generated with n = 100 tasks and m = 30
machines. For each scenario, we compute the makespan of each heuristic. We only consider the
relative difference from the reference makespan: |C − Cmin|/Cmin where C is the makespan of a
given heuristic and Cmin is the best makespan we obtained (the genetic algorithm initialized with
all the solutions obtained by the other heuristics). The closer to zero, the better the performance.

6.3 Results

Figures 5 to 7 are heat maps of the relative performance for each algorithm. On each figure,
we use a logarithmic scale on both axes: the x-axis gives the heterogeneity value for the tasks

3The variant HLPT (mean) is equivalent to HEFT [154].
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(V µtask or µVtask) while the y-axis gives the heterogeneity value for the machines (V µmach or
µVmach). The bottom-left area represents almost homogeneous instances (same cost for each
execution) while the top-right area is the most heterogeneous one. The heterogeneity values
covered by the range-based and CVB methods in the literature are represented with dark
rectangles on each sub-figure.

The scales on each heat map start at 0.001. We assume that an heterogeneity that is below
this value may be considered negligible and that a heuristic that is closer to the reference
makespan than this value is good enough. For instance, BalSuff may be considered near-optimal
when the heterogeneity values are below 1%.

In Figure 7, both Vtask and Vmach are zero on the diagonal, which may cause the irregularity
for almost all heuristics. We suspect that using larger matrices would smooth this effect.

Figure 8 plots the best heuristic depending on the heterogeneity properties. Contour lines
show the number of heuristics which performance is closer to the best heuristics than 0.001. For
instance, there are at least 5 heuristics whose relative performances are almost equivalent when
task heterogeneity is high (i.e., if the best heuristic average relative difference from the reference
value is 0.004, then at least 5 other heuristics have a relative difference lower than 0.005).

The heuristics are ordered by the number of instances for which no other heuristic produces
a better solution. When several heuristics are equivalent for a given tile, the appearing heuristic
is the one that is the best the least often. This allows one to see even the settings for which the
worst heuristics may be good.

Note that GA is close to Min-min (we observed that it returns the same solution in more
than half of the cases) but improves it when the task heterogeneity is high. This proximity is
explained by the inclusion of the solution provided by Min-min in the initial population of GA.

6.4 Analysis

The settings cover a large part of the possible instances for the R||Cmax problem. Some areas
on the figures may be associated to specific scheduling problems: the Q|pi = p|Cmax problem
(top-left area), the P |pi = p|Cmax problem (bottom-left area) and the P ||Cmax problem (bottom-
right area). While the first two problems can be solved in polynomial time, the last problem is
NP-complete.

The heat maps suggest that the area where the heterogeneity values are between 0.1 and 1 is
more challenging for most heuristics (areas in purple on the heat maps are 30% far from the
reference). This is confirmed by Figure 8 where there is often a single best heuristic with these
settings. Oppositely, many heuristics are close to the best one when the task heterogeneity is
low or high, or when the machine heterogeneity is high. On one hand, execution costs are quite
similar when the coefficient of variation is below 0.1. A non-optimal allocation will thus have a
lower impact than with higher heterogeneity. On the other hand, most execution costs are close
to zero when the coefficient of variation is higher than 1 and bad allocations may be easy to
avoid because there are few allocations that are extremely critical while most of them are not.
It is thus easier to generate a reasonable schedule.

When the machine heterogeneity is low (with medium task heterogeneity), there is often a
single best heuristic. This suggests that these settings leads to difficult instances. As mentioned
above, this is close to the P ||Cmax problem. We may conclude that dealing with heterogeneous
tasks is more difficult than with heterogeneous machines, which is also supported by the
asymmetry of the heat maps.

Finally, Figure 8 shows the best heuristics: BalSuff when both heterogeneity properties are
comparable, BalEFT when the machine heterogeneity is higher than the task heterogeneity and
HLPT when the task heterogeneity is high.
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Figure 5: Heuristic performance relatively to the best case with the shuffling method. Values
below 0.001 are shown in white and values above 1 are shown in black. Contour lines correspond
to the levels in the legend (0.001, 0.003, . . . ). The dark rectangles correspond to the properties
covered by the range-based and CVB methods in the literature (see Figure 2).
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Figure 6: Heuristic performance relatively to the best case with the noise-based method with
V µtask and V µmach as parameters. Values below 0.001 are shown in white and values above 1
are shown in black. Contour lines correspond to the levels in the legend (0.001, 0.003, . . . ). The
dark rectangles correspond to the properties covered by the range-based and CVB methods in
the literature (see Figure 2).
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Figure 7: Heuristic performance relatively to the best case with the noise-based method with
µVtask and µVmach as parameters. Values below 0.001 are shown in white and values above 1
are shown in black. Contour lines correspond to the levels in the legend (0.001, 0.003, . . . ). The
dark rectangles correspond to the properties covered by the range-based and CVB methods in
the literature (see Figure 3).
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Shuffling (V µtask V µmach) Noise − based (V µtask V µmach) Noise − based (µ Vtask µ Vmach)

2

5

5

5

5

5

2

2

2

2

2

2
2

5 2 5

5
2

2

2

2

2

22

5

2

5 5

5

2

2

2

2

2
22

2

0.01

1.00

0.01 1.00 0.01 1.00 0.01 1.00

Best heuristic BalSuff BalEFT HLPT (min) HLPT (mean) Max−min Suff GA Min−min

Figure 8: Best heuristic in the average case with the shuffling and the noise-based method
with V µtask and V µmach or µVtask and µVmach as parameters. Contour lines correspond to the
number of heuristics with a performance closer to the best heuristic performance than 0.001.
The dark rectangles correspond to the properties covered by the range-based and CVB methods
in the literature (see Figure 3).

