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Event-Triggered Control in Presence of Measurement Noise: A Space-Regularization Approach

In this paper, general conditions for set stabilization of (distributed) event-triggered control systems affected by measurement noises are presented. It is shown that, under these conditions, both static and dynamic triggers can be designed using a space-regularization approach such that the closed-loop system ensures an input-to-state practical stability property. Additionally, by proper choice of the tuning parameters, the system does not exhibit Zeno behavior. Contrary to various results in the literature, the noises do not have to be differentiable. The general results are applied to point stabilization and consensus problems as particular cases. Simulations illustrate our results.

I. INTRODUCTION

For systems in which the communication energy consumption, communication bandwidth or computation power is constrained, traditional periodic sampling and/or controller updates might require resources that are not available to obtain the desired system performance. To this end, eventtriggered control (ETC) can be applied, see, e.g., [START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF] and the references therein, to reduce computational burden and/or the communication bandwidth of the control strategies, while still guaranteeing important stability and performance properties.

At present, most literature on ETC assumes that perfect state or output information is available for control, even though in most physical systems, this is often not the case as sensors are susceptible to measurement noises. It is well known that in the presence of measurement noise, the design of triggering conditions that do not exhibit Zeno behavior is in general a hard problem, see, e.g., [START_REF] Borgers | Event-separation properties of event-triggered control systems[END_REF]. Several solutions have been proposed in the literature to address this problem, see, e.g., [START_REF] Mousavi | On integral input-to-state stability of event-triggered control systems[END_REF], [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF]. However, these require differentiability conditions on the noise to obtain input-tostate stability (ISS) or L p -stability of the closed-loop system with respect to the noise and its time-derivative. When dealing with real sensors, the differentiability condition and global boundedness of the derivative of the noise may not be natural assumptions. The observer-based approaches, see, e.g., [START_REF] Lehmann | Event-based output-feedback control[END_REF], overcome this issue, but these results only apply to linear systems and require multiple additional internal models, thereby requiring extra processing power and energy to run. In [START_REF] Selivanov | Event-Triggered H∞ Control: A Switching Approach[END_REF], a periodic event-triggered controller is run simultaneously with a continuous event-triggered controller, and triggering occurs when the triggering conditions of both controllers hold. The downside to this particular method is that close to the desired stability point, periodic sampling is obtained, thereby not preserving the communication benefit of ETC. The issues when dealing with measurement noise are even harder when designing distributed event-triggered controllers for consensus [START_REF] Nowzari | Event-triggered communication and control of networked systems for multi-agent consensus[END_REF]. We know of only one paper dealing with measurement noise in this distributed context, [START_REF] Hardouin | Distributed eventtriggered consensus of multi-agent systems with measurement noise and guaranteed interval bounds[END_REF], where the control input is integrated to estimate an upperbound for the error. Since a conservative estimate is used and due to the absolute triggering condition, the amount of controller updates (network bandwidth) required is relatively high compared to other ETC consensus algorithms, see, e.g., [START_REF] Dolk | Event-Triggered Consensus for Multi-Agent Systems with Guaranteed Robust Positive Minimum Inter-Event Times[END_REF]. As such, it is of interest to consider alternative solutions.

