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Abstract: In this paper, we propose, implement, and analyze the structures of two keyed hash
functions using the Chaotic Neural Network (CNN). These structures are based on Sponge
construction, and they produce two variants of hash value lengths, i.e., 256 and 512 bits. The first
structure is composed of two-layered CNN, while the second one is formed by one-layered CNN
and a combination of nonlinear functions. Indeed, the proposed structures employ two strong
nonlinear systems, precisely a chaotic system and a neural network system. In addition, the proposed
study is a new methodology of combining chaotic neural networks and Sponge construction that is
proved secure against known attacks. The performance of the two proposed structures is analyzed
in terms of security and speed. For the security measures, the number of hits of the two proposed
structures doesn’t exceed 2 for 256-bit hash values and does not exceed 3 for 512-bit hash values.
In terms of speed, the average number of cycles to hash one data byte (NCpB) is equal to 50.30
for Structure 1, and 21.21 and 24.56 for Structure 2 with 8 and 24 rounds, respectively. In addition,
the performance of the two proposed structures is compared with that of the standard hash functions
SHA-3, SHA-2, and with other classical chaos-based hash functions in the literature. The results
of cryptanalytic analysis and the statistical tests highlight the robustness of the proposed keyed
hash functions. It also shows the suitability of the proposed hash functions for the application such
as Message Authentication, Data Integrity, Digital Signature, and Authenticated Encryption with
Associated Data.

Keywords: chaotic neural network; keyed hash functions; security analysis; speed analysis;
sponge construction

1. Introduction

Hash functions can be used in various applications such as Message Authentication, Digital
Signature, Data Integrity, and Authenticated Encryption [1]. As a definition, a hash function H takes
an input message M, and produces an output value h, named hash code, digital fingerprint, message
digest, or simply hash. Precisely, the hash function H takes a bit sequence M (e.g., data, image, video,

Entropy 2020, 22, 1012; doi:10.3390/e22091012 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-7523-4667
https://orcid.org/0000-0003-3555-5682
http://dx.doi.org/10.3390/e22091012
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/9/1012?type=check_update&version=2


Entropy 2020, 22, 1012 2 of 32

and file) with an arbitrary finite length, and produces a fixed length digest h of u bits. The digest acts
as a kind of signature for the input data. Moreover, when the same hash function H is run for the same
input message M, the same hash value h is obtained [2].

A cryptographic hash function employs an encryption algorithm in producing the output value
h. The advantage of cryptographic hash functions is to meet some security requirements and to be
immune against different attacks such as statistical, brute-force, and cryptanalytic attacks, etc. Recently,
CNN based hash functions [3,4] attract the interest of research community because of the important
properties of chaotic systems and neural networks related to the nonlinear security [5,6].

In general, chaos is a kind of deterministic random-like process generated by nonlinear dynamical
systems. Chaos was given by Edward Lorenz [7], and its main properties have been investigated
by a large community of research [8]. Chaotic systems are appropriate to be used in cryptographic
hash algorithms due to their pertinent properties such as random-like behavior, sensitivity to tiny
changes in initial conditions, and unstable periodic orbits. In addition, neural networks are powerful
computational models, designed to simulate the human brain and adopted to solve many problems
in different fields. Neural networks exhibit, by construction, many convenient properties to be used
in cryptographic hash algorithms such as parallel implementation, flexibility, nonlinearity, one-way,
data diffusion, and compression functions.

At first, some designers combine both these systems (chaos and neural network) in the
Merkle–Dåmgard structure to build robust CNN hash functions [9,10]. In our previous work [2],
Abdoun et al. designed, implemented, and analyzed the performance, in terms of security and
speed, of two proposed keyed CNN hash functions based on the Merkle–Dåmgard (MD) construction
with three output schemes, i.e., CNN–Matyas–Meyer–Oseas, Modified CNN–Matyas–Meyer–Oseas,
and CNN–Miyaguchi–Preneel. However, the Merkle–Dåmgard construction has several vulnerabilities to
some attacks such as Second preimage, Multicollisions, Herding, and Length extension attacks [11,12].
To resist these attacks, a new Secure Hash Algorithm called SHA-3 [13] based on an instance
of the KECCAK algorithm was selected as a winner of the National Institute of Standards and
Technology (NIST) hash function competition in 2015 [13–18]. Indeed, the SHA-3 family consists
of four cryptographic hash functions such as, SHA3-224, SHA3-256, SHA3-384, and SHA3-512 and two
Extendable-Output Functions (XOFs) such as SHAKE128 and SHAKE256 [13]. For the XOFs, the length
of the output can be chosen to meet the requirements of user applications. There are different structures
being used to build various hash functions such as Wide Pipe [19], Merkle–Dåmgard [20,21], Haifa [22],
Fast Wide Pipe [23], Sponge [24], etc. Indeed, a number of these existing structures are employed in
the design of many popular hash functions. The Merkle–Dåmgard construction is used in the design
of MD5 [25] family like SHA-1 [26], and SHA-2 [27] standards, while the Sponge construction is used
to design a new secured standard hash algorithm SHA-3 [13], which will be used when the current
standard SHA-2 will be inevitably compromised. In our previous work [28], Abdoun et al. proposed,
implemented, and analyzed the performance of a new structure for keyed hash function based on
chaotic maps, neural network, and Sponge construction.

Since 2009, there are several lightweight cryptographic hash functions [29] proposed that are based
on a Sponge construction such as LightMAC [30], TuLP [31], SipHash [32], QUARK [33], PHOTON [34],
and SPONGENT [35].

In this paper, two robust keyed hash functions that contain a chaotic system (CS) and a CNN-based
Sponge construction are proposed. In these two proposed structures, the input message M is hashed to a
hash value h with a fixed length of bits equal to 256 or 512 bits. The combination of Sponge construction
and CNN results the increase in the robustness of the proposed hash function. The proposed structures
are based on the efficient CS [36]. The efficient CS in [36] produces pseudo-chaotic samples and those
are used as the parameter values of the neural network. In addition, the proposed activation function
of neural network is formed of two chaotic maps that are connected in parallel. The proposed CNN
and CS ensure that our hash functions are more secure against different attacks in comparison with
other hash functions that are based on Sponge construction. Indeed, the various experimental results
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and theoretical analysis demonstrate the effectiveness and prove that the proposed hash functions
have very good statistical properties, high message sensitivity, high key sensitivity, strong collision
resistance, and are immune against collision, preimage, and second preimage attacks [37].

The rest of the paper is organized as follows: Section 2 introduces a brief reminder of cryptographic
hash function properties. Then, the general models of Sponge and keyed-Sponge constructions are
presented. Section 3 describes in detail the proposed structures of the two keyed CNN hash functions
based on Sponge construction with their important constitutive elements. Section 4 shows the results
and analysis in terms of security and computational performance for the proposed hash functions,
and comparison with the two standards SHA-2 and SHA-3. Finally, in Section 5, conclusions for the
contribution and the future work are given.

2. Preliminaries

2.1. Properties and Classification of Cryptographic Hash Functions

The cryptographic hash function H (noticed also as hash functions in the rest of paper) must
verify the two implementation properties, i.e., ease of computation and compression, in addition to the
three main security properties, i.e., preimage resistance (called one-way), second preimage resistance
(called weak collision resistance), and collision resistance (called strong collision resistance).

2.2. Structures of Cryptographic Keyed Hash Functions Based on Sponge Construction

In this section, we describe the three phases of the Sponge construction, and then how to build
keyed-Sponge hash functions from unkeyed Sponge construction.

2.2.1. The Sponge Construction: Initialization, Absorbing and Squeezing Phases

In Figure 1, the general structure of the unkeyed Sponge construction is shown and it has three
phases: Initialization, Absorbing, and Squeezing. The unkeyed Sponge construction, which operates
on a state HMi (i ≥ 0) of size b bits, builds a new hash function. These states are split into an outer
part of r-bit size named bitrate, which is accessible externally, and an inner part C of c-bit size named
capacity, which is hidden. The size called width b-bit is given by b = r + c. In the initialization phase,
the initial value IV = HM0 of b-bit size is set to 0. The input message M is padded and then split into
q blocks of r-bit size. Next, in the absorbing phase, the q blocks of the entire message are absorbed on
the basis of message block Mi by message block Mi, (i = 1, . . . , q). In the squeezing phase, the hash
value h is obtained by squeezing out r-bit block by r-bit block.

Note that the security depends partially on the capacity c, while the speed of the construction
relies partially on the bitrate r. In the absorption process, HMi, (i = 0, . . . , q− 1), with r-bit size is
xored with each message block Mi, (i = 1, . . . , q), to become the input of the function f. If we increase
the bitrate r, then more bits are absorbed at once and the process runs faster. However, the increase of
the bitrate r implies the decrease in the capacity c, or the security is reduced. Thus, there is a trade-off
between security and speed.

