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Bias in the performance evaluation of scheduling heuristics has been shown to undermine the scope of existing studies. Improving the assessment step leads to stronger scientific claims when validating new optimization strategies. This report considers the problem of allocating independent tasks to unrelated machines such as to minimize the maximum completion time. Testing heuristics for this problem requires the generation of cost matrices that specify the execution time of each task on each machine. Numerous studies showed that the task and machine heterogeneities belong to the properties impacting heuristics performance the most. This study focuses on orthogonal properties, the average correlations between each pair of rows and each pair of columns, which measure the proximity with uniform instances. Cost matrices generated with two distinct novel generation methods show the effect of these correlations on the performance of several heuristics from the literature. In particular, EFT performance depends on whether the tasks are more correlated than the machines and HLPT performs the best when both correlations are close to one.

Introduction

The problem of scheduling tasks on processors is central in parallel computing science because it supports parts of the grid, computing centres and cloud systems [START_REF]Handbook of Scheduling: Algorithms, Models, and Performance Analysis[END_REF]. Many papers [START_REF] Diaz | Scalable, low complexity, and fast greedy scheduling heuristics for highly heterogeneous distributed computing systems[END_REF][START_REF] Ko | Enhancing the genetic-based scheduling in computational grids by a structured hierarchical population[END_REF][START_REF] Luo | A revisit of fast greedy heuristics for mapping a class of independent tasks onto heterogeneous computing systems[END_REF][START_REF] Maheswaran | Dynamic mapping of a class of independent tasks onto heterogeneous computing systems[END_REF][START_REF] Munir | MaxStd: A task scheduling heuristic for heterogeneous computing environment[END_REF] propose new or adapted scheduling algorithms that are assessed on simulators to prove their superiority. There is however no clear consensus on the superiority of one or another of these algorithms because they are usually tested on different simulators and parameters for the experimental settings. As for all experimental studies, a weak assessment step in a scheduling study may lead to bias in the conclusions (e.g., due to partial results or erroneous/misleading results). By contrast, improving the assessment step leads to a sounder scientific approach when designing new optimization strategies such as scheduling algorithms. In this context, using standardized experimental input data allows being in line with the open science approach because it enforces reproducibility [START_REF] Stodden | Implementing reproducible research[END_REF].

In the static scheduling case, all the data are known a priori and the problem is deterministic. Thus, the algorithm performance only depends on the input instance, which consists of the characteristics of the tasks and execution resources. This report tackles the problem of generating input instances to assess the performance of static scheduling algorithms when the considered tasks are independent and the objective is to minimize the total execution time, the makespan. The performance of any heuristic for this problem is given by the difference between the obtained makespan and the optimal one. In this context, three main classes of scheduling problems are defined: the identical case, where the execution time of a task is the same on any machine that runs it; the uniform case, where each execution time is proportional to the weight of the task and the cycle time of the machine; and, the unrelated case, where the task execution times depend on the machine. In this last case, defining an input instance consists in defining a matrix E where the element e i,j (i ∈ T , the task set and j ∈ M , the machine set) stands for the execution time of task i on machine j, which is non-negative. This last problem is noted R||C max using the α|β|γ notation [START_REF] Graham | Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey[END_REF] and is NP-Hard. Of course, the performance of any scheduling algorithm depends on the properties of this input matrix and generating input instances is thus a crucial problem in algorithm assessment [START_REF] Ali | Representing task and machine heterogeneities for heterogeneous computing systems[END_REF][START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF]. Note that the unrelated case includes the two formers, identical and uniform cases, as particular cases. Hence, algorithm assessment for these two cases may also use a matrix as an input instance provided that this matrix respects the problem constraints (i.e., ∀i ∈ T, ∀(j, k) ∈ M 2 , e i,j = α j,k × e i,k where α j,k > 0 is arbitrary for the uniform case and α j,k = 1 for the identical case).

In a previous study [START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF], we already studied the problem of generating random matrices to assess the performance of scheduling algorithms in the unrelated case. In particular, we showed that the heterogeneity was previously not properly controlled despite having a significant impact on the relative performance of scheduling heuristics. We proposed both a measure for quantifying the matrix heterogeneity and a method to generate instances with controlled heterogeneity. This previous work provided observations that are consistent with our intuition (e.g., all heuristics behave well with homogeneous instances), while offering new insights (e.g., the hardest instances have medium heterogeneity). In addition to providing an unbiased way to assess the heterogeneity, the introduced generation method produces instances that lie on a continuum between the identical case and the unrelated case.

In this report, we propose to investigate a more specific and finer continuum between the uniform case and the unrelated case. In the uniform case, each execution time is proportional to the weight of the task and the cycle time of the machine. By contrast, durations are arbitrary in the unrelated case: they may be slightly proportional to the same amount or not at all. Our objective is to determine how heuristics are impacted by the degree at which an unrelated instance is close to a uniform one. We use the notion of correlation to denote this proximity (in particular, uniform instances have a correlation of one). This report provides the following contributions 1 : a new measure, the correlation, for exploring a continuum between unrelated and uniform instances (Section 3); an analysis of this property in previous generation methods and previous studies (Section 3); an adaptation of a previous new generation method and a new one with better correlation properties (Section 4); an analysis of the effect of the correlation on several heuristics (Section 5); and, a comparison with related measures like existing heterogeneity measures and the TMA [START_REF] Al-Qawasmeh | Characterizing task-machine affinity in heterogeneous computing environments[END_REF], for which a specific generation method is also proposed (Section 6).

Related Work

This section covers first existing cost matrix generation methods used in the context of task scheduling. It continues then with different approaches for characterizing cost matrices.

The validation of scheduling heuristics in the literature relies mainly on two generation methods: the range-based and CVB (Coefficient-of-Variation-Based) methods. The rangebased method [START_REF] Ali | Task execution time modeling for heterogeneous computing systems[END_REF][START_REF] Ali | Representing task and machine heterogeneities for heterogeneous computing systems[END_REF] generates n vectors of m values that follow a uniform distribution in the range [1, R mach ] where n is the number of tasks and m the number of machines. Each row is then multiplied by a random value that follows a uniform distribution in the range [1, R task ] (see Algorithm 5 in Appendix B). The CVB method is based on the same principle except it uses more generic parameters and a distinct underlying distribution. In particular, the parameters consist of two coefficients of variation 2 (V task for the task heterogeneity and V mach for the machine heterogeneity) and one expected value (µ task for the tasks). The parameters of the gamma distribution used to generate random values are derived from the provided parameters (see Algorithm 6 in Appendix B). An extension has been proposed to control the consistency of any generated matrix 3 : the costs in some partial rows are sorted. Specifically, the rows in a submatrix containing a fraction a of the initial rows and a fraction b of the initial columns are sorted.

The shuffling and noise-based methods were later proposed in [START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF][START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF]. They both start with an initial cost matrix that is equivalent to a uniform instance (any cost is the product of a task weight and a machine cycle time). The former method randomly alters the costs without changing the sum of the costs on each row and column. This step introduces some randomness in the instance, which distinguishes it from a uniform one. The latter relies on a similar principle: it inserts noise in each cost by multiplying it by a random variable with expected value one (see Algorithm 7 in Appendix B). Both methods require the parameters V task and V mach to set the task and machine heterogeneity. In addition, the amount of noise introduced in the noise-based method can be adjusted through the parameter V noise .

Once a cost matrix is generated, numerous measures can characterize its properties. The MPH (Machine Performance Homogeneity) and TDH (Task Difficulty Homogeneity) [START_REF] Al-Qawasmeh | Characterizing task-machine affinity in heterogeneous computing environments[END_REF][START_REF] Al-Qawasmeh | Characterizing heterogeneous computing environments using singular value decomposition[END_REF] quantifies the amount of heterogeneity in a cost matrix. These measures present some major shortcomings such as the lack of interpretability [START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF]. Two alternative pairs of measures overcome these issues [START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF]: the coefficient of variation of the row means V µ task and the mean of the column coefficient of variations µV task for the task heterogeneity (the machine heterogeneity has analogous measures). These properties impact the performance of various scheduling heuristics and should be considered when comparing them.

This study focuses on the average correlation between each pair of tasks or machines in a cost matrix. No existing work considers this property explicitly. The closest work is the consistency extension in the range-based and CVB methods mentioned above. The consistency extension could be used to generate cost matrices that are close to uniform instances because cost matrices corresponding to uniform instances are consistent. However, this mechanism modifies the matrix row by row, which makes it asymmetric relatively to the rows and columns. This prevents its direct usage to control the correlation.

The TMA (Task-Machine Affinity) quantifies the specialization of a platform [START_REF] Al-Qawasmeh | Characterizing task-machine affinity in heterogeneous computing environments[END_REF][START_REF] Al-Qawasmeh | Characterizing heterogeneous computing environments using singular value decomposition[END_REF], i.e., whether some machines are particularly efficient for some specific tasks. This measure proceeds in three steps: first, it normalizes the cost matrix to make the measure independent from the matrix heterogeneity; second, it performs the singular value decomposition of the matrix; last, it computes the inverse of the ratio between the first singular value and the mean of all the other singular values. The normalization happens on the columns in [START_REF] Al-Qawasmeh | Characterizing heterogeneous computing environments using singular value decomposition[END_REF] and on both the rows and columns in [START_REF] Al-Qawasmeh | Characterizing task-machine affinity in heterogeneous computing environments[END_REF]. If there is no affinity between the tasks and the machines (as with uniform machines), the TMA is close to zero. Oppositely, if the machines are significantly specialized, the TMA is close to one. Additionally, Khemka et al [START_REF] Khemka | Utility maximizing dynamic resource management in an oversubscribed energy-constrained heterogeneous computing system[END_REF] claims that high (resp., low) TMA is associated with low (resp., high) column correlation. This association is however not general because the TMA and the correlation can both be close to zero. See Section 6.2 for a more thorough discussion on the TMA.

The range-based and CVB methods do not cover the entire range of possible values for the TMA [START_REF] Al-Qawasmeh | Characterizing heterogeneous computing environments using singular value decomposition[END_REF]. Khemka et al [START_REF] Khemka | Utility maximizing dynamic resource management in an oversubscribed energy-constrained heterogeneous computing system[END_REF] propose a method that iteratively increases the TMA of an existing matrix while keeping the same MPH and TDH. A method generating matrices with varying affinities (similar to the TMA) and which resembles the noise-based method is also proposed in [START_REF] Al-Qawasmeh | Power and Thermal-Aware Workload Allocation in Heterogeneous Data Centers[END_REF]. However, no formal method has been proposed for generating matrices with a given TMA.