In this paper, we present a general framework to address the measurement noise problem, based on space-regularized ETC, in line with classical event generators, such as [START_REF] Tabuada | Event-Triggered Real-Time Scheduling of Stabilizing Control Tasks[END_REF], [START_REF] Girard | Dynamic Triggering Mechanisms for Event-Triggered Control[END_REF], [START_REF] Donkers | Output-Based Event-Triggered Control With Guaranteed L∞-Gain and Improved and Decentralized Event-Triggering[END_REF]. For this, we present a new hybrid model, which does not involve the derivative of the noise as opposed to, e.g., [START_REF] Mousavi | On integral input-to-state stability of event-triggered control systems[END_REF], [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF]. We then provide general prescriptive conditions, under which both dynamic and static triggering rules are designed to ensure an input-to-state practical stability property, while ruling out Zeno phenomena. In particular, we show that applying space-regularization needs to be done with care to ensure the existence of strictly positive minimum inter-event times. These results are written for the general scenario where N plants, possibly physically interconnected, are controlled by N event-triggered controllers, thereby covering both classical point stabilization problems as in, e.g., [START_REF] Tabuada | Event-Triggered Real-Time Scheduling of Stabilizing Control Tasks[END_REF], [START_REF] Girard | Dynamic Triggering Mechanisms for Event-Triggered Control[END_REF], [START_REF] Donkers | Output-Based Event-Triggered Control With Guaranteed L∞-Gain and Improved and Decentralized Event-Triggering[END_REF], [START_REF] Dolk | Output-Based and Decentralized Dynamic Event-Triggered Control With Guaranteed Lp-Gain Performance and Zeno-Freeness[END_REF] and consensus problems as in, e.g., [START_REF] Dolk | Event-triggered Consensus Seeking under Non-uniform Time-Varying Delays[END_REF] in a unified way. In fact, we explain how to modify the triggering rules presented in [START_REF] Tabuada | Event-Triggered Real-Time Scheduling of Stabilizing Control Tasks[END_REF], [START_REF] Girard | Dynamic Triggering Mechanisms for Event-Triggered Control[END_REF] to become robust to measurement noise. We also apply it to consensus seeking problems, where we show that we can maintain long inter-event times even in the presence of measurement noise. We show this, for instance, for the methods of [START_REF] Dolk | Event-Triggered Consensus for Multi-Agent Systems with Guaranteed Robust Positive Minimum Inter-Event Times[END_REF], [START_REF] Garcia | Decentralised event-triggered cooperative control with limited communication[END_REF]. Lastly, we use simulations to show the effectiveness of our technique and to demonstrate the implications of applying space-regularization. All proofs are omitted for space reasons.

II. PRELIMINARIES A. Notation

The sets of all non-negative and positive integers are denoted N and N >0 , respectively. The field of all reals and all non-negative reals are indicated by R and R 0 , respectively. The identity matrix of size N × N is denoted by I N , and the vectors in R N whose elements are all ones or zeros are denoted by 1 N and 0 N , respectively. For N vectors x i ∈ R ni , the vector obtained by stacking all vectors into one column vector x ∈ R n with n = N i=1 n i is denoted as (x 1 , x 2 , . . . , x N ), i.e., (x 1 , x 2 , . . . , x N ) = x 1 x 2 . . . x N . By •, • and | • | we denote the usual inner product of real vectors and the Euclidean norm, respectively. For a measurable signal w : R 0 → R nw , we denote by w ∞ = ess sup t∈R 0 |w(t)| its L ∞ -norm, provided it exists and is finite (we then write w ∈ L ∞ ). For any x ∈ R N , the distance to a closed non-empty set A is denoted by |x| A = inf y∈A |x -y|. We use the usual definitions for comparison functions.

B. Hybrid systems

We model hybrid systems using the formalism of [START_REF] Goebel | Hybrid dynamical systems: modeling, stability, and robustness[END_REF], [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF]. Hence, we consider systems H(F, C, G, D) of the form

ξ ∈ F (ξ, w) (ξ, w) ∈ C, ξ + ∈ G(ξ, w) (ξ, w) ∈ D, (1) 
where

ξ ∈ R n ξ denotes the state, w ∈ R nw a disturbance, C ∈ R n ξ × R nw the flow set, D ∈ R n ξ × R nw the jump set, F : R n ξ × R nw ⇒ R n ξ the
flow map and G : R n ξ × R nw ⇒ R n ξ the jump map, where the maps F and G are possibly set-valued. We are mainly interested in systems H being persistently flowing in the sense that all its maximal solutions are unbounded in t-direction, see [START_REF] Goebel | Hybrid dynamical systems: modeling, stability, and robustness[END_REF] for more details on the adopted hybrid terminology. We focus on the following stability definitions in this paper.

Definition 1. When H is persistently flowing (i.e. its tdomain is unbounded), we say that a non-empty closed set A ⊂ R n ξ is input-to-state practically stable (ISpS) if there exist γ ∈ K, β ∈ KL and d ∈ R 0 such that for any solution pair (ξ, w)

with 1 w ∈ L ∞ ∩ PC |ξ(t, j)| A β(|ξ(0, 0)| A , t) + γ( w ∞ ) + d, (2) 
for all (t, j) ∈ dom ξ. If (2) holds with d = 0, then A is said to be input-to-state stable (ISS) for H.