As mentioned before, the KECCAK-p family of permutations is the specialization of the
KECCAK-f family:

KECCAK− p[b, nr] = KECCAK− f [b] (1)

where nr is the number of rounds and b is the width. Therefore, the KECCAK family is denoted by
KECCAK[c](N, d) as

KECCAK[c](N, d) = SPONGE[KECCAK− p[1600, 24], 1600− c, pad10∗1](N, d), (2)

where N is the concatenation of the initial message M with the suffix 01, or (N = M ‖ 01); pad10∗1 is
the used padding rule explained below; d is the hash value length (u = d); and Sponge[.] is the sponge
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function. As we can see, for a given input message M, this equation is restricted to the case nr = 24
rounds and b = 1600 bits.

In particular, the four variants of SHA-3 standard hash functions are defined from the
KECCAK[c](N, d) function as follows:

SHA3− 256(M) = KECCAK[512](M ‖ 01, 256)

SHA3− 224(M) = KECCAK[448](M ‖ 01, 224)

SHA3− 512(M) = KECCAK[1024](M ‖ 01, 512)

SHA3− 384(M) = KECCAK[768](M ‖ 01, 384)

In each case, the suffix 01 supports the domain separation; it distinguishes the SHA-3 hash
functions from the XOFs, where its suffix is 1111 (N = M ‖ 1111), and the capacity c is double the hash
value length u, i.e., c = 2u.

Thus, to ensure that the obtained message (M ‖ 01) of arbitrary length is padded to become a bit
string with the length of multiple of r bits, and a padding rule is necessary. Indeed, a simple padding
rule with 0 is insufficient because the produced hash value will be vulnerable to various attacks due to
the collision between all-zero latest message blocks.
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Figure 1. General architecture of the Sponge construction.

2.2.2. Unkeyed Sponge Construction to Keyed-Sponge Construction

The unkeyed Sponge hash functions, which use an initial value IV, are transformed to keyed-Sponge
hash functions, without any structural modification, by adding a secret key K as an additional entry
to the structure. In the literature, three types of keyed-Sponge functions were reported as displayed
in Figure 2:

1. The Outer keyed-Sponge (OKS) [38]: The input message is obtained by prepending the secret key K
to the message M, i.e., K ‖ M as in Figure 2a.

2. The Inner keyed-Sponge (IKS) [39]: The inner part of the initial value IV contains the secret key K as
in Figure 2b.

3. The Full-State Keyed Sponge (FKS) [40]: The inner part of the initial value IV contains the secret key
K as IKS, but the input message M is absorbed over the entire b-bit state instead of absorbing it in
the r-bit outer part only as in Figure 2c.
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In the literature, the OKS and IKS hash functions were analyzed by Andreeva et al. [41], and Naito
and Yasuda [42]. The donkeySponge construction employed the idea of the third type as in [43], and an
analysis for only one output block was given by Gaži et al. [44]. A complete security analysis of the
FKS was given by Daemen et al. [45] and Mennink et al. [40].

Under the security perspective, the same security level of c bits is achieved by the three modes,
and there is no reason to take a key K of size |K| bits greater than the capacity c (|K| > c) [46]. However,
in terms of the number of permutation evaluations, OKS and IKS are less efficient than FKS, that is,
the absorption of b-bit input data at a time rather than r bits (r < b). Thus, we restrict our focus to FKS
hash functions. There are several applications of the keyed-Sponge hash functions such as the MAC
generation and the Bitstream encryption. For the first application, the MAC function is given by

MACK,IV [M] : Zl
2 × Zb

2 × ZL
2 → Zu

2 , (3)

where Z2 is a binary sequence; IV is the initial value; K is the secret key; and |K|, b, L, and u
are the lengths of the secret key K, the initial value IV, the message M, and the desired hash
value h, respectively.

For the second application, the STREAM function is given by:

STREAMK,IV : Zl
2 × Zb

2 → Z∞
2 . (4)

In the next section, we introduce our proposed keyed-Sponge CNN hash functions.
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Figure 2. The three types of keyed-Sponge functions.

3. Proposed Keyed-Sponge Chaotic Neural Network Hash Functions

The proposed keyed-Sponge hash functions are the chaotic functions C fi, (i ≥ 1) that contain a CS
and a CNN [47]. These chaotic functions use a padded message block Mi ‖ 0c, (i = 1, . . . , q) of size
b-bit, subkeys KMi, (i ≥ 1) of length 128 bits and a secret key KM0 of length |K| = 160 bits and produce
hash values with two variant lengths, 256 bits and 512 bits, depending on the value of r and c as shown
in Figure 3.
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The first CNN hash function is made up of a two-layered Neural Network called Structure 1,
whereas the second hash function is made up of a one-layered Neural Network followed by a
combination of Nonlinear (NL) functions called Structure 2 [28].

In the following subsection, the architecture of the two proposed keyed-Sponge CNN hash functions
is described.
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Figure 3. General architecture of the two proposed keyed-Sponge CNN hash functions.

3.1. Description of the General Structure of the Two Proposed Keyed-Sponge CNN Hash Functions

The general structure of the proposed keyed-Sponge CNN hash functions (KSCNN[c](M ‖ 01, u)) is
composed of three phases, i.e., Initialization, Absorbing, and Squeezing phases (see Figure 3).
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3.1.1. Phase 1: Initialization

This phase initializes the secret key K = KM0 and the initial value IV = HM0 to 0, and determines
the values of r and c according to Table 1. In addition, the input message M is appended by the suffix
01, in this phase. Then, the appended message M||01 is padded using the function Pad (explained
below), and divided into q blocks of the r-bit size, Mi with (i = 1, . . . , q).

For Structures 1 and 2, we adopt the same value of c like the standard SHA-3, i.e., c equal to
512 bits (like SHA3-256) for the 256-bit hash value, and c equal to 1024 bits (like SHA3-512) for the
512-bit hash value.

We use the multi-rate padding Pad in our proposed hash functions, which appends a bit sequence
10 ∗ 1 of length v + 2 bits (a bit 1 followed by the minimum number v of bits 0, and lastly a bit 1),
as shown in Equation (5):

v = r−mod[((L + 2) + 2), r], (5)

where mod is the modulo function and L = |M|. In general, we have three cases of padding as shown
in Figure 4:

Case 1 : mod(|M + 2|, r) ≤ r− 2;

Case 2 : mod(|M + 2|, r) = 0;

Case 3 : mod(|M + 2|, r) > r− 2.

Now, let’s take a look at the three cases of padding, where r = 1088 bits as follows:

Case 1 :i f L = 3248 bits :

v = 1088−mod[(3248 + 2) + 2, 1088] = 12 bits;

Case 2 :i f L = 3262 bits :

v = 1088−mod[(3262 + 2) + 2, 1088] = 1086 bits;

Case 3 :i f L = 3261 bits :

v = 1088−mod[(3261 + 2) + 2, 1088] = 1087 bits.

Then, we divide the padded message into q blocks, and the obtained message is processed as a
sequence of blocks:

M1 ‖ M2 ‖ . . . ‖ Mq = M ‖ 01 ‖ pad10∗1 (6)

Table 1. Characteristics of the two proposed keyed-Sponge hash functions based on CNN.

Hash Function Characteristics

Definition r (bits), c (bits) |h| (bits)

Structure 1-256 (M) KSCNN[512] (M ‖ 01, 256) 1088 512 256
Structure 2-256 (M)

Structure 1-512 (M) KSCNN[1024] (M ‖ 01, 512) 576 1024 512
Structure 2-512 (M)
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Figure 4. Padding rule in the two proposed keyed-Sponge CNN hash functions of the input message M.

3.1.2. Phase 2: Absorbing

In the second phase, the q blocks of the message, Mi, (i = 1, . . . , q), are absorbed, and each block is
of r bits. Each message block Mi, (i = 1, . . . , q), is padded by the sequence 0c. Then, the obtained blocks
Mi ‖ 0c, (i = 1, . . . , q) with the length of b bits are xored with the intermediate hash values HMi−1,
(i = 1, . . . , q). It is noted that HM0 is defined in the initialization phase (HM0 = IV). The obtained
values from the xor operation hi−1, (i = 1, . . . , q), with the length of 1600 bits form the inputs of
chaotic functions C fi, (i = 1, . . . , q), in addition to the subkeys KMi, (i = 1, . . . , q − 1), of 128 bits.
For every r-bit input message block Mi, (i = 1, . . . , q), the chaining variables HMi, (i = 1, . . . , q), of b
bits (e.g., b = 1600 bits) are filled from the outputs of C fi, (i = 1, . . . , q). KM0 = K is the secret key of
160 bits for the first chaotic function C f1 [48]. For the other chaotic functions C fi, (i ≥ 2), the subkeys
KMi, (i = 1, . . . , q− 1) are obtained from the Least Significant Bit (LSB) of HMi, (i = 1, . . . , q− 1),
or KMi = LSB(HMi), (i = 1, . . . , q− 1). These subkeys KMi (i = 1, . . . , q− 1) are used by the CS
to generate initial conditions and the necessary parameters for the CNN. For the final chaotic function
C fq, HMq forms the final hash value hq with the length equal to b bits as the output of the absorbing
phase of the message M. The pseudo-code of the absorbing phase Algorithm 1 is presented below:

Algorithm 1 The absorbing phase.