Overall, we used two generation methods and two heterogeneity measures (one with the
shuffling method and two with the noise-based method) and this analysis stands in all cases.

The range-based and CVB generation methods used in the literature could not provide these
results due to two factors: the heterogeneity properties of the generated instances have a limited
coverage (shown by the dark rectangles) and the erroneous claimed properties of these matrices
prevent an unbiased analysis.

6.5 Discussion

This study focuses on the impact of some measures (either V µtask and V µmach, or µVtask and
µVmach) on the performance of several heuristics. However, there are many other properties
that could be measured. If we consider the skewness and the kurtosis as in [5], we can think of
4× 4 measures for the rows and as many for the columns. The main limitation of this study is
to ignore the effect of all these possible measures. In addition, this study cannot be directly
extended to assess all the possible interactions between them.

Another limitation is related to the effect of outliers. For large instances, the law of large
number applies and the measures proposed in Section 4 correspond to the characteristics of the
cost matrices. However, for small instances, we suggest switching to robust measures such as
the median, the interquartile range and the quartile coefficient of dispersion instead of the mean,
the standard deviation and the CV, respectively.

RR-FEMTO-ST-8663



24 L.-C. Canon – L. Philippe

7 Conclusion

This study shows that the methods used in the literature for generating cost matrices are biased:
the claimed heterogeneity properties of these instances are invalidated by the two measures we
proposed to quantify them. We also show that the range of instances that has been used are
restricted. It is specifically the case for the range-based method that covers only a minor fraction
of all the possible settings in terms of heterogeneity. By providing new cost matrix generation
methods, we show that heuristics for the R||Cmax problem have interesting behavior outside this
restriction. For instance, BalEFT is the best heuristic when the task heterogeneity is low and
this could not have been shown with the instances used in the literature.

In addition to all the possible measures mentioned in Section 6.5, we plan to analyse other
properties, in particular the correlation. It would also be interesting to see if the conclusions
hold for some variations of the R||Cmax problem such as considering arrival times or online
scheduling.
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A Notation

Symbol Definition

i index of the tasks
j index of the machines
n number of tasks
m number of machines

ei,j execution cost of task i on machine j
wi weight of task i
bj inverse speed of machine j

U(A,B) uniform distribution between A and B
G(α, β) gamma distribution with shape α and scale β

Rtask parameter for the range-based method
Rmach parameter for the range-based method
Vtask parameter for the CVB, shuffling and noise-based methods
Vmach parameter for the CVB, shuffling and noise-based methods
Vnoise parameter for the noise-based method

a fraction of the consistent rows
b fraction of the consistent columns

V µtask first measure of task heterogeneity
V µmach first measure of machine heterogeneity
µVtask second measure of task heterogeneity
µVmach second measure of machine heterogeneity

Table 7: List of notations

B Usage of the Range-Based and CVB Methods in the Litera-
ture

B.1 Range-Based Method

The following table summarizes the studies that used the range-based method for generating
cost matrices. Each row correspond to a cost matrix instance generated with the range-based
method. I (resp. T) denotes matrices that are used for Illustration (resp. Testing algorithm
performance). The range and consistency columns are the input parameters. The last columns
represent the expected heterogeneity properties with two possible levels: low and high.

Context Range Consistency Heterogeneity

Ref. Use Task Mach. Task Mach. Task Mach.

[8, 17,18] I [1;10] [1;10] 0 0 low low
[170] T [1;10] [1;10] 0 0 low low
[36,171,172] T [1;10] [1;10] NA NA NA NA
[170] T [1;10] [1;10] 1 .5 low low
[170] T [1;10] [1;10] 1 1 low low
[8,17,18] I [1;10] [1;100] 0 0 low high
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Table 8 – Continued from previous page

Context Range Consistency Heterogeneity

Ref. Use Task Mach. Task Mach. Task Mach.

[170] T [1;10] [1;100] 0 0 low high
[170] T [1;10] [1;100] 1 .5 low high
[170] T [1;10] [1;100] 1 1 low high
[156,157] T [1;10] [1;1e5] NA NA NA NA
[25,153] I [1;100] [1;10] 0 0 low low
[25,26] T [1;100] [1;10] 0 0 low low
[23] T [1;100] [1;10] 0 0 NA NA
[25,26] T [1;100] [1;10] 1 .5 low low
[25,26] T [1;100] [1;10] 1 1 low low
[25] I [1;100] [1;1e3] 0 0 low high
[25,26,153] T [1;100] [1;1e3] 0 0 low high
[25,26,153] T [1;100] [1;1e3] 1 .5 low high
[25,26,153] T [1;100] [1;1e3] 1 1 low high
[156,157] T [1;1e3] [1;1e5] NA NA NA NA
[25] I [1;3e3] [1;10] 0 0 high low
[8,25,26,147] T [1;3e3] [1;10] 0 0 high low
[25,26] T [1;3e3] [1;10] 1 .5 high low
[25,26] T [1;3e3] [1;10] 1 1 high low
[8,110,111,147] T [1;3e3] [1;100] 0 0 high high
[8] T [1;3e3] [1;100] .5 .25 high high
[110,111] T [1;3e3] [1;100] .5 .25 high high
[25,26,153] I [1;3e3] [1;1e3] 0 0 high high
[25,26] T [1;3e3] [1;1e3] 0 0 high high
[26] I [1;3e3] [1;1e3] 1 .5 high high
[25,26] T [1;3e3] [1;1e3] 1 .5 high high
[26] I [1;3e3] [1;1e3] 1 1 high high
[25,26] T [1;3e3] [1;1e3] 1 1 high high
[8, 17,18] I [1;1e5] [1;10] 0 0 high low
[170] T [1;1e5] [1;10] 0 0 high low
[170] T [1;1e5] [1;10] 1 .5 high low
[170] T [1;1e5] [1;10] 1 1 high low
[156,157] T [1;1e5] [1;10] NA NA NA NA
[8,17,18] I [1;1e5] [1;100] 0 0 high high
[170] T [1;1e5] [1;100] 0 0 high high
[170] T [1;1e5] [1;100] 1 .5 high high
[170] T [1;1e5] [1;100] 1 1 high high
[156,157] T [1;1e5] [1;1e3] NA NA NA NA
[156,157] T [1;1e5] [1;1e5] NA NA NA NA
[156,157] T [1;1e5] [1;1e7] NA NA NA NA
[156,157] T [1;1e5] [1;1e9] NA NA NA NA
[156,157] T [1;1e7] [1;1e5] NA NA NA NA
[156,157] T [1;1e9] [1;1e5] NA NA NA NA
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B.2 CVB Method