III. PROBLEM FORMULATION

We consider a collection of N ∈ N >0 interconnected plants P 1 , P 2 , . . . , P N . Each plant P i , i ∈ N := {1, 2, . . . , N }, is equipped with a sensor that communicates its state2 (with measurement noise) to the controllers

C 1 , C 2 , . . . , C N via a digital network. Plant P i , i ∈ N , has a state x i ∈ R n i x with dynamics ẋi = f i (x, u i ), (3) 
where

u i ∈ R n i u
is the control input of P i , x := (x 1 , x 2 , . . . , x N ) is the concatenated state variable, and

f i : R n × R n i u → R n i
x is a continuous function, with n = i∈N n i x . Note that f i may depend on the states of other plants, i.e., physical couplings are allowed. The controllers C i , i ∈ N , take the form, in absence of noise,

P 1 EG 1 . . . P N EG N u 1 x 1 x, u 1 u N x N x, u N Network C 1 . . . C N x u 1 x u N
u i = k i (x)
, with k i : R n → R n i u a continuous map. We assume that plants P 1 , P 2 , . . . , P N in closed loop with the controllers C 1 , C 2 , . . . , C N satisfy desired control objectives in the absence of a network, as formalized in the following.

We investigate the scenario where the values of each state x i , i ∈ N , are broadcasted by the corresponding sensors to the controllers C 1 , C 2 , . . . , C N , which depend on it, via a digital network, as illustrated in Fig. 1. The corresponding transmissions occur at some time instants t i k , k ∈ N, which are generated by a local triggering condition. Moreover, the measurements are affected by noise. To model the obtained feedback law in this context, we introduce x i , the noisy measurement of x i , for i ∈ N , as

x i := x i + w i , (4) 
where w i ∈ R n i x is an (additive) bounded piecewise continuous measurement noise, which is assumed to satisfy the following assumption. Assumption 1. For each i ∈ N , w i (t, j) ∈ W i for all (t, j) ∈ dom w, where

W i := w i ∈ R n i x |w i | w i for some w i ∈ R 0 .
Because of the packet-based communication over the network, the controllers, which depend on the state of P i , do not have access to x i in (4), but only to its networked version, x i := x i + w i , where

x i (t) = x i (t i k ) for t ∈ [t i k , t i k+1 ), k ∈ N, w i (t) = w i (t i k ) for t ∈ [t i k , t i k+1 ), k ∈ N. (5) 
To keep the definitions consistent with the existing literature, we define the network-induced error e = (e 1 , e 2 , . . . , e N ) as the difference between the sampled state x := ( x 1 , x 2 , . . . , x N ) without the measurement noise and the current state without measurement noise, i.e., e := x -x. We also introduce the measured network-induced error e = ( e 1 , e 2 , . . . , e N ) as the difference between the most recently transmitted state and the currently measured state, which are both affected by noise, i.e., e := x + w -x -w = e + w -w. Note that e i is not known by event generator i, and therefore, cannot be used by the corresponding local triggering condition for determining t i k , k ∈ N. However, the event generators do have access to e i .

Due to the network and the noisy measured states, the feedback law in C i applied to plant P i is, for i ∈ N ,

u i = k i (x + e + w). ( 6 
)
Our objective is to determine the transmission times t i k , k ∈ N, for any i ∈ N , to ensure that:

(i) the combined closed-loop system (3), ( 6) satisfies an input-to-state practical stability property in the presence of measurement noise; (ii) there exists a strictly positive time between any two transmissions generated by the triggering condition of plant P i , i.e., for any initial condition there exists a

T i > 0 such that t i k+1 -t i k T i for all k ∈ N, i ∈ N .

IV. GENERAL RESULTS

A. Hybrid model

We model the overall system as a hybrid system H for which a jump corresponds to the broadcasting of one of the noisy states x i , i ∈ N , over the network. We allow the local triggering conditions to depend on a local variable denoted η i ∈ R 0 , i ∈ N , as in the dynamic triggering of [START_REF] Girard | Dynamic Triggering Mechanisms for Event-Triggered Control[END_REF], [START_REF] Dolk | Output-Based and Decentralized Dynamic Event-Triggered Control With Guaranteed Lp-Gain Performance and Zeno-Freeness[END_REF]. However, we also consider static triggering conditions in the sequel. We define η := (η 1 , η 2 , . . . , η N ) ∈ R N 0 , and stack the "physical" variables in χ := (x, e, w). The full state for H becomes ξ := (χ, η) = (x, e, w, η) and is defined as