Require: r < b
M1 ‖ M2 ‖ . . . ‖ Mq ← Pad(M ‖ 01)
HM0 ← 0b

for i = 1 to q do

hi−1 ← HMi−1 ⊕ (Mi ‖ 0c))
HMi ← C fi(KMi−1, hi−1)

end for
Return (bhqc)u.

3.1.3. Phase 3: Squeezing

Squeezing phase is only used when the length of the hash value u is greater than the width b,
i.e., u > b. In this case, the hash value hq of b bits generated by the absorbing phase is the input
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to the squeezing phase, and the obtained hash values HMi, (i ≥ q), are sequentially forwarded to
C fi, (i ≥ q + 1). For each HMi, (i ≥ q), we extract the r most significant bits to form Zj, (j ≥ 1), and the
128 least significant bits to produce the key KMi, (i ≥ q), for the CS of each C fi, (i ≥ q + 1). Finally,
the r-bit size of all obtained values Zj, (j ≥ 1), are concatenated to constitute the final hash value h of
the desired length of u bits as follows:

h = Z1||Z2||Z3||. . . = (bHMqc)r||(bHMq+1c)r||(bHMq+2c)r|| . . . (7)

The obtained hash value h can be used as a Message Authentication Code (MAC) for Digital
Signature (DS) and Authenticated Encryption (AE) applications [49,50]. The pseudo-code of the
squeezing phase Algorithm 2 is given below:

Algorithm 2 The squeezing phase.

Require: u > b
Z1 ← (bHMqc)r
h← Z1
j← 2
for i = q+1, . . . do

while |h| < u do

hi−1 ← HMi−1
HMi ← C fi(KMi−1, hi−1)
Zj ← (bHMic)r
h← h ‖ Zj
j← j + 1

end while
end for
Return (bhc)u.

In the next paragraph, the proposed CS will be used in the chaotic functions C fi, (i ≥ 1),
to generate the necessary parameters and initial conditions for CNN as described above.

3.2. Detailed Description of the Proposed Chaotic System

As shown in Figure 5, the proposed CS is a simple version of that given by S. El Assad and H. Noura
[36]. It is based on the Discrete Skew Tent map (DSTmap) in Equation (8) as

KSs(n) = DSTmap(KSs(n− 1), Q1) =


2N × KSs(n−1)

Q1 i f 0 < KSs(n− 1) < Q1

2N − 1 i f KSs(n− 1) = Q1

2N × 2N−KSs(n−1)
2N−Q1 i f Q1 < KSs(n− 1) < 2N

(8)

where N is the finite precision equal to 32 bits; and Q1 is the control parameter of DSTmap. KSs(n− 1)
and KSs(n) are the outputs of DSTmap at the (n− 1)th and nth iterations, respectively. The value range
of Q1, KSs(n− 1), and KSs(n) is from 1 to 2N − 1. The secret key K of the first input block message, M1,
is represented by the following equation:

K = {KSs1(−1), Ks1, KSs1(0), Q1, Us}, (9)

where KSs1(−1), Ks1, KSs1(0), Q1, and Us are parts of the secret key K. Us is only used for generation
of the first sample. The components of the secret key K are samples of 32 bits, and its size is:

|K| = |KSs1(−1)|+ |Ks1|+ |KSs1(0)|+ |Q1|+ |Us| = 160 (bits) (10)
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DSTmap

Z-1

X

KSsi(n)

Ksi

kSsi(n-1)

KMi

Figure 5. Structure of the ith Chaotic System used in the two proposed structure of keyed-Sponge CNN
hash functions.

3.3. Keyed-Sponge Hash Functions Based on Two-Layered CNN Structure (Structure 1)

The structure of the chaotic function C fi for KSCNN[512] and KSCNN[1024] is shown in Figure 6.
It contains two layers of neurons, i.e., a CNN input layer of five neurons and a CNN output layer of
eight neurons. The necessary samples, Key Stream KS, are generated by the CS to supply the both
layers. The KS is composed as follows:

KS = {BI, WI, QI, BO, WO, QO} (11)

The size of KS must be:

|KS| = |BI|+ |WI|+ |QI|+ |BO|+ |WO|+ |QO| = 129 samples, (12)

where |BI| = 5 samples, |WI| = 50 samples, |QI| = 10 samples, |BO| = 8 samples, |WO| = 40 samples and
|QO| = 16 samples. Each component has 32 bits in length.

Indeed, all neurons of the two CNN layers use the same activation function with different number
of inputs. For the input layer, each neuron has 10 inputs receiving data from hi, (i = 0, . . . , q− 1) as
displayed in Figures 6 and 7. In addition, for (k = 0, . . . , 4), the first five inputs Pj, (j = 10k, . . . , 10k+ 4),
of each neuron are weighted by the WIj, (j = 10k, . . . , 10k + 4), and then added together with the bias
BIk (weighted by 1), to form the input of the chaotic map DSTmap. The last five inputs Pj, are weighted
by WIj, (j = 10k + 5, . . . , 10k + 9), and then combined together with the same bias BIk to form the
input of the chaotic map DPWLCmap. All inputs Pj, biases BIk and weights WIj are samples (integer
values) of 32 bits. QIk,1 and QIk,2 are the control parameters of DSTmap and DPWLCmap, respectively.
The biases BIk, (k = 0, . . . , 4), are necessary in case the input message is null as seen in Figure 7.
The chaotic map DPWLCmap is realized as follows:

KSp(n) = DPWLCmap(KSp(n− 1), Q2) =



2N × KSp(n−1)
Q2 i f 0 < KSp(n− 1) ≤ Q2;

2N × KSp(n−1)−Q2
2N−1−Q2 i f Q2 < KSp(n− 1) ≤ 2N−1;

2N × 2N−KSp(n−1)−Q2
2N−1−Q2 i f 2N−1 < KSp(n− 1) ≤ 2N −Q2;

2N × 2N−KSp(n−1)
Q2 i f 2N −Q2 < KSp(n− 1) ≤ 2N − 1;

2N − 1−Q2 otherwise;

(13)

where KSp(n − 1) and KSp(n) are the outputs of DPWLCmap at the (n − 1)th and nth iterations,
respectively; N is the number of bits defining the finite precision, N = 32 bits; Q2 is the control
parameter; KSp(n− 1), KSp(n) and Q2 range between 1 to 2N−1.
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After computation, the two outputs of DSTmap and DPWLCmap are xored together to produce
the output of neurons represented by Ck, (k = 0, . . . , 4), which is presented by the following equation:

Ck = mod{[F1 + F2], 2N} where


F1 = DSTmap{mod([

10k+4
∑

j=10k
(WIj × Pj)] + BIk, 2N), QIk,1},

F2 = DPWLCmap{mod([
10k+9

∑
j=10k+5

(WIj × Pj)] + BIk, 2N), QIk,2}.
(14)

At the output layer, each neuron has five inputs, WOk,j × Cj, (k = 0, . . . , 7; j = 0, . . . , 4),
where k represents the index of output neurons, j represents the index of input neurons; WOk,j,
(k = 0, . . . , 7; j = 0, . . . , 4), are the weights associated with the connections between output
and input layers, and Cj, (j = 0, . . . , 4) are the outputs of neurons at the input layer; WOk,j,
(k = 0, . . . , 7; j = 0, . . . , 4), and Cj, (j = 0, . . . , 4), both are samples of 32-bit length. As presented in
Figure 8 for the inputs of each neuron at the output layer, the outputs of the first three neurons at the
input layer, C0, C1 and C2, are fed to the chaotic map DSTmap, and the last two outputs C3 and C4

from the input layer are sent to the chaotic map DPWLCmap. After computation, the outputs of chaotic
maps DSTmap and DPWLCmap are xored together to generate the output of the neuron, given by the
following equation:

Hk = mod{[G1 + G2, 2N ]} where


G1 = DSTmap{mod([

2
∑

j=0
(WOk,j × Cj)] + BOk, 2N), QOk,1},

G2 = DPWLCmap{mod([
4
∑

j=3
(WOk,j × Cj)] + BOk, 2N), QOk,2.}

(15)

Here, the control parameters QOk,1, QOk,2, (k = 0, . . . , 7), and the biases BOk, (k = 0, . . . , 7),
used by the two chaotic maps, are also samples of 32 bits in length.

