Louis-Claude Canon

Laurent Philippe

On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms Version 2

Keywords: Scheduling, Cost Matrix, Heterogeneity, Bias, Parallelism, Unrelated, Measure ordonnancement, matrices de coût, hétérogénéité, biais, parallélisme, mesures

Assessing the performance of scheduling heuristics through simulation requires one to generate synthetic instances of tasks and machines with well-identified properties. Carefully controlling these properties is mandatory to avoid any bias. We consider the scheduling problem consisting of allocating independent sequential tasks on unrelated machines while minimizing the maximum execution time. In this problem, the instance is a cost matrix that specifies the execution cost of any task on any machine. This report proposes two measures for quantifying the heterogeneity properties of a cost matrix. An analysis of two classical methods used in the literature reveals a bias in previous studies. Two new methods are proposed to generate instances with given heterogeneity properties and it is shown that they have a significant impact on several heuristics.

Introduction

Leveraging the parallelism of multi-core distributed platforms involves efficiently scheduling applications on several machines [START_REF]Handbook of Scheduling: Algorithms, Models, and Performance Analysis[END_REF]. Current studies rely on performance evaluation to determine the best solution for any underlying problem. This process can be divided into several categories: formal analysis, experiments, simulations, etc. In the case of simulations, a scheduling strategy is tested in a virtual environment with a given workload. This paper focuses on the generation of synthetic instances.

Synthetic instances of workload allow a more general evaluation than with specific traces. They are particularly useful for sensitivity analysis [START_REF] Saltelli | Sensitivity analysis[END_REF], which consists in assessing the impact of the instance properties on the algorithms. However, the lack of control on the instance properties makes it difficult to confront the results of independent studies. For instance, although many papers have compared several scheduling heuristics [START_REF] Bardsiri | A Comparative Study on Seven Static Mapping Heuristics for Grid Scheduling Problem[END_REF][START_REF] Braun | A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems[END_REF][START_REF] Diaz | Scalable, low complexity, and fast greedy scheduling heuristics for highly heterogeneous distributed computing systems[END_REF][START_REF] Luo | A revisit of fast greedy heuristics for mapping a class of independent tasks onto heterogeneous computing systems[END_REF], predicting their performance is still an issue. These problems can be tackled by carefully controlling the instance properties.

Specifically, we consider the scheduling problem noted R||C max in α|β|γ notation [START_REF] Graham | Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey[END_REF]. It consists in scheduling n independent sequential tasks on m unrelated machines. All tasks are available simultaneously and preemption is not possible. The instance is a cost matrix where each element e i,j is a positive integer that represents the execution cost of task i on machine j. The objective is to allocate each task to a machine such that the maximum execution time on any machine is minimized. More formally, we want to minimize max(π(i, j) × e i,j) where π(i, j) is equal to one if task i is scheduled on machine j and zero otherwise.

For this problem, the range-based and CVB (Coefficient of Variation Based) methods proposed in [START_REF] Ali | Task execution time modeling for heterogeneous computing systems[END_REF][START_REF] Ali | Representing task and machine heterogeneities for heterogeneous computing systems[END_REF] are currently the standard methods used in the literature to generate instances. However, the properties of the matrices generated with these methods have never been formally analysed and previous studies may thus be exposed to a bias.

This paper provides the following contributions:1 a statistical description of the use of the range-based and CVB methods in the literature (Section 3); a study of how to quantify the heterogeneity properties of a cost matrix (Section 4); a formal analysis of the range-based and CVB methods and the identification of a bias that impacts several studies (Section 4); a new method with control over heterogeneity properties (Section 5);

and, an assessment of the impact of these properties on several heuristics (Section 6).

Related Work

The concept of heterogeneity was first introduced in the context of cost matrix by Armstrong [START_REF] Armstrong | Investigation of effect of different run-time distributions on SmartNet performance[END_REF]. He described the heterogeneity quadrant in which cost matrices are divided into four categories depending on their heterogeneity properties regarding tasks and machines: low/low, low/high, high/low, and high/high. For instance low/high refers to low task heterogeneity and high machine heterogeneity. However, no method for generating such matrices was proposed.

The range-based and CVB methods were first proposed to fill this gap in [START_REF] Ali | A comparative study of dynamic mapping heuristics for a class of independent tasks onto heterogeneous computing systems[END_REF] and then in [START_REF] Ali | Task execution time modeling for heterogeneous computing systems[END_REF][START_REF] Ali | Representing task and machine heterogeneities for heterogeneous computing systems[END_REF]. However, task and machine heterogeneities were not formally defined and analyzed. The methods were assumed to generate matrices with the expected properties and only validated through some examples.

The limits of these methods were later acknowledged in [START_REF] Al-Qawasmeh | Statistical measures for quantifying task and machine heterogeneities[END_REF], which proposed to consider the average coefficient of variation2 , skewness and kurtosis of the costs for each task and for each machine. The proposed scheme (based on decision trees) uses these additional information to predict heuristic performance. Despite a wide experimentation plan, the study lacks discussion and interpretation in particular on the relative importance of the considered measures. Additionally, no formal analysis was provided. The exhibited decision trees suggest that the average coefficient of variation plays a significant role, which supports the current work.

The MPH (Machine Performance Homogeneity) is introduced in [START_REF] Al-Qawasmeh | Characterizing heterogeneous computing environments using singular value decomposition[END_REF] for capturing the heterogeneity between the machines while its counterpart for the tasks, the TDH (Task Difficulty Homogeneity), appears in [START_REF] Al-Qawasmeh | Characterizing task-machine affinity in heterogeneous computing environments[END_REF]. We discuss them more extensively in Section 4. In addition, the TMA (Task-Machine Affinity) is also defined in [START_REF] Al-Qawasmeh | Characterizing heterogeneous computing environments using singular value decomposition[END_REF]: it quantifies the specialisation of the system (i.e., whether some machines are particularly efficient for some specific tasks). Although the three measures are applied to a real benchmark, no method is proposed for generating matrices with given MPH, TDH and TMA. It is thus unclear what is the impact of the proposed measures on heuristic performance. Finally, they show that the range-based and CVB methods do not cover the entire range of possible values for the MPH and the TMA, which is consistent with the conclusion of Section 4.

Friese et al [START_REF] Friese | An analysis framework for investigating the trade-offs between system performance and energy consumption in a heterogeneous computing environment[END_REF] present a method for adding tasks in a given cost matrix while preserving some statistical properties on each column (mean, coefficient of variation, skewness and kurtosis). It ignores the properties on each row however.

A method for generating matrices with varying affinities (similar to the TMA) is proposed in [START_REF] Al-Qawasmeh | Power and Thermal-Aware Workload Allocation in Heterogeneous Data Centers[END_REF]. It is similar to the noise-based method described in Section 5, but no formal analysis is provided.

Khemka et al [START_REF] Khemka | Utility maximizing dynamic resource management in an oversubscribed energy-constrained heterogeneous computing system[END_REF] propose a method for changing the TMA of an existing matrix while keeping the same MPH and TDH. TMA is mentioned to be related to the correlation. Investigating the correlation properties is left for future work. There is also another field of studies dedicated to the generation of matrices with given correlation and covariance matrices [START_REF] Ghosh | Behavior of the NORTA method for correlated random vector generation as the dimension increases[END_REF].

Matrix Generation Methods

The most used methods for generating cost matrices are the range-based and the CVB (Coefficient of Variation Based) methods [START_REF] Ali | A comparative study of dynamic mapping heuristics for a class of independent tasks onto heterogeneous computing systems[END_REF][START_REF] Ali | Task execution time modeling for heterogeneous computing systems[END_REF][START_REF] Ali | Representing task and machine heterogeneities for heterogeneous computing systems[END_REF]. The most frequent notations are summarized in Appendix A.

Range-Based Method

The range-based method generates n vectors of m values that follow a uniform distribution in the range [1, R mach] (see Algorithm 1). Each row is then multiplied by a random value that follows a uniform distribution in the range [1, R task] (Line 2). The resulting cost matrix is similar to the following (where τ is a vector of n uniform values in [1, R task]):

   τ [1]U (1, R mach) • • • τ [1]U (1, R mach) τ [n]U (1, R mach) • • • τ [n]U (1, R mach)   
Proposition 1. When used with parameters R task and R mach , the range-based method generates costs with expected value 1 4 (R task + 1)(R mach + 1) and standard deviation 1 12 [(R task -1) 2 (R mach -1) 2 + 3(R mach -1) 2 (R task + 1) 2 + 3(R task -1) 2 (R mach + 1) 2] 1/2 . Algorithm 1 Range-based cost matrix generation with the uniform distribution Input: n, m, R task , R mach Output: a n × m cost matrix 1: for all 1 ≤ i ≤ n do {Generate each row} 2:

τ [i] ← U (1, R task) 3:
for all 1 ≤ j ≤ m do {Generate each value of the row} 4:

e i,j ← τ [i] × U (1, R mach) 5:
end for 6: end for 7: return {e i,j } 1≤i≤n,1≤j≤m

Property Value

Expected value

1 4 (R task + 1)(R mach + 1) Standard deviation 1 12 (R task -1) 2 (R mach -1) 2 + 3(R mach -1) 2 (R task + 1) 2 + 3(R task -1) 2 (R mach + 1) 2 CV 1 3 (R task -1) 2 (R mach -1) 2 (R task +1) 2 (R mach +1) 2 + 3 (R task -1) 2 (R task +1) 2 + 3 (R mach -1) 2 (R mach +1) 2

Distribution

Product of two uniform laws Asymptotic expected value

1 4 R task R mach Asymptotic standard deviation √ 7 12 R task R mach Asymptotic CV √ 7 3 ≈ 0.88
2 is σ 2 1 σ 2 2 + µ 2 1 σ 2 2 + σ 2 1 µ 2 2
. With a similar argument as for the expected value, we can derive the standard deviation of the costs.

Table 1 summarizes the properties of this method. Except for low values of R task and R mach , the CV (Coefficient of Variation) remains close to a constant. For instance, when R task = R mach = 100, then the CV is around 0.86. As shown in Section 4, this method is not well-suited to control the heterogeneity of the resulting cost matrix. Also, given that this method is asymmetric, it may be expected to handle task heterogeneity differently from machine heterogeneity.

CVB Method

The CVB method is based on the same principle except it uses parameters that are distinct from the underlying distribution parameters. In particular, it requires two CV (V task for the tasks and V mach for the machines) and one mean (µ task for the tasks). The random values follow a gamma distribution whose parameters are computed such that the provided CV and mean are respected.

Algorithm 2 CVB cost matrix generation with the gamma distribution

Input: n, m, V task , V mach , µ task Output: a n × m cost matrix 1: α task ← 1/V 2 task 2: α mach ← 1/V 2 mach 3: β task ← µ task /α task 4: for all 1 ≤ i ≤ n do 5: q[i] ← G(α task , β task) 6: β mach [i] ← q[i]/α mach 7:
for all 1 ≤ j ≤ m do 8:

e i,j ← G(α mach , β mach [i]) 9:
end for 10: end for 11: return {e i,j } 1≤i≤n,1≤j≤m

Property Value

Expected value

µ task CV V 2 task V 2 mach + V 2 task + V 2 mach

Distribution

Product of two gamma laws Table 2: Summary of the cost matrix properties with the CVB method.