This second table is for the CVB method with the gamma distribution. There is one more
parameter, the mean, and the expected heterogeneity has a new level: med, for medium.

Context CV Global Consistency Heterogeneity

Ref. Use Task Mach. Mean Task Mach. Task Mach.

[8, 17,18] I .1 .1 1e3 0 0 low low
[41,42,116] T .1 .1 100 0 0 low low
[41,42] T .1 .1 100 .5 .25 low low
[41,42] T .1 .1 100 1 1 low low
[107] T .1 .1 10 NA NA low low
[58] T .1 .1 50 NA NA low low
[68,164] T .1 .1 100 NA NA low low
[57] T .1 .1 1e3 NA NA low low
[3] T .1 .1 NA NA NA low low
[109,115] T .1 .1 1e3 0 0 NA NA
[109] T .1 .1 1e3 .5 .5 NA NA
[109] T .1 .1 1e3 1 1 NA NA
[78,80] T .1 .1 2e12 NA NA NA NA
[115] T .1 .2 1e3 0 0 NA NA
[52] T .1 .25 10 NA NA NA NA
[115] T .1 .3 1e3 0 0 NA NA
[31] T .1 .4 7.5 NA NA low high
[115] T .1 .4 1e3 0 0 NA NA
[58] T .1 .5 30 NA NA low high
[57] T .1 .5 1e3 NA NA low high
[115] T .1 .5 1e3 0 0 NA NA
[78,80] T .1 .5 2e12 NA NA NA NA
[41,42,116] T .1 .6 100 0 0 low high
[8, 17,18] I .1 .6 1e3 0 0 low high
[41,42] T .1 .6 100 .5 .25 low high
[41,42] T .1 .6 100 1 1 low high
[68,164] T .1 .6 100 NA NA low high
[109,115] T .1 .6 1e3 0 0 NA NA
[109] T .1 .6 1e3 .5 .5 NA NA
[109] T .1 .6 1e3 1 1 NA NA
[3] T .1 .9 NA NA NA low high
[8, 17,18] I .1 2 1e3 0 0 low high
[43,109] T .2 .1 1e3 0 0 NA NA
[109] T .2 .1 1e3 .5 .5 NA NA
[43] T .2 .1 1e3 1 .5 NA NA
[109] T .2 .1 1e3 1 1 NA NA
[109] T .2 .6 1e3 0 0 NA NA
[109] T .2 .6 1e3 .5 .5 NA NA
[109] T .2 .6 1e3 1 1 NA NA
[49,50] T .25 .25 100 NA NA low low
[167] T .25 .25 750 0 0 NA NA
[168] T .25 .25 NA 0 0 NA NA
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Table 9 – Continued from previous page

Context CV Global Consistency Heterogeneity

Ref. Use Task Mach. Mean Task Mach. Task Mach.

[166] T .25 .25 750 NA NA NA NA
[49] T .25 1 100 NA NA low high
[8, 17,18] I .3 .1 1e3 0 0 high low
[109,115] T .3 .1 1e3 0 0 NA NA
[109] T .3 .1 1e3 .5 .5 NA NA
[109] T .3 .1 1e3 1 1 NA NA
[150,151] T .3 .3 30 0 0 low low
[113,114] T .3 .3 100 0 0 low low
[112,114] T .3 .3 120 0 0 low low
[71] T .3 .3 1e3 0 0 low low
[71] T .3 .3 1e3 1 .5 low low
[71] T .3 .3 1e3 1 1 low low
[84,85] T .3 .3 3 NA NA low low
[12] T .3 .3 NA NA NA NA NA
[109,115] T .3 .6 1e3 0 0 NA NA
[109] T .3 .6 1e3 .5 .5 NA NA
[109] T .3 .6 1e3 1 1 NA NA
[71] T .3 .9 1e3 0 0 low high
[71] T .3 .9 1e3 1 .5 low high
[71] T .3 .9 1e3 1 1 low high
[108] T .35 .1 10 NA NA med med
[107] T .35 .1 10 NA NA NA NA
[107,108] T .35 .35 10 NA NA high high
[43,109] T .4 .1 1e3 0 0 NA NA
[109] T .4 .1 1e3 .5 .5 NA NA
[43] T .4 .1 1e3 1 .5 NA NA
[109] T .4 .1 1e3 1 1 NA NA
[32] T .4 .3 1 1 1 high high
[33] T .4 .3 1 NA NA high high
[10] T .4 .4 12 NA NA high high
[159] T .4 .4 20 0 0 NA NA
[109] T .4 .6 1e3 0 0 NA NA
[109] T .4 .6 1e3 .5 .5 NA NA
[109] T .4 .6 1e3 1 1 NA NA
[29] I .5 .1 100 0 0 high low
[8,17,18] I .5 .1 1e3 0 0 high low
[58] T .5 .1 50 NA NA high low
[57] T .5 .1 1e3 NA NA high low
[109,115] T .5 .1 1e3 0 0 NA NA
[109] T .5 .1 1e3 .5 .5 NA NA
[109] T .5 .1 1e3 1 1 NA NA
[142,143] T .5 .5 20 NA NA med med
[3] T .5 .5 NA NA NA med med
[77] T .5 .5 10 NA NA high high
[58] T .5 .5 50 NA NA high high
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Table 9 – Continued from previous page