Finally, the output layer of the proposed structure is iterated seven times to produce the
intermediate hash values with the length b = b7× 8× 32c bits.
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Figure 6. Detailed architecture of the ith chaotic function in the proposed two-layered KSCNN
hash function.
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Figure 7. Detailed architecture of the kth neuron at the input layer of the two proposed KSCNN
hash functions.
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Figure 8. Detailed architecture of the kth neuron at the output layer of the proposed two-layered
KSCNN hash functions.

3.4. Keyed-Sponge Hash Functions Based on One-Layered CNN and One NL Output Layer (Structure 2)

The architecture of the second proposed KSCNN hash function uses the same input CNN layer as
that in Structure 1, and the second layer is replaced by NL functions. The NL functions are similarly
used in SHA-2 as displayed in Figure 9. The CS generates the necessary samples to supply the CNN of
each C fi, (i ≥ 1) as

KS = {BI, WI, QI, WO}, (16)

and its size is

|KS| = |BI|+ |WI|+ |QI|+ |WO| = 70 samples. (17)

Here, |WO| = 5 samples instead of 40 samples as used in Structure 1.
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The outputs of neurons at the input layer Ck, (k = 0, . . . , 4) are calculated by Equation (14).
As seen in Figure 10, the outputs of neurons are weighted by WOk,k, (k = 0, . . . , 4), to form the
inputs Dk, (k = 0, . . . , 4) for the NL functions of the output layer; Dk = WOk,k × Ck, (k = 0, . . . , 4).
The outputs Hk, (k = 0, . . . , 7) are calculated by the following equations:

H0 = D0 ⊕ t1 ⊕Maj(D1, D2, D3)⊕ Σ0(D1),

H1 = t1 ⊕ D0,

H2 = D0 ⊕ D1, H3 = D1 ⊕ D2, H4 = D2 ⊕ D3,

H5 = D0 ⊕ D1 ⊕ t1,

H6 = D1 ⊕ D2 ⊕ t1,

H7 = D2 ⊕ D3 ⊕ t1,

where t1 = Ch(D1, D2, D3)⊕ D4 ⊕ Σ1(D3),

(18)

where Hk, (k = 0, . . . , 7) are values of 32-bit length and Dk, (k = 0, . . . , 4) are truncated to 32 bits.
The four NL functions, Maj, Ch, Σ0 and Σ1, are defined by the equations as

Maj(D1, D2, D3) = (D1 ∧ D2)⊕ (D1 ∧ D3)⊕ (D2 ∧ D3),

Ch(D1, D2, D3) = (D1 ∧ D2)⊕ (¬D1 ∧ D3),

Σ0(D1) = ROTR2(D1)⊕ ROTR13(D1)⊕ ROTR22(D1),

Σ1(D3) = ROTR6(D3)⊕ ROTR11(D3)⊕ ROTR25(D3),

ROTRn(x) = (x � n) ∨ (x � (32− n)),

(19)

where the denotations are ¬: NOT logic, ∧: AND logic, ∨: OR logic, ⊕: XOR logic,�: binary shift left
operation, and�: binary shift right operation.

To compute the intermediate hash values, the output layer is iterated nr times firstly, while the
value of nr (1, 2, 4, 8, 16, and 24) depends on the desired security level. The obtained results given in
the performance section indicate that nr = 8 rounds is sufficient. Then, with fixed nr, we again iterate
the output layer seven times to obtain the desired length of the intermediate hash values as done
in Structure 1.

D0
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D4

H0

H1

H2

H3

H4

H5

H6

H7

Ch Ma ∑0∑1

Non-Linear Functions

t1

Figure 9. Detailed structure of NL Functions block.
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Figure 10. Detailed architecture of the ith chaotic function in the proposed keyed-Sponge hash function
based on one-layered NL CNN.

4. Performance Analysis

In order to evaluate the performance of KSCNN[512] and KSCNN[1024], the performance analysis
focuses on the security and the number of needed cycles per byte (NCpB). In addition, we compare
the obtained performance with the standard hash algorithm SHA-3. First, we analyze the preimage
resistance (one-way property) of the proposed structures. Then, we evaluate the statistical tests such
as the collision resistance, the distribution of hash value, the sensitivity of hash value h to the message
M and the sensitivity of hash value h to the secret key K, and the diffusion effect. In addition, we study
the immunity of the proposed structures against the brute-force and cryptanalytic attacks. The detailed
description of these tests is presented in our previous work [47]. For that, we just resume in this section
the necessary test description to interpret the obtained results.

4.1. One-Way Property

According to Equations (14) and (15), for a hash value h, it is highly difficult to retrieve the secret
key K and the message M. For a given secret key K, the attacker tries to find the message M using the
brute force attack (as explained in the Section 4.3.1), such that its hash is equal to a given hash value.
On average, an attacker tries 2u−1 values of the message, to find the hash value h of length u (u is equal
to 256 or 512 bits). Nowadays, with such lengths, this attack is infeasible [51,52].

4.2. Statistical Tests

In this sub-section, we implement and analyze the different statistical tests.

4.2.1. Collision Resistance Analysis

This statistical test quantitatively evaluates the collision resistance [51]. For that, given a hash
value h of a random message M in the ASCII format h = {c1, c2, . . . , cs}, and its corresponding
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h′ = {c′1, c′2, . . . , c′s} obtained with one bit flipping of the same message M, we calculate the number
of hits ω as follows:

ω =
s

∑
i=1

f (T(ci), T(c
′
i)), (20)

where the function

f (x, y) =

{
0 if x 6= y;

1 if x = y.
(21)

The value s = u
8 , and T(.) is the function that converts the entries to their equivalent

decimal values.
In theory, the relation between a number of tests and a number of hits ω = 0, 1, 2, . . . , s as

mentioned in [53] that

WJ(ω) = J × Prob{ω} = J
s!

ω!(s−ω)!
(

1
2k )

ω(1− 1
2k )

s−ω, (22)

where J represents the number of independent experiments. These theoretical values of WJ(ω)

according to Equation (22) are given in Tables 2 and 3 for hash values with the lengths of 256 and
512 bits, respectively.

Table 2. Theoretical values of ω with respect to the number of tests J for |h| = 256 bits.

Number of Hits ω

0 1 2 3 32

J 512 451.72 56.68 3.44 0.13 4.42× 10−75

1024 903.45 113.37 6.89 0.27 8.84× 10−75

2048 1806.91 226.74 13.78 0.54 1.76× 10−74

Table 3. Theoretical values of ω with respect to the number of tests J for |h| = 512 bits.

Number of Hits ω

0 1 2 3 4 64

J 512 398.55 100.02 12.35 1.00 0.05 7.14× 10−57

1024 797.10 200.05 24.71 2.00 0.11 1.42× 10−56

2048 1594.20 400.11 49.42 4.00 0.23 2.85× 10−56

For the two lengths of hash values, the obtained results in Table 4 indicate that the number of
rounds nr = 8 and nr = 24 give the best results. Indeed, for 256-bit hash value length with nr = 8,
there are two hits for 17 tests, one hit for 244 tests, and zero hits for 1787 tests. For nr = 24, there are
two hits for 11 tests, one hit for 213 tests, and zero hits for 1824 tests. Similar behavior is obtained for
the 512-bit hash value with a slight increase in the number of hits.

In Table 5, we summarize the obtained number of hits ω = 0, 1, 2, 3, 4 for the two proposed
structures. As expected, we obtain comparable results. The absolute difference d of two hash values is
calculated as

d =
s

∑
i=1
|T(ci)− T(c

′
i)|. (23)

The mean, mean/character, minimum, and maximum of d are presented in Table 6. It is clear that
the values of mean/character are close to the expected ones as observed from the obtained results,
evaluated by Equation (24) that are equal to 85.33 for 256-bit hash value length (L = 256) and equal to
170.66 for 512-bit hash value length [54]:

E[T(ci)− T(c
′
i)] =

1
3
× L (24)
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Table 4. Number of hits ω with respect to the number of rounds nr of Structure 2 for 2048 tests.