Proposition 2. When used with parameters V task , V mach and µ task , the CVB method generates costs with expected value µ task and coefficient of variation

V 2 task V 2 mach + V 2 task + V 2 mach .
Proof. In order to apply the same analysis as in the proof of Proposition 1, we need to prove that any cost is the product of two gamma distributions. More precisely, we need to prove that the random generation on Line 8 is equivalent to multiplying q[i] by a gamma law with mean one and CV V mach .

Each cost e i,j is a random variable that follows a gamma distribution with mean q[i] and CV V mach . The probability that e i,j is no more than x is given by 1 Γ(α) γ(α, x β) where α = 1/V 2 mach , β = q[i]/α, Γ(α) is the gamma function and Γ(α, x β) is the lower incomplete gamma function. By contrast, let X be a random variable that follows a gamma distribution with mean one and CV V mach . Then, the probability that q[i]X is no more than x is the probability that X is no more than x/q[i]: 1 Γ(α) γ(α, x/q[i] β) where α = 1/V 2 mach and β = 1/α. It is thus the same as for e i,j .

Thus, Line 8 can be replaced by the product of q[i] by a gamma law with mean one and CV V mach (i.e., e i,j ← q[i]G(α mach , 1/α mach)), which is the product of two gamma distributions.

The proof is then analogous to the proof of Proposition 1.

Table 2 summarizes the properties of this method, which is more adapted to control the heterogeneity of the resulting cost matrix. However, it is still asymmetric. Note that the CV is the same as with the range-based method when we replace V task by the CV of the first uniform law,

√ 12 6 R task -1 R task +1
, and V mach by the CV of the second uniform law,

√ 12 6 R mach -1 R mach +1 .
FEMTO-ST Institute

Consistency Extension

Both the previous methods produce cost matrices that may not be representative of realistic settings. For instance, the costs of a given task is not correlated to the costs of another task, which may often be the case in practice. The consistency extension consists in reordering the costs in the generated matrix to have an instance that is closer to the uniform case. Specifically, the rows of a submatrix of an rows and bm columns are sorted. Thus, a machine that is faster for a given task than another machine will likely be also faster for another task. Inconsistent matrices have a = b = 0 while consistent matrices have a = b = 1 (other matrices are either called semiconsistent or partially consistent).

Usage in the Literature

We covered the English articles that cite at least one of the references in which the methods were initially presented [START_REF] Ali | A comparative study of dynamic mapping heuristics for a class of independent tasks onto heterogeneous computing systems[END_REF][START_REF] Ali | Task execution time modeling for heterogeneous computing systems[END_REF][START_REF] Ali | Representing task and machine heterogeneities for heterogeneous computing systems[END_REF] and that were freely available. For each reference, we extracted all the distinct sets of parameters. Additionally, we differentiated between example cost matrices that illustrate the generation methods from cost matrices that are used in actual sets of experiments to study scheduling algorithms. However, the size was ignored as we only consider asymptotic properties (Section 4.6 assesses the impact of the size). Some data were not specifically provided. The parameters that could be directly inferred from the article or from similar works are emphasized: this concerns mostly missing parameters for the consistency extension (the ones from the cited article were taken). Otherwise, they are treated as missing values (denoted by NA). Some articles lack enough information, which prevented any parameter extraction.

On the 160 analysed articles, 78 provide exploitable information on the cost matrix instances. The rest consists of 40 articles with no description, but which refer to instances described in other articles and 42 articles with unclear descriptions or approaches that do not fit the current study. The extracted data are provided in Appendix B and summarized below. While most articles fail to precisely describe the used method, only the range and CV parameters are crucial for reproducing similar instances. In the end, 342 sets of parameters were extracted in 78 articles for a total of 210 unique settings: 37 for the range-based method and 173 for the CVB one.

Figure 1 depicts the values used with both methods. Although there is no clear agreement on which precise parameters are the most relevant, there are some common tendencies. Values for low heterogeneity are usually 10 and 100 for the range-based method and .1, .25 and .3 for the CVB method. Values for high heterogeneity are usually 100, 1e3, 3e3 and 1e5 for the range-based method and .3, .35, .4, .5, .6, .7, .9, 1 and 2 for the CVB method.

Heterogeneity Measures

Assessing the impact of heterogeneity on heuristic performance requires a method for quantifying the heterogeneity of the generated cost matrices.

TDH and MPH

The closest related measures are the TDH (Task Difficulty Homogeneity) and the MPH (Machine Performance Homogeneity) [START_REF] Al-Qawasmeh | Characterizing task-machine affinity in heterogeneous computing environments[END_REF][START_REF] Al-Qawasmeh | Characterizing heterogeneous computing environments using singular value decomposition[END_REF]. The TDH computation is described in Algorithm 3. The value T D[i] represents the difficulty of task i, namely whether it has small costs. After the ordering, the final sum computes the average ratio between similar tasks in terms of difficulty (which lies in the interval (0, 1]). If this average is one, then tasks are all similar. If it is close to zero, then the task heterogeneity is large. q q q q q q q q (a) Range-based method q 0.0 T D[i] ← m j=1 1 e i,j 3: end for 4: sort T D in ascending order 5:

return 1 n-1 n-1 i=1 T D[i] T D[i+1]
The MPH computation is analogous except that the sum on Line 2 is performed on each row instead of each column. This results in a measure of the machine heterogeneity.

These measures have three major shortcomings (as mentioned in Section 2). First, they are not intuitive (they require to invert costs, to order sums and to average ratios). Also, they do not rely on classical statistical measures, which makes deriving formal results more difficult. In particular, the ordering on Line 4 complicates formal analysis. A last notable problem is that the resulting values depend on the size of the matrix. In particular, it is close to one when the matrix is large (even if it is generated with the same parameters and has, intuitively, the same characteristics). For instance, if we consider only one machine, the following matrices (cost vectors in this case) have the same TDH: [START_REF] Philippe | A Novel Heuristic for a Class of Independent Tasks in Computational Grids[END_REF][START_REF] Al-Qawasmeh | Characterizing task-machine affinity in heterogeneous computing environments[END_REF] and [0.125, 0.25, 0.5, 1, 2, 4]. The second vector, however, seems more heterogeneous. As another example, let the minimum TD be 1 and the maximum TD be 100. Given Proposition 3, the TDH is always greater than 0.60 when there are 10 tasks and it is always greater than 0.95 when there are 100 tasks. This measure is thus relevant only for comparing small cost matrices with similar sizes. Proof. The minimum TDH is achieved when the sum n-1 i=1 a i a i+1 where a i = T D[i] is minimum. Let f : [a 1 , a n] n-2 → (0, ∞) be the corresponding multivariate function with a 1 and a n being FEMTO-ST Institute constant. Each value a i for 1 < i < n is greater than or equal to a 1 because the a i are ordered. As a 1 represents an average cost and is thus strictly greater than zero, all nominators and all denominators are strictly greater than zero. Therefore, f is a continuous function from the compact [a 1 , a n] n-2 . The extreme value theorem states that a continuous function from a non-empty compact space to a subset of the real numbers attains a maximum and a minimum. This proves the existence of a minimum.

We now show by contradiction that this minimum is achieved when the ratios a i a i+1 are all equal for 1 ≤ i < n. Assume it is not the case and let i be the lowest value for which a i a i+1 = a i+1 a i+2 , which can be rewritten as a i+1 = √ a i a i+2 . A lower value is attained when

a i+1 = √ a i a i+2
because the partial derivate of f with respect to a i+1 (i.e., -a i-1

a 2 i + 1 a i+1
) is zero with this value. Therefore, the minimum is achieved when all ratios a i a i+1 are equal. This is the case when

a i = e log(T D[1])+ i-1 n-1 log an a 1 for 1 ≤ i ≤ n.
When replacing a i by T D[i], the TDH simplifies as e log T D [START_REF] Philippe | A Novel Heuristic for a Class of Independent Tasks in Computational Grids[END_REF] T D[n] /(n-1) or e log min(T D) max(T D) /(n-1) if the vector T D is not sorted.

Intuitive Measures of Heterogeneity

We identify below two intuitive measures of task and machine heterogeneity that rely on classic properties:

Assuming that the mean of each row represents a task weight, the task heterogeneity may be defined as the CV (Coefficient of Variation) of the means of the rows (noted V µ task). Analogously, the machine heterogeneity may be measured as the CV of the means of the columns (noted V µ mach).

CV      µ 1 . . . µ n    e 1,1

  

Alternatively, the CV of one column may represent the task heterogeneity for a given machine. Therefore, the mean of the CV of the columns may measure the task heterogeneity (noted µV task) while the mean of the CV of the rows may measure the machine heterogeneity (noted µV mach).

The first measure of task and machine heterogeneity has been criticized for small instances [START_REF] Al-Qawasmeh | Characterizing task-machine affinity in heterogeneous computing environments[END_REF]. It is argued that the MPH is better than the CV as it is less sensitive to outliers. In this case, the CV can be replaced by the quartile coefficient of dispersion, which is a similar standard statistical measure but is more difficult to formally analyze. Finally, the decision trees in [START_REF] Al-Qawasmeh | Statistical measures for quantifying task and machine heterogeneities[END_REF] suggest that varying this measure has an impact on the heuristic performance and is thus significant.

With both measures, it is possible to use the standard deviation instead of the CV. However, the CV provides a relative measure that is independent from the cost mean. If an absolute measure is deemed more meaningful, the proposed measures can be adapted by using the standard deviation.

Coherence with the Uniform Model

The previous measures do not only rely on intuition, they are also consistent with the expectation when we consider the uniform model. In this model, the cost of executing a task i on a machine j is given by the product of the task weight, w i , and the cycle time, b j . The concept of task and machine heterogeneity is easy to grasp in the uniform model: it is given by the statistical dispersion of the weights and the speeds, respectively. We assume that the CV of the weights, noted CV task , is a relevant measure of the task heterogeneity. Analogously, the CV of the speeds, noted CV mach , represents the machine heterogeneity.