Context CV Global Consistency Heterogeneity

Ref. Use Task Mach. Mean Task Mach. Task Mach.

[57] T .5 .5 1e3 NA NA high high
[35] T .5 .5 20 NA NA NA NA
[61,67] T .5 .5 100 NA NA NA NA
[169] T .5 .5 200 NA NA NA NA
[109,115] T .5 .6 1e3 0 0 NA NA
[109] T .5 .6 1e3 .5 .5 NA NA
[109] T .5 .6 1e3 1 1 NA NA
[41,42,116] T .6 .1 100 0 0 high low
[41,42] T .6 .1 100 .5 .25 high low
[41,42] T .6 .1 100 1 1 high low
[68,164] T .6 .1 100 NA NA high low
[109,115] T .6 .1 1e3 0 0 NA NA
[109] T .6 .1 1e3 .5 .5 NA NA
[109] T .6 .1 1e3 1 1 NA NA
[109,115] T .6 .2 1e3 0 0 NA NA
[109] T .6 .2 1e3 .5 .5 NA NA
[109] T .6 .2 1e3 1 1 NA NA
[109,115] T .6 .3 1e3 0 0 NA NA
[109] T .6 .3 1e3 .5 .5 NA NA
[109] T .6 .3 1e3 1 1 NA NA
[109,115] T .6 .4 1e3 0 0 NA NA
[109] T .6 .4 1e3 .5 .5 NA NA
[109] T .6 .4 1e3 1 1 NA NA
[43,109,115] T .6 .5 1e3 0 0 NA NA
[109] T .6 .5 1e3 .5 .5 NA NA
[43] T .6 .5 1e3 1 .5 NA NA
[109] T .6 .5 1e3 1 1 NA NA
[41,42,116] T .6 .6 100 0 0 high high
[8, 17,18] I .6 .6 1e3 0 0 high high
[41,42] T .6 .6 100 .5 .25 high high
[41,42] T .6 .6 100 1 1 high high
[68,164] T .6 .6 100 NA NA high high
[109,115] T .6 .6 1e3 0 0 NA NA
[28] T .6 .6 1e3 .25 .25 NA NA
[109] T .6 .6 1e3 .5 .5 NA NA
[43] T .6 .6 1e3 1 .5 NA NA
[43,109] T .6 .6 1e3 1 1 NA NA
[115] T .7 .1 1e3 0 0 NA NA
[109,115] T .7 .6 1e3 0 0 NA NA
[109] T .7 .6 1e3 .5 .5 NA NA
[109] T .7 .6 1e3 1 1 NA NA
[9] T .7 .7 10 NA NA high high
[13,14,16,51] T .7 .7 10 NA NA NA NA
[109] T .8 .6 1e3 0 0 NA NA
[109] T .8 .6 1e3 .5 .5 NA NA
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Table 9 – Continued from previous page

Context CV Global Consistency Heterogeneity

Ref. Use Task Mach. Mean Task Mach. Task Mach.

[109] T .8 .6 1e3 1 1 NA NA
[125] T .8 .8 15 .25 .25 NA NA
[12] T .8 .8 NA NA NA NA NA
[115] T .9 .1 1e3 0 0 NA NA
[71] T .9 .3 1e3 0 0 high low
[71] T .9 .3 1e3 1 .5 high low
[71] T .9 .3 1e3 1 1 high low
[151,152] T .9 .3 180 1 1 high low
[43,109,115] T .9 .6 1e3 0 0 NA NA
[109] T .9 .6 1e3 .5 .5 NA NA
[109] T .9 .6 1e3 1 1 NA NA
[87] T .9 .6 60 NA NA NA NA
[87] T .9 .6 600 NA NA NA NA
[86] T .9 .6 NA NA NA NA NA
[150,151] T .9 .9 30 0 0 high high
[113,114] T .9 .9 100 0 0 high high
[112,114] T .9 .9 120 0 0 high high
[71] T .9 .9 1e3 0 0 high high
[71] T .9 .9 1e3 1 .5 high high
[71] T .9 .9 1e3 1 1 high high
[84,85] T .9 .9 3 NA NA high high
[144–146] T .9 .9 100 NA NA high high
[3] T .9 .9 NA NA NA high high
[73,74] T .9 .9 20 0 0 NA NA
[72] T .9 .9 30 0 0 NA NA
[49] T 1 .25 100 NA NA high low
[109] T 1 .6 1e3 0 0 NA NA
[109] T 1 .6 1e3 .5 .5 NA NA
[109] T 1 .6 1e3 1 1 NA NA
[44,48–50] T 1 1 100 NA NA high high
[115] T 1.1 .1 1e3 0 0 NA NA
[115] T 1.1 .2 1e3 0 0 NA NA
[115] T 1.1 .3 1e3 0 0 NA NA
[115] T 1.1 .4 1e3 0 0 NA NA
[115] T 1.1 .5 1e3 0 0 NA NA
[43,109,115] T 1.1 .6 1e3 0 0 NA NA
[109] T 1.1 .6 1e3 .5 .5 NA NA
[43] T 1.1 .6 1e3 1 .5 NA NA
[43,109] T 1.1 .6 1e3 1 1 NA NA
[11] T 1.4 .4 NA 0 0 NA NA
[11] T 1.8 .4 NA 0 0 NA NA
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B.3 Missing Parameters of Named Instances