There is finally a field of study dedicated to the generation of random vectors given a correlation (or covariance) matrix that specifies the correlation between each pair of elements of a random vector [START_REF] Cario | Modeling and generating random vectors with arbitrary marginal distributions and correlation matrix[END_REF][START_REF] Ghosh | Behavior of the NORTA method for correlated random vector generation as the dimension increases[END_REF][START_REF] Lewandowski | Generating random correlation matrices based on vines and extended onion method[END_REF][START_REF] Scheuer | On the Generation of Normal Random Vectors[END_REF]. The proposed techniques for sampling such vectors have been used for simulation in several contexts such as project management [START_REF] Yang | Simulation-based estimation for correlated cost elements[END_REF] or neural networks [START_REF] Macke | Generating spike trains with specified correlation coefficients[END_REF]. These approaches could be used to generate cost matrices in which the correlations between each pair of rows (resp., columns) is determined by a correlation matrix. However, the correlation between each pair of columns (resp., rows) would then be ignored. In this work, we assume that all non-diagonal elements of the correlation matrices associated with the rows and with the columns are equal.

Correlation Between Tasks and Processors

As stated previously, the unrelated model is more general than the uniform model and all uniform instances are therefore unrelated instances. Let U = ({w i } 1≤i≤n , {b j } 1≤j≤m ) be a uniform instance with n tasks and m machines where w i is the weight of task i and b j the cycle time of machine j. The corresponding unrelated instance is E = {e i,j } 1≤i≤n,1≤j≤m such that e i,j = w i b j is the execution time of task i on machine j. Our objective is to generate unrelated instances that are as close as desired to uniform ones. On the one hand, all rows are perfectly correlated in a uniform instance and this is also true for the columns. On the other hand, there is no correlation in an instance generated with nm independent random values. Thus, we propose to use the correlation to measure the proximity of an unrelated instance to a uniform one. The most frequent notations are summarized in Appendix A.

Correlation Properties

Let e i,j be the execution time for task i on machine j. Then, we define the task correlation as follows:

ρ task 1 n(n -1) n i=1 n i =1,i =i ρ r i,i (1) 
where ρ r i,i represents the correlation between row i and row i as follows:

ρ r i,i 1 m m j=1 e i,j e i ,j -1 m m j=1 e i,j 1 m m j=1 e i ,j 1 m m j=1 e 2 i,j -1 m m j=1 e i,j 2 
1 m m j=1 e 2 i ,j -1 m m j=1 e i ,j 2 
Note that any correlation between row i and itself is 1 and is hence not considered. Also, since the correlations are symmetric (ρ r i,i = ρ r i ,i ), it is actually sufficient to only compute half of them.

Similarly, we define the machine correlation as follows:

ρ mach 1 m(m -1) m j=1 m j =1,j =j ρ c j,j (3) 
where ρ c j,j represents the correlation between column j and column j as follows: 

ρ c j,j 1 
These correlations are the average correlations between each pair of distinct rows or columns. They are inspired by the classic Pearson definition, but adapted to the case when we deal with two vectors of costs.

The following two cost matrix examples illustrate how these measures capture the intuition of the proximity of an unrelated instance to a uniform one:

E 1 =   1 2 3 2 4 6 3 6 10   E 2 =   1 6 10 2 2 3 6 3 4   .
Both correlations are almost one with E 1 (ρ task = ρ mach = 1), whereas they are close to zero with E 2 (ρ task = -0.02 and ρ mach = 0) even though the costs are only permuted. The first matrix, E 1 , may be transformed to be equivalent to a uniform instance by changing the last cost from the value 10 to 9. However, E 2 requires a lot more changes to be equivalent to such an instance. In these examples, the correlations ρ task and ρ mach succeed in quantifying the proximity to a uniform one.

Related Scheduling Problems

There are three special cases when either one or both of these correlations are one or zero. When ρ task = ρ mach = 1, then instances may be uniform ones and the problem can be equivalent to Q||C max (see Proposition 1). When ρ task = 1 and ρ mach = 0, then a related problem is Q|p i = p|C max where each machine may be represented by a cycle time and all tasks are identical (see Proposition 2). Finally, when ρ mach = 1 and ρ task = 0, then a related problem is P ||C max where each task may be represented by a weight and all machines are identical (see Proposition 3). For any other cases, we do not have any relation to another existing problem that is more specific than R||C max .

Proposition 1. The task and machine correlations of a cost matrix corresponding to a Q||C max instance are ρ task = ρ mach = 1.

Proof. In an unrelated instance corresponding to a uniform one, e i,j = w i b j where w i is the weight of task i and b j the cycle time of machine j. The correlation between {w i b j } 1≤j≤m and {w i b j } 1≤j≤m is one for all (i, i ) ∈ [1; n] 2 because the second vector is the product of the first by the constant w i /w i . Therefore, ρ task = 1. Analogously, we also have ρ mach = 1.

The reciprocal is however not true. Consider the cost matrix E = {e i,j } 1≤i≤n,1≤j≤m where e i,j = r i + c j and both {r i } 1≤i≤n and {c j } 1≤j≤m are arbitrary. The task and machine correlations are both one, but there is no corresponding Q||C max instance in this case. The second generation method proposed in this article generates such instances. However, the first proposed method produces cost matrices which are close to Q||C max instances when both target correlations are high.

For the second special case, we propose a mechanism to generate a cost matrix that corresponds to a given Q|p i = p|C max instances. Let w i = w be the weight of any task i. In the related cost matrix, e i,j = wb j + u i,j where U = {u i,j } 1≤i≤n,1≤j≤m is a matrix of random values that follows each a uniform distribution between -and . This cost matrix can be seen as a Q|p i = p|C max instance with noise.

Proposition 2. The task and machine correlations of a cost matrix E = {wb j +u i,j } 1≤i≤n,1≤j≤m tend to one and zero, respectively, as → 0 and n → ∞ while the root-mean-square deviation between E and the closest Q|p i = p|C max instance tends to zero.

Proof. We first show that ρ task → 1 and ρ mach → 0 as → 0. Both the numerator and the denominator in Equation 2 tend to 1 m m j=1 (wb j ) 2 -( 1 m m j=1 wb j ) 2 as → 0. Therefore, the task correlation ρ task → 1 as → 0. The numerator in Equation 4 simplifies as 1 n n i=1 u i,j u i,j -1 n 2 n i=1 u i,j n i=1 u i,j , while the denominator simplifies as

1 n n i=1 u 2 i,j -1 n n i=1 u i,j 2 × 1 n n i=1 u 2 i,j -1 n n i=1 u i,j 2 
. This is the correlation between two columns in the noise matrix. This tends to 0 as n → ∞ if the variance of the noise is non-zero, namely if = 0.

We must now show that the root-mean-square deviation (RMSD) between E and the closest Q|p i = p|C max instance tends to zero. The RMSD between E and the instance where w is the weight of the task and b j the cycle time of machine j is

1 nm n i=1 m j=1 u 2 i,j
. This tends to zero as → 0. Therefore, the RMSD between E and any closer instance will be lower and will thus also tends to zero as → 0.

Proposition 3. The task and machine correlations of a cost matrix E = {w i b+u i,j } 1≤i≤n,1≤j≤m tend to zero and one, respectively, as → 0 and m → ∞ while the root-mean-square deviation between E and the closest P ||C max instance tends to zero.

Proof. The proof is analogous to the proof of Proposition 2.

In Propositions 2 and 3, must be non-zero, otherwise the variance of the rows or columns will be null and the corresponding correlation undefined.

Note that when either the task or machine correlation is zero, the correlation between any pair of rows or columns may be different from zero as long as the average of the individual correlations is zero. Thus, there may exist instances with task and machine correlations close to one and zero (or zero and one), respectively, that are arbitrarily far from any Q|p i = p|C max (or P ||C max ) instance. However, the two proposed generation methods in this article produce cost matrices with similar correlations for each pair of rows and for each pair of columns. In this context, it is therefore relevant to consider that the Q|p i = p|C max and P ||C max problems are related to the last two special cases.

In contrast to these proposed measures, the heterogeneity measures proposed in [START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF] quantify the proximity of an unrelated instance with an identical one, which corresponds to the problem P |p i = p|C max . Depending on the heterogeneity values, however, two of the special cases are shared: the Q|p i = p|C max when the task heterogeneity is zero and P ||C max when the machine heterogeneity is zero.

Correlations of the Range-Based, CVB and Noise-Based Methods

We analyze the asymptotic correlation properties of the range-based, CVB and noise-based methods described in Appendix B. We discard the shuffling method due to its combinatoric nature that prevents it from being easily analyzed.

In the following analysis, we refer to convergence in probability simply as convergence for concision. Also, the order in which the convergence applies (either when n → ∞ and then when m → ∞, or the contrary) is not specified and may depend on each result. Proof. Rows are either partially sorted (1 ≤ i ≤ an) or not sorted (an < i ≤ n). Let ρ r 1 (resp., ρ r 2 and ρ r 3 ) be the correlation between any pair of rows when 1 ≤ i < i ≤ an (resp., 1 ≤ i ≤ an < i ≤ n and an < i < i ≤ n).

For ρ r 2 and ρ r 3 , the two rows are generated independently and at most one row is sorted. Therefore, both ρ r 2 and ρ r 3 converge to 0 as m → ∞. By Proposition 19 from Appendix C, ρ r 1 converges to b as m → ∞.

It follows that the task correlation converges to

1 n(n-1) an i=1 an i =1,i =i ρ r 1 = a an-1 n-1 b as m → ∞. Thus, ρ task converges to a 2 b as n → ∞ and m → ∞.
Proposition 5. The machine correlation ρ mach of a cost matrix generated with the range-based method with parameter b converges to 3 7

as n → ∞, m → ∞, R task → ∞ and R mach → ∞ if the matrix is inconsistent and to b 2 + 2 3 7 b(1 -b) + 3 7 (1 -b) 2 as n → ∞, m → ∞, R task → ∞ and R mach → ∞ if a = 1.
Proof. Columns are either part of the sorted submatrix (1 ≤ j ≤ bm) or not (bm < j ≤ m). Let ρ c 1 (resp., ρ c 2 and ρ c 3 ) be the correlation between any pair of rows when 1 ≤ j < j ≤ bm (resp., 1 ≤ j ≤ bm < j ≤ m and bm < j < j ≤ m).