It is possible to convert an instance of the uniform model to the unrelated model because this last model is more general. The cost matrix is generated by combining both vectors {w i } 1≤i≤n and {b j } 1≤j≤m such that e i,j = w i b j . As we know the heterogeneity properties of a uniform instance, we expect our proposed measures for the unrelated model to be consistent when applied on the converted instance. Proposition 4. Let U = ({w i } 1≤i≤n , {b j } 1≤j≤m) be a uniform instance and E = {e i,j } 1≤i≤n,1≤j≤m be the corresponding unrelated instance such that e i,j = w i b j . Then,

CV task (U) = V µ task (E) = µV task (E) and CV mach (U) = V µ mach (E) = µV mach (E). Proof. By definition, CV task (U) = √ n i=1 w 2 i /n-(n i=1 w i /n) 2 n i=1 w i /n whereas V µ task (E) is the CV of the means of the rows. The mean of row i is m j=1 e i,j /m = w i /m m j=1 b j . Then, V µ task (E) = √ n i=1 (w i φ) 2 /n-(n i=1 w i φ/n) 2 n i=1 w i φ/n
where φ = m j=1 b j /m is the mean of the inverse speeds. Therefore,

V µ task (E) = CV task (U).
Remember that µV task (E) is the mean of the CV of the columns. The CV of column j is

n i=1 e 2 i,j /n -(n i=1 e i,j /n) 2 n i=1 e i,j /n = n i=1 (w i b j) 2 /n -(n i=1 (w i b j)/n) 2 n i=1 (w i b j)/n = CV task (U)
The mean of these CV is thus also CV task (U).

The demonstration is analogous for the machine heterogeneity measures.

Proposition 4 shows that our proposed measures are consistent with the intuition on uniform instances.

Heterogeneity of the Range-Based and CVB Methods

We analyse the asymptotic heterogeneity properties of the CVB method with the proposed measures depending on the parameters V task and V mach . An estimator T converges to θ when the expected value of T tends to θ as the number of samples (n and m in our case) tends to ∞. Proposition 5. The measure V µ task of a cost matrix generated using the CVB method with the parameters V task and V mach converges to V task as n → ∞ and m → ∞.

Proof. This proof assumes that the mean of a set of n samples (called the sample mean) of a random variable with mean µ and standard deviation σ is a random variable with mean µ and standard deviation σ √ n . Moreover, the CV of a set of n samples (called the sample CV) of a random variable with CV V converges to V as n → ∞.

Let µ i be the sample mean of the costs on row i. This row is the product of q[i], which is a random variable that follows a distribution with mean µ task and CV V task , and m values that follow a distribution with mean one and CV V mach . µ i is thus also the product of the first random variable and the sample mean of the other m values, which follows a random variable with mean one and CV V mach √ m . Therefore, the mean of µ i is µ task and its CV is

V 2 task V 2 mach m + V 2 mach m + V 2
task , which tends to V task as m → ∞. The consistency properties have no impact on µ i because only values on the same row are ordered. Proposition 6. The measure V µ mach of a cost matrix generated using the CVB method with the parameters V task and V mach converges to a √ bV mach as n → ∞ and m → ∞.

Proof. Let µ j be the sample mean of the costs on column j. The measure V µ mach is the ratio of the sample standard deviation of all µ j , noted σµ mach , to the sample mean of all µ j , noted µµ mach . Let's distinguish the columns where the costs are consistent (1 ≤ j ≤ bm) from the inconsistent columns (bm < j ≤ m). For the inconsistent columns, µ j is the sample mean of n values that follow a product between a distribution with mean µ task and CV V task , and a distribution with mean one and CV V mach . Thus, µ j follows a distribution with mean µ task and CV

V 2 task V 2 mach +V 2 task +V 2 mach n
for bm < j ≤ m. Therefore, the sample mean of µ j converges to µ task and its sample standard deviation converges to zero as n → ∞ for bm < j ≤ m.

For the consistent columns, an rows are sorted. Let q p denotes the p-quantile of a distribution with mean one and CV V mach (it is the value x for which F (x) = p where F is the cumulative distribution function). Note that e i,j → q[i]q j/(bm) as m → ∞ for 1 ≤ i ≤ an and 1 ≤ j ≤ bm. Therefore, µ j can be decomposed as a weighted sum of sample means (one for the sorted rows and another for the last rows): the first sample mean follows a distribution with mean µ task q j/(bm) and CV V task √ an while the second follows a distribution with mean µ task and CV

V 2 task V 2 mach +V 2 task +V 2 mach (1-a)n
.

Therefore, the sample mean of µ j converges to aµ task q j/(bm) +(1-a)µ task and its sample standard deviation converges to zero as n → ∞ for 1 ≤ j ≤ bm.

On one hand,

µµ mach = 1 m m j=1 µ j = 1 m (bm j=1 (aµ task q j/(bm) +(1-a)µ task)+(1-b)mµ task) = abµ task 1 bm bm j=1 q j/(bm) + (1 -a)bµ task + (1 -b)µ task as n → ∞. Note that 1 bm bm j=1 q j/(bm) = 1 0 q p dp = 1 as m → ∞. Thus, µµ mach = µ task as n → ∞ and m → ∞.
On the other hand, as n → ∞ and m → ∞:

σµ mach = 1 m m j=1 µ 2 j -   1 m m j=1 µ j   2 = 1 m bm j=1 µ 2 j + 1 m m j=bm+1 µ 2 j -µ 2 task = 1 m bm j=1 (aµ task q j/(bm) + (1 -a)µ task) 2 + (1 -b)µ 2 task -µ 2 task = µ task 1 m bm j=1 (a 2 q 2 j/(bm) + 2aq j/(bm) (1 -a) + (1 -a) 2) -b = µ task a 2 b 1 bm bm j=1 q 2 j/(bm) + 2a(1 -a)b 1 bm bm j=1 q j/(bm) + (1 -a) 2 b -b = a √ bµ task 1 bm bm j=1 q 2 j/(bm) -1 Note that 1 bm bm j=1 q 2 j/(bm) = 1 0 q 2 p dp = ∞ -∞ x 2 f (x)dx = V 2 mach + 1 as m → ∞
with the substitution p = F (x) and dp = f (x)dx where f is the probability density function of a distribution with mean one and CV V mach . This requires the distribution to be continuous,

Measure

Value

V µ task V task µV task Φ = V 2 task V 2 mach + V 2 task + V 2 mach if a = 0 bV task + (1 -b)Φ if a = 1 V µ mach a √ bV mach µV mach V mach
Table 3: Summary of the heterogeneity properties of the CVB method.

which is the case for the gamma distribution. Therefore,

σµ mach = a √ bµ task V mach and V µ mach = a √ bV mach as n → ∞ and m → ∞.
Proposition 7. The measure µV task of a cost matrix generated using the CVB method with the parameters V task and V mach converges to

V 2 task V 2 mach + V 2 task + V 2 mach as n → ∞ if the matrix is inconsistent and to bV task + (1 -b) V 2 task V 2 mach + V 2 task + V 2 mach as n → ∞ and m → ∞ if a = 1.
Proof. Let V j be the sample CV of column j. When a = 0, the values on column j follow a distribution that is the product of a distribution with mean µ task and CV V task , and a distribution with mean one and CV V mach . Therefore,

V j converges to V 2 task V 2 mach + V 2 task + V 2 mach as n → ∞.
Since this value does not depends on j, µV task (the sample mean of these sample CV)

also converges to V 2 task V 2 mach + V 2 task + V 2 mach as n → ∞. When a = 1, V j still converges to V 2 task V 2 mach + V 2 task + V 2 mach
as n → ∞ for bm < j ≤ m. However, µ j (the sample mean of column j) converges to µ task q j/(bm) as n → ∞ and m → ∞ while σ j (the sample standard deviation of column j) converges to µ task V task q j/(bm) as n → ∞ and m → ∞ for 1 ≤ j ≤ bm. Thus, V j converges to V task as n → ∞ and m → ∞ for 1 ≤ j ≤ bm.

Therefore, µV task converges to bCV task + (1 -b) V 2 task V 2 mach + V 2 task + V 2 mach as n → ∞ and m → ∞.
Proposition 8. The measure µV mach of a cost matrix generated using the CVB method with the parameters V task and V mach converges to V mach as m → ∞.

Proof. Let V i be the sample CV of row i. The values on row i follow a distribution that is the product of q[i] and a distribution with mean one and CV V mach . Therefore, V i converges to V mach as m → ∞. Since this value does not depend on i, µV mach (the sample mean of these sample CV) also converges to V mach as m → ∞.

Table 3 synthesises the previous formal results. They can be extended to the range-based method by replacing V task by the CV of the first random variable (

√ 12 6 R task -1 R task +1
) and V mach by the CV of the second one (

√ 12 6 R mach -1 R mach +1
). Indeed, the proofs only use the mean and the CV of the underlying distributions. Moreover, the uniform distribution is also continuous. Although the formal analysis of µV task for arbitrary values of a was unsuccessful, the following formula provides a close estimate:

a 2 bV task + (1 -a 2 b) V 2 task V 2 mach + V 2 task + V 2 mach .
In the case of complete consistency (i.e., when a = b = 1), V µ task = µV task = V task and V µ mach = µV mach = V mach , which supports the proposed heterogeneity measures. This special FEMTO-ST Institute case is due to the fact that consistent cost matrices are closer to uniform instances than inconsistent ones and both measures are equivalent for uniform instances.

However, the CVB method has two issues. As a consequence of the asymmetry of the generation method, the task heterogeneity is not symmetric to the machine heterogeneity.

For instance, we have

µV task = V 2 task V 2 mach + V 2 task + V 2
mach , whereas V µ mach = V mach for inconsistent matrices. This makes the generation method less direct as the parameters must be chosen such as to circumvent this asymmetry. In particular, if a high machine heterogeneity is required, then the task heterogeneity will also be high.

The second issue is related to the impact of the consistency parameters on the heterogeneity properties. It biases comparisons of scheduling methods when cost matrices are used with different consistency settings because these matrices will also have different heterogeneity properties. The range-based method presents an even stronger bias as both V task and V mach tend to

√ 12
6 as R task → ∞ and R mach → ∞ (the heterogeneity properties are thus often similar).

Task and Machine Heterogeneity in Previous Studies

For each of the instances summarized in Section 3, we computed both heterogeneity measures using the formulas of Table 3 and the input parameters: R task and R mach for the range-based method; V task and V mach for the CVB method; and the consistency parameters, a and b, for both methods. For the case when 0 < a < 1, µV task was measured on a single 1000 × 1000 cost matrix that was generated with the range-based or the CVB method. When the consistency values are missing, matrices are assumed to be inconsistent. Finally, the mean is set to 1 when it is not given with the CVB method because it has no impact on any measure.

Figures 2 and3 depict the values for the measures proposed above. The range-based method has a clear bias because many heterogeneity properties have never been obtained. Also, the consistency parameters invalidate the claimed properties of the cost matrices relatively to the heterogeneity quadrant for both heterogeneity measures: some hihi instances have the same machine heterogeneity as lolo instances on Figure 2, whereas some lohi instances have the same task heterogeneity as hilo instances on Figure 3. This analysis is also consistent with the observation made in [START_REF] Al-Qawasmeh | Characterizing heterogeneous computing environments using singular value decomposition[END_REF] about the fact that the range-based and CVB methods do not cover the entire range of possible values for the MPH.

As mentioned in Section 4, both proposed heterogeneity measures are relative. This allows a direct comparison between each heterogeneity value. Using the standard deviation instead would require normalizing them for this analysis.