ω

0 1 2 3 4 5

nr

|h|
256 1 1814 220 14 0 0 0

2 1815 224 8 1 0 0
4 1802 232 13 1 0 0
8 1787 244 17 0 0 0

16 1825 214 8 1 0 0
24 1824 213 11 0 0 0

512 1 1598 396 52 1 1 0
2 1552 439 52 5 0 0
4 1594 401 44 6 3 0
8 1607 371 67 3 0 0

16 1602 395 47 4 0 0
24 1600 359 46 2 1 0

Table 5. Number of hits ω regarding the proposed structures with the two lengths of hash values for
2048 tests.

|h| ω

0 1 2 3 4

Structure 1 256 1806 229 13 0 0
512 1572 419 51 6 0

Structure 2 256 1787 244 17 0 0
nr = 8 512 1607 371 67 3 0

Structure 2 256 1824 213 11 0 0
nr = 24 512 1600 399 46 2 1

Table 6. Mean, mean/character, minimum, and maximum of the absolute difference d for the proposed
structures with the two lengths of hash values and J = 2048 tests.

|h| Mean Mean/Character Minimum Maximum

Structure 1 256 2715.39 84.85 1695 3831
512 5414.34 169.19 3911 7062

Structure 2 256 2584.51 80.76 1654 3759
nr = 8 512 5478.30 171.19 3874 6871

Structure 2 256 2665.24 83.28 1642 3784
nr = 24 512 5233.34 163.54 3767 6606

4.2.2. Hash Value Distribution

Theoretically, the hash value h, produced by a hash function H, should be uniformly distributed
in the entire output range. For this purpose, we execute the following test for a given message M as:

“With the wide application of Internet and computer technique, information
security becomes more and more important. As we know, hash function is one of the
cores of cryptography and plays an important role in information security. Hash
function takes a message as input and produces an output referred to as a hash value.
A hash value serves as a compact representative image (sometimes called digital
fingerprint) of input string and can be used for data integrity in conjunction with
digital signature schemes.”
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The hash value h is computed using Structures 1 and 2 with the 256-bit and 512-bit hash value
lengths. In Figure 11, we exhibit the ASCII values of the message M (Figure 11a), and its hexadecimal
hash value h (Figure 11b) according to their index of positions.

As predicted, the distribution of the original message is located around a small area, while the
distribution of hexadecimal hash value looks like a mess. The distribution of the hash value
h (Figure 11d) is also verified, even under the worst case of zero input message (Figure 11c).
Similar results are obtained for the two proposed structures with their two variant hash output lengths.
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Figure 11. Hash value distribution for Structure 1 with |h| = 256 bits. (a) ASCII values of message
M, (b) Hexadecimal hash value h of M, (c) Zero message, and (d) Hexadecimal hash value h of the
zero message.

4.2.3. Sensitivity of Hash Value h to the Input Message M

A hash function H is very sensitive to an input message M. It means that a small change in its
input will generate a totally different hash value hi. To this end, for a given secret key K, the hash
value hi in hexadecimal, the number of changed bits Bi(h, hi), and the sensitivity of the hash value h
to the original message M are measured by Hamming Distance HDi(h, hi)(%) for the two proposed
structures with their two variants of hash value lengths of 256 and 512 bits as

Bi(h, hi) =
|h|

∑
k=1

[h(k)⊕ hi(k)] bits, (25)

and

HDi(h, hi)% =
Bi(h, hi)

|h| × 100%. (26)

The different message variants are obtained under the following six conditions:
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Condition 1: The input message M is the one given in Section 4.2.2.
Condition 2: The first character W in the input message is changed to X.
Condition 3: The word With in the input message is changed to Without.
Condition 4: The dot at the end of the input message is changed to the comma.
Condition 5: A blank space at the end of the input message is added.
Condition 6: We exchange the first block M1

“With the wide application of Internet and computer technique, information
security becomes more and more important. As we know, hash function is one of the
cores of cryptography and plays an important role in information security. Hash
function takes a mes,”

with the second block M2

“sage as input and produces an output referred to as a hash value. A hash value
serves as a compact representative image (sometimes called digital fingerprint)
of input string and can be used for data integrity in conjunction with digital
signature schemes.”

With each condition, Table 7 shows the obtained results of hi, Bi, and HDi(%) for the 256-bit
hash value. Similar results are obtained for |h| = 512 bits. In Table 8, the obtained results for the two
structures with their two lengths of 256 and 512 bits are compared. All the results are close to the
expected values (Bi = 128 bits for the 256-bit hash value length, Bi = 256 for the 512-bit hash value
length, and HDi = 50% for all proposed structures), demonstrating the high sensitivity to the input
message M for the two proposed structures.

Table 7. Sensitivity of h to M for the proposed structures with |h| = 256 bits.

Message Variants Hash Values in Hexadecimal Format Bi HDi%

Structure 1 1 d53280d1f7a652977e7943472ea34a343746f09f6c8ea084f0b9d5009fecf467 – –
2 2081268dee082e8b2a9cbaaa8156fad0595d6fbd83aea9a92a5c649d9e53a82e 139.00 54.29
3 9c0f5327df3f01a4311283caae6051a7780ca06d81d69dbfdfed57dec4a67db4 128.00 50.00
4 c0a1b6e48295f620c2c42e1ed101023cbefecf6eca5d505d3355604fb8bb2db0 142.00 55.46
5 e3edfd704f2befe9b54c6d000b1116316112b98cf0b6432f68ddf0ee6b829fcf 133.00 51.95
6 29f9cf09e3d0764b53c4a67a5450fc828fc78e12af51de43b6b77f978292cdb3 146.00 57.03

Average – 137.60 53.75

Structure 2 1 d3a15d8621f3fec42dca5abf7077091f96275130fcef4e21a1521d81470245ae – –
nr = 8 2 346dd0bf7ac39dd0992e27b4fdef79e6aacda0d29733324ef3f26c1ca4d0b528 133 51.95

3 2ae7c91d1e34279fcc90fdee067837028045a922c786c55c0d6e0fb08b539190 133.00 51.95
4 82ed73ae08e2efe8498d795a2fe685a730a5c2fdaec6dd8cc8ad2171d7ee662b 116.00 45.31
5 3bae189d094240cf7ca3a5ffcf9846f056d078b4ba10f76d092b146290632a26 137.00 53.51
6 145759fe7d944ed8adaa126d7d0107cef75326f757812c56872a39f50d7818cc 121.00 47.26

Average – 128.00 50.00

Structure 2 1 f39457de07d62bea3fb35b5698ec008e004db03197b77a7e30e821a6a8499119 – –
nr = 24 2 cb5dc81199de92b10ebf54d31185f37676ba5ca36d077d91723dda34150275e1 140 54.68

3 9a0d013b3132a1db0ada8a5aa59ce1a49d38137760d7dc81cf91b77ff73545ac 140.00 54.68
4 ef73910049a7a86ace7103c7d8f537fdfab9eab130c81f0d264c2b370400f67b 122.00 47.65
5 2087a2da6dcf4187ad407532ce2207c14673ff0e56d512fa35b76009bde698c6 128.00 50.00
6 006b3905b48157204b5a2c0922cdb1a869a297e3add562abc442ff0a8f2dd941 143.00 55.85

Average – 134.60 52.57

Table 8. A comparison of average Bi and HDi(%) for the sensitivity of h to M.

Length of Hash Values Bi HDi%

Structure 1 256 137.60 53.75
512 266.00 51.95

Structure 2 256 128.00 50.00
nr = 8 512 204.40 39.92

Structure 2 256 134.60 52.57
nr = 24 512 254.20 49.64
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4.2.4. Sensitivity of Hash Value h to the Secret Key K

A hash function H is highly sensitive to the secret key K when a slight change in K produces a
completely different hash value hi. Here, for the previous message M with each of the five following
conditions and for the two proposed structures with their two variants of hash value length 256
and 512 bits, we calculate the hash value hi (hexadecimal), the number of changed bits Bi(h, hi)

(bits), and the sensitivity of the hash value h to the secret key K measured by Hamming Distance
HDi(h, hi)(%):

Condition 1: The original secret key K is used.
In each of these conditions, we flip the LSB in the aforementioned parameters and initial conditions.
Condition 2: The initial condition KSs(0) in the secret key is changed.
Condition 3: The parameter Ks in the secret key is changed.
Condition 4: The initial condition KSs(−1) in the secret key is changed.
Condition 5: The control parameter Q1 in the secret key is changed.

Table 9 presents the obtained results of hi, Bi, and HDi(%) for 256-bit hash value length.
Comparable results are obtained for |h| = 512 bits. We compare the results of the two proposed
structures for two lengths of 256 and 512 bits in Table 10. All results obtained are close to the expected
values (Bi = 128 bits for the 256-bit hash value length, Bi = 256 for the 512-bit hash value length,
and HDi = 50% for all proposed structures), demonstrating the high sensitivity to the secret key K of
the two proposed structures.

Table 9. Sensitivity of h to K for the two proposed structures with |h| = 256 bits.