Let's start with ρ c

1 in the case when a = 1. In this case, e i,j converges to τ [i]F -1 j bm as m → ∞. Using the continuous mapping theorem and Equation 4, as m → ∞, ρ c 1 converges to:

1 n n i=1 τ [i]F -1 ( j bm )τ[i]F -1 j bm -1 n n i=1 τ [i]F -1 ( j bm ) 1 n n i=1 τ [i]F -1 j bm 1 n n i=1 (τ[i]F -1 ( j bm )) 2 -( 1 n n i=1 τ [i]F -1 ( j bm )) 2 1 n n i=1 τ [i]F -1 j bm 2 -1 n n i=1 τ [i]F -1 j
bm which simplifies as:

1 n n i=1 τ [i] 2 -1 n n i=1 τ [i] 2 1 n n i=1 τ [i] 2 -1 n n i=1 τ [i] 2 = 1 For ρ c 2 (1 ≤ j < bm < j ≤ m), e i,j converges to τ [i]F -1 j bm as m → ∞. Therefore, as m → ∞, ρ c
2 converges to:

1 n n i=1 τ [i]F -1 j bm e i,j -1 n n i=1 τ [i]F -1 j bm 1 n n i=1 e i,j 1 n n i=1 τ [i]F -1 j bm 2 -1 n n i=1 τ [i]F -1 j bm 2 1 n n i=1 e 2 i,j -1 n n i=1 e i,j 2 
which simplifies as:

1 n n i=1 τ [i]e i,j -1 n n i=1 τ [i] 1 n n i=1 e i,j 1 n n i=1 τ [i] 2 -1 n n i=1 τ [i] 2 1 n n i=1 e 2 i,j -1 n n i=1 e i,j 2 
Let µ task (resp., σ task ) be the expected value (resp., standard deviation) of a uniform random variable in the range [1; R task ]. We define µ mach and σ mach in a similar way. Let's recall from Lines 2 and 4 of Algorithm 5 in Appendix B that e i,j is the product of τ [i], a uniform random variable in the range [1; R task ], with another uniform random variable in the range [1; R mach ]. The first part of the numerator of Equation 5converges to (σ 2 task + µ 2 task )µ mach as n → ∞ because it is the expected value of the product of a uniform random value in the range [1; R mach ] with the square of an independent uniform random value in the range [1; R task ]. The second part of the numerator converges to µ 2 task µ mach as n → ∞. The first square root of the denominator converges to σ task as n → ∞. The second square root converges to µ 2 mach σ 2 task + µ 2 task σ 2 mach + σ 2 task σ 2 mach , the standard deviation of e i,j , as n → ∞.

Equation 5 simplifies therefore as:

µ mach σ task µ 2 mach σ 2 task + µ 2 task σ 2 mach + σ 2 task σ 2 mach
And by replacing with the parameters of each uniform distribution:

R mach + 1 (R mach + 1) 2 + (R task + 1) 2 (R mach -1) 2 /(R task -1) 2 + (R mach -1) 2 /3
For ρ c 3 (bm < j < j ≤ m), e i,j and e i,j are both the product of two uniform random variables in the ranges [1; R task ] and [1; R mach ]. With an analogous derivation as with ρ c 2 , as n → ∞ and m → ∞, ρ c 3 converges to

µ 2 mach σ 2 task µ 2 mach σ 2 task + µ 2 task σ 2 mach + σ 2 task σ 2 mach
And by replacing with the parameters of the uniform distributions:

(R mach + 1) 2 (R mach + 1) 2 + (R task + 1) 2 (R mach -1) 2 /(R task -1) 2 + (R mach -1) 2 /3
Finally, as n → ∞ and m → ∞, the machine correlation converges to:

2 m(m -1) bm(bm -1) 2 + b(1 -b)m 2 (R mach + 1) (R mach + 1) 2 + (R task + 1) 2 (R mach -1) 2 /(R task -1) 2 + (R mach -1) 2 /3 + (1 -b)m((1 -b)m -1)(R mach + 1) 2 /2 (R mach + 1) 2 + (R task + 1) 2 (R mach -1) 2 /(R task -1) 2 + (R mach -1) 2 /3 which tends to b 2 + 2 3 7 b(1 -b) + 3 7 (1 -b) 2 as m → ∞, R task → ∞ and R mach → ∞.
When the matrix is inconsistent (i.e., a = 0 or b = 0), an analogous derivation shows that the machine correlation converges to

(R mach +1) 2 (R mach +1) 2 +(R task +1) 2 (R mach -1) 2 /(R task -1) 2 +(R mach -1) 2 /3 as n → ∞ and m → ∞, which tends to 3 7 when R task → ∞ and R mach → ∞.
Proposition 5 assumes that R task → ∞ and R mach → ∞ because the values used in the literature (see Section 3.4) are frequently large. Moreover, this clarifies the presentation (the proof provides a finer analysis of the machine correlation depending on R task and R mach ). Proposition 6. The task correlation ρ task of a cost matrix generated with the CVB method with the parameters a and b converges to a 2 b as n → ∞ and m → ∞.

Proof. The most inner loop of the CVB method (Line 8 of Algorithm 6 in Appendix B) can be rewritten as e i,j ← q[i]G(α mach , 1/α mach ) where G(k, θ) is the gamma distribution with shape k and scale θ [8, Proof of Proposition 2]. This means that each element of the matrix is the product of a random variable with expected value µ task and CV (Coefficient of Variation) V task and another random variable with expected value one and CV V mach . This is similar to the range-based method, but with gamma distributions instead of uniform ones.

The proof is thus analogous to the proof of Proposition 4.

Proposition 7. The machine correlation ρ mach of a cost matrix generated with the CVB method with the parameters V task , V mach and b converges to

1 V 2 mach (1+1/V 2 task )+1 as n → ∞ and m → ∞ if the matrix is inconsistent and to b 2 + 2b(1-b) √ V 2 mach (1+1/V 2 task )+1 + (1-b) 2 V 2 mach (1+1/V 2 task )+1 as n → ∞ and m → ∞ if a = 1.
Proof. The proof is analogous to the proof of Proposition 5 except that σ task = µ task V task , µ mach = 1 and σ mach = V mach . Proposition 8. The task correlation ρ task of a cost matrix generated using the noise-based method with the parameters V mach and V noise converges to

1 V 2 noise (1+1/V 2 mach )+1 as m → ∞.
Proof. Let's analyze the four parts of Equation 2 (the two operands of the subtraction in the nominator and the two square roots in the denominator). As m → ∞, the first part of the nominator converges to the expected value of the product of two scalars drawn from a gamma distribution with expected value one and CV V task , the square of b j that follows a gamma distribution with expected value one and CV V mach and two random variables that follow a gamma distribution with expected value one and CV V noise . This expected value is 1 + V 2 mach . As m → ∞, the second part of the numerator converges to the product of the expected values of each row, namely one. As m → ∞, each part of the denominator converges to the standard deviation of each row. This is of a scalar drawn from a gamma distribution with expected value one and CV V task and two random variables that follow two gamma distributions with expected value one and CV V mach and V noise . This concludes the proof.

V 2 mach V 2 noise + V 2 mach + V 2 noise because each row is the the product FEMTO-ST Institute Method ρ task ρ mach Range-based a 2 b 3 7 if a = 0 b 2 + 2 3 7 b(1 -b) + 3 7 (1 -b) 2 if a = 1 CVB a 2 b    1 V 2 mach (1+1/V 2 task )+1 if a = 0 b 2 + 2b(1-b) √ V 2 mach (1+1/V 2 task )+1 + (1-b) 2 V 2 mach (1+1/V 2 task )+1 if a = 1 Noise-based 1 V 2 noise (1+1/V 2 mach )+1 1 V 2 noise (1+1/V 2 task )+1
Proposition 9. The machine correlation ρ mach of a cost matrix generated using the noise-based method with the parameters V task and V noise converges to

1 V 2 noise (1+1/V 2 task )+1 as n → ∞.
Proof. Due to the symmetry of the noise-based method, the proof is analogous to the proof of Proposition 8.

Table 1 synthesizes the previous results.

Correlations in Previous Studies

More than 200 unique settings used for generating instances were collected from the literature and synthesized in [START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF]. For each of them, we computed the correlations using the formulas from Table 1. For the case when 0 < a < 1, the correlations were measured on a single 1000 × 1000 cost matrix that was generated with the range-based or the CVB method as done in [START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF] (missing consistency values are replaced by 0 and the expected value is set to one for the CVB method). Figures 1 depict the values for the proposed correlation measures. The task correlation is larger than the machine correlation (i.e., ρ task > ρ mach ) for only a few instances. The space of possible values for both correlations has thus been largely unexplored. Additionally, few instances have high task correlation and are thus underrepresented.

Two matrices extracted from the SPEC benchmarks on five different machines are provided in [START_REF] Al-Qawasmeh | Characterizing task-machine affinity in heterogeneous computing environments[END_REF]. There are 12 tasks in CINT2006Rate and 17 tasks in CFP2006Rate. The values for the correlation measures and other measures from the literature are given in Table 2. The correlations for these two benchmarks correspond to an area that is not well covered in Figure 1. This illustrate the need for a better exploration of the correlation space when assessing scheduling algorithms. 

Controlling the Correlation

Table 1 shows that the correlation properties of existing methods are determined by a combination of unrelated parameters, which is unsatisfactory. We propose two cost matrix generation methods that take the task and machine correlations as parameters. The methods proposed in this section assume that both these parameters are distinct from one. The properties of the proposed heuristics are summarized in Appendix D alongside with other heuristics.

Adaptation of the Noise-Based Method

We first adapt the noise-based method by changing its parameters (see Algorithm 1). The objective is to set the parameters V task , V mach and V noise of the original method (Algorithm 7) given the target correlations r task and r mach . Propositions 10 and 11 show that the assignments on Lines 4 and 5 fulfill this objective for any value of V noise . On Lines 7, 10 and 14, G(k, θ) is the gamma distribution with shape k and scale θ. This distribution generalizes the exponential and Erlang distributions and has been advocated for modeling job runtimes [START_REF] Feitelson | Workload modeling for computer systems performance evaluation[END_REF][START_REF] Lublin | The workload on parallel supercomputers: modeling the characteristics of rigid jobs[END_REF].

Proposition 10. The task correlation ρ task of a cost matrix generated using the correlation noise-based method with the parameter r task converges to r task as m → ∞.