Non-asymptotic properties

The previous analysis only considers asymptotic heterogeneity properties (i.e., when n → ∞ and m → ∞). We study how far are these properties from the asymptotic ones by generating several small cost matrices for each setting used in the literature and by applying all the measures on them. Figure 4 depicts the heterogeneous properties of cost matrices with different sizes. We see that the column corresponding to 256 tasks with 64 machines is close to the asymptotic properties presented in Figures 2 and3. Although the properties of smaller cost matrices are more dispersed, their central tendency remain similar to the asymptotic ones and the previous biases also occur with small matrices. The x-scale is twice as large as in Figure 2 for the CVB method because large values of V mach tends to increase the measure µV task . One point is not shown for the CVB method: (2.01, 2).

FEMTO-ST Institute

V µ task V µ mach µ V task µ V mach V µ task V µ mach µ V task µ V mach 0.

Controlling the Heterogeneity

We are interested in generating cost matrices that have specific heterogeneity properties according to the measures introduced in Section 4. We propose two methods that both alter a cost matrix generated from uniform instances for which we control the task and machine heterogeneities. These cost matrices have specific properties in terms of consistency and correlation between each row and each column, and the proposed methods introduce some randomness in it. They both possess the same time complexity (i.e., O(nm)).

Shuffling Method

The first proposed method shuffles the costs in the matrix that corresponds to a uniform instance (see Algorithm 4). It first generates the task weights on Line 2 and the inverse of the machine speeds on Line 5. The corresponding matrix is computed on Line 9 before starting the shuffling part. For each cost e i,j , another cost e i ,j is selected on a different row and column (Lines 14 and 15). The same amount is then removed from these costs and is added to two other costs, e i,j and e i ,j (one that is on the same row as the first cost and on the same column as the second, and another one that is on the same row as the second cost and on the same column as the first). This step (Lines 25 to 28) preserves the mean of each row and the mean of each column. The heterogeneity properties thus remain the same. The transferred amount is the largest value (in absolute) such that no cost among the four considered costs becomes lower than the minimum one among them (this prevents costs to be arbitrarily low). For instance, if e i,j is the minimum cost (i.e., e i,j = min(e i,j , e i ,j , e i,j , e i ,j)), there are two cases: if e i,j < e i ,j , then e i,j becomes the new minimum and the added value to e i,j and to e i ,j is e i,j -e i,j ; otherwise, it is e i ,j -e i,j .

Maintaining both the minimum and the maximum cost is not possible because the cost matrix is generated from a uniform instance. This method focuses only on preventing costs to be arbitrarily low because it is critical to guarantee positive costs.

Proposition 9. When used with parameters V task and V mach , the shuffling method generates costs with expected value 1.

Proof. Costs in the matrix corresponding to the uniform matrix follow a distribution that is the product of two distributions with mean one. Therefore, the expected value of the costs in the matrix before the shuffling step is also one. The shuffling step does not change the expected value of the costs because the amount that is taken on any cost is given to another cost. Proposition 10. The measure V µ task of a cost matrix generated using the shuffling method with the parameters V task and V mach converges to V task as n → ∞.

Proof. Analogously to the proof of Proposition 9, the shuffling step has no impact on the mean of each row and each column. The measure V µ task is thus the same for the final cost matrix as for the intermediate matrix that corresponds to a uniform instance.

As a corollary of Proposition 4, the sample CV of the sample means of all rows in this intermediate matrix is equal to the sample CV of the vector {w i } 1≤i≤n . This last sample CV converges to V task as n → ∞.

Proposition 11. The measure V µ mach of a cost matrix generated using the shuffling method with the parameters V task and V mach converges to V mach as m → ∞.

Proof. Due to the symmetry of the shuffling method, the proof is analogous to the proof of Proposition 10.

w i ← G(1/V 2 task , V 2 task) 3: end for 4: for all 1 ≤ j ≤ m do 5: b j ← G(1/V 2 mach , V 2 mach) 6: end for 7: for all 1 ≤ i ≤ n do 8:
for all 1 ≤ j ≤ m do for all 1 ≤ j ≤ m do

14: i ← (U (1, n -1) + i -1 mod n) + 1 15: j ← (U (1, n -1) + j -1 mod m) + 1 16:
if e i,j = min(e i,j , e i ,j , e i,j , e i ,j) then 17: d ← min(e i ,j -e i,j , e i,j -e i,j)

18:

else if e i ,j = min(e i ,j , e i,j , e i ,j) then 19:

d ← -min(e i,j -e i ,j , e i ,j -e i ,j) 20:

else if e i,j = min(e i,j , e i ,j) then 21:

d ← -min(e i,j -e i,j , e i ,j -e i,j) e i,j ← e i,j -d

28:

e i ,j ← e i ,j + d

29:

end for 30: end for 31: return {e i,j } 1≤i≤n,1≤j≤m

Property Value

Expected value

1 V µ task V task V µ mach V mach
Table 4: Summary of the cost matrix properties with the shuffling method.

Noise-Based Method

The second method, described in Algorithm 5, relies on a simple idea, which was also used in [START_REF] Al-Qawasmeh | Power and Thermal-Aware Workload Allocation in Heterogeneous Data Centers[END_REF]: each cost of a matrix, which corresponds to a uniform instance, is multiplied by a matrix with a random variable with mean one (Line 9).

w i ← G(1/V 2 task , V 2 task) 3: end for 4: for all 1 ≤ j ≤ m do 5: b j ← G(1/V 2 mach , V 2 mach) 6: end for 7: for all 1 ≤ i ≤ n do 8:
for all 1 ≤ j ≤ m do 9:

e i,j ← w i b j × G(1/V 2 noise , V 2 noise) 10:
end for 11: end for 12: return {e i,j } 1≤i≤n,1≤j≤m

Proposition 12. When used with parameters V task , V mach and V noise , the noise-based method generates costs with expected value one and CV

V 2 task V 2 mach V 2 noise + V 2 task V 2 mach + V 2 task V 2 noise +V 2 mach V 2 noise + V 2 task + V 2 mach + V 2 noise .
Proof. Each cost is the product of three random variables that have all the same mean one. Additionally, their CV (and standard deviations in this case) are V task , V mach and V noise . The global CV can be derived by remarking that the CV of the product of two random variables with CV

V 1 and V 2 is V 2 1 V 2 2 + V 2 1 + V 2 2 .
Proposition 13. The measure V µ task of a cost matrix generated using the noise-based method with the parameters V task , V mach and V noise converges to V task as n → ∞ and m → ∞.

Proof. Let µ i be the sample mean of row i. This row is the product of w i , which follows a distribution with mean one and CV V task , and m values that are each the product of a random variable with mean one and CV V mach and a random variable with mean one and CV V noise . µ i is thus also the product of w i and the sample mean of the other m values, which follows a random variable with mean one and CV

V 2 mach V 2 noise +V 2 mach +V 2 noise m
. Therefore, the mean of

µ i is one and its CV is V 2 task V 2 mach V 2 noise +V 2 mach +V 2 noise m + V 2 task + V 2 mach V 2 noise +V 2 mach +V 2 noise m
, which tends to V task as m → ∞. Therefore, the sample CV of all µ i converges to V task as n → ∞ and m → ∞. Proposition 14. The measure V µ mach of a cost matrix generated using the noise-based method with the parameters V task , V mach and V noise converges to V mach as n → ∞ and m → ∞.

Proof. Due to the symmetry of the noise-based method, the proof is analogous to the proof of Proposition 13.

Proposition 15. The measure µV task of a cost matrix generated using the noise-based method with the parameters V task , V mach and V noise converges to

V 2 task V 2 noise + V 2 task + V 2 noise as n → ∞.
Proof. Let V j be the sample CV of column j. Each column is the product of b j and n values that are each the product of a random variable with mean one and CV V task and a random variable with mean one and CV V noise . Thus, V j converges to the CV of this product

FEMTO-ST Institute Property Value Expected value 1 CV V 2 task V 2 mach V 2 noise + V 2 task V 2 mach + V 2 task V 2 noise + V 2 mach V 2 noise + V 2 task + V 2 mach + V 2 noise Distribution Product of three gamma laws V µ task V task µV task V 2 task V 2 noise + V 2 task + V 2 noise V µ mach V mach µV mach V 2 mach V 2 noise + V 2 mach + V 2 noise
Table 5: Summary of the cost matrix properties with the noise-based method.

(i.e.,

V 2 task V 2 noise + V 2 task + V 2 noise) as n → ∞.
Therefore, the measure µV task converges to

V 2 task V 2 noise + V 2 task + V 2 noise as n → ∞.
Proposition 16. The measure µV mach of a cost matrix generated using the noise-based method with the parameters V task , V mach and V noise converges to

V 2 mach V 2 noise + V 2 mach + V 2 noise as m → ∞.
Proof. Due to the symmetry of the noise-based method, the proof is analogous to the proof of Proposition 15.

Table 5 summarizes the formal results related to the noise-based method. This method requires one additional parameter: V noise . When the objective is to have cost matrices with specific values of V µ task and V µ mach (for large n and m), we propose to set V noise to min(V task , V mach). This limits the amount of noise in the costs.

Contrary to the shuffling method, the noise-based method can also generate cost matrices with specific values of µV task and µV mach (asymptotically). The parameters can be fixed as follow: if µV task < µV mach , then V task = 0, V noise = µV task and V mach = (µV 2 mach -µV 2 task)/(µV 2 task + 1); otherwise, V mach = 0, V noise = µV mach and V task = (µV 2 task -µV 2 mach)/(µV 2 mach + 1). This setting maximizes the amount of noise.

Even though the shuffling method has less formal results (probably due to its combinatoric operations), the noise-based method has two drawbacks: the additional parameter is not trivial to determine and the method introduces more variation in the costs than the shuffling method. This makes this method more complex to use.

Impact on Scheduling Heuristics

This section assesses the impact of the heterogeneity properties defined in Section 4 on the relative performance of some classic heuristics.

Scheduling Heuristics

Our intention here is not to find the best heuristic but rather to show the impact of the cost matrix generation method on the performance results. We use classical heuristics from the literature summarized in Table 6. Most of them (OLB, MET, MCT, Min-min, Max-min, HLPT3 , Suff) are list-based algorithms. The Genetic Algorithm (GA) relies on an initial population containing a solution obtained with Min-min. In addition to these classic heuristics, we added two more elaborated methods (the Bal prefixed methods) that try to reconsider an initial mapping obtained from MET (Minimum Execution Time) mapping: any task is moved to the machine that will finish it the earliest if it does not increase the maximum completion time. These heuristics are described in Appendix C. Getting reference values (lower bounds on the makespan) for our performance measures is not straightforward in practice due to the heterogeneity of the problem. We thus rely on a variation of the genetic algorithm to provide an estimation of these values. The initial population is initialized, in addition to other random individuals, with all the solutions obtained by the other algorithms. The population evolution is based on the algorithm description given in [START_REF] Braun | A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems[END_REF]. An elite chromosome is maintained so that the resulting solution cannot be worse than any of the initial solutions and thus the genetic algorithm is no worse than any of the other algorithms.