ξ = F (ξ, w), (ξ, w) ∈ C, ξ + ∈ G(ξ, w), (ξ, w) ∈ D, (7) 
where the flow map is given, for all (ξ, w) ∈ X × W := R n ×R n ×W ×R N 0 ×W, where W := W 1 ×W 2 ×. . .×W N and W i comes from Assumption 1, by

F (ξ, w) := (F χ (χ), Ψ(o)), (8) 
with Ψ(o) := (Ψ 1 , Ψ 2 , . . . , Ψ N ) the to-be-designed dynamics of the dynamic variables η and o :

= (o 1 , o 2 , . . . , o N ) collects o i ∈ R n i o , i ∈ N
, being the information locally available to plant i. In [START_REF] Hardouin | Distributed eventtriggered consensus of multi-agent systems with measurement noise and guaranteed interval bounds[END_REF],

F χ (χ) := (f (x, k(x+e+ w)), -f (x, k(x+e+ w)), 0 n ), (9) for χ ∈ R n × R n × W. Let, for i ∈ N , C i := {(ξ, w) ∈ X × W | η i + θ i Ψ i (o i ) 0} (10) 
with θ i ∈ R 0 a design parameter. The flow set for the overall system is given by C := ∩ i∈N C i . The jump set corresponding to a transmission of x i generated by triggering condition i ∈ N is defined as,

D i := (ξ, w) ∈ X × W | η i + θ i Ψ i (o i ) 0 and Ψ i (o i ) 0 . ( 11 
)
Note that, with respect to [START_REF] Girard | Dynamic Triggering Mechanisms for Event-Triggered Control[END_REF], we require the additional condition Ψ i (o i ) 0 to ensure that Zeno behavior does not occur when θ i = 0. By selecting a θ i > 0, we trigger earlier than the "pure" dynamic case (i.e., when θ i = 0). Generally, this results in faster convergence but shorter interevent times, which allows us to tune bandwidth usage versus performance, see [START_REF] Girard | Dynamic Triggering Mechanisms for Event-Triggered Control[END_REF] for more details. The jump set for the overall system is defined as D := ∪ i∈N D i . The jump map for triggering condition i is now defined as

G i (ξ, w) := {(G χ,i (χ, w), η)} , if (ξ, w) ∈ D i ∅, if (ξ, w) ∈ D i , (12) 
where G χ,i (χ, w) := (x, Γ i e, Γ i w + Γ i w), with Γ i the block diagonal matrix where the i-th block is I n i x and all other blocks are 0 n j x ×n j x , j ∈ N \ {i}, and Γ i := I n -Γ i . Map [START_REF] Donkers | Output-Based Event-Triggered Control With Guaranteed L∞-Gain and Improved and Decentralized Event-Triggering[END_REF] simply means that a jump due to triggering condition i resets e i to 0 and w i to w i (essentially, w + i ∈ W i ), leaving the other variables unchanged. The complete jump map is given by G(ξ, w) := ∪ i∈N G i (ξ, w). For future use we also define the jump map for (χ,

w) ∈ R n × R n × W × W as G χ (χ, w) := i∈N G χ,i (χ, w). ( 13 
)
Because of the selected state variables, system [START_REF] Nowzari | Event-triggered communication and control of networked systems for multi-agent consensus[END_REF] does not depend on the time-derivative of w as in [START_REF] Mousavi | On integral input-to-state stability of event-triggered control systems[END_REF], [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF], which allows us to work under more general and more natural assumptions on the measurement noise, see Assumption 1.

The goal is to design the dynamics of η i , C i and D i , i.e., the functions Ψ i , for all i ∈ N , such that a given set A is ISpS, see Definition 1. To formalize objective (ii) stated at the end of Section II, we introduce, for any solution (ξ, w) to H and i ∈ N , the set

T i (ξ, w) := (t, j) ∈ dom ξ | (ξ(t, j), w(t, j)) ∈ D i and
(ξ(t, j + 1), w(t, j + 1) ∈ G i (ξ(t, j), w(t, j)) .

(14) Hence, T i (ξ, w) contains all hybrid times belonging to the hybrid time domain of a solution (ξ, w) at which a jump occurs due to triggering condition i (D i and G i ). We introduce the following definition.