Proof. According to Proposition 8, the task correlation ρ task converges to

1 V 2 noise (1+1/V 2 mach )+1 as m → ∞. When replacing V mach by 1 1 V 2 noise 1 r task -1 -1 (Line 5 of Algorithm 1), this is equal to r task .
Proposition 11. The machine correlation ρ mach of a cost matrix generated using the correlation noise-based method with the parameter r mach converges to r mach as n → ∞.

Proof. Due to the symmetry of the correlation noise-based method, the proof is analogous to the proof of Proposition 10.

Algorithm 1 Correlation noise-based cost matrix generation with gamma distribution for controlling the correlations

Input: n, m, r task , r mach , µ, V Output: a n × m cost matrix 1: N 1 ← 1 + (r task -2r task r mach + r mach )V 2 -r task r mach 2: N 2 ← (r task -r mach ) 2 V 4 + 2(r task (r mach -1) 2 + r mach (r task -1) 2 )V 2 + (r task r mach -1) 2 3: V noise ← N 1 - √ N 2 2r task r mach (V 2 +1) 4: V task ← 1 √ (1/r mach -1)/V 2 noise -1 5: V mach ← 1 √ (1/r task -1)/V 2 noise -1
6: for all 1 ≤ i ≤ n do 7:

w i ← G(1/V 2 task , V 2 task ) 8: end for 9: for all 1 ≤ j ≤ m do 10: b j ← G(1/V 2 mach , V 2 mach ) 11: end for 12: for all 1 ≤ i ≤ n do 13:
for all 1 ≤ j ≤ m do 14:

e i,j ← µw i b j × G(1/V 2 noise , V 2 noise ) 15:
end for 16: end for 17: return {e i,j } 1≤i≤n,1≤j≤m

To fix the parameter V noise , we impose a bound on the coefficient of variation of the final costs in the matrix to avoid pathological instances due to extreme variability. This constraint requires the complex computation of V noise on Lines 1 to 3.

Proposition 12. When used with the parameters µ and V , the correlation noise-based method generates costs with expected value µ and coefficient of variation V .

Proof. The expected value and the coefficient of variation of the costs in a matrix generated with the noise-based method are µ and Proposition 12]. Replacing V task , V mach and V noise by their definitions on Lines 3 to 5 leads to an expression that simplifies as V .

V 2 task V 2 mach V 2 noise + V 2 task V 2 mach + V 2 task V 2 noise + V 2 mach V 2 noise +V 2 task + V 2 mach + V 2 noise , respectively [8,
Note that the correlation parameters may be zero: if r task = 0 (resp., r mach = 0), then V task = 0 (resp., V mach = 0). However, each of them must be distinct from one. If they are both equal to one, a direct method exists by setting V noise = 0. The distribution of the costs with this method is the product of three gamma distributions as with the original noise-based method.

Combination-Based Method

Algorithm 2 presents the combination-based method. It sets the correlation between two distinct columns (or rows) by computing a linear combination between a base vector common to all columns (or rows) and a new vector specific to each column (or row). The algorithm first generates the matrix with the correct machine correlation using a base column (generated on Line 3) and the linear combination on Line 7. Then, rows are modified such that the task correlation is correct using a base row (generated on Line 12) and the linear combination on Line 16. The base row follows a distribution with a lower standard deviation, which depends on Algorithm 2 Combination-based cost matrix generation with gamma distribution Input: n, m, r task , r mach , µ, V Output: a n × m cost matrix

1: V col ← √ r task + √ 1-r task( √ r mach + √ 1-r mach) √ r task √ 1-r mach + √ 1-r task( √ r mach + √ 1-r mach) V {Scale variability} 2: for all 1 ≤ i ≤ n do {Generate base column} 3: c i ← G(1/V 2 col , V 2 
col ) 4: end for 5: for all 1 ≤ i ≤ n do {Set the correlation between each pair of columns}

6:
for all 1 ≤ j ≤ m do 7:

e i,j ← √ r mach c i + √ 1 -r mach × G(1/V 2 col , V 2 col ) 8:
end for 9: end for 10: for all 1 ≤ j ≤ m do 21:

V row ← √ 1 -r mach V col {Scale variability} 11: for all 1 ≤ j ≤ m do {Generate base row} 12: r j ← G(1/V 2 row , V 2 
e i,j ← µe i,j √ r task + √ 1-r task( √ r mach + √ 1-r mach) 22:
end for 23: end for 24: return {e i,j } 1≤i≤n,1≤j≤m the machine correlation (Line 10). Using this specific standard deviation is essential to set the correct task correlation (see the proof of Proposition 13). Propositions 13 and 14 show these two steps generate a matrix with the target correlations for any value of V col .

Proposition 13. The task correlation ρ task of a cost matrix generated using the combinationbased method with the parameter r task converges to r task as m → ∞.

Proof. Let's recall Equation 2 from the definition of the task correlation:

ρ r i,i 1 m m j=1 e i,j e i ,j -1 m m j=1 e i,j 1 m m j=1 e i ,j 1 m m j=1 e 2 i,j -1 m m j=1 e i,j 2 
1 m m j=1 e 2 i ,j -1 m m j=1 e i ,j 2 
Given Lines 7, 16 and 21, any cost is generated as follows:

e i,j = µ √ r task r j + √ 1 -r task √ r mach c i + √ 1 -r mach G(1/V 2 col , V 2 col ) √ r task + √ 1 -r task √ r mach + √ 1 -r mach (6) 
Let's scale all the costs e i,j by multiplying them by

1 µ √ r task + √ 1 -r task √ r mach + √
1 -r mach . This scaling does not change ρ r i,i . We thus simplify Equation 6 as follows:

e i,j = √ r task r j + √ 1 -r task √ r mach c i + √ 1 -r mach G(1/V 2 col , V 2 col ) (7) 
Let's focus on the first part of the numerator of ρ r i,i :

1 m m j=1 e i,j e i ,j = r 2 task 1 m m j=1 r 2 j (8) + 1 m m j=1 √ r task r j √ 1 -r task √ r mach c i + √ 1 -r mach G(1/V 2 col , V 2 col ) (9) 
+ 1 m m j=1 √ r task r j √ 1 -r task √ r mach c i + √ 1 -r mach G(1/V 2 col , V 2 col ) (10) 
+ (1 -r task ) 1 m m j=1 √ r mach c i + √ 1 -r mach G(1/V 2 col , V 2 col ) × (11) √ r mach c i + √ 1 -r mach G(1/V 2 col , V 2 col ) (12) 
The first subpart (Equation 8) converges to r task (1

+ (1 -r max )V 2 col ) as m → ∞ because r j √ 1 -r task √ r mach c i + √ 1 -r mach as m → ∞.
Therefore, the numerator of ρ r i,i converges to r task (1 -r max )V 2 col as m → ∞. The denominator of ρ r i,i converges to the product of the standard deviations of e ij and e i j as m → ∞. The standard deviation of r j (resp.,

G(1/V 2 col , V 2 col )) is √ 1 -r mach V col (resp., V col ).
Therefore, the standard deviation of e ij is r task (1 -r mach )V 2 col + (1 -r task )(1 -r mach )V 2 col . The correlation between any pair of distinct rows ρ r i,i converges thus to r task as m → ∞.

Proposition 14. The machine correlation ρ mach of a cost matrix generated using the combinationbased method with the parameter r mach converges to r mach as n → ∞.

Proof. The correlation between any pair of distinct columns ρ c j,j is (Equation 4):

ρ c j,j 1 n n i=1 e i,j e i,j -1 n n i=1 e i,j 1 n n i=1 e i,j 1 n n i=1 e 2 i,j -1 n n i=1 e i,j 2 
1 n n i=1 e 2 i,j -1 n n i=1 e i,j 2 
Let's consider the same scaling for the costs e i,j as in Equation 7.

The first part of the numerator of ρ c j,j is:

1 n n i=1 e i,j e i,j = r task r j r j + (1 -r task ) 1 n n i=1 √ r mach c i √ 1 -r mach G(1/V 2 col , V 2 col ) (13) 
+ (1 -r task ) 1 n n i=1 r mach c 2 i (14) + (1 -r task ) 1 n n i=1 (1 -r mach )G(1/V 2 col , V 2 col ) 2 (15) 
+ (r j + r j ) 1 n n i=1 √ r task √ 1 -r task √ r mach c i + √ 1 -r mach G(1/V 2 col , V 2 col ) (16)
The first subpart (Equation 13) converges to r task r j r j + (1 -r task ) √ r mach √ 1 -r mach as n → ∞. The second subpart (Equation 14) converges to (1 -r task )r mach (1 + V 2 col ) as n → ∞ because c i follows a gamma distribution with expected value one and standard deviation V col . The third subpart (Equation 15) converges to (1-r task )(1-r mach ) as n → ∞ and the last subpart (Equation 16) converges to (r j + r j )

√ r task √ 1 -r task √ r mach + √ 1 -r mach as n → ∞. The second part of the numerator of ρ c j,j converges to

√ r task r j + √ 1 -r task √ r mach + √ 1 -r mach √ r task r j + √ 1 -r task √ r mach + √ 1 -r mach as n → ∞.
Therefore, the numerator of ρ c j,j converges to (1 -r task )r mach V 2 col as n → ∞. The denominator of ρ c j,j converges to (1 -r task ) r mach V 2 col + (1 -r mach )V 2 col as n → ∞ and the correlation between any pair of distinct columns ρ c j,j converges thus to r mach as n → ∞.

Finally, the resulting matrix is scaled on Line 21 to adjust its mean. The initial scaling of the standard deviation on Line 1 is necessary to ensure that the final cost coefficient of variation is V .

Proposition 15. When used with the parameters µ and V , the combination-based method generates costs with expected value µ and coefficient of variation V .

Proof. By replacing with the values of the base row and column on Lines 3 and 12, Equation 6gives:

e i,j = µ √ r task G(1/V 2 row , V 2 row ) + √ 1 -r task √ r mach G(1/V 2 col , V 2 col ) + √ 1 -r mach G(1/V 2 col , V 2 col ) √ r task + √ 1 -r task √ r mach + √ 1 -r mach
The expected value of any cost is thus µ because the expected value of all gamma distributions is one.

The standard deviation of

G(1/V 2 col , V 2 col ) is V col and the standard deviation of G(1/V 2 row , V 2 row ) √ 1 -r task √ r mach + √ 1 -r mach V col
Given the assignment on Line 1, this simplifies as µV . The cost coefficient of variation is therefore V .