Settings

Cost matrices are generated with three different methods: the shuffling method and the noisebased method with two approaches to set the noise (see Section 5.2). In all cases, there are two parameters: V µ task and V µ proc for the first two methods and µV task and µV proc for the last one. These two parameters are distributed in the range [0.001, 10] with 30 equidistant values using a probit scale (i.e., 0.001, 0.0014, 0.0019, 0.0026, . . . , 5.3, 7.3, 10).

For each pair of parameters, 200 cost matrices are generated with n = 100 tasks and m = 30 machines. For each scenario, we compute the makespan of each heuristic. We only consider the relative difference from the reference makespan: |C -C min |/C min where C is the makespan of a given heuristic and C min is the best makespan we obtained (the genetic algorithm initialized with all the solutions obtained by the other heuristics). The closer to zero, the better the performance.

Results

Figures 5 to 7 are heat maps of the relative performance for each algorithm. On each figure, we use a logarithmic scale on both axes: the x-axis gives the heterogeneity value for the tasks (V µ task or µV task) while the y-axis gives the heterogeneity value for the machines (V µ mach or µV mach). The bottom-left area represents almost homogeneous instances (same cost for each execution) while the top-right area is the most heterogeneous one. The heterogeneity values covered by the range-based and CVB methods in the literature are represented with dark rectangles on each sub-figure.

The scales on each heat map start at 0.001. We assume that an heterogeneity that is below this value may be considered negligible and that a heuristic that is closer to the reference makespan than this value is good enough. For instance, BalSuff may be considered near-optimal when the heterogeneity values are below 1%.

In Figure 7, both V task and V mach are zero on the diagonal, which may cause the irregularity for almost all heuristics. We suspect that using larger matrices would smooth this effect.

Figure 8 plots the best heuristic depending on the heterogeneity properties. Contour lines show the number of heuristics which performance is closer to the best heuristics than 0.001. For instance, there are at least 5 heuristics whose relative performances are almost equivalent when task heterogeneity is high (i.e., if the best heuristic average relative difference from the reference value is 0.004, then at least 5 other heuristics have a relative difference lower than 0.005).

The heuristics are ordered by the number of instances for which no other heuristic produces a better solution. When several heuristics are equivalent for a given tile, the appearing heuristic is the one that is the best the least often. This allows one to see even the settings for which the worst heuristics may be good.

Note that GA is close to Min-min (we observed that it returns the same solution in more than half of the cases) but improves it when the task heterogeneity is high. This proximity is explained by the inclusion of the solution provided by Min-min in the initial population of GA.

Analysis

The settings cover a large part of the possible instances for the R||C max problem. Some areas on the figures may be associated to specific scheduling problems: the Q|p i = p|C max problem (top-left area), the P |p i = p|C max problem (bottom-left area) and the P ||C max problem (bottomright area). While the first two problems can be solved in polynomial time, the last problem is NP-complete.

The heat maps suggest that the area where the heterogeneity values are between 0.1 and 1 is more challenging for most heuristics (areas in purple on the heat maps are 30% far from the reference). This is confirmed by Figure 8 where there is often a single best heuristic with these settings. Oppositely, many heuristics are close to the best one when the task heterogeneity is low or high, or when the machine heterogeneity is high. On one hand, execution costs are quite similar when the coefficient of variation is below 0.1. A non-optimal allocation will thus have a lower impact than with higher heterogeneity. On the other hand, most execution costs are close to zero when the coefficient of variation is higher than 1 and bad allocations may be easy to avoid because there are few allocations that are extremely critical while most of them are not. It is thus easier to generate a reasonable schedule.

When the machine heterogeneity is low (with medium task heterogeneity), there is often a single best heuristic. This suggests that these settings leads to difficult instances. As mentioned above, this is close to the P ||C max problem. We may conclude that dealing with heterogeneous tasks is more difficult than with heterogeneous machines, which is also supported by the asymmetry of the heat maps.

Finally, Figure 8 shows the best heuristics: BalSuff when both heterogeneity properties are comparable, BalEFT when the machine heterogeneity is higher than the task heterogeneity and HLPT when the task heterogeneity is high. 3). Figure 8: Best heuristic in the average case with the shuffling and the noise-based method with V µ task and V µ mach or µV task and µV mach as parameters. Contour lines correspond to the number of heuristics with a performance closer to the best heuristic performance than 0.001. The dark rectangles correspond to the properties covered by the range-based and CVB methods in the literature (see Figure 3).

FEMTO-ST Institute

Shuffling (V µ task V µ mach) Noise -based (V µ task V µ mach) Noise -based (µ V task µ V mach) 2
Overall, we used two generation methods and two heterogeneity measures (one with the shuffling method and two with the noise-based method) and this analysis stands in all cases.

The range-based and CVB generation methods used in the literature could not provide these results due to two factors: the heterogeneity properties of the generated instances have a limited coverage (shown by the dark rectangles) and the erroneous claimed properties of these matrices prevent an unbiased analysis.

Discussion

This study focuses on the impact of some measures (either V µ task and V µ mach , or µV task and µV mach) on the performance of several heuristics. However, there are many other properties that could be measured. If we consider the skewness and the kurtosis as in [START_REF] Al-Qawasmeh | Statistical measures for quantifying task and machine heterogeneities[END_REF], we can think of 4 × 4 measures for the rows and as many for the columns. The main limitation of this study is to ignore the effect of all these possible measures. In addition, this study cannot be directly extended to assess all the possible interactions between them.

Another limitation is related to the effect of outliers. For large instances, the law of large number applies and the measures proposed in Section 4 correspond to the characteristics of the cost matrices. However, for small instances, we suggest switching to robust measures such as the median, the interquartile range and the quartile coefficient of dispersion instead of the mean, the standard deviation and the CV, respectively.

Conclusion

This study shows that the methods used in the literature for generating cost matrices are biased: the claimed heterogeneity properties of these instances are invalidated by the two measures we proposed to quantify them. We also show that the range of instances that has been used are restricted. It is specifically the case for the range-based method that covers only a minor fraction of all the possible settings in terms of heterogeneity. By providing new cost matrix generation methods, we show that heuristics for the R||C max problem have interesting behavior outside this restriction. For instance, BalEFT is the best heuristic when the task heterogeneity is low and this could not have been shown with the instances used in the literature.

In addition to all the possible measures mentioned in Section 6.5, we plan to analyse other properties, in particular the correlation. It would also be interesting to see if the conclusions hold for some variations of the R||C max problem such as considering arrival times or online scheduling.

A Notation

Symbol Definition i index of the tasks j index of the machines n number of tasks m number of machines e i,j execution cost of task i on machine j w i weight of task i b j inverse speed of machine j U (A, B) uniform distribution between A and B G(α, β) gamma distribution with shape α and scale β R task parameter for the range-based method R mach parameter for the range-based method V task parameter for the CVB, shuffling and noise-based methods V mach parameter for the CVB, shuffling and noise-based methods V noise parameter for the noise-based method a fraction of the consistent rows b fraction of the consistent columns V µ task first measure of task heterogeneity V µ mach first measure of machine heterogeneity µV task second measure of task heterogeneity µV mach second measure of machine heterogeneity The following table summarizes the studies that used the range-based method for generating cost matrices. Each row correspond to a cost matrix instance generated with the range-based method. I (resp. T) denotes matrices that are used for Illustration (resp. Testing algorithm performance). The range and consistency columns are the input parameters. The last columns represent the expected heterogeneity properties with two possible levels: low and high.

Context

B.3 Missing Parameters of Named Instances

The following articles mention some specific instances without providing the exact parameters used to generate them (they may thus be the same as the referenced articles):

missing values, probably the same as [START_REF] Ali | Representing task and machine heterogeneities for heterogeneous computing systems[END_REF]: [15, 27, 45-47, 79, 83, 88, 128, 130-132, 140, 141] missing values, probably the same as [START_REF] Ali | Task execution time modeling for heterogeneous computing systems[END_REF]: [START_REF] Canabé | Parallel implementations of the MinMin heterogeneous computing scheduler in GPU[END_REF][START_REF] Higashino | Evaluation of Particle Swarm Optimization Applied to Grid Scheduling[END_REF][START_REF] Iturriaga | A Multithreading Local Search For Multiobjective Energy-Aware Scheduling In Heterogeneous Computing Systems[END_REF][START_REF] Iturriaga | Energy efficient scheduling in heterogeneous systems with a parallel multiobjective local search[END_REF][START_REF] Kaya | Exact algorithms for a task assignment problem[END_REF][START_REF] Wang | Heterogeneous Computing and Grid Scheduling with Hierarchically Parallel Evolutionary Algorithms[END_REF] missing values, probably the same as [START_REF] Braun | A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems[END_REF]: [START_REF] Philippe | A Novel Heuristic for a Class of Independent Tasks in Computational Grids[END_REF][START_REF] Bardsiri | A Comparative Study on Seven Static Mapping Heuristics for Grid Scheduling Problem[END_REF][START_REF] Bardsiri | Scheduling Independent Tasks on Grid Computing Systems by Differential Evolution[END_REF][START_REF] Hashemi | An evaluation of heuristic methods for grid scheduling problem[END_REF][START_REF] Iturriaga | A Multithreading Local Search For Multiobjective Energy-Aware Scheduling In Heterogeneous Computing Systems[END_REF][START_REF] Iturriaga | Energy efficient scheduling in heterogeneous systems with a parallel multiobjective local search[END_REF][START_REF] Ko | Enhancing the genetic-based scheduling in computational grids by a structured hierarchical population[END_REF][START_REF] Ko Lodziej | A Stackelberg Game for Modelling Asymmetric Users' Behavior in Grid Scheduling[END_REF][START_REF] Ko Lodziej | Hierarchic genetic scheduler of independent jobs in computational grid environment[END_REF][START_REF] Nejatzadeh | A New Heuristic Approach for Scheduling Independent Tasks on Grid Computing Systems[END_REF][START_REF] Nesmachnow | Heterogeneous computing scheduling with evolutionary algorithms[END_REF][START_REF] Pinel | Evolutionary algorithm parameter tuning with sensitivity analysis[END_REF][START_REF] Pinel | Solving very large instances of the scheduling of independent tasks problem on the GPU[END_REF][START_REF] Rafsanjani | A New Heuristic Approach for Scheduling Independent Tasks on Heterogeneous Computing Systems[END_REF][START_REF] Wu | A high-performance mapping algorithm for heterogeneous computing systems[END_REF] missing values, probably the same as either [START_REF] Ali | Representing task and machine heterogeneities for heterogeneous computing systems[END_REF] or [START_REF] Braun | A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems[END_REF]: [START_REF] Bagherzadeh | An improved ant algorithm for grid scheduling problem[END_REF] missing values, probably the same as either [START_REF] Ali | Task execution time modeling for heterogeneous computing systems[END_REF] or [START_REF] Braun | A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems[END_REF]: [START_REF] Alharbi | Simple scheduling algorithm with load balancing for grid computing[END_REF][START_REF] Nesmachnow | Parallel multiobjective evolutionary algorithms for batch scheduling in heterogeneous computing and grid systems[END_REF][START_REF] Nesmachnow | GPU implementations of scheduling heuristics for heterogeneous computing environments[END_REF][START_REF] Nesmachnow | A parallel micro evolutionary algorithm for heterogeneous computing and grid scheduling[END_REF][START_REF] Nesmachnow | Energy-aware scheduling on multicore heterogeneous grid computing systems[END_REF][START_REF] Nesmachnow | Multiobjective grid scheduling using a domain decomposition based parallel micro evolutionary algorithm[END_REF] B.4 Discarded Articles