Message Variants Hash Values in Hexadecimal Format Bi HDi%

Structure 1 1 d53280d1f7a652977e7943472ea34a343746f09f6c8ea084f0b9d5009fecf467 – –
2 a3614a0d3d7d77cffbde676045f5abf4add0f46ec9ed08e293e2a96118bbb364 124.00 48.43
3 9cc68e614f3ce3161ece75dc8474d31f7a080fb30b7edf239334fd485cb5e8ca 131.00 51.17
4 5a2502125bc452c8d7ac3c4f20de5ee4f422219839bbfabf1a22923b2a87cb96 130.00 50.78
5 ac84f96d784967e643d750f9c15184ab4e6a93c408bf5eca22585f99eb98fa31 146.00 57.03

Average – 132.75 51.85

Structure 2 1 d3a15d8621f3fec42dca5abf7077091f96275130fcef4e21a1521d81470245ae – –
nr = 8 2 5e148302c03950dffe19911bd144c5713ed1c8750bee6c8324b338e9cb2635ed 121.00 47.26

3 f5d2f5ae0db1c67d5a85f47994ea894db129241c07a361a4c9cc1c90ec0fb1c1 122.00 47.65
4 18eae0eac4dcdedc01b8d55e231119e1d5286bb2fa08f107d8a13db82e984feb 124.00 48.43
5 b56c8b1b210b34cb5a41948d7e1b16ba90614af2c1c4d64ee59e54790be40831 128.00 50.00

Average – 123.75 48.33

Structure 2 1 f39457de07d62bea3fb35b5698ec008e004db03197b77a7e30e821a6a8499119 – –
nr = 24 2 d920e5ea9ae97a63fc75bb205733bc329464c5c67f868620d4c081321797f8c6 141 55.07

3 dce025ba7f9fb1b72d2754eeeafb696740d691fd3129744bf6f549c25cd8b158 115.00 44.92
4 c5e3e27affb359a4648039f8201e029213eb9345f730cf66b3aef40c805b65db 119.00 46.48
5 182bb7760e4708c3464bbaed011154a9d903f06be1d73d9ea68dd3da7e9f7718 130.00 50.78

Average – 126.25 49.31

Table 10. A comparison of average Bi and HDi(%) for for the sensitivity of h to K.

Length of Hash Values Bi HDi%

Structure 1 256 132.75 51.85
512 252.50 49.31

Structure 2 256 123.75 48.33
nr = 8 512 265.50 51.85

Structure 2 256 126.25 49.31
nr = 24 512 256.00 50.00
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4.2.5. Statistical Analysis of the Diffusion Effect

We obtain the optimal value of diffusion effect when flipping any bit in the input message M that
causes a change of each output bit (binary format) in the hash value h with a probability of 50% [55].
This is often mentioned as the Strict Avalanche Criterion (SAC) in literature [56].

To quantify the performance of Structures 1 and 2 with their variants of hash output lengths of
256 and 512 bits, we execute the following diffusion test.

First, the hash value h for the previous message M is generated. Next, a new hash value h’ for
the same message M with one randomly changed bit is produced. Then, the number of bits changed
Bi between the two obtained hash values h and h’ is calculated. This experiment is repeated J times,
with J = 512, 1024, and 2048. Finally, we compute the six following statistical tests as below:

1. Minimum number of bits changed:
Bmin = min({Bi}i=1,. . . ,J) bits

2. Maximum number of bits changed:
Bmax = max({Bi}i=1,. . . ,J) bits

3. Mean number of bits changed:
B̄ = 1

J ∑J
i=1 Bi bits

4. Mean changed probability (mean of HDi(%)):
P = ( B̄

u )× 100 %
5. Standard variance of the changed bit number:

∆B =
√

1
J−1 ∑J

i=1(Bi − B̄)2

6. Standard variance of the changed probability:

∆P =
√

1
J−1 ∑J

i=1(
Bi
u − P)2 × 100 %

The obtained results given in Table 11 with 2048 tests demonstrate that the diffusion effect is close
to the expected results (B̄ = 128 bits for the 256-bit hash value length, B̄ = 256 for the 512-bit hash
value length, and P = 50% for all proposed structures). In addition, it is noted that the diffusion is
extremely stable for whatever the hash value length |h| in both Structure 1 and 2 because both the
mean of number of changed bits B̄ and the mean of changed probability P are very close to the ideal
values, while ∆B and ∆P are very small.

Table 11. Statistical analysis of diffusion effect results for Structures 1 and 2, with the two lengths of
hash values, and J = 2048 tests.

Length of Hash Values

256 512

Structure 1 Bmin 101 217
Bmax 155 293

B̄ 128.10 256.20
P 50.04 50.04

∆B 7.96 11.20
∆P 3.11 2.18

Structure 2 Bmin 99 214
nr = 8 Bmax 156 291

B̄ 127.70 255.90
P 49.88 49.98

∆B 8.22 11.37
∆P 3.21 2.22

Structure 2 Bmin 99 215
nr = 24 Bmax 154 296

B̄ 127.88 255.53
P 49.95 49.90

∆B 8.02 11.41
∆P 3.13 2.23
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For different number of tests (J = 512, 1024, and so on), similar results are obtained for the two
proposed structures with their different hash value lengths (256 and 512 bits).

In addition, the histograms of Bi as seen in Figures 12 and 13 of Structure 1 illustrate that the
values of Bi are centered on the ideal values 128 and 256 bits for u = 256 and 512 bits, respectively.
We obtain similar results for Structure 2.
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Figure 12. Histogram of Bi for Structure 1 with |h| = 256 bits, and J = 2048 tests.
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Figure 13. Histogram of Bi for Structure 1 with |h| = 512 bits, and J = 2048 tests.

4.3. Cryptanalysis

In the literature, there exist known attacks, which can be applied to the two categories of hash
functions, unkeyed or keyed. In [24], Bertoni et al. demonstrate the dependency of these known
attacks on the hash value length u for the unkeyed hash function with the secret key length |K|
and for the keyed hash function with the hash value length u. Normally, if an attacker comprises
the secret key K, then the system is completely compromised during the key life time [57]. In the
following, the robustness of the proposed two structures, Structures 1 and 2, against these known
attacks is demonstrated.

4.3.1. Brute Force Attacks

The brute force attacks can be carried out on the secret key K (namely, exhaustive key search
attack) and on the hash value h. We order the attacks on the hash value h from the easiest one to the
hardest one:
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1. Collision resistance attack
2. Preimage attack and Second preimage attack

Exhaustive Key Search Attack [58]:

With this kind of attack, the attacker needs 2|K|−1 = 2159 tries for the two proposed hash functions.
Thus, this attack is ineffective.

Collision Resistance Attack (Birthday Attack) [59]:

With this kind of attack, the attacker tries to find two different messages (M, M′), which the
proposed hash functions produce the same hash value h. To break the collision resistance property,
the smaller workload expected by the attacker is approximately equal to 2u/2.

Preimage and Second Preimage Attacks [60]:

With the Preimage attack, the attacker tries to find the original message M for a known value h
such that H(M) = h. In the Second preimage attack, knowing the hash value h for a given input message
M, the attacker tries to find another message M′ that produces the same hash value h. With these
two types of attacks, the smaller expected workload required by the attacker to break the collision
resistance property is approximately 2u.

In conclusion, to realize the attack on the hash value h for the two proposed structures with the
minimum length (u = 256 bits), the minimum workload required by the attacker is 2128 attempts, which
is infeasible.

4.3.2. Cryptanalytic Attacks

With these kinds of attacks, the attacker tries to find specific weaknesses in the structure of a hash
function, and performs on it some attacks, and it is expected that the amount of effort less than that
with the brute force attack. In the next paragraphs, the two most common cryptanalytic attacks in the
literature against the proposed hash functions are considered such that:

1. Padding attack (Length extension attack)
2. Meet-in-the-middle (MITM) preimage attack

Padding Attack [61]:

In the two proposed hash functions, the secret key K is used as an input for the CS to produce
the necessary supplies to the CNN, and is not prepended to the message M. Then, this type of attack
cannot be conducted.

Meet-in-the-Middle Preimage Attack [62]:

The Meet-in-the-middle (MITM) attack is a generic cryptanalytic approach that is originally
applied to the cryptographic systems based on block ciphers (chosen-plaintext attack). In 2008,
Aoki and Sasaki [62] noticed that the MITM attack could be applied to hash functions, to find collision,
preimage, or second preimage for intermediate hash chaining values instead of the final hash value h.
This attack has successfully broken several hash function designs. As our hash functions are preimage
resistant, the minimum effort (with u = 256 bits) to succeed the MITM attack with probability 0.632 is
2u/2 = 2128 tries.