As with the correlation noise-based method, the correlation parameters must be distinct from one. Additionally, the final cost distribution is a sum of three gamma distributions (two if either of the correlation parameters is zero and only one if both of them are zero).

Note that the previous propositions give only convergence results. For a given generated matrix with finite dimension, the effective correlation properties are distinct from the asymptotic ones.

Impact on Scheduling Heuristics

Controlling the task and machine correlations provides a continuum of unrelated instances that are arbitrarily close to uniform instances. This section shows how some heuristics for the R||C max problem are affected by this proximity.

Selected Heuristics

A subset of the heuristics from [START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF] were used with instances generated using the correlation noise-based and combination-based methods. The three selected heuristics, which are detailed in Appendix E, are based on distinct principles to emphasize how the correlation properties may have different effects on the performance.

First, we selected EFT [17, E-schedule] [13, Min-Min], which relies on a greedy principle that schedules first the tasks that have the smallest duration. The second heuristic is HLPT [START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF], an adaptation of LPT [START_REF] Graham | Bounds on Multiprocessing Timing Anomalies[END_REF] for unrelated platforms. Since LPT is a heuristic for the Q||C max problem, HLPT performs as the original LPT when machines are uniform (i.e., when the correlations are both equal to 1). HLPT differs from EFT by considering first the largest tasks instead of the smallest ones based on their minimum cost on any machine. The last heuristic is BalSuff [START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF], which iteratively balances an initial schedule by changing the allocation of the tasks that are on the most loaded machine. The new machine that will execute it is chosen such as to minimize the amount by which the task duration increases.

These heuristics perform identically when the task and machine correlations are arbitrarily close to one and zero, respectively. In particular, sorting the tasks for HLPT is meaningless because all tasks have similar execution times. With such instances, the problem is related to the Q|p i = p|C max problem (see Section 3.1), which is polynomial. Therefore, we expect these heuristics to perform well with these instances.

Settings

In the following experiments, we rely on the correlation noise-based and combination-based methods (Algorithms 1 and 2) to generate cost matrices. With both methods, instances are generated with n = 100 tasks and m = 30 machines. Without loss of generality, the cost expected value µ is set to one (scaling a matrix by multiplying each cost by the same constant will have no impact on the scheduling heuristics). Unless otherwise stated, the cost coefficient of variation V is set to 0.3.

For the last two parameters, the task and machine correlations, we use the probit scale. The probit function is the quantile function of the standard normal distribution. It highlights what happens for values that are arbitrary close to 0 and 1 at the same time. For instance, with 10 equidistant values between 0.01 and 0.9, the first five values are 0.01, 0.04, 0.10, 0.22 and 0.40 (the last five are the complement of these values to one). In the following experiments, the correlations vary from 0.001 to 0.999 using a probit scale.

For each scenario, we compute the makespan4 of each heuristic. We then consider the relative difference from the reference makespan: C/C min -1 where C is the makespan of a given heuristic and C min the best makespan we obtained. The closer to zero, the better the performance. To compute C min , we use a genetic algorithm that is initialized with all the solutions obtained by other heuristics as in [START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF]. Finding the optimal solution would take too much time for this NP-Hard problem. We assume in this study that the reference makespan closely approximates the optimal one.

Variation of the Correlation Effect

The first experiment shows the impact of the task and machine correlations when the target correlations are the same (see Figure 2). For each generation method and coefficient of variation, 10 000 random instances are generated with varying values for the parameters r task = r mach that are uniformly distributed according to a probit scale between 0.001 and 0.999. In terms of central tendency, we see that the selected heuristics are impacted in different ways when the correlations increase: EFT performance degrades slightly; HLPT performance improves significantly; and, BalSuff performance remains stable except for correlation values above 0.9.

In terms of variance for some given values of correlations, the performance varies moderately. For correlation parameters between 0.01 and 0.1 and a coefficient of variation of 0.3, we generate 1695 instances with the correlation noise-based method. In the case of HLPT, although the average performance stays relatively constant when the correlations vary from 0.01 and 0.1, the relative differences with the best cases were between 0.063 and 0.382. However, the 50% most central of these differences were between 0.148 and 0.200 (see the dark rectangle in Figure 2). Therefore, we may have some confidence in the average performance even though the performance for a single instance may be moderately different from the average one.

Mean Effect of Task and Machine Correlations

The heat maps on Figures 3 to 5 share the same generation procedure. First, 30 equidistant correlation values are considered between 0.001 and 0.999 using a probit scale (0.001, 0.002, 

Relative difference to reference

Figure 3: Heuristic performance with 180 000 instances for each generation method. The cost coefficient of variation V is set to 0.3. The x-and y-axes are in probit scale between 0.001 and 0.999. Each tile represents on average 200 instances. The contour lines correspond to the levels in the legend (0, 0.05, 0.1, . . . ). The diagonal slices correspond to Figure 2. 0.0039, 0.0071, . . . , 0.37, 0.46, . . . , 0.999). Then, each pair of values for the task and machine correlations leads to the generation of 200 cost matrices (for a total of 180 000 instances). The actual correlations are then measured for each generated cost matrices. Any tile on the figures corresponds to the average performance obtained with the instances for which the actual correlation values lie in the range of the tile. Hence, an instance generated with 0.001 for both correlations may be associated with another tile than the bottommost and leftmost one depending on its actual correlations. Although it did not occur in our analysis, values outside any tile were planned to be discarded. Figure 3 compares the average performance of EFT, HLPT and Balsuff. The diagonal line corresponds to the cases when both correlations are similar. In these cases, the impact of the correlations on the three heuristics is consistent with the previous observations that are drawn from Figure 2 (see Section 5.3). Despite ignoring the variability, Figure 3 is more informative regarding the central tendency because both correlations vary.

First, EFT performance remains mainly unaffected by the task and machine correlations when they are similar. However, its performance is significantly impacted by them when one correlation is the complement of the other to one (i.e., when ρ task = 1 -ρ mach , which is the other diagonal). In this case, the performance of EFT is at its poorest on the top-left. It then continuously improves until reaching its best performance on the bottom-right (less than 5% from the reference makespan, which is comparable to the other two heuristics for this area). This is consistent with the previous observation that this last area corresponds to instances that may be close to Q|p i = p|C max instances, for which EFT is optimal (see Section 5.1). HLPT achieves the best performance when either correlation is close to one. This is particularly true for the task correlation. HLPT shows however some difficulties when both correlations are close to zero. This tendency was already clearly depicted on Figure 2. Finally, BalSuff closely follows the reference makespan except when the task correlation reaches values above 0.5. This is surprising because we could expect any heuristic to have its best performance in the bottom-right part as for EFT. Despite having good performance in this area, BalSuff performs worse than when ρ task < 0.5.

Effect of the Cost Coefficient of Variation

Figure 4 shows the effect of the cost coefficient of variation, V , on HLPT performance for five distinct values: 0.1, 0.2, 0.3, 0.5 and 1. All costs are similar when the coefficient of variation is 0.1 (0.90, 0.94, 0.95, 1.07 and 1.14 for instance), whereas they are highly heterogeneous when it is 1 (0.1, 0.2, 0.7, 1.5 and 2.5 for instance). The behavior of HLPT is similar for most values of V : it performs the worst in the bottom-left area than in the other areas. However, V limits the magnitude of this difference. In particular, the performance of HLPT remains almost the same when V = 0.1.

HLPT behaves slightly differently when V = 1. At this heterogeneity level, incorrect scheduling decisions may have significant consequences on the performance. Here, HLPT performs the worst for instances for which the task correlation is non-zero and the machine correlation is close to 0. In contrast, it produces near-optimal schedules in the area related to instances of the P ||C max problem. For these instances, LPT, from which HLPT is inspired, achieves an upper bound of 4/3, which may explain its efficiency.

Best Heuristic

Figure 5 depicts the results for the last set of experiments. In addition to the three selected heuristics, two other heuristics were considered: BalEFT and Max-min [START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF]. Each tile color corresponds to the best heuristic in average over related instances. When the performance of other heuristics is closer to the best one than 0.001, it is considered similar. For instance, if the best heuristic performance is 0.05, then all heuristics with a performance lower than 0.051 are considered similar to the best one. The contour lines show the areas for which several heuristics have similar performance. For instance, there are at least two similar heuristics for low task correlation, high machine correlation and V = 1. The heuristics are ordered by the number of instances for which no other heuristic produces a better solution. When several heuristics are equivalent for a given tile, the appearing heuristic is the one that is the best the least often. This highlights the settings for which the worst heuristics are good.

When the cost coefficient of variation is 0.1 or 0.3, the best heuristics are BalSuff and BalEFT. This is expected because they are the most sophisticated and the most costly ones. When V = 0.1, BalSuff outperforms BalEFT except for high task and low machine correlations or low task and high machine correlations. In addition, when correlations are close to one and zero (the related problem is polynomial and all heuristics are optimal), all tested heuristics behave similarly. When V = 0.3, the only common observation is that BalEFT outperforms BalSuff for high task and low machine correlations. The case when V = 1 is significantly different. BalSuff is almost always the best when the machine correlation is low. For low task and high machine correlations, there are several best methods, including HLPT which is the best method when the machine correlation is high.

Note that the superiority of HLPT over both BalSuff and BalEFT shown on Figure 5 when the cost coefficient of variation V is one and the machine correlation is high confirms the results previously pointed out on Figure 4. This behavior, identified by varying the correlations, was not observed when varying the heterogeneity of the costs in [START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF].

On both Figures 4 and5, the behavior of the heuristic performance remains relatively stable except when the cost coefficient of variation is high. The precise impact of large values of V remains to be investigated.

Relation to Other Measures

Several related measures were proposed in the literature: heterogeneity-based measures and the TMA, a SVD-based (Singular Value Decomposition) measure. These measures where shown to be associated with the performance of the heuristics. This section shows that the effect of the correlation is orthogonal to these relations.

Heterogeneity-Based Measures

The heterogeneity properties of a cost matrix impact the performance of several heuristics for the R||C max problem [START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF]. Several heterogeneity measures have been proposed and compared [START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF]. Figure 5: Best heuristic in the average case with 180 000 instances for each pair of generation method and cost coefficient of variation V . The x-and y-axes are in probit scale between 0.001 and 0.999. Each tile represents on average 200 instances. The contour lines correspond to the number of heuristics with a performance closer to the best heuristic performance than 0.001 (a basic average smoothing eliminates some of the noisy contour lines).