The following references were discarded either because they lack information on the instance generation or because they do not fit our study:

missing values and unclear generation method: [19, 39, 40, 56, 60, 64, 75, 81, 89-96, 98-100, 102, 104, 126, 135-138, 155, 161, 163, 165, 173] no value for the shape parameter and range for the scale parameter: [START_REF] Smith | Batch Mode Stochastic-Based Robust Dynamic Resource Allocation in a Heterogeneous Computing System[END_REF][START_REF] Smith | Stochastic-based robust dynamic resource allocation in a heterogeneous computing system[END_REF] only one CV is given: [START_REF] Garg | Scheduling parallel applications on utility grids: time and cost trade-off management[END_REF][START_REF] Garg | Time and cost trade-off management for scheduling parallel applications on utility grids[END_REF][START_REF] Rajni | Bacterial foraging based hyper-heuristic for resource scheduling in grid computing[END_REF] mismatched citation: [START_REF] Xhafa | A tabu search algorithm for scheduling independent jobs in computational grids[END_REF] mismatched value for high machine heterogeneity: [START_REF] Nesmachnow | Scheduling in heterogeneous computing and grid environments using a parallel CHC evolutionary algorithm[END_REF] use bi or tri-modal distributions with infinite mean: [START_REF] Briceño | Time utility functions for modeling and evaluating resource allocations in a heterogeneous computing system[END_REF] range for CV: [START_REF] Al-Qawasmeh | Task and Machine Heterogeneities: Higher Momenets Matter[END_REF][START_REF] Al-Qawasmeh | Statistical measures for quantifying task and machine heterogeneities[END_REF] ranges for mean and CV: [START_REF] Li | Resource allocation robustness in multi-core embedded systems with inaccurate information[END_REF] C Scheduling Heuristics

In this part, we describe the scheduling algorithms used for the experiments. Part of them are classical algorithms as OLB or Min-Min taken for other research works. We also introduce less classical algorithms as HLPT, an adaptation of LPT to the heterogeneous context, algorithms based on sufferage values for which a sufferage matrix is computed and balance algorithms that try to improve an initial solution by moving the tasks that will not lose too much from changing their mapping.

C.1 Related Work

The OLB algorithm (Opportunistic Load Balancing) takes a list of tasks sorted in random order and allocates them to the first ready machine. This algorithm generates mostly random schedules as they depend of the task list order. On the one hand, it tries to keep the machines busy as it allocates a task to a machine as soon as the former is free. On the other hand, it does not take the e i,j value into account. Thus, it may map a task to its worst machine. {best machine for the task} 3: end for 4: return π

The MET algorithm (Minimum Execution Time) maps each task, from a randomly ordered task list, to its best machine, regardless of the machine load. This is a more shorted-viewed algorithm, even more than random, because a single powerful will concentrate all the load.

The MCT algorithm (Minimum Completion Time) maps each task, from a randomly ordered task list, to the machine that will end it the soonest. This is a little smarter that the previous ones as it takes both the load of the machines and the e i,j value into account. The Min-min algorithm corresponds to the classical EFT algorithm (Earliest Finish Time). Actually, the Min-min algorithm presented in [START_REF] Braun | A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems[END_REF] first computes the set M of minimum completion times for each unmapped task, then takes the task with the min completion time, hence the Min-Min name. The version presented here does not compute M but rather finds the task to allocate by computing all the possible completion times and taking the earliest one. So the Min-Min algorithm just searches for the earliest finish task and allocates it to the corresponding machine. Intuitively, this algorithm will not generate good schedules when the task heterogeneity is high as it first schedules the smallest tasks, leaving the largest ones for the end. end for 16: end while 17: return π The Max-min algorithm is close to the Min-min one except that it chooses the largest task instead of the smallest from the set M . It is thus close to the classical LPT that gives good results in homogeneous platforms.

Algorithm 9 Earliest Finish

The Suff algorithm relies on a sufferage value that is computed as the difference between the best and the second best finish time for the task. The algorithm first allocates the task that will suffer the most from not being allocated to its best machine, which is the one that will finish it the earliest.

The genetic algorithm is based on the genetic algorithm described by Siegel in [START_REF] Braun | A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems[END_REF]. This is a classical genetic algorithm that represents a schedule as an individual with one chromosome: each gene is a task and its associated value is the machine where the task is mapped. Note that there is no need to define the start time of the tasks as we are only interested by the C max = max j (n i=1,π(i)=j e i,j), which only depends on the execution duration thanks to the commutativity of sum. The population is composed of 200 chromosomes. The algorithm iterates a thousand times unless the elite chromosome does not change during 150 iterations or all the chromosomes are the same. Elitism is implemented in the algorithm. The best chromosome of each iteration becomes the elite chromosome if it gets a better fitness than the previous elite one. At each iteration the population is filtered using a wheel selection. In wheel selection the probability that a chromosome is maintained in the population is inversely proportional to its fitness. Then a crossover step, with a probably of 0.6, and mutation step, with a probability of 0.4, are applied to generate new chromosomes. Two configurations of the initial population are used. In the first one the initial population is initialised only with random individuals, the tasks are randomly assigned to machines. In the second configuration one of the chromosomes

maxSuf f ← 0 4: maxSuf f T ← t 1 5: maxSuf f M ← 1 6: for all t ∈ T do 7: f inishT ime t ← sort k (RT [k] + e t,k
) {sort in non-decreasing order of the sufferage for t} 8: if f itness(sortedChrom [START_REF] Philippe | A Novel Heuristic for a Class of Independent Tasks in Computational Grids[END_REF]) < f itness(elit) then if rand(0, 1) > crossOverP roba then if rand(0, 1) > mutationP roba then 24:

if maxSuf f < f inishT ime t [2] -f inishT ime t [1] then 9: maxSuf f ← f inishT ime t [2] -f inishT ime t [1] 10: maxSuf f T ← t 11: maxSuf f M ← p s.t.RT [p] + e t,p = f inishT ime t [1]
indiv ← mutation(indiv)

C.2 Other Heuristics

In this part, we present other algorithms used in our simulations. They are not referenced even though they may already be defined in the literature. Since there exists so many papers on heterogeneous scheduling, we did not check them all.

The Heterogeneous Largest Processing Time (HLPT) is an adaptation of the well-known Largest Processing Time where the tasks are sorted in non-increasing order depending of their different processing times. HLPT can be used either with f unc set to the min or mean function to sort the tasks in non-increasing order. HLPT differs from Max-Min in the way it first sorts the tasks, depending on the chosen function. It then tries to find the best allocation for each task depending on the machine load, while Max-Min recomputes M set at each iteration and thus sorts the tasks depending on the machine load.

Algorithm 13 Heterogeneous Largest Processing Time (HLPT) Input: T a set of n tasks, M a set of m machines, E a matrix of the execution costs of the tasks on the machines Output: an allocation function π 1: Init ∀p ∈ M, RT [p] ← 0 {earliest ready time for each machine} 2: T ← {t 1 , t 2 , . . .} such that f unc t (e) ≥ f unc t+1 (e) {sort tasks in non-increasing order using a function of their processing costs} 3: for all t ∈ T do {consider each task in given order} for all p ∈ M do {find the earliest finish time} The GreedySuff algorithm relies on the sufferage matrix. In the sufferage matrix each value is the difference between the processing time on the current machine e i,j and the minimum processing time of the task. The higher the value, the more the task will suffer from being mapped on this machine. A null value indicates that the task is processed by the fastest machine for this task.

The GreedySuff algorithm takes the task in the cost matrix order, so it does not take the tasks in a particular order. For each task, it tries to map it on the machine that generates the lower sufferage and does not increase the C max . If the algorithm does not find any machine, then it uses the machine with the earliest finish time, hence the one that increases C max the least.

The BalSuff algorithm, as the GreedySuff, uses the sufferage matrix. It starts from an initial mapping where the tasks are mapped on their best machine (MET algorithm). Then, the algorithm tries to rearrange the tasks in a way such that the makespan is improved and the chosen task is the one that suffers the least from moving. The algorithm stops when there is no more task on the most loaded machine that could benefit from moving. Note that if two tasks have the same sufferage value on the most loaded machine, the tasks are considered in an arbitrary order

The BalEFT algorithm is a variant of the BalSuff algorithm. After the initial mapping based on the shortest processing time (MET algorithm), this algorithm tries to rearrange tasks using an early finish time criterion: it takes all the tasks of the most loaded machine and tries to find a new allocation such that the global makespan is decreased. The algorithm stops when there is no more task than can decrease the C max by moving.

Although not very costly in practice, we were not able to determine the worst-case time complexity of either BalSuff or BalEFT.

Eventually we also have implemented a second version of the GA algorithm, initialized with a random initial population where we added one chromosome for each mapping generated by the other algorithms. This algorithm gives of course always the best result as the elitism procedure Algorithm 14 Greedily allocate tasks on suffering (GreedySuff) Input: T a set of n tasks, M a set of m machines, E a matrix of the execution costs of the tasks on the machines Output: an allocation function π C max = newC max 30: until ef t = 0 31: return π guaranties that we keep the best chromosome (at least the best of the results of the other algorithms).

Proposition 3 .

 3 The TDH cannot be lower than e log min(T D) max(T D) /(n-1) .

Figure 2 :

 2 Figure 2: Heterogeneity properties (V µ task and V µ mach) of cost matrices used in the literature. Two points are not shown for the CVB method: (1.4, 0) and (1.8, 0).

Figure 3 :

 3 Figure 3: Heterogeneity properties (µV task and µV mach) of cost matrices used in the literature.The x-scale is twice as large as in Figure2for the CVB method because large values of V mach tends to increase the measure µV task . One point is not shown for the CVB method: (2.01, 2).

9 :

 9 e i,j ← w i b j 10:end for 11: end for 12: for all 1 ≤ i ≤ n do 13:

d

 ← min(e i ,j -e i ,j , e i,j -e i ,j) j ← e i,j + d26:e i ,j ← e i ,j -d 27:

Figure 5 :Figure 6 :Figure 7 :

 567 Figure 5: Heuristic performance relatively to the best case with the shuffling method. Values below 0.001 are shown in white and values above 1 are shown in black. Contour lines correspond to the levels in the legend (0.001, 0.003, . . .). The dark rectangles correspond to the properties covered by the range-based and CVB methods in the literature (see Figure 2).