Definition 2. Given a closed set A ⊂ R 2n × W, system (7) has a semi-global individual minimum inter-event time (SGiMIET) with respect to A, if, for all ∆ 0 and all i ∈ N , there exists a τ i MIET > 0 such that, for all solutions (ξ, w) with |ξ(0, 0)| A ∆, for all (t, j), (t , j ) ∈ T i (ξ, w),

t + j < t + j ⇒ t -t τ i MIET . ( 15 
)
If τ i MIET can be chosen independent of ∆ for all i ∈ N , then we say that H has a global individual minimum inter-event time (GiMIET).

Definition 2 means that the (continuous) time between two successive transmission instants due to a trigger of condition i are spaced by at least τ i MIET units of times, and that τ i MIET may depend on the size of the initial conditions. Hence, the problem formulation at the end of Section II can be formally stated as for a given set A, synthesize the sets C i and D i , i ∈ N such that A is ISpS and H has a SGiMIET w.r.t. A.

B. Design and analysis

We assume that controllers C i , i ∈ N , are designed such that Assumption 2 below holds. For specific scenarios we show in Section V how this assumption is naturally obtained. Assumption 2. There exist α, α, α ∈ K ∞ , γ ∈ K, β i ∈ K and δ i : R n i o → R 0 continuous for all i ∈ N , a closed non-empty set A and a continuously differentiable function

V : R 2n × W → R 0 such that i) for any χ ∈ R 2n × W α(|χ| A ) V (χ) α(|χ| A ), (16) 
ii) for all χ ∈ R 2n × W and w ∈ W,

∇V (χ), F χ (χ)) -α(|χ| A ) + γ(|w|) + i∈N β i (| e i |) -δ i (o i ), (17) 
iii) for any χ ∈ R 2n × W, w ∈ W and g ∈ G χ (χ, w),

V (g) -V (χ) 0, (18) 
iv) for any ∆ > 0, there exists M ∆ 0 such that for any

χ ∈ R 2n × W satisfying |χ| A ∆, |F χ (χ)| M ∆ . (19) 
Assumption 2 imposes Lyapunov conditions on the χsystem. Item i) means that V is positive definite and radially unbounded with respect to A. Item (ii) is an input-to-state stability property of set A for the flow dynamics, but not the desired one as it involves the error e i . Item iii) implies that the Lyapunov function does not increase at jumps and item iv) imposes boundedness conditions on f i and k i . Assumption 2 implies that, in the absence of a digital network (and thus, e i = 0 and w = w), the set A is inputto-state stable with respect to input w. Again, examples of systems verifying Assumption 2 are provided in Section V.

The next theorem explains how to design Ψ i , i ∈ N , arising in the flow map, and the flow and jump set definitions to ensure the desired objectives are met. Theorem 3. Consider system (7) and suppose Assumptions 1 and 2 hold. We define for all i ∈ N , ξ ∈ X and w ∈ W

Ψ i (o i ) := δ i (o i ) -β i (| e i |) -i η i + c i , (20) 
with c i > β i (2w i ) and i ∈ R >0 tuning parameters. The set A d := {ξ : χ ∈ A and η = 0} is ISpS and system (7) has a SGiMIET.

Theorem 3 provides the expressions of Ψ i , i ∈ N , which ensure that ISS of set A guaranteed by Assumption 2 in the absence of network is approximately preserved in the presence of the digital network. Moreover, the existence of a strictly positive lower-bound on the inter-event time of each triggering mechanism is guaranteed. The interest of Theorem 3 lies in its simplicity, generality and in revealing the main concepts as a "prescriptive framework".

The expression of Ψ i in (20) is based on so-called spaceregularization, as by introducing c i , we enlarge the flow set to ensure the existence of a SGiMIET. While spaceregularization is well known in the hybrid systems literature, we have to be careful when designing c i , because a priori the non-Zenoness only holds if c i satisfies the condition mentioned in Theorem 3. The consequence of this is that we obtain practical stability, i.e., the constant d in (2) will be non-zero. On the other hand, Theorem 3 does not require to make assumptions on the differentiability of w i , and a fortiori on boundedness properties of ẇi , as in existing works in ETC considering measurement noise such as [START_REF] Mousavi | On integral input-to-state stability of event-triggered control systems[END_REF], [START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF]. Additionally, we may exploit the structure present in specific scenarios or ETC mechanisms to obtain less conservative bounds for the parameters c i and, in some cases, a GiMIET, as opposed to semiglobal one in Theorem 3, as will be illustrated in Section V.