4.4. Computing and Complexity Analysis

Here, the computing performance and the computational complexity of the two proposed
structures are analyzed. Firstly, the computing performance of the two proposed structures with their
hash value lengths of 256 and 512 bits for different message lengths is estimated. Then, the average
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hashing throughput HTH [MBytes/second] and the needed number of cycles to hash one Byte NCpB
[cycles/byte] are calculated by Equations (27) and (28), respectively, as

HTH [MBytes/s] =
|M|[MBytes]

HT[s]
, (27)

NCpB [cycles/Byte] =
CPUspeed[Hz]
HTH[Byte/s]

, (28)

where HT [second] is the average hashing time. The calculation is done in C code, running an Ubuntu
Linux 14.04.1 (64-bit) operating system and using a computer with a 2.9 GHZ Intel core i7-4910MQ
CPU and with 4 GB of RAM. In Tables 12 and 13, the average HT, the average HTH, and the average
NCpB for the two proposed structures with their two hash value lengths of 256 and 512 bits are given.
When the overhead related to the structures becomes negligible (from 10,000 data bytes and more),
we observe that for any length of the hash values (256 or 512 bits), the hash throughput HTH of
Structure 2 is just over twice that compared to Structure 1. In addition, we observe that, with any
proposed structure, the hash throughput HTH with |h| equal to 256 bits (r = 1088 bits and c = 512 bits)
is approximately twice the value with |h| equal to 512 bits (r = 576 bits and c = 1024 bits). Indeed,
when r is increased, the hash time HT of the absorbing phase is decreased. Additionally, the HTH for
the two proposed structures with their different hash value lengths are shown in Figure 14.

In addition, the computational complexity of the proposed functions varies with the number of
required instructions and the latency of executions of these instructions. The computational complexity
can be estimated by the big-O notation, which excludes constants, coefficients, and lower order terms.
Indeed, the complexity is represented as a function O(f (n)) that depends on the input size n. It should
be noted that the complexity of a series of sentences is in the same order of the sum of the individual
complexities. In addition, some practical rules are considered to calculate the complexity [63] as

1. Input–output simple sentences are on the order of O(1).
2. If sentences are on the order of O(1).
3. For cycle is on the order of O(1) for k iterations independent of the input n or on the order of O(n)

for n iterations.
4. For double nested cycle is on the order of O(n2) for n iterations for each cycle.
5. Iterative cycles with divisive-multiplicative sentences are on the order of O(log n) for n iterations.
6. O(log n) in the For cycle with n iterations is on the order of O(n log n).

The two proposed hash functions (Structures 1 and 2) are based on Sponge construction.
These proposed hash functions are built as follows:

1. The hashing process starts by taking a block message with fixed length as input.
2. The message block is padded using a cryptographically secure padding scheme.
3. The padded message block is entered for a combination of operations with a key obtained from

the output of the previous block.
4. The final hash block outputs a fixed length hash value having the same size as the input block.

In our proposed hash functions, the equations of the key generator, neural network layers,
and nonlinear functions are realized by multiplication/division and addition/subtraction operations.
In addition, for double nested operations are used. This means that the computational complexity of
the two proposed hash functions is on the order of O(n2) [64,65].
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Table 12. HT, HTH, and NCpB for Structures 1 and 2 with |h| = 256 bits and 2048 random tests.

Message Structure 1 Structure 2 with nr = 8 Structure 2 with nr = 24

Length HT HTH NCpB HT HTH NCpB HT HTH NCpB

513 0.0058 27.41 124.33 0.0019 104.81 30.24 0.0029 100.65 28.20
1024 0.0102 49.25 60.68 0.0039 115.78 24.45 0.0039 72.10 51.78
2048 0.0190 36.90 93.56 0.0078 115.90 24.43 0.0087 102.86 27.08
4096 0.0336 52.08 53.28 0.0156 104.67 33.38 0.0175 92.64 35.27
104 0.0849 48.84 63.51 0.0371 124.75 22.44 0.0419 101.10 30.71
106 8.2666 55.05 50.30 3.5986 130.45 21.21 4.0537 112.70 24.56

Table 13. HHT, HTH, and NCpB for Structures 1 and 2 with |h| = 512 bits and 2048 random tests.

Message Structure 1 Structure 2 with nr = 8 Structure 2 with nr = 24

Length HT HTH NCpB HT HTH NCpB HT HTH NCpB

513 0.0097 19.68 172.47 0.0043 53.16 54.61 0.0043 41.65 75.04
1024 0.0180 26.93 103.42 0.0073 52.42 57.64 0.0087 42.87 78.30
2048 0.0336 26.84 107.66 0.0141 65.65 42.32 0.0161 52.71 57.99
4096 0.0698 28.30 98.48 0.0278 56.87 55.19 0.0336 54.85 54.32
104 0.1621 27.57 101.87 0.0712 65.50 42.49 0.0761 58.02 47.82
106 15.6166 29.53 93.67 6.6293 68.97 40.12 7.8032 59.95 46.16
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Figure 14. Comparison of hashing throughput for Structures 1 and 2 - nr = 8/24 rounds with
|h| = 256/512 bits.

4.5. Performance Comparison with the Standards SHA3, SHA2, and with Other Chaos-Based Hash Functions

This section presents the comparison of the computing performance for our proposed hash
functions with the standard hash functions SHA-3, SHA-2 and some chaos-based hash functions in
the literature in terms of robustness and speed. To the best of our knowledge, there has not been any
chaos-based hash function using Sponge construction in the literature.

In Tables 14–18, we compare the obtained statistical results (collision resistance, diffusion,
and message sensitivity) of our proposed chaos-based hash functions with the standard SHA-3 for |h|
with the lengths of 256 and 512 bits, and with the standard SHA-2 and some other chaos-based hash
functions in the literature for |h| equal to 256 bits. We can conclude that, after carefully analyzing the
values in these tables, all of our obtained statistical results are close to those of the standard SHA-3 and
of the other hash functions.
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A comparison in terms of the needed number of cycles to hash one byte (NCpB) of the proposed
chaos-based hash functions with the standard SHA-3 for 2048 tests and different data sizes is given in
Table 19. We observe that globally the performance of the standard hash algorithm SHA-3 in terms
of NCpB is better than that obtained by the proposed our hash functions. For example, for the long
messages with length equal to 1 MB, the NCpB obtained by SHA-3 for both the hash length value,
is seven times less than the NCpB of Structure 1, but it is only less than three times of the NCpB obtained
by Structure 2 with nr = 8. However, we do our simulations in the sequential implementation without
optimization. Thus, with a parallel implementation (with 50 output neurons at the input layer) using
optimized calculation, the performance computing will be at least similar to that obtained on SHA-3
[66]. It can be even better than that of SHA-3 when using our proposed Structure 2 with nr = 8.

Finally, we give a comparison of NCpB of the proposed structures with 256-bit and 512-bit hash
values with some chaos-based hash functions and with the standards SHA-2 and SHA-3 for one Mbits
data size in Table 20. We observe that the obtained NCpB is better than the NCpB of the other cited
works, except for that obtained in our previous work [47]. It is because the the structure of the Sponge
construction is more complex than that of the Merkle–Dåmgard construction.

Table 14. Comparison of collision resistance for the two proposed structures with |h| = 256 bits with
the standards SHA-3, SHA-2 and with some chaos-based hash functions.

Hash Function Number of Hits ω Absolute Difference d

0 1 2 3 Mean Mean/Character Minimum Maximum

Structure 1 1806 229 13 0 2715.39 84.85 1695 3831
Structure 2 with nr = 8 1787 244 17 0 2584.51 80.76 1654 3759

Structure 2 with nr = 24 1824 213 11 0 2665.24 83.28 1642 3784
Abdoun et al. StructureMD 1 [47] 1931 114 3 0 1291.64 80.72 480 2038

Abdoun et al. StructureMD 2-nr = 8 [47] 1929 114 5 0 1426.23 89.13 730 2213
Abdoun et al. StructureMD 2-nr = 24 [47] 1942 106 0 0 1338.85 83.67 629 2071

SHA3-256 [13] 1818 211 19 0 2776.16 86.75 1686 3895
SHA2-256 [27] 1817 220 11 0 2707.10 84.59 1789 3819
Xiao et al. [51] - - - - 1506 94.12 696 2221
Xiao et al. [67] 1926 120 2 0 1227.8 76.73 605 1952
Deng et al. [68] 1940 104 4 0 1399.8 87.49 583 2206
Yang et al. [69] - - - - - 93.25 - -
Xiao et al. [70] 1915 132 1 0 1349.1 84.31 812 2034

Li et al. [71] 1901 146 1 0 1388.9 86.81 669 2228
Wang et al. [72] 1917 126 5 0 1323 82.70 663 2098

Huang [73] 1932 111 5 0 1251.2 78.2 650 1882
Li et al. [74] 1928 118 2 0 1432.1 89.51 687 2220
Li et al. [3] 1899 124 25 0 1367.6 85.47 514 2221

Li et al. [75] 1920 124 4 0 1319.5 82.46 603 2149
He et al. [4] 1926 118 4 0 1504 94 683 2312

Xiao et al. [76] 1924 120 4 0 1431.3 89.45 658 2156
Yu-Ling et al. [77] 1928 117 3 0 1598.6 99.91 796 2418

Xiao et al. [78] 1932 114 2 0 1401.1 87.56 573 2224
Li et al. [79] 1920 122 6 0 - - - -
Li et al. [80] 1905 135 8 0 1335 83.41 577 2089

Ahmad et al. [81] 1923 121 4 0 1364.7 85.29 537 2399
Li et al. [82] 1957 82 9 0 1425 89.07 646 2096

Lin et al. [83] 1931 114 3 0 - 90.23 - -

Table 15. Comparison of collision resistance for the two proposed structures with the standard SHA-3
for |h| = 512 bits.