1 :

 1 RT [maxSuf f M] ← RT [maxSuf f M] + e maxSuf f T,maxSuf f M 15: π maxSuf f T ← maxSuf f M 16: T ← T -{maxSuf f T } 17: end while 18: return π is based on the mapping generated by the Min-Min algorithm to have a good solution. The algorithm is run 4 times for each configurations. Algorithm 12 GA Input: T a set of n tasks, M a set of m machines, E a matrix of the execution costs of the tasks on the machines Output: an allocation function π Init nbChrom ← 200 2: pop ← InitP op(Rand, M inM in) {Initialize population} 3: while nbIter < 1000 ∧ lastEliteChange < 150 ∧ noChange = T RU E do 4: sortedChrom ← sortByF itness(pop) 5:

 pop ← wheelSelection(pop)12:for all indiv ∈ pop do {Select individuals for cross-over} 13:

Table 1 :

 1

Summary of the cost matrix properties with the range-based method. Asymptotic values are when both R task and R mach are large.

Proof. Each cost is the product of τ [i], which follows a uniform law in the range [1, R task], and a random variable that follows a uniform law in the range [1, R mach]. Therefore, the expected value of the costs is the product of the expected values of both distributions, namely (R task + 1)/2 and (R mach + 1)/2.

The standard deviation of the product of two random variables with means µ 1 and µ 2 , and standard deviations σ 1 and σ

Table 4

 4 summarizes the formal results related to the shuffling method. Shuffling cost matrix generation with gamma distribution Input: n, m, V task , V mach Output: a n × m cost matrix 1: for all 1 ≤ i ≤ n do

	2:

FEMTO-ST Institute

Algorithm 4

 Algorithm 5 Noise-based cost matrix generation with gamma distribution Input: n, m, V task , V mach , V noise Output: a n × m cost matrix 1: for all 1 ≤ i ≤ n do

	2:

Table 6 :

 6 Summary of the scheduling heuristics for the R||C max problem.

	Name	Ref Complexity	Remark	Algo
	OLB	[26] nm	Opportunistic Load Balancing	6
	MET	[26] nm	Minimum Execution Time	7
	MCT	[26] nm	Minimum Completion Time	8
	Min-min	[26] n 2 m	Earliest finish time of smallest task	9
	Max-min	[26] n 2 m	Earliest finish time of largest task	10
	Suff	[38] n 2 m	Task that will suffer most first	11
	GA	[26] -	Genetic Algorithm	12
	HLPT	[62] nm + n log(n) Heterogeneous version of LPT	13
	GreedySuff	nm log(m)	Greedy allocation based on sufferage 14
	BalSuff	-	Reconsider MET mapping	15
	BalEFT	-	Reconsider MET mapping	16

Table 7 :

 7 List of notations

B Usage of the Range-Based and CVB Methods in the Literature B.1 Range-Based Method

Table 8 -

 8 Continued from previous pageThis second table is for the CVB method with the gamma distribution. There is one more parameter, the mean, and the expected heterogeneity has a new level: med, for medium.

			Range	Consistency Heterogeneity
	Ref.	Use	Task	Mach. Task Mach. Task Mach.
	[8, 17, 18]	I	[1;10]	[1;10]	0	0	low	low
	[170]	T	[1;10]	[1;10]	0	0	low	low
	[36, 171, 172]	T	[1;10]	[1;10]	NA	NA	NA	NA
	[170]	T	[1;10]	[1;10]	1	.5	low	low
	[170]	T	[1;10]	[1;10]	1	1	low	low
	[8, 17, 18]	I	[1;10]	[1;100]	0	0	low	high

Table 9 -

 9 Continued from previous page

	Context		CV		Global Consistency Heterogeneity
	Ref.	Use Task Mach. Mean Task Mach. Task Mach.
	[166]	T	.25	.25	750	NA	NA	NA	NA
	[49]	T	.25	1	100	NA	NA	low	high
	[8, 17, 18]	I	.3	.1	1e3	0	0	high	low
	[109, 115]	T	.3	.1	1e3	0	0	NA	NA
	[109]	T	.3	.1	1e3	.5	.5	NA	NA
	[109]	T	.3	.1	1e3	1	1	NA	NA
	[150, 151]	T	.3	.3	30	0	0	low	low
	[113, 114]	T	.3	.3	100	0	0	low	low
	[112, 114]	T	.3	.3	120	0	0	low	low
	[71]	T	.3	.3	1e3	0	0	low	low
	[71]	T	.3	.3	1e3	1	.5	low	low
	[71]	T	.3	.3	1e3	1	1	low	low
	[84, 85]	T	.3	.3	3	NA	NA	low	low
	[12]	T	.3	.3	NA	NA	NA	NA	NA
	[109, 115]	T	.3	.6	1e3	0	0	NA	NA
	[109]	T	.3	.6	1e3	.5	.5	NA	NA
	[109]	T	.3	.6	1e3	1	1	NA	NA
	[71]	T	.3	.9	1e3	0	0	low	high
	[71]	T	.3	.9	1e3	1	.5	low	high
	[71]	T	.3	.9	1e3	1	1	low	high
	[108]	T	.35	.1	10	NA	NA	med	med
	[107]	T	.35	.1	10	NA	NA	NA	NA
	[107, 108]	T	.35	.35	10	NA	NA	high	high
	[43, 109]	T	.4	.1	1e3	0	0	NA	NA
	[109]	T	.4	.1	1e3	.5	.5	NA	NA
	[43]	T	.4	.1	1e3	1	.5	NA	NA
	[109]	T	.4	.1	1e3	1	1	NA	NA
	[32]	T	.4	.3	1	1	1	high	high
	[33]	T	.4	.3	1	NA	NA	high	high
	[10]	T	.4	.4	12	NA	NA	high	high
	[159]	T	.4	.4	20	0	0	NA	NA
	[109]	T	.4	.6	1e3	0	0	NA	NA
	[109]	T	.4	.6	1e3	.5	.5	NA	NA
	[109]	T	.4	.6	1e3	1	1	NA	NA
	[29]	I	.5	.1	100	0	0	high	low
	[8, 17, 18]	I	.5	.1	1e3	0	0	high	low
	[58]	T	.5	.1	50	NA	NA	high	low
	[57]	T	.5	.1	1e3	NA	NA	high	low
	[109, 115]	T	.5	.1	1e3	0	0	NA	NA
	[109]	T	.5	.1	1e3	.5	.5	NA	NA
	[109]	T	.5	.1	1e3	1	1	NA	NA
	[142, 143]	T	.5	.5	20	NA	NA	med	med
	[3]	T	.5	.5	NA	NA	NA	med	med
	[77]	T	.5	.5	10	NA	NA	high	high
	[58]	T	.5	.5	50	NA	NA	high	high
	FEMTO-ST Institute								

Table 9 -

 9 Continued from previous page

	Context		CV		Global Consistency Heterogeneity
	Ref.	Use Task Mach. Mean Task Mach. Task Mach.
	[57]	T	.5	.5	1e3	NA	NA	high	high
	[35]	T	.5	.5	20	NA	NA	NA	NA
	[61, 67]	T	.5	.5	100	NA	NA	NA	NA
	[169]	T	.5	.5	200	NA	NA	NA	NA
	[109, 115]	T	.5	.6	1e3	0	0	NA	NA
	[109]	T	.5	.6	1e3	.5	.5	NA	NA
	[109]	T	.5	.6	1e3	1	1	NA	NA
	[41, 42, 116]	T	.6	.1	100	0	0	high	low
	[41, 42]	T	.6	.1	100	.5	.25	high	low
	[41, 42]	T	.6	.1	100	1	1	high	low
	[68, 164]	T	.6	.1	100	NA	NA	high	low
	[109, 115]	T	.6	.1	1e3	0	0	NA	NA
	[109]	T	.6	.1	1e3	.5	.5	NA	NA
	[109]	T	.6	.1	1e3	1	1	NA	NA
	[109, 115]	T	.6	.2	1e3	0	0	NA	NA
	[109]	T	.6	.2	1e3	.5	.5	NA	NA
	[109]	T	.6	.2	1e3	1	1	NA	NA
	[109, 115]	T	.6	.3	1e3	0	0	NA	NA
	[109]	T	.6	.3	1e3	.5	.5	NA	NA
	[109]	T	.6	.3	1e3	1	1	NA	NA
	[109, 115]	T	.6	.4	1e3	0	0	NA	NA
	[109]	T	.6	.4	1e3	.5	.5	NA	NA
	[109]	T	.6	.4	1e3	1	1	NA	NA
	[43, 109, 115]	T	.6	.5	1e3	0	0	NA	NA
	[109]	T	.6	.5	1e3	.5	.5	NA	NA
	[43]	T	.6	.5	1e3	1	.5	NA	NA
	[109]	T	.6	.5	1e3	1	1	NA	NA
	[41, 42, 116]	T	.6	.6	100	0	0	high	high
	[8, 17, 18]	I	.6	.6	1e3	0	0	high	high
	[41, 42]	T	.6	.6	100	.5	.25	high	high
	[41, 42]	T	.6	.6	100	1	1	high	high
	[68, 164]	T	.6	.6	100	NA	NA	high	high
	[109, 115]	T	.6	.6	1e3	0	0	NA	NA
	[28]	T	.6	.6	1e3	.25	.25	NA	NA
	[109]	T	.6	.6	1e3	.5	.5	NA	NA
	[43]	T	.6	.6	1e3	1	.5	NA	NA
	[43, 109]	T	.6	.6	1e3	1	1	NA	NA
	[115]	T	.7	.1	1e3	0	0	NA	NA
	[109, 115]	T	.7	.6	1e3	0	0	NA	NA
	[109]	T	.7	.6	1e3	.5	.5	NA	NA
	[109]	T	.7	.6	1e3	1	1	NA	NA
	[9]	T	.7	.7	10	NA	NA	high	high
	[13, 14, 16, 51]	T	.7	.7	10	NA	NA	NA	NA
	[109]	T	.8	.6	1e3	0	0	NA	NA
	[109]	T	.8	.6	1e3	.5	.5	NA	NA