V. CASE STUDIES

In this section, we investigate several existing eventtriggering techniques in the literature and show how to modify these to handle measurement noise. We want to stress that this is a non-exhaustive sample of techniques which can be addressed by this method. We prove for this purpose that Assumption 2 is verified, which allows to directly apply Theorem 3.

A. Stabilization of a single system [START_REF] Tabuada | Event-Triggered Real-Time Scheduling of Stabilizing Control Tasks[END_REF], [START_REF] Girard | Dynamic Triggering Mechanisms for Event-Triggered Control[END_REF] A single plant P and a single controller C are considered here. In particular, we assume that the plant dynamics and feedback controller are given by

ẋ = f (x, u), u = k(x). (21) 
As in [START_REF] Tabuada | Event-Triggered Real-Time Scheduling of Stabilizing Control Tasks[END_REF], [START_REF] Girard | Dynamic Triggering Mechanisms for Event-Triggered Control[END_REF], we assume the following properties, Assumption 3. Maps f and k are Lipschitz continuous on compacts. Additionally, there exist α, α, α, γ ∈ K ∞ and a continuously differentiable Lyapunov function V : R n → R satisfying, for any x, v ∈ R n ,

α(|x|) V (x) α(|x|), ∇V (x), f (x, k(x + v)) -α(|x|) + γ(|v|), (22) 
implying that the origin of ẋ = f (x, k(x + v)) is ISS with respect to v.

We derive the following result based on Assumption 3. Proposition 4 implies that, for any bounded measurement noise as defined by Assumption 1, Theorem 3 can be applied to obtain triggers based on (20) that render the origin of the closed-loop system ISpS with the SGiMIET property.

B. Consensus for multi-agent systems

A specific field of interest for ETC is consensus of multiagent systems. We study several event-triggering control schemes in this context next. Due to limited space, we omit commonly used definitions on consensus, which can be found in e.g., [START_REF] Nowzari | Event-triggered communication and control of networked systems for multi-agent consensus[END_REF]. We focus here on single integrator systems, where each plant P i , which we call agent in this section, has single integrator dynamics, i.e., ẋi = u i , with

x i , u i ∈ R. However, note that the ideas of this work apply in more general settings.

For a connected undirected graph G with Laplacian L, it is known that agents achieve consensus when the control law u i = j∈Vi (x i -x j ), with V i the neighbors of agent i, is applied, see [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF]. In vector notation, this is written as u = -Lx, where u = (u 1 , u 2 , . . . , u N ). We use the noisy sampled states for each agent instead of the actual states, resulting in the control law u = -L(x + e + w). Hence, the closed-loop system dynamics are

ẋ = -Lx -Le -L w, (23) 
which results in the dynamics for the hybrid system as

F χ (χ) = (-Lx -Le -L w, Lx + Le + L w, 0 N ). (24) 
We are interested in stability properties of the consensus set

A := χ ∈ R 2n × W | x 1 = x 2 = . . . = x N .
We show that our results extend the works of [START_REF] Garcia | Decentralised event-triggered cooperative control with limited communication[END_REF] and [START_REF] Dolk | Event-Triggered Consensus for Multi-Agent Systems with Guaranteed Robust Positive Minimum Inter-Event Times[END_REF], to render the ETC schemes robust to measurement noise.

1) Decentralized triggering of [START_REF] Garcia | Decentralised event-triggered cooperative control with limited communication[END_REF]: First we consider a similar triggering style as in [START_REF] Garcia | Decentralised event-triggered cooperative control with limited communication[END_REF]. This event generator is of particular interest, since the original paper does not have a non-Zeno proof, as also noted in [START_REF] Nowzari | Event-triggered communication and control of networked systems for multi-agent consensus[END_REF]. By applying our results, we can design two robust triggers, one static and one dynamic, that have the SGiMIET property and thus no Zeno behavior.

The proposition below contains the functions to design a trigger for (23) such that Assumption 2 holds. Proposition 5. Assumption 2 holds for F χ defined as in (24) and G χ as in [START_REF] Dolk | Output-Based and Decentralized Dynamic Event-Triggered Control With Guaranteed Lp-Gain Performance and Zeno-Freeness[END_REF] 

with β i (s) = 1 a N i s 2 and δ i (o i ) = σ i (1 - 2aN i )u 2
i , where N i denotes the number of neighbors of agent i and a ∈ (0, 1 2Ni ), σ i ∈ (0, 1) are tuning parameters. Proposition 5 implies that, for any bounded measurement noise as defined by Assumption 1, the triggers defined in Theorem 3 render the hybrid system (7) ISpS w.r.t. A d with the SGiMIET property.