Two approaches improve the previously proposed MPH and TDH [START_REF] Al-Qawasmeh | Characterizing task-machine affinity in heterogeneous computing environments[END_REF][START_REF] Al-Qawasmeh | Characterizing heterogeneous computing environments using singular value decomposition[END_REF]: measuring the average coefficient of variation of each row and column (V µ task and V µ mach ) and measuring the coefficient of variation of the mean of each row or column (µV task and µV mach ). The asymptotic heterogeneity properties for the correlation noise-based method can be analytically derived by expressing V task , V mach and V noise in terms of r task , r mach and V in the heterogeneity properties of the noise-based method [8, Propositions 13 to 16] (see Algorithm 7 for the definitions of V task , V mach and V noise ). However, this does not provide concise and informative equations. We will therefore directly plot them on Figure 6.

The following proposition provides the formal asymptotic heterogeneity properties of the matrices generated with the combination-based method.

Proposition 16. The measures V µ task , V µ mach , µV task and µV mach of a cost matrix generated using the combination-based method with the parameters r task , r mach and V converges as follows as n → ∞ and m → ∞:

V µ task → (1 -r task )r mach Ψ V µ mach → r task (1 -r mach )Ψ µV task → √ 1 -r task Ψ µV mach → √ 1 -r mach Ψ where Ψ = V √ r task (1-r mach )+ √ 1-r task( √ r mach + √ 1-r mach)
.

Proof. Let's discard the scaling on Line 21 of Algorithm 2 because it has no effect on the heterogeneity properties of the generated cost matrix. This is given by Equation 7:

e i,j = √ r task r j + √ 1 -r task √ r mach c i + √ 1 -r mach G(1/V 2 col , V 2 col )
The sample mean of row i is a random variable with mean

√ r task + √ 1 -r task ( √ r mach + √ 1 -r mach ) and standard deviation r task (1-r mach )+(1-r task )(1-r mach ) m + (1 -r task )r mach V col , which tends to (1 -r task )r mach V col as m → ∞.
Therefore, the sample coefficient of variation of the sample mean of each row, V µ task , converges to

√ (1-r task )r mach V √ r task √ 1-r mach + √ 1-r task( √ r mach + √ 1-r mach) as m → ∞.
The sample coefficient of variation of row i is a random variable with mean √

r task (1-r mach )+(1-r task )(1-r mach )V col √ r task + √ 1-r task ( √ r mach + √ 1-r mach )
. Therefore, the sample mean of these sample coefficients of variation, µV mach , converges to

√ 1-r mach V √ r task √ 1-r mach + √ 1-r task ( √ r mach + √ 1-r mach )
as m → ∞. The sample mean of column j is a random variable with mean √ r task + √ 1 -r task ( √ r mach + √ 1 -r mach ) and standard deviation (1-r task )r mach +(1-r task )(1-r mach ) n + r task (1 -r mach )V col , which tends to r task (1 -r mach )V col as n → ∞. Therefore, the sample coefficient of variation of the sample mean of each column, V µ mach , converges to

√ r task (1-r mach )V √ r task √ 1-r mach + √ 1-r task( √ r mach + √ 1-r mach) as n → ∞.
Finally, he sample coefficient of variation of column j is a random variable with mean

√ (1-r task )r mach +(1-r task )(1-r mach )V col √ r task + √ 1-r task ( √ r mach + √ 1-r mach )
. Therefore, the sample mean of these sample coefficients of variation, µV task , converges to

√ 1-r task V √ r task √ 1-r mach + √ 1-r task ( √ r mach + √ 1-r mach ) as n → ∞.
Figure 6 depicts the heterogeneity properties of the correlation noise-based and combinationbased methods in function of their correlation parameters. This figure only shows the task heterogeneities because of the diagonal symmetry (i.e., the machine heterogeneity for low r task and large r mach is the same as the task heterogeneity for large r task and low r mach ).

The task heterogeneity values are between 0.1 and 0.3 for around half the correlation values (the top-left part of the matrix). By symmetry, this is also the case for the machine heterogeneity values (but on the bottom-right part). According to [START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF], the performance between the compared heuristics does not significantly change for these values of heterogeneity. This suggests that the variation in the performance of the heuristics in this study cannot be imputed entirely to the variation in the heterogeneity.

To confirm this hypothesis, Figure 7 reshapes HLPT performance depicted on Figure 3 with the heterogeneity on the axes to see if this property impacts HLPT. For each generated cost matrix, all heterogeneity measures were computed. Any tile corresponds to the average performance of HLPT on instances for which the actual heterogeneity values lie in the range 

Relative difference to reference

Figure 7: HLPT performance with 180 000 instances for each generation method. The cost coefficient of variation V is set to 0.3. The x-and y-axes correspond to the task and machine heterogeneities measured with two alternative methods [START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF]. The contour lines correspond to the levels in the legend (0, 0.05, 0.1, . . . ).

Algorithm 3 TMA (Task-Machine Affinity) [START_REF] Al-Qawasmeh | Characterizing task-machine affinity in heterogeneous computing environments[END_REF] Input: a n × m cost matrix Output: the TMA of this matrix

1: {E i,j } 1≤i≤n,1≤j≤m ← 1 e i,j 1≤i≤n,1≤j≤m 2: repeat 3: {E i,j } 1≤i≤n,1≤j≤m ← √ nE i,j √ m n i =1 E i ,j 1≤i≤n,1≤j≤m 4 
:

{E i,j } 1≤i≤n,1≤j≤m ← √ nE i,j √ m m j =1 E i,j 1≤i≤n,1≤j≤m
5: until the normalization procedure has converged 6: compute the singular values {σ i } 1≤i≤min(n,m)

7: return

1 min(n,m)-1 min(n,m) i=2 σ i
of the tile. Values outside any tile were discarded. A significant fraction of the heterogeneity values are higher than 0.1, which is consistent with Figure 6.

When considering the first method to measure the heterogeneity (V µ task and V µ mach ), HLPT performs the worst when both heterogeneity values are low. According to Figure 3, this occurs when the correlations are both low, which correspond to instances with low heterogeneity (see Figure 6). When considering the second method (µV task and µV mach ), HLPT performs the worst when both heterogeneity values are high. Figure 6 shows this is the case when the correlations are both low, which is again consistent. Note that the worst heterogeneity area for HLPT depends on the method used to measure it (low values for V µ task /V µ mach and high values for µV task /µV mach ). Relying on the heterogeneity to explain the performance variation seen in Figure 7 is thus unsatisfactory.

Finally, we could have expected to see the same performance on any tile if the heterogeneity had no effect because averaging would hide the variations. Although the performance varies (95% of the values are between 0.01 and 0.13), it is less notable than on Figure 3 (where 95% of the values are between 0.01 and 0.18).

All these reasons lead to the conclusion that the impact of the correlation is independent of the heterogeneity impact. Confirming this would require the generation of cost matrices with varying correlations but fixed task and machine heterogeneities. This is left for future work.

TMA

Algorithm 3 describes the TMA, a measure based on the singular values of the normalized inverse cost matrix. We consider the variant in which the normalization is done alternatively on both the rows and columns [START_REF] Al-Qawasmeh | Characterizing task-machine affinity in heterogeneous computing environments[END_REF]. The cost matrix is first inverted on Line 1 before being normalized on Lines 2 to 5 with an iterative procedure. Finally, Line 6 computes the singular values and the result corresponds to the inverse of the ratio between the first singular value and the mean of the other singular values.

Similarly to the correlation, the TMA measures the affinities between the tasks and the machines. TMA values equal to zero means machines are uniform (no affinity) because only the first singular value is non-zero and the rank of the cost matrix is one. Oppositely, TMA values equal to one means tasks and machines have unrelated characteristics (high affinities between tasks and machines) because the cost matrix is orthogonal.

However, the correspondence with the correlation is not systematic. Let {e i,j } 1≤i≤n,1≤j≤n be a cost matrix where e i,j = if i = j and e i,j = w i b j otherwise (with w i the weight of task i and b j the cycle time of machine j). The TMA of this cost matrix converges to one as → 0, (a) The x-axis is in probit scale between 0.001 and 0.999. The central tendency is obtained with a smoothing method relying on the generalized additive model (GAM). which suggests a discrepancy from any uniform instance. In contrast, both its task and machine correlations converge to one as n → ∞ and m → ∞ (suggesting a similarity with a uniform instance). Assuming the number of tasks is greater than the number of machines (i.e., n > m), each task i must be scheduled on machine i for 1 ≤ i ≤ m. The problem is thus equivalent to scheduling the last n -m tasks, each of which has a well-defined weight. This cost matrix corresponds therefore to a uniform instance as indicated by the correlation properties. This contrived example shows that changing a few single values may impact the TMA more profoundly than the correlations. We conclude that the correlations focus on the general consistency across multiple tasks and machines, whereas the TMA stresses the specialization of a few machines for some specific tasks.

Figure 8 depicts the TMA of each of the 4 × 10 000 instances generated in Section 5.3 and of the 2 × 30 2 × 200 instances generated in Sections 5.4 to 5.6. The TMA is strongly associated with the correlations in our settings (see the low variation in Figure 8(a)). Thus, the observations made in Section 5.3 could have been made if the heuristics performance were plotted against the TMA of each instance. For these settings, the effect of the TMA is similar to the effect of the correlations because r task = r mach . Note that the TMA is impacted by the cost CV (Coefficient of Variation), which may denote some limits on the normalization procedure. Also, it does not reach large values given that its maximum is one, even when the correlations are close to zero.

The TMA is also symmetric relatively to the diagonal slices: it is the same when the task/machine correlations are high/low as when they are low/high. Therefore, some behaviors Figure 9: Heuristic performance with 180 000 instances for each generation method. The cost coefficient of variation V is set to 0.3. The x-axis correspond to the TMA of the instances [START_REF] Al-Qawasmeh | Characterizing task-machine affinity in heterogeneous computing environments[END_REF]. The central tendency is obtained with a smoothing method relying on the generalized additive model (GAM). The contour lines correspond to the areas with the highest density of points.

may not be seen with the TMA. For instance, EFT performance varies mainly relatively to the other diagonal (from the top-left to the bottom-right).

To confirm this, Figure 9 reshapes the results shown on Figure 3 with the TMA on the x-axis (Figure 2 would certainly remain similar if reshaped similarly because r task = r mach ). Although HLPT performance varies as in Figure 2 depending on the TMA, EFT performance remains relatively stable. Thus, EFT behavior as identified by Figure 3 could not have been seen by studying the TMA alone.