Hash Function Number of Hits ω Absolute Difference d

0 1 2 3 4 Mean Mean/Character Minimum Maximum

Structure 1 1572 419 51 6 0 5414.34 169.19 3911 7062
Structure 2 with nr = 8 1607 371 67 3 0 5478.30 171.19 3874 6871

Structure 2 with nr = 24 1600 399 46 2 1 5233.34 163.54 3767 6606
SHA3-512 [13] 1593 418 35 2 0 5502.66 171.95 3933 7106
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Table 16. Comparison of the statistical results of diffusion effect for the two proposed structures with
|h| = 256 bits with the standards SHA-3, SHA-2 and with some chaos-based hash functions.

Hash Function Bmin Bmax B̄ P(%) ∆B ∆P %

Structure 1 101 155 128.10 50.04 7.96 3.11
Structure 2 with nr = 8 99 156 127.70 49.88 8.22 3.21

Structure 2 with nr = 24 99 154 127.88 49.95 8.02 3.13
Abdoun et al. StructureMD 1 [47] 100 154 127.95 49.98 8.03 3.13

Abdoun et al. StructureMD 2-nr = 8 [47] 103 157 127.97 49.99 8.01 3.13
Abdoun et al. StructureMD 2-nr = 24 [47] 100 157 127.88 49.95 7.94 3.10

SHA3-256 [13] 101 153 128.05 50.02 8.01 3.13
SHA2-256 [27] 104 154 128.01 50.00 7.94 3.10
Xiao et al. [51] - - 63.85 49.88 5.78 4.52
Lian et al. [52] - - 63.85 49.88 5.79 4.52

Zhang et al. [53] 46 80 63.91 49.92 5.58 4.36
Wang et al. [84] - - 63.98 49.98 5.53 4.33
Xiao et al. [67] - - 64.01 50.01 5.72 4.47
Deng et al. [85] - - 63.91 49.92 5.58 4.36
Deng et al. [68] - - 63.84 49.88 5.88 4.59
Yang et al. [69] - - 64.14 50.11 5.55 4.33
Xiao et al. [70] - - 64.09 50.07 5.48 4.28

Amin et al. [86] - - 63.84 49.88 5.58 4.37
Li et al. [71] 45 81 63.88 49.90 5.37 4.20

Wang et al. [72] - - 63.90 49.93 5.64 4.41
Akhavan et al. [87] 42 83 63.91 49.92 5.69 4.45

Huang [73] - - 63.88 49.91 5.75 4.50
Li et al. [74] - - 63.80 49.84 5.75 4.49

Wang et al. [88] 44 82 64.15 50.11 5.76 4.50
Li et al. [3] - - 63.56 49.66 7.42 5.80
Li et al. [75] - - 63.97 49.98 5.84 4.56
He et al. [4] 45 83 64.03 50.02 5.60 4.40

Jiteurtragool et al. [89] 43 81 62.84 49.09 5.63 4.40
Teh et al. [10] - - 64.01 50.01 5.61 4.38

Chenaghlu et al. [90] - - 64.12 50.09 5.63 4.41
Akhavan et al. [91] 43 82 63.89 49.91 5.77 4.50

Nouri et al. [92] - - 64.08 50.06 5.72 4.72
Xiao et al. [76] 47 83 63.92 49.94 5.62 4.39

Yu-Ling et al. [77] - - 64.17 50.14 5.74 4.49
Xiao et al. [78] - - 64.18 50.14 5.59 4.36

Li et al. [79] - - 64.07 50.06 5.74 4.48
Li et al. [80] - - 63.89 49.91 5.64 4.41

Ren et al. [93] - - 63.92 49.94 5.78 4.52
Guo et al. [94] - - 63.40 49.53 7.13 6.35
Yu et al. [95] 45.6 81.8 63.98 49.98 5.73 4.47

Zhang et al. [96] - - 64.43 49.46 5.57 4.51
Jiteurtragool et al. [89] 101 153 126.75 49.51 7.98 3.12
Chenaghlu et al. [90] 101 168 128.08 50.03 8.12 3.21

Teh et al. [97] - - 64.00 50.00 5.44 4.25
Li et al. [82] 45 84 64.27 50.21 5.59 4.36

Ahmad et al. [81] 45 82 63.87 49.90 5.58 4.36
Lin et al. [83] - - 64.10 50.08 5.58 4.36

Table 17. Comparison of the statistical results of diffusion effect for the proposed structures with the
standard SHA-3 for |h| = 512 bits.

Hash Function Bmin Bmax B̄ P (%) ∆B ∆P %

Structure 1 217 293 256.20 50.04 11.20 2.18
Structure 2 with nr= 8 214 291 255.90 49.98 11.37 2.22

Structure 2 with nr = 24 215 296 255.53 49.90 11.41 2.23
SHA3-512 [13] 221 288 255.82 49.96 11.08 2.16
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Table 18. Comparison of average Bi and HDi(%) for the sensitivity of the hash value to the message of
the two proposed structures with the standard SHA-3 for |h| equal to 256 and 512 bits.

Length of Hash Values Bi HDi%

Structure 1 256 137.60 53.75
512 266.00 51.95

Structure 2 256 128.00 50.00
nr = 8 512 204.40 39.92

Structure 2 256 134.60 52.57
nr = 24 512 254.20 49.64

SHA-3 [13] 256 124.00 48.43
512 248.00 48.43

Table 19. Comparison of NCpB of the two proposed structures with the standard SHA-3 for |h| equal to
256 and 512 bits.

Message Length Structure 1 Structure 2 with nr = 8 Structure 2 with nr = 24 SHA-3

256 512 256 512 256 512 256 512

513 124.33 172.47 30.24 54.61 28.20 75.04 13.53 59.39
1024 60.68 103.42 24.45 57.64 51.78 78.30 32.12 48.83
2048 93.56 107.66 24.43 42.32 27.08 57.99 27.10 41.22
4096 53.28 98.48 33.38 55.19 35.27 54.32 15.92 13.82
104 63.51 101.87 22.44 42.49 30.71 47.82 13.28 13.43
106 50.30 93.67 21.21 40.12 24.56 46.16 6.92 12.95

Table 20. Comparison of NCpB of Structures 1 and 2 with 256-bit and 512-bit hash values length with
the standards SHA-3 and SHA-2 and with some chaos-based hash functions and .

Hash Function Structure 1 Structure 2 with nr = 8 Structure 2 with nr = 24 SHA-3 SHA-2

256 512 256 512 256 512 256 512 256 512

NCpB 50.30 93.67 21.21 40.12 24.56 46.16 6.92 12.95 11.87 13.72

Hash function StructureMD 1 [47] StructureMD 2 [47] Wang [84] Akhavan [87] Teh [10]

nr = 8 nr = 24

NCpB 30.85 15.24 16.25 122.4 105.5 28.45

5. Conclusions and Future Work

In this paper, we have designed and realized the two proposed keyed CNN hash functions,
conducted analysis of the computing performance, and performed security. These two structures are
based on the Sponge construction and have two hash output lengths, i.e., 256 and 512 bits. The results of
analysis in terms of cryptanalytical attacks and statistical analyses are similar to those obtained by the
standard hash algorithm SHA-3. For the computing performance term, the results of our two proposed
structures are less than the standard hash algorithm SHA-3 due to the sequential implementation.
For a parallel implementation using 50 output neurons [66], the computing performance of Structure 2
with nr = 8 will be better than SHA-3. Then, the proposed keyed-Sponge CNN hash functions can be
used in Digital Signature, Message Authentication, and Data Integrity applications.

Our future work will focus on the Extendable-Output Functions (XOFs), based on the
keyed-Sponge CNN (CNN-SHAKE), where the proposed structures can produce hash outputs with
variable length (as per user request). In addition, we will design and realize a new CNN structure
based on the Duplex construction (CNN-DUPLEX) that will be useful for Authenticated Encryption
with Associated Data (AEAD) applications.
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