The following articles mention some specific instances without providing the exact parameters
used to generate them (they may thus be the same as the referenced articles):

� missing values, probably the same as [18]: [15, 27,45–47,79,83,88,128,130–132,140,141]

� missing values, probably the same as [17]: [34, 66,69,70,76,158]

� missing values, probably the same as [26]: [1, 22, 24, 65, 69, 70, 97, 101,103,117,121,127,129,
133,160]

� missing values, probably the same as either [18] or [26]: [21]

� missing values, probably the same as either [17] or [26]: [7, 118,120,122–124]

B.4 Discarded Articles

The following references were discarded either because they lack information on the instance
generation or because they do not fit our study:

� missing values and unclear generation method: [19,39,40,56,60,64,75,81,89–96,98–100,
102,104,126,135–138,155,161,163,165,173]

� no value for the shape parameter and range for the scale parameter: [148,149]

� only one CV is given: [54,55,134]

� mismatched citation: [162]

� mismatched value for high machine heterogeneity: [119]

� use bi or tri-modal distributions with infinite mean: [30]

� range for CV: [4, 5]

� ranges for mean and CV: [106]

C Scheduling Heuristics

In this part, we describe the scheduling algorithms used for the experiments. Part of them are
classical algorithms as OLB or Min-Min taken for other research works. We also introduce less
classical algorithms as HLPT, an adaptation of LPT to the heterogeneous context, algorithms
based on sufferage values for which a sufferage matrix is computed and balance algorithms that
try to improve an initial solution by moving the tasks that will not lose too much from changing
their mapping.

C.1 Related Work

The OLB algorithm (Opportunistic Load Balancing) takes a list of tasks sorted in random
order and allocates them to the first ready machine. This algorithm generates mostly random
schedules as they depend of the task list order. On the one hand, it tries to keep the machines
busy as it allocates a task to a machine as soon as the former is free. On the other hand, it does
not take the ei,j value into account. Thus, it may map a task to its worst machine.
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Algorithm 6 Opportunistic Load Balancing (OLB)

Input: T a set of n tasks in an arbitrary order,
M a set of m machines,
E a cost matrix

Output: an allocation function π
1: Init ∀p ∈M,RT [p]← 0 {earliest ready time for each machine}
2: for all t ∈ T do
3: πt ← p s.t. RT [p] = mink(RT [k]) {first ready machine}
4: RT [πt]← RT [πt] + et,πt
5: end for
6: return π

Algorithm 7 Minimum Execution Time (MET)

Input: T a set of n tasks in an arbitrary order,
M a set of m machines,
E a matrix of the execution costs of the tasks on the machines

Output: an allocation function π {earliest ready time for each machine}
1: for all t ∈ T do
2: πk ← p s.t. et,p = mink(et,k) {best machine for the task}
3: end for
4: return π

The MET algorithm (Minimum Execution Time) maps each task, from a randomly ordered
task list, to its best machine, regardless of the machine load. This is a more shorted-viewed
algorithm, even more than random, because a single powerful will concentrate all the load.

The MCT algorithm (Minimum Completion Time) maps each task, from a randomly ordered
task list, to the machine that will end it the soonest. This is a little smarter that the previous
ones as it takes both the load of the machines and the ei,j value into account.

Algorithm 8 Minimum Completion Time (MCT)

Input: T a set of n tasks in an arbitrary order,
M a set of m machines,
E a matrix of the execution costs of the tasks on the machines

Output: an allocation function π
1: Init ∀p ∈M,RT [p]← 0 {earliest ready time for each machine}
2: for all t ∈ T do
3: πt ← p s.t. et,p = mink(RT [k] + et,k) {min completion time for the task}
4: RT [πt]← RT [πt] + et,πt
5: end for
6: return π

The Min-min algorithm corresponds to the classical EFT algorithm (Earliest Finish Time).
Actually, the Min-min algorithm presented in [26] first computes the set M of minimum
completion times for each unmapped task, then takes the task with the min completion time,
hence the Min-Min name. The version presented here does not compute M but rather finds
the task to allocate by computing all the possible completion times and taking the earliest
one. So the Min-Min algorithm just searches for the earliest finish task and allocates it to the
corresponding machine. Intuitively, this algorithm will not generate good schedules when the
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task heterogeneity is high as it first schedules the smallest tasks, leaving the largest ones for the
end.