As a side contribution, we present Algorithm 4, which produces cost matrices with arbitrary large TMA. This method could be useful to explore more broadly the relation between the TMA and the correlations. This method guarantees that no cost is negative. However, the TMA of generated matrices often differ slightly from the expected one (even when n → ∞ or m → ∞). Note that the second part of the Algorithm (from Line 7 to Line 16) can be used to generate cost matrices with specific singular values independently of the expected TMA. To improve its guarantees, this method may use orthogonal similarity transformations, which do not change the singular values [START_REF] Davies | Numerically stable generation of correlation matrices and their factors[END_REF]. The challenge is however to ensure that no cost becomes negative.

The TMA offers several advantages: its normalization procedure makes it independent from the heterogeneity and like the correlation, it is associated with the performance of the selected heuristics. However, it suffers from several defaults. Its value depends on the cost matrix Algorithm 4 Generation method of cost matrices with arbitrary TMA Input: n, m, µ, A the expected TMA Output: a n × m cost matrix 1: w ← min(A, 1 -A) {Find the width for the singular values} permute the rows and the columns of {m i,j } 1≤i≤n,1≤j≤m

13:

s k ← s k -S
{Difference with the last singular value} dimension and on the cost coefficient of variation. Moreover, its normalization procedure makes derivations of analytical results difficult. In contrast, the correlation has no such default but it is not independent from the heterogeneity. Also, the correlation is finer because it consists of two different values, which allow the characterization of behaviors that cannot be seen with the TMA (e.g., for EFT). Nevertheless, the TMA may be more relevant than the correlation in some specific cases. For instance, with small cost matrices, the TMA is more sensitive to individual values that may impact significantly the performance. Devising a SVD-based measure that outperforms the TMA (analytically simpler and independent from the cost matrix dimension and the cost CV) is left for future work.

Conclusion

This report studies the correlations of cost matrices used to assess heterogeneous scheduling algorithms. The task and machine correlations are proposed to measure the similarity between a unrelated instance in which any cost is arbitrary (R||C max ) and the closest uniform instance (Q||C max ) in which any cost is proportional to the task weight and machine cycle time. We analyzed several generation methods from the literature and designed two new ones to see the impact of these properties. The properties of these cost matrix generation methods are summarized in Appendix D. Even though the correlation is not a perfect measure for the distance between uniform and unrelated instances (a unitary correlation does not imply it corresponds to a uniform instance), both proposed generation methods show how some heuristics from the literature are affected.
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For instance, the closer instances are from the uniform case, the better HLPT, an adaptation of LPT to the unrelated case, performs. Additionally, the need for two correlations (for the tasks and for the machines) arise for EFT for which the performance goes from worst to best as the task and machine correlations go from zero to one and one to zero, respectively.

Although the current study highlights the importance of controlling the correlations in cost matrices, it presents some limitations. Overcoming each of them is left for future work. First, results were obtained using the gamma distribution only. However, the two proposed methods could use other distributions as long as the expected value and standard deviation are preserved. Second, all formal derivations are in the asymptotic case only. Hence, the proposed results may be less relevant for small instances. Also, the proposed correlation measures and generation methods assume that the correlations stay the same for each pair of rows and for each pair of columns: our measures average the correlations and our methods are inapplicable when the correlations between each pair of rows or each pair of columns are distinct. Considering two correlation matrices that define the specific correlations between each pair of rows and each pair of columns would require the design of a finer generation method. Finally, investigating the relation with the heterogeneous properties would require the design of a method that controls both the correlation and heterogeneity properties.

A Notation

Table 3 provides a list of the most used notations in this report.

Symbol Definition

i index of the tasks j index of the machines n number of tasks m number of machines e i,j execution time of task i on machine j w i weight of task i b j cycle time of machine j ρ r i,i correlation between row i and row i ρ c j,j correlation between column j and column j ρ task task correlation ρ mach machine correlation U (A, B) uniform distribution between A and B G(α, β) gamma distribution with shape α and scale β r task target task correlation r mach target machine correlation µ target cost mean V target cost coefficient of variation R task parameter for the range-based method R mach parameter for the range-based method V task parameter for the CVB, shuffling and noise-based methods V mach parameter for the CVB, shuffling and noise-based methods V noise parameter for the noise-based method a fraction of consistent rows b fraction of consistent columns V µ task first measure of task heterogeneity V µ mach first measure of machine heterogeneity µV task second measure of task heterogeneity µV mach second measure of machine heterogeneity 

B Generation Methods

The range-based and CVB methods [START_REF] Ali | Task execution time modeling for heterogeneous computing systems[END_REF][START_REF] Ali | Representing task and machine heterogeneities for heterogeneous computing systems[END_REF] constitute the two main approaches used in the literature. Algorithm 5 presents the former: each cost in row i results from the product of a random value that follows a uniform distribution in the range [1, R mach ] and τ [i], a random value that follows a uniform distribution in the range [1, R task ]. Algorithm 6 shows that the distinction with the latter resides in the underlying distribution: each random value follows a gamma distribution instead of a uniform one. We proposed the noise-based method [START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF] as an alternative to these two approaches (see Algorithm 7). Any element in a cost matrix corresponding to a uniform instance is multiplied by a random value with expected value one to distinguish the instance from a uniform one. 

τ [i] ← U (1, R task ) 3:
for all 1 ≤ j ≤ m do {Generate each value of the row} 4:

e i,j ← τ [i] × U (1, R mach ) 5:
end for 6: end for 7: return {e i,j } 1≤i≤n,1≤j≤m

Algorithm 6 CVB cost matrix generation with the gamma distribution [START_REF] Ali | Task execution time modeling for heterogeneous computing systems[END_REF][START_REF] Ali | Representing task and machine heterogeneities for heterogeneous computing systems[END_REF] 

Input: n, m, V task , V mach , µ task Output: a n × m cost matrix 1: α task ← 1/V 2 task 2: α mach ← 1/V 2 mach 3: β task ← µ task /α task 4: for all 1 ≤ i ≤ n do 5: q[i] ← G(α task , β task ) 6: β mach [i] ← q[i]/α mach 7:
for all 1 ≤ j ≤ m do 8:

e i,j ← G(α mach , β mach [i])

9:

end for 10: end for 11: return {e i,j } 1≤i≤n,1≤j≤m Algorithm 7 Noise-based cost matrix generation with gamma distribution [START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF] Input: n, m, V task , V mach , V noise Output: a n × m cost matrix 1: for all 1 ≤ i ≤ n do 2: Proof. We know for a start that X a.s.

w i ← G(1/V 2 task , V 2 task ) 3: end for 4: for all 1 ≤ j ≤ m do 5: b j ← G(1/V 2 mach , V 2 mach ) 6: end for 7: for all 1 ≤ i ≤ n do 8: for all 1 ≤ j ≤ m do 9: e i,j ← w i b j × G(1/V 2 noise , V 2 
→ E [X] and

1 n n i=1 (X (i) -X) 2 a.s. → E X 2 -E [X] 2 as n → ∞. Thus, n i=1 (X (i) -X)(X (i) -X ) n i=1 (X (i) -X) 2 n i=1 (X (i) -X ) 2 a.s. → 1 n n i=1 X (i) X (i) -2E [X] 1 n n i=1 X (i) + X² E [X 2 ] -E [X] 2 a.s. → 1 n n i=1 X (i) X (i) -E [X] 2 E [X 2 ] -E [X] 2
To show this converges to 1, it suffices to show that

1 n n i=1 X (i) X (i) p → E X 2 as n → ∞. Since 1 n n i=1 E X (i) -X (i) 2 = 2 n n i=1 E X 2 (i) -E X (i) 2 = 2E 1 n n i=1 X 2 (i) - 2 n n i=1 E X (i) 2 = 2E X 2 - 2 n n i=1 E X (i) 2 
Then, using Proposition 18,

lim n→∞ 1 n n i=1 E X (i) -X (i) 2 = 0
By definition, this means that

1 n n i=1 X (i) -X (i) 2 L 1
→ 0 as n → ∞ and we can derive that

1 n n i=1 X (i) X (i) L 1 → 1 n n i=1 X 2 (i) = 1 n n i=1 X 2 p → E X 2 .
This result is also supported by Monte Carlo simulations (see Figure 10). Let X be a random variable, X 1 , X 

(Y i -Ȳ )(Y i -Ȳ ) n i=1 (Y i -Ȳ ) 2 n i=1 (Y i -Ȳ ) 2 = xn i=1 (Y i -Ȳ )(Y i -Ȳ ) n i=1 (Y i -Ȳ ) 2 n i=1 (Y i -Ȳ ) 2 + n i=xn+1 (Y i -Ȳ )(Y i -Ȳ ) n i=1 (Y i -Ȳ ) 2 n i=1 (Y i -Ȳ ) 2
The first part converges to x by Proposition 17, while the second converges to 0 by independence as n tends to infinity.

D Summary of Generation Methods Properties

Table 4 synthesizes the formal results derived in this report and in our previous work on the heterogeneity properties [START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF].

E Scheduling Heuristics

Algorithms 8 to 10 describe the three main algorithms used in Section 5: EFT (also called Min-min), HLPT and BalSuff. EFT (see Algorithm 8) searches for the earliest finishing task on any machine and allocates it to the corresponding machine. HLPT (see Algorithm 9) tries to find the best allocation for each task depending on the machine load starting from the longest tasks. We use the variant of HLPT that consider the minimum cost of each task instead of the mean cost to sort them. Finally, BalSuff (see Algorithm 10) relies on the sufferage matrix S in which each value is the difference between the execution time on the current machine e i,j and the minimum execution time of task i. It starts from an initial mapping where each task is mapped on its best machine (as with the MET heuristic). Then, the algorithm tries to rearrange the tasks in a way such that the makespan is improved and each chosen task is the one that suffers the least from moving. The algorithm stops when there is no more task on the most loaded machine that could benefit from moving. . Some formal derivations are inexistent for the SB method due to its combinatorial nature. For ρ mach , long formulas that hinders the readability were only referred to. For the CNB method, the heterogeneity properties could be derived but are too long (t.l.) and not informative (see Section 6.1). For any method, the expected value can be changed by scaling the costs without altering any of the other properties. for all i ∈ T do {Find the task with earliest finish time}

6:
for all j ∈ M do {Find the machine with earliest finish time} end for 16: end while 17: return π Algorithm 9 Heterogeneous Largest Processing Time (HLPT) [START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF] Input: T a set of n tasks, M a set of m machines, E a matrix of the execution times of the tasks on the machines Output: an allocation function π 1: Initialize ∀j ∈ M, RT [j] ← 0 {Earliest ready time for each machine} 2: Sort tasks in non-increasing order using a function of their execution times (min) 3: for all i ∈ T do {Consider each task in given order} ms ← max i,j (S i,j )

13:

mst ← 0 for all i ∈ T such that π i = p max do {Find the task that suffers the less from moving} if mst = 0 then {Re-allocation improves makespan} 

Proposition 4 .