Table 9 -

 9 Continued from previous page

	Context		CV		Global Consistency Heterogeneity
	Ref.	Use Task Mach. Mean Task Mach. Task Mach.
	[109]	T	.8	.6	1e3	1	1	NA	NA
	[125]	T	.8	.8	15	.25	.25	NA	NA
	[12]	T	.8	.8	NA	NA	NA	NA	NA
	[115]	T	.9	.1	1e3	0	0	NA	NA
	[71]	T	.9	.3	1e3	0	0	high	low
	[71]	T	.9	.3	1e3	1	.5	high	low
	[71]	T	.9	.3	1e3	1	1	high	low
	[151, 152]	T	.9	.3	180	1	1	high	low
	[43, 109, 115]	T	.9	.6	1e3	0	0	NA	NA
	[109]	T	.9	.6	1e3	.5	.5	NA	NA
	[109]	T	.9	.6	1e3	1	1	NA	NA
	[87]	T	.9	.6	60	NA	NA	NA	NA
	[87]	T	.9	.6	600	NA	NA	NA	NA
	[86]	T	.9	.6	NA	NA	NA	NA	NA
	[150, 151]	T	.9	.9	30	0	0	high	high
	[113, 114]	T	.9	.9	100	0	0	high	high
	[112, 114]	T	.9	.9	120	0	0	high	high
	[71]	T	.9	.9	1e3	0	0	high	high
	[71]	T	.9	.9	1e3	1	.5	high	high
	[71]	T	.9	.9	1e3	1	1	high	high
	[84, 85]	T	.9	.9	3	NA	NA	high	high
	[144-146]	T	.9	.9	100	NA	NA	high	high
	[3]	T	.9	.9	NA	NA	NA	high	high
	[73, 74]	T	.9	.9	20	0	0	NA	NA
	[72]	T	.9	.9	30	0	0	NA	NA
	[49]	T	1	.25	100	NA	NA	high	low
	[109]	T	1	.6	1e3	0	0	NA	NA
	[109]	T	1	.6	1e3	.5	.5	NA	NA
	[109]	T	1	.6	1e3	1	1	NA	NA
	[44, 48-50]	T	1	1	100	NA	NA	high	high
	[115]	T	1.1	.1	1e3	0	0	NA	NA
	[115]	T	1.1	.2	1e3	0	0	NA	NA
	[115]	T	1.1	.3	1e3	0	0	NA	NA
	[115]	T	1.1	.4	1e3	0	0	NA	NA
	[115]	T	1.1	.5	1e3	0	0	NA	NA
	[43, 109, 115]	T	1.1	.6	1e3	0	0	NA	NA
	[109]	T	1.1	.6	1e3	.5	.5	NA	NA
	[43]	T	1.1	.6	1e3	1	.5	NA	NA
	[43, 109]	T	1.1	.6	1e3	1	1	NA	NA
	[11]	T	1.4	.4	NA	0	0	NA	NA
	[11]	T	1.8	.4	NA	0	0	NA	NA
	FEMTO-ST Institute								

 Algorithm 7 Minimum Execution Time (MET) Input: T a set of n tasks in an arbitrary order, M a set of m machines, E a matrix of the execution costs of the tasks on the machines Output: an allocation function π {earliest ready time for each machine} 1: for all t ∈ T do 2: π k ← p s.t. e t,p = min k (e t,k)

	Algorithm 6 Opportunistic Load Balancing (OLB)	
	Input: T a set of n tasks in an arbitrary order,	
		M a set of m machines,	
		E a cost matrix	
	Output: an allocation function π	
	1: Init ∀p ∈ M, RT [p] ← 0	{earliest ready time for each machine}
	2: for all t ∈ T do	
	3:	π t ← p s.t. RT [p] = min k (RT [k])	{first ready machine}
	4:	RT [π t] ← RT [π t] + e t,πt	
	5: end for	
	6: return π	

 Algorithm 8 Minimum Completion Time (MCT) Input: T a set of n tasks in an arbitrary order, M a set of m machines, E a matrix of the execution costs of the tasks on the machines Output: an allocation function π 1: Init ∀p ∈ M, RT [p] ← 0 {earliest ready time for each machine} 2: for all t ∈ T do 3: π t ← p s.t. e t,p = min k (RT [k] + e t,k) {min completion time for the task}

	4:	RT [π t] ← RT [π t] + e t,πt
	5: end for
	6: return π

 Time or Min-min Input: T a set of n tasks, M a set of m machines, E a matrix of the execution costs of the tasks on the machines Output: an allocation function π 1: Init ∀p ∈ M, RT [p] ← 0 {earliest ready time for each machine} 2: while T = ∅ do

	3:	ef t ← t 1	{earliest finish task}
	4:	ef m ← 1	{allocation of earliest finish task}
	5:	for all t ∈ T do	{find the task with earliest finish time}
	6:	for all p ∈ M do	
	8:	ef t ← t	
	9:	ef m ← p	
	10:	end if	
	11:	end for	
	12:	π ef t ← ef m	
	13:		

7:

if

RT [p] + e t,p < RT [ef m] + e ef t,ef m then RT [ef m] ← RT [ef m] + e ef t,

ef m 14: T ← T -{ef t} 15:

 Algorithm 10 Max-min Input: T a set of n tasks, M a set of m machines, E a matrix of the execution costs of the tasks on the machines Output: an allocation function π 1: Init ∀p ∈ M, RT [p] ← 0 {earliest ready time for each machine} 2: while T = ∅ do

	3:	Init ∀t ∈ T, CT [t] ← ∞	{earliest completion time for each task}
	4:	for all t ∈ T do	{find the task with earliest finish time}
	5:	for all p ∈ M do	
	6:	if RT [p] + e t,p < CT [t] then	
	7:	CT [t] ← RT [p] + e t,p	
	8:	CP [t] ← p	{the completing machine for each task}
	9:	end if	
	10:	end for	
	11:	end for	
	12:	mct ← t s.t. CT [t] = max k (CT [k])	{maximum completing task}
	13:		
	15:	T ← T -{mct}	
	16: end while	
	17: return π	
	Algorithm 11 First allocate the task that would suffer most (Suff)
	Input: T a set of n tasks,	
		M a set of m machines,	
		E a matrix of the execution costs of the tasks on the machines
	Output: an allocation function π	

π mct ← CP [mct] 14: RT [π mct] ← CT [π mct] 1: Init ∀p ∈ M, RT [p] ← 0

{earliest ready time for each machine} 2: while T = ∅ do 3:

6 :

 6 if RT [p] + e t,p < RT [ef m] + e t,ef m then

	7:	ef m ← p
	8:	end if
	9:	end for
	10:	π t ← ef m
	11:	

RT [ef m] ← RT [ef m] + e t,

ef m 12: end for 13: return π

1 :

 1 Init ∀p ∈ M, RT [p] ← 0 {earliest ready time for each machine} 2: for all t ∈ T , p ∈ M do {generate the sufferage matrix S} 3: S t,p ← e t,p -min k (e t,k) 4: end for 5: C max ← 0 6: for all t ∈ T do {allocate tasks} C max ← max i (RT [i]) 24: end for 25: return π Algorithm 15 Sufferage with machine balancing (BalSuff) Input: T a set of n tasks, M a set of m machines, E a matrix of the execution costs of the tasks on the machines Output: an allocation function π 1: for all t ∈ T , p ∈ M do {generate the sufferage matrix S} 2: S t,p ← e t,p -min k (e t,k) 3: end for 4: Init ∀p ∈ M, RT [p] ← 0 {earliest ready time for each machine} 5: for all t ∈ T do {initial allocation based on MET} 6: π k ← p s.t. e t,p = min k (e t,k) RT [π t] ← RT [π t] + e t,πt 8: end for 9: C max ← max k (RT [k]) 10: newC max ← max k (RT [k]) 11: M max ← p s.t. RT [p] = C max 12: repeat {try to re-arange task allocations} RT [M max] ← RT [M max] -e mst,msm 26: if newC max = RT [msm] + e mst,msm then {find last finishing machine} C max = newC max 31: until mst = 0 32: return π FEMTO-ST Institute Algorithm 16 Earliest Finish Time with machine balancing (BalEFT) Input: T a set of n tasks, M a set of m machines, E a matrix of the execution costs of the tasks on the machines Output: an allocation function π 1: for all t ∈ T , p ∈ M do {generate the sufferage matrix S} 2: S t,p ← e t,p -min k (e t,k) 3: end for 4: Init ∀p ∈ M, RT [p] ← 0 {earliest ready time for each machine} 5: for all t ∈ T do {initial allocation based on MET} 6: π k ← p s.t. e t,p = min k (e t,k) RT [π t] ← RT [π t] + e t,πt 8: end for 9: repeat {try to re-arange task allocations} RT [M max] ← RT [M max] -e ef t,ef m 25: if newC max = RT [ef m] + e ef t,ef m then {find last finishing machine}

	7: 7:		
	8:	k ← 1	
	9:	f ound ← f alse	
	10:	repeat	
	11:		
	13:	π t ← p	
	14: 15: 16: 17: 18: 17: 19: 18: 20: 19: 21: 20:	RT [p] ← RT [p] + e t,p f ound ← true end if end if end if end for end for end for end for	
	23:	π t ← msm	{task is moved}
	24:		
	22:	end if	
	23: 27: 26: 28: 27: 29: 28: 30: 29:	M max ← ef m M max ← msm end if end if end if end if	

7:

SortSuf f ← sort(S t) {sort in non-decreasing order of the sufferage for t} p ← SortSuf f [k]

12:

if

RT [p] + e t,p ≤ C max then k ← k + 1 18:

until k ≥ Card(M) or f ound 19: if ¬f ound then {if no allocation found use EFT} 20: π t ← arg min i (RT [i] + e t,i) 21: RT [π t] ← RT [π t] + e t,πt 13:

M inSuf f ← max i,j (S i,j) + 1 ; mst ← 0 ; msm ← 0 14:

for all t ∈ T such that π t = M max do {find the task that suffers less from moving} 15: for all p ∈ M -{M max } do 16: if (M inSuf f > S t,p) and (RT [p] + e t,p ≤ C max) then 17: M inSuf f ← S t,p ; mst ← t ; msm ← p if RT [msm] + e mst,msm ≤ C max then {re-allocation improves C max } 22: newC max ← max(C max -e mst,msm , RT [msm] + e mst,msm) RT [msm] ← RT [msm] + e mst,msm 25: 10:

M max ← p s.t. p = max k (RT [k]) 11: M inRT ← RT [M max] ; ef t ← 0 ; ef m ← 0 12:

for all t ∈ T such that π t = M max do {find the task that benefit most from moving} 13: for all p ∈ M -{M max } do 14: newRT ← RT [p] + e t,p 15: if newRT < minRT then 16: minRT ← newRT ; ef t ← t ; ef m ← p if RT [ef m] + e ef t,ef m < C max then {re-allocation improves C max } 21: newC max ← max(C max -e ef t,ef m , RT [ef m] + e ef t,ef m) 22: π ef t ← ef m {task is moved} 23: RT [ef m] ← RT [ef m] + e ef t,ef m 24:

The related code, data and analysis are available in[START_REF] Canon | Code for On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF].RR-FEMTO-ST-8663

Ratio of the standard deviation to the mean.FEMTO-ST Institute

RR-FEMTO-ST-8663

The variant HLPT (mean) is equivalent to HEFT[START_REF] Topcuoglu | Performance-effective and low-complexity task scheduling for heterogeneous computing[END_REF].FEMTO-ST Institute

FEMTO-ST Institute

Acknowledgments & Contributions

The authors would like to thank Pierre-Cyrille Héam for his helpful comments on the proof of Proposition 3.

Computations have been performed on the supercomputer facilities of the Mésocentre de calcul de Franche-Comté.

Analyzed previous generation methods: LCC. Designed generation methods: LCC. Implemented heuristics: LP. Performed the experiments: LP. Analyzed the data: LCC LP. Wrote the paper: LCC LP.