Algorithm 9 Earliest Finish Time or Min-min

Input: T a set of n tasks,
M a set of m machines,
E a matrix of the execution costs of the tasks on the machines

Output: an allocation function π
1: Init ∀p ∈M,RT [p]← 0 {earliest ready time for each machine}
2: while T 6= ∅ do
3: eft← t1 {earliest finish task}
4: efm← 1 {allocation of earliest finish task}
5: for all t ∈ T do {find the task with earliest finish time}
6: for all p ∈M do
7: if RT [p] + et,p < RT [efm] + eeft,efm then
8: eft← t
9: efm← p

10: end if
11: end for
12: πeft ← efm
13: RT [efm]← RT [efm] + eeft,efm
14: T ← T − {eft}
15: end for
16: end while
17: return π

The Max-min algorithm is close to the Min-min one except that it chooses the largest task
instead of the smallest from the set M . It is thus close to the classical LPT that gives good
results in homogeneous platforms.

The Suff algorithm relies on a sufferage value that is computed as the difference between the
best and the second best finish time for the task. The algorithm first allocates the task that will
suffer the most from not being allocated to its best machine, which is the one that will finish it
the earliest.

The genetic algorithm is based on the genetic algorithm described by Siegel in [26]. This is a
classical genetic algorithm that represents a schedule as an individual with one chromosome:
each gene is a task and its associated value is the machine where the task is mapped. Note
that there is no need to define the start time of the tasks as we are only interested by the
Cmax = maxj(

∑n
i=1,π(i)=j ei,j), which only depends on the execution duration thanks to the

commutativity of sum. The population is composed of 200 chromosomes. The algorithm iterates
a thousand times unless the elite chromosome does not change during 150 iterations or all the
chromosomes are the same. Elitism is implemented in the algorithm. The best chromosome of
each iteration becomes the elite chromosome if it gets a better fitness than the previous elite
one. At each iteration the population is filtered using a wheel selection. In wheel selection the
probability that a chromosome is maintained in the population is inversely proportional to its
fitness. Then a crossover step, with a probably of 0.6, and mutation step, with a probability
of 0.4, are applied to generate new chromosomes. Two configurations of the initial population
are used. In the first one the initial population is initialised only with random individuals, the
tasks are randomly assigned to machines. In the second configuration one of the chromosomes
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Algorithm 10 Max-min

Input: T a set of n tasks,
M a set of m machines,
E a matrix of the execution costs of the tasks on the machines

Output: an allocation function π
1: Init ∀p ∈M,RT [p]← 0 {earliest ready time for each machine}
2: while T 6= ∅ do
3: Init ∀t ∈ T,CT [t]←∞ {earliest completion time for each task}
4: for all t ∈ T do {find the task with earliest finish time}
5: for all p ∈M do
6: if RT [p] + et,p < CT [t] then
7: CT [t]← RT [p] + et,p
8: CP [t]← p {the completing machine for each task}
9: end if

10: end for
11: end for
12: mct← t s.t. CT [t] = maxk(CT [k]) {maximum completing task}
13: πmct ← CP [mct]
14: RT [πmct]← CT [πmct]
15: T ← T − {mct}
16: end while
17: return π

Algorithm 11 First allocate the task that would suffer most (Suff)

Input: T a set of n tasks,
M a set of m machines,
E a matrix of the execution costs of the tasks on the machines

Output: an allocation function π
1: Init ∀p ∈M,RT [p]← 0 {earliest ready time for each machine}
2: while T 6= ∅ do
3: maxSuff ← 0
4: maxSuffT ← t1
5: maxSuffM ← 1
6: for all t ∈ T do
7: finishT imet ← sortk(RT [k] + et,k) {sort in non-decreasing order of the sufferage for t}
8: if maxSuff < finishT imet[2]− finishT imet[1] then
9: maxSuff ← finishT imet[2]− finishT imet[1]

10: maxSuffT ← t
11: maxSuffM ← p s.t.RT [p] + et,p = finishT imet[1]
12: end if
13: end for
14: RT [maxSuffM ]← RT [maxSuffM ] + emaxSuffT,maxSuffM
15: πmaxSuffT ← maxSuffM
16: T ← T − {maxSuffT}
17: end while
18: return π
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is based on the mapping generated by the Min-Min algorithm to have a good solution. The
algorithm is run 4 times for each configurations.

Algorithm 12 GA

Input: T a set of n tasks,
M a set of m machines,
E a matrix of the execution costs of the tasks on the machines

Output: an allocation function π
1: Init nbChrom← 200
2: pop← InitPop(Rand,MinMin) {Initialize population}
3: while nbIter < 1000 ∧ lastEliteChange < 150 ∧ noChange = TRUE do
4: sortedChrom← sortByFitness(pop)
5: if fitness(sortedChrom[1]) < fitness(elit) then
6: elit← sortedChrom[1]
7: lastEliteChange← 1
8: else
9: lastEliteChange← lastEliteChange+ 1

10: end if
11: pop← wheelSelection(pop)
12: for all indiv ∈ pop do {Select individuals for cross-over}
13: if rand(0, 1) > crossOverProba then
14: crossOverPop← crossOverPop+ indiv
15: end if
16: end for
17: for all indiv1, indiv2 ∈ crossOverPop do {cross-over}
18: crossOverP lace← rand(1, n)
19: indiv1← crossOver(indiv1, indiv2, crossOverP lace)
20: indiv2← crossOver(indiv2, indiv1, crossOverP lace)
21: end for
22: for all indiv ∈ pop do {Select individuals for mutation}
23: if rand(0, 1) > mutationProba then
24: indiv ← mutation(indiv)
25: end if
26: end for
27: nbIter ← nbIter + 1 :
28: noChange← compareChrom(pop)
29: end while
30: return π

C.2 Other Heuristics

In this part, we present other algorithms used in our simulations. They are not referenced even
though they may already be defined in the literature. Since there exists so many papers on
heterogeneous scheduling, we did not check them all.