 4 The task correlation ρ task of a cost matrix generated with the range-based method with the parameters a and b converges to a 2 b as n → ∞ and m → ∞.

Figure 1 :

 1 Figure 1: Correlation properties (ρ task and ρ mach ) of cost matrices used in the literature.

Figure 2 :

 2 Figure 2: Heuristic performance with 10 000 instances for each pair of generation methods and coefficients of variation. The x-axis is in probit scale between 0.001 and 0.999. The central tendency is obtained with a smoothing method relying on the generalized additive model (GAM). The contour lines correspond to the areas with the highest density of points. The dark rectangle corresponds to 50% of the most central values when 0.01 ≤ r task ≤ 0.1 and V = 0.3.

Figure 4 :

 4 Figure4: Performance of HLPT with 180 000 instances for each pair of generation method and cost coefficient of variation V . The x-and y-axes are in probit scale between 0.001 and 0.999. Each tile represents on average 200 instances. The contour lines correspond to the levels in the legend (0, 0.05, 0.1, . . . ).

HeterogeneityFigure 6 :

 6 Figure 6: Heterogeneity properties of the correlation noise-based and combination-based methods in function of their correlation parameters. The cost coefficient of variation V is set to 0.3. Contour lines correspond to the levels in the legend (0.05, 0.10, . . . ).

  The x-and y-axes are in probit scale between 0.001 and 0.999. The cost coefficient of variation V is set to 0.3. Each tile represents on average 200 instances. The contour lines correspond to the levels in the legend (0, 0.05, 0.1, . . . ).

Figure 8 :

 8 Figure 8: TMA of the instances used in Section 5: (a) corresponds to Figure 2 and (b) to Figures 3 to 5. The diagonal slices in (b) correspond to (a).

Figure 10 :

 10 Figure 10: Correlation between two samples of varying sizes and distributions.

y 2 + x 2 + y 2 ,

 22 g(x, y, z) = f (f (x, y), z) and Ψ = V r task (1 -r

Algorithm 8 1 :

 81 Earliest Finish Time [17, E-schedule], [13, Min-Min] Input: T a set of n tasks, M a set of m machines, E a matrix of the execution times of the tasks on the machines Output: an allocation function π Initialize ∀j ∈ M, RT [j] ← 0 {Earliest ready time for each machine} 2: while T = ∅ do

  

  

Table 1 :

 1 Summary of the asymptotic correlation properties of existing methods.Benchmarkρ task ρ mach V µ task V µ mach µV task µV mach TDH MPH TMA

	CINT2006Rate 0.85 0.73	0.32	0.36	0.37	0.39	0.90	0.82	0.07
	CFP2006Rate	0.60 0.67	0.42	0.32	0.48	0.39	0.91	0.83	0.13

Table 2 :

 2 Summary of the properties for two benchmarks (CINT2006Rate and CFP2006Rate).

  2: s 1 ← 1 3: for all 2 ≤ k ≤ min(n, m) do {Generate uniformly the expected singular values}

	4:	s k ← U (A -w, A + w)			
	5: end for			
	6: sort {s k } 1≤k≤min(n,m) in decreasing order	
	7: S ← 0			
	8: for all min(n, m) ≥ k ≥ 1 do	{Consider each singular value in reverse order}
	9:	{m i,j } 1≤i≤n,1≤j≤m ← {0} 1≤i≤n,1≤j≤m		{Initialize a base matrix to zero}
	10:	{m i,i } 1≤i<k ← {1} 1≤i<k			{Fix the first k -1 singular values to one}
	11:	{m i,j } k≤i≤n,k≤j≤m ←	√	1 (n-k+1)(m-k+1) k≤i≤n,k≤j≤m	{The kth singular value is one}
	12:				

14 :

 14 {e i,j } 1≤i≤n,1≤j≤m ← {e i,j + s k m i,j } 1≤i≤n,1≤j≤m

	15:	S ← S + s k	
	16: end for	
	17: {e i,j } 1≤i≤n,1≤j≤m ← 1 e i,j 1≤i≤n,1≤j≤m 18: μ ← 1 nm n i=1 m j=1 e i,j	{Reverse the costs}
	19: {e i,j } 1≤i≤n,1≤j≤m ← µ μ e i,j	1≤i≤n,1≤j≤m	{Guarantee the cost mean}
	20: return {e i,j } 1≤i≤n,1≤j≤m	

Table 3 :

 3 List of notations.

  Algorithm 5 Range-based cost matrix generation with the uniform distribution[START_REF] Ali | Task execution time modeling for heterogeneous computing systems[END_REF][START_REF] Ali | Representing task and machine heterogeneities for heterogeneous computing systems[END_REF] Input: n, m, R task , R mach Output: a n × m cost matrix 1: for all 1 ≤ i ≤ n do {Generate each row}

	2:

  noise )

			Uniform		Normal		Logistic		Gamma	Exponential	Log normal
	1 -correlation	1e-04 1e-02										
			100	10000	100	10000	100	10000	100	10000	100	10000	100	10000
								Vector size			
	10:	end for									
	11: end for									
	12: return {e i,j } 1≤i≤n,1≤j≤m						

  2 , . . . , X n be a sample of size n and Y 1 , Y 2 , . . . , Y n be a sample of size n where Y 1 , Y 2 , . . . , Y xn corresponds to the sorted values of X 1 , X 2 , . . . , X xn and Y xn+1 , . . . , Y n corresponds to X xn+1 , . . . , X n with 0 ≤ x ≤ 1. Let's draw a new sample of size n with the corresponding sample Y 1 , Y 2 , . . . , Y n . Proposition 19. The Pearson linear correlation between Y 1 , Y 2 , . . . , Y n and Y 1 , Y 2 , . . . , Y n converges in probability to x as n tends to infinity if E[X 2 ] < +∞ and if X is almost surely bounded. L.-C. Canon -P.-C. Héam -L. Philippe Proof.

n i=1

Table 1 -

 1 V

	r mach
	r task
	noise )

task f (V task ,V

Table 4 :

 4 Synthesis of all formal asymptotic results as n → ∞ and m → ∞ for the RB (Range-Based), CVB (Coefficient-of-Variation-Based), SB (Shuffling-Based), NB (Noise-Based), CNB (Correlation Noise-Based) and CB (Combination-Based) methods (see previous work[START_REF] Canon | On the Heterogeneity Bias of Cost Matrices when Assessing Scheduling Algorithms[END_REF] and this report). For the RB method, R task and R mach are assumed to be large. For more concise notations, f (x, y) = x 2

7 :

 7 if RT [j] + e i,j < RT [me] + e te,me then

	8:	te ← i
	9:	me ← j
	10:	end if
	11:	end for
	12:	π te ← me
	13:	

RT [me] ← RT [me] + e te,me 14: T ← T \ {te} 15:

  if RT [j] + e i,j < RT [me] + e i,me then RT [me] ← RT [me] + e i,me 12: end for 13: return π Algorithm 10 Sufferage with machine balancing (BalSuff) [8] Input: T a set of n tasks, M a set of m machines, E a matrix of the execution times of the tasks on the machines Output: an allocation function π 1: for all i ∈ T , j ∈ M do {Generate the sufferage matrix S} 2: S i,j ← e i,j -min k∈M (e i,k ) 3: end for 4: Initialize ∀j ∈ M, RT [j] ← 0 {Earliest ready time for each machine} 5: for all i ∈ T do {Initial allocation based on MET} i ← min 9: end for 10: p max ← arg max j∈M (RT [j]) 11: repeat {Try to re-arrange task allocations}

	12:		
	4:	me ← 1	{Machine with earliest finish time}
	5:	for all j ∈ M do	{Find the earliest finish time}
	6:		
	7:	me ← j	
	8:	end if	
	9:	end for	
	10:	π i ← me	
	11:		

6: min ← arg min k∈M (e i,k ) 7: RT [min] ← RT [min] + e i,min 8: π

  RT [p max ] ← RT [p max ] -e mst,pmax 27: RT [msm] ← RT [msm] + e mst,msm 28: if RT [p max ] < RT [msm] then {Find last finishing machine}

	25:	π mst ← msm	{Task is moved}
	26:		
	29:	p max ← msm	
	30:	end if	
	31:	end if	
	32: until mst = 0	
	33: return π	

RR-FEMTO-ST-1191

The makespan is the total execution time and it must be minimized.RR-FEMTO-ST-1191
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C Convergence of two sorted random vectors

Let X be a random variable, X 1 , X 2 , . . . , X n be a sample of size n and X (1) , X (2) , . . . , X (n) be the corresponding order statistics, which are obtained by sorting the values X 1 , X 2 , . . . , X n . Let's draw a new sample of size n with the corresponding order statistics X (1) , X (2) , . . . , X (n) .

Proposition 17. The Pearson linear correlation between X (1) , X (2) , . . . , X (n) and X (1) , X (2) , . . . , X (n) (two vectors of n sorted samples from the same distribution) converges in probability to one as n tends to infinity, i.e.:

Proposition 17 relies on the following proposition whose proof has been pointed out by N. Gast.

Proof. Let F be the cumulative distribution function of X. For any p ∈ [0, 1], set

We also set S n (q) = |{X i | X i ≤ F -1 (q)}|. The random variable S n (q) can be expressed as a sum of Bernoulli variables S n (q) = n i=1 B q,i , where B q,i = 1 iff F (X i ) ≤ q. The parameter of B q,i is F -1 + (F (q)). Using the strong law of large number, one has almost surely

Therefore, for any ε > 0, there are almost surely at most pn X i 's less or equal to F -1 (p + ε) and at least pn X i 's greater or equal to F -1 (p -ε). It follows that almost surely,

Using the dominated convergence theorem, one obtains:

Using integral of simple function, it follows that

proving the proposition. Now one can prove Proposition 17.
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