2) Decentralized dynamic trigger of [START_REF] Dolk | Event-Triggered Consensus for Multi-Agent Systems with Guaranteed Robust Positive Minimum Inter-Event Times[END_REF]: Next we analyze the trigger designed in [START_REF] Dolk | Event-Triggered Consensus for Multi-Agent Systems with Guaranteed Robust Positive Minimum Inter-Event Times[END_REF] without transmission delays to avoid blurring the exposition with too many technicalities. For the scheme of [START_REF] Dolk | Event-Triggered Consensus for Multi-Agent Systems with Guaranteed Robust Positive Minimum Inter-Event Times[END_REF] we require that each agent has an internal clock, τ i ∈ R 0 , such that τi = 1 on flows and τ + i = 0 at any triggering instant of agent i, i.e., we reset the clock if agent i transmits its state. We denote the hybrid system in which these clocks are integrated in H (( 7)-( 13)) with H clock .

The proposition below contains the functions required to design a trigger for system (23) such that Assumption 2 holds. Proposition 6. Assumption 2 holds for (13) and (24) with A = χ ∈ R 2n × W | x i = x j for all i, j ∈ N , e = 0 ,

β i ( e i , τ i ) = (1 -ω i (τ i ))γ 2 i 1 αiσi λ 2 i + 1 e 2 i and δ i (o i ) = (1 -α i )σ i u 2
i , where σ i := (1 -)(1 -2aN i ), γ i := 

1 a N i + µ i , d i := (1 -2aN i ), ω i (τ i ) :=      {1}, when τ i ∈ [0, τ i MIET ), [0, 1], when τ i = τ i MIET , {0}, when τ i > τ i MIET , τ i MIET := - √ α i σ i γ i arctan (λ 2 i -1) √ α i σ i λ i (α i σ i + 1) ,
with α i ∈ (0, 1), ∈ (0, 1), µ i ∈ R >0 and λ i ∈ (0, 1) tuning parameters.

Proposition 6 implies that, for any bounded measurement noise as defined by Assumption 1, the triggers defined in Theorem 3 render the hybrid system (7) ISpS w.r.t. A d clock := {( ξ, τ ) : ξ ∈ A d and τ ∈ R N 0 }. Let us note that, due to the inclusion of the timer-dependent function ω i in the triggers, the system has a GiMIET (instead of a SGiMIET) in this particular case. Additionally, there is no requirement (i.e., no lower bound) on the space-regularization constants c i , and, in fact, if c i = 0 for all i ∈ N , we obtain ISS w.r.t. A d (instead of ISpS).