The Heterogeneous Largest Processing Time (HLPT) is an adaptation of the well-known
Largest Processing Time where the tasks are sorted in non-increasing order depending of their
different processing times. HLPT can be used either with func set to the min or mean function
to sort the tasks in non-increasing order. HLPT differs from Max-Min in the way it first sorts
the tasks, depending on the chosen function. It then tries to find the best allocation for each
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task depending on the machine load, while Max-Min recomputes M set at each iteration and
thus sorts the tasks depending on the machine load.

Algorithm 13 Heterogeneous Largest Processing Time (HLPT)

Input: T a set of n tasks,
M a set of m machines,
E a matrix of the execution costs of the tasks on the machines

Output: an allocation function π
1: Init ∀p ∈M,RT [p]← 0 {earliest ready time for each machine}
2: T ← {t1, t2, . . .} such that funct(e) ≥ funct+1(e) {sort tasks in non-increasing order using a

function of their processing costs}
3: for all t ∈ T do {consider each task in given order}
4: efm← 1
5: for all p ∈M do {find the earliest finish time}
6: if RT [p] + et,p < RT [efm] + et,efm then
7: efm← p
8: end if
9: end for

10: πt ← efm
11: RT [efm]← RT [efm] + et,efm
12: end for
13: return π

The GreedySuff algorithm relies on the sufferage matrix. In the sufferage matrix each value
is the difference between the processing time on the current machine ei,j and the minimum
processing time of the task. The higher the value, the more the task will suffer from being
mapped on this machine. A null value indicates that the task is processed by the fastest machine
for this task.

The GreedySuff algorithm takes the task in the cost matrix order, so it does not take the
tasks in a particular order. For each task, it tries to map it on the machine that generates the
lower sufferage and does not increase the Cmax. If the algorithm does not find any machine, then
it uses the machine with the earliest finish time, hence the one that increases Cmax the least.

The BalSuff algorithm, as the GreedySuff, uses the sufferage matrix. It starts from an
initial mapping where the tasks are mapped on their best machine (MET algorithm). Then,
the algorithm tries to rearrange the tasks in a way such that the makespan is improved and
the chosen task is the one that suffers the least from moving. The algorithm stops when there
is no more task on the most loaded machine that could benefit from moving. Note that if two
tasks have the same sufferage value on the most loaded machine, the tasks are considered in an
arbitrary order

The BalEFT algorithm is a variant of the BalSuff algorithm. After the initial mapping based
on the shortest processing time (MET algorithm), this algorithm tries to rearrange tasks using
an early finish time criterion: it takes all the tasks of the most loaded machine and tries to find
a new allocation such that the global makespan is decreased. The algorithm stops when there is
no more task than can decrease the Cmax by moving.

Although not very costly in practice, we were not able to determine the worst-case time
complexity of either BalSuff or BalEFT.

Eventually we also have implemented a second version of the GA algorithm, initialized with
a random initial population where we added one chromosome for each mapping generated by the
other algorithms. This algorithm gives of course always the best result as the elitism procedure
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Algorithm 14 Greedily allocate tasks on suffering (GreedySuff)

Input: T a set of n tasks,
M a set of m machines,
E a matrix of the execution costs of the tasks on the machines

Output: an allocation function π
1: Init ∀p ∈M,RT [p]← 0 {earliest ready time for each machine}
2: for all t ∈ T , p ∈M do {generate the sufferage matrix S}
3: St,p ← et,p −mink(et,k)
4: end for
5: Cmax ← 0
6: for all t ∈ T do {allocate tasks}
7: SortSuff ← sort(St) {sort in non-decreasing order of the sufferage for t}
8: k ← 1
9: found← false

10: repeat
11: p← SortSuff [k]
12: if RT [p] + et,p ≤ Cmax then
13: πt ← p
14: RT [p]← RT [p] + et,p
15: found← true
16: end if
17: k ← k + 1
18: until k ≥ Card(M) or found
19: if ¬found then {if no allocation found use EFT}
20: πt ← arg mini(RT [i] + et,i)
21: RT [πt]← RT [πt] + et,πt
22: end if
23: Cmax ← maxi(RT [i])
24: end for
25: return π
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Algorithm 15 Sufferage with machine balancing (BalSuff)

Input: T a set of n tasks,
M a set of m machines,
E a matrix of the execution costs of the tasks on the machines

Output: an allocation function π
1: for all t ∈ T , p ∈M do {generate the sufferage matrix S}
2: St,p ← et,p −mink(et,k)
3: end for
4: Init ∀p ∈M,RT [p]← 0 {earliest ready time for each machine}
5: for all t ∈ T do {initial allocation based on MET}
6: πk ← p s.t. et,p = mink(et,k)
7: RT [πt]← RT [πt] + et,πt
8: end for
9: Cmax ← maxk(RT [k])

10: newCmax ← maxk(RT [k])
11: Mmax ← p s.t. RT [p] = Cmax

12: repeat {try to re-arange task allocations}
13: MinSuff ← maxi,j(Si,j) + 1 ; mst← 0 ; msm← 0
14: for all t ∈ T such that πt = Mmax do {find the task that suffers less from moving}
15: for all p ∈M − {Mmax} do
16: if (MinSuff > St,p) and (RT [p] + et,p ≤ Cmax) then
17: MinSuff ← St,p ; mst← t ; msm← p
18: end if
19: end for
20: end for
21: if RT [msm] + emst,msm ≤ Cmax then {re-allocation improves Cmax}
22: newCmax ← max(Cmax − emst,msm, RT [msm] + emst,msm)
23: πt ← msm {task is moved}
24: RT [msm]← RT [msm] + emst,msm
25: RT [Mmax]← RT [Mmax]− emst,msm
26: if newCmax = RT [msm] + emst,msm then {find last finishing machine}
27: Mmax ← msm
28: end if
29: end if
30: Cmax = newCmax