VI. NUMERICAL EXAMPLES

In this section, we illustrate the results of Section V-B.2 with N = 8 agents that are connected as described by a graph G with undirected edges (1, 2), (1, 8), (2, 3), (2, 7), [START_REF] Mousavi | On integral input-to-state stability of event-triggered control systems[END_REF][START_REF] Abdelrahim | Robust event-triggered output feedback controllers for nonlinear systems[END_REF], [START_REF] Mousavi | On integral input-to-state stability of event-triggered control systems[END_REF][START_REF] Selivanov | Event-Triggered H∞ Control: A Switching Approach[END_REF], (4, 5), [START_REF] Lehmann | Event-based output-feedback control[END_REF][START_REF] Selivanov | Event-Triggered H∞ Control: A Switching Approach[END_REF], [START_REF] Lehmann | Event-based output-feedback control[END_REF][START_REF] Hardouin | Distributed eventtriggered consensus of multi-agent systems with measurement noise and guaranteed interval bounds[END_REF] and [START_REF] Nowzari | Event-triggered communication and control of networked systems for multi-agent consensus[END_REF][START_REF] Hardouin | Distributed eventtriggered consensus of multi-agent systems with measurement noise and guaranteed interval bounds[END_REF]. Due to space limitations, we only show simulation results for the modified algorithm of [START_REF] Dolk | Event-Triggered Consensus for Multi-Agent Systems with Guaranteed Robust Positive Minimum Inter-Event Times[END_REF]. The tuning parameters of [START_REF] Dolk | Event-Triggered Consensus for Multi-Agent Systems with Guaranteed Robust Positive Minimum Inter-Event Times[END_REF] are used, i.e., δ = µ i = η,i = 0.05, a = 0.1 and α i = 0.5 for all i ∈ N . Given these tuning parameters, we obtain γ i = 4.478 and σ i = 0.76 for agents i ∈ N with two neighbors (i.e., N i = 2, thus agents P 1 , P 4 , P 6 and P 7 ) and γ i = 5.482 and σ i = 0.665 for agents i ∈ N with three neighbors (i.e., N i = 3, thus agents P 2 , P 3 , P 5 and P 8 ). We choose λ i = 0.2 for all agents. For these values, we obtain τ i MIET = 0.1562 for agents i ∈ N for which N i = 2 and τ i MIET = 0.1180 for agents i ∈ N for which N i = 3. We include uniformly distributed noise in the interval [-1 • 10 -3 , 1 • 10 -3 ] as measurement noise, hence, w i = 1 • 10 -3 for all i ∈ N . The noise is sampled at a rate of 1 • 10 4 Hz and a zero-order-hold is applied between samples. We demonstrate the results of Theorem 3, i.e., we apply dynamic triggering. Two cases are simulated, first with no space-regularization for all i ∈ N , for which we obtain ISS w.r.t. the consensus set, second with space-regularization constant c i = 1 • 10 -5 for all i ∈ N , for which we have ISpS w.r.t. the consensus set. To compare the results to [START_REF] Dolk | Event-Triggered Consensus for Multi-Agent Systems with Guaranteed Robust Positive Minimum Inter-Event Times[END_REF] (not considering measurement noise), in all cases we select θ i = 0. In Fig. 2, the evolution of the states x i , i ∈ N , with c i = 0 and the corresponding inter-event times are shown for the initial condition x(0) = (8, 6, 4, 2, -2, -4, -6, -8). Fig. 3 depicts the same simulations for c i = 1 • 10 -5 . From the simulations we can make a few observations. Note that, for c i = 0, close to the consensus set the inter-event times are generally close to τ i MIET . This can be explained from the observation that, in these cases, η + i = 0 and u i is generally small, and consequently, the increase in η i for τ ∈ [0, τ i MIET ) is limited. Additionally, we observe that by selecting a c i > 0, the inter-event times are generally significantly larger than the enforced minimum inter-event time. Moreover, because there is no lower-bound on c i , a relatively small c i is often sufficient to obtain desirable average inter-event times. We want to stress that this is a beneficial aspect of this particular scheme, since in general there are constraints on the minimum size of the spaceregularization constants c i to ensure non-Zenoness.

Even though the inclusion of c i leads to ISpS instead of ISS properties, applying space-regularization leads to triggering conditions that are not only robust to measurement noise, but also have, on average, larger inter-event times. Since ISS only leads to asymptotic behavior of the consensus set for vanishing noise, and since most measurement noise is nonvanishing, practical stability or ISpS with larger inter-event times may be more desirable when having communication limitations in mind.

VII. CONCLUSIONS

We presented a general "prescriptive" framework for set stabilization of event-triggered control systems affected by measurement noise. It is shown that, by careful design, we obtain both static and dynamic triggering conditions that render the closed loop input-to-state (practically) stable with a guaranteed positive (semi-)global individual minimum inter-event time. The strengths and generality of the framework are demonstrated on several interesting event-triggered control problems including consensus problems for multiagent systems that we robustify for measurement noise.
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 1 Fig. 1: Networked control setup with event generators (EG).
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 4 Consider system (21) and suppose Assumption 3 holds. Then all conditions of Assumption 2 are met for A = {χ : x = 0} with β(s) = γ(2s) for any s 0, δ(o) = σα( 1 2 | x|) for any x ∈ R n and V as in Assumption 3, with σ ∈ (0, 1) a tuning parameter.

A function w : R 0 → R nw is said to be piecewise continuous, denoted by w ∈ PC, if there exists a sequence {t i } i∈N with t i+1 > t i > t 0 = 0 for all i ∈ N and t i → ∞ when i → ∞ such that w is a continuous function on (t i , t i+1 ) with lim t↓t i w(t) = w(t i ) for each i ∈ N.

Extensions to output-feedback control can be directly envisioned.
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