31: until mst 6= 0
32: return π
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Algorithm 16 Earliest Finish Time with machine balancing (BalEFT)

Input: T a set of n tasks,
M a set of m machines,
E a matrix of the execution costs of the tasks on the machines

Output: an allocation function π
1: for all t ∈ T , p ∈M do {generate the sufferage matrix S}
2: St,p ← et,p −mink(et,k)
3: end for
4: Init ∀p ∈M,RT [p]← 0 {earliest ready time for each machine}
5: for all t ∈ T do {initial allocation based on MET}
6: πk ← p s.t. et,p = mink(et,k)
7: RT [πt]← RT [πt] + et,πt
8: end for
9: repeat {try to re-arange task allocations}

10: Mmax ← p s.t. p = maxk(RT [k])
11: MinRT ← RT [Mmax] ; eft← 0 ; efm← 0
12: for all t ∈ T such that πt = Mmax do {find the task that benefit most from moving}
13: for all p ∈M − {Mmax} do
14: newRT ← RT [p] + et,p
15: if newRT < minRT then
16: minRT ← newRT ; eft← t ; efm← p
17: end if
18: end for
19: end for
20: if RT [efm] + eeft,efm < Cmax then {re-allocation improves Cmax}
21: newCmax ← max(Cmax − eeft,efm, RT [efm] + eeft,efm)
22: πeft ← efm {task is moved}
23: RT [efm]← RT [efm] + eeft,efm
24: RT [Mmax]← RT [Mmax]− eeft,efm
25: if newCmax = RT [efm] + eeft,efm then {find last finishing machine}
26: Mmax ← efm
27: end if
28: end if
29: Cmax = newCmax

30: until eft 6= 0
31: return π
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guaranties that we keep the best chromosome (at least the best of the results of the other
algorithms).
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[34] M. Canabé and S. Nesmachnow. Parallel implementations of the MinMin heterogeneous
computing scheduler in GPU. CLEI Electronic Journal, 15(3):8–8, 2012.

[35] L.-C. Canon and E. Jeannot. A comparison of robustness metrics for scheduling dags on
heterogeneous systems. In International Conference on Cluster Computing, pages 558–567.
IEEE, 2007.

[36] L.-C. Canon, E. Jeannot, R. Sakellariou, and W. Zheng. Comparative evaluation of the
robustness of dag scheduling heuristics. In Grid Computing, pages 73–84. Springer, 2008.

[37] L.-C. Canon and L. Philippe. Code for On the Heterogeneity Bias of Cost Matrices when
Assessing Scheduling Algorithms. http://dx.doi.org/10.6084/m9.figshare.1321295.v3, Mar.
2015.

[38] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristics for Scheduling
Parameter Sweep Applications in Grid Environments. In Heterogeneous Computing
Workshop (HCW), pages 349–363. IEEE, 2000.

[39] S. C. Choi and H. Y. Youn. Task mapping algorithm for heterogeneous computing
system allowing high throughput and load balancing. In International Conference on
Computational Science (ICCS), pages 1000–1003. Springer, 2005.

FEMTO-ST Institute



Generating Matrices 43

[40] M. Da Silva and S. Nesmachnow. Heterogeneous Resource Allocation in the OurGrid
Middleware: A Greedy Approach. In High Performance Computing Latinamerica (HP-
CLATAM), 2013.

[41] C. O. Diaz, M. Guzek, J. E. Pecero, P. Bouvry, and S. U. Khan. Scalable and energy-
efficient scheduling techniques for large-scale systems. In Computer and Information
Technology (CIT), pages 641–647. IEEE, 2011.

[42] C. O. Diaz, M. Guzek, J. E. Pecero, G. Danoy, P. Bouvry, and S. U. Khan. Energy-aware
fast scheduling heuristics in heterogeneous computing systems. In High Performance
Computing and Simulation (HPCS), pages 478–484. IEEE, 2011.

[43] C. O. Diaz, J. E. Pecero, and P. Bouvry. Scalable, low complexity, and fast greedy
scheduling heuristics for highly heterogeneous distributed computing systems. The Journal
of Supercomputing, 67(3):837–853, 2014.

[44] D. Ding, S. Luo, and Z. Gao. A matrix scheduling strategy with multi-qos constraints in
computational grid. In Advances in Grid and Pervasive Computing, pages 59–68. Springer,
2010.

[45] B. Dorronsoro, P. Bouvry, J. A. Canero, A. A. Maciejewski, and H. J. Siegel. Multi-
objective robust static mapping of independent tasks on grids. In Congress on Evolutionary
Computation (CEC), pages 1–8. IEEE, 2010.

[46] B. Dorronsoro, G. Danoy, P. Bouvry, and A. J. Nebro. Multi-objective cooperative
coevolutionary evolutionary algorithms for continuous and combinatorial optimization.
In Intelligent Decision Systems in Large-Scale Distributed Environments, pages 49–74.
Springer, 2011.

[47] B. Dorronsoro, G. Danoy, A. J. Nebro, and P. Bouvry. Achieving super-linear performance
in parallel multi-objective evolutionary algorithms by means of cooperative coevolution.
Computers & Operations Research, 40(6):1552–1563, 2013.
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