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Summary 
 

The relationship between the numbers of even steps (P), the number of odd steps (I) and the odd 

initial value 𝑢0 of a compressed Collatz sequence that converges is as follows: 

 
𝑰 + 𝑷 =  𝑬(𝐥𝐨𝐠𝟐(𝟑𝑰 ∗ 𝒖𝟎)) + 𝟏 

 

This relation is equivalent to the expression below: 

 

{
𝑰 + 𝑷 =  𝑬(𝑰 ∗ 𝐥𝐨𝐠𝟐(𝟑)) + 𝑬(𝐥𝐨𝐠𝟐(𝒖𝟎)) + 𝟏

𝒐𝒓
𝑰 + 𝑷 =  𝑬(𝑰 ∗ 𝐥𝐨𝐠𝟐(𝟑)) + 𝑬(𝐥𝐨𝐠𝟐(𝒖𝟎)) + 𝟐

 

 

Where: 

- 𝐸(𝑥) is the integer part of the real number x; 

- log2(𝑥) is the base two logarithm of the real number x; 

- 𝐸(log2(𝑢0)) is the exponent of the biggest power of 2 that is strictly less than the odd natural 

number 𝑢0; 

- I+P is the total stopping time of the compressed sequence. 
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1- Introduction 

The Collatz conjecture (or Syracuse conjecture, Ulam conjecture or 3x+1 problem) claims that the 

following sequence of natural numbers reaches the value 1 after a certain rank (or that the sequence 

of its odd numbers tends to 1). 

For a natural number 𝑠0 ≥ 1 and for all natural number n: 

𝑠𝑛 = {

𝑠𝑛

2
, 𝑖𝑓 sn  is even

3𝑠𝑛 + 1, 𝑖𝑓 sn  is odd
 

3p+1 being even if the natural number p is odd, the compressed sequence (𝑐𝑛) of the sequence (𝑠𝑛) 

is defined as follows: 

For a natural number 𝑐0 ≥ 1 and for all natural number n: 

𝑐𝑛 = {

𝑐𝑛

2
, 𝑖𝑓 cn  is even

3𝑐𝑛+1

2
, 𝑖𝑓 cn  is odd

  

An uncompressed (or compressed) sequence that converges continues, after a certain rank, with the 

trivial cycle 1-4-2 (or 1-2) that is infinitely repeated. 

 

2- General expression of an odd element of a compressed Collatz sequence 

Considering the extracted sequence (𝑢𝑛) composed of the odd elements of the sequence (𝑠𝑛), two 

successive elements have the following relationship: 

 

𝑢𝑛 =  
3𝑢𝑛−1 + 1

2𝑘′𝑛
 

Where 𝑘′𝑛 is the number of divisions by 2 that occur between 𝑢𝑛−1 and 𝑢𝑛. 

 

By developing the previous expression: 

 

𝑢𝑛 =  
3𝑛𝑢0

2
∑ 𝑘′𝑗

𝑛
𝑗=1

+
3𝑛−1

2
∑ 𝑘′𝑗

𝑛
𝑗=1

+
3𝑛−2

2
∑ 𝑘′𝑗

𝑛
𝑗=2

+ ⋯ +
30

2𝑘′𝑛
 

Then:  

𝑢𝑛 =  
3𝑛𝑢0

2
∑ 𝑘′𝑗

𝑛
𝑗=1

+ ∑
3𝑛−𝑖

2
∑ 𝑘′𝑗

𝑛
𝑗=𝑖

𝑛

𝑖=1
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After factorization of the 𝑢0 multiplier and simplification of the second term: 

𝑢𝑛 =  
3𝑛

2
∑ 𝑘′𝑗

𝑛
𝑗=1

[𝑢0 + ∑ (3−𝑖 ∗ 2∑ 𝑘′𝑗
𝑖−1
𝑗=1 )

𝑛

𝑖=1

 ] 

Moreover, for all j: 𝑘′𝑗 = 1 + 𝑘𝑗, because the successor of an odd element of (𝑠𝑛) is always even; 𝑘𝑗 is 

then the number of divisions by 2 between two successive odd elements of sequence (𝑐𝑛). 

Therefore: ∑ 𝑘′𝑗
𝑛
𝑗=1 = 𝑛 + ∑ 𝑘𝑗

𝑛
𝑗=1  and ∑ 𝑘′𝑗

𝑖−1
𝑗=1 = (𝑖 − 1) + ∑ 𝑘𝑗

𝑖−1
𝑗=1  

Notice also that:  

𝑢𝑛 =  
3𝑢𝑛−1 + 1

21+𝑘𝑛
 

∑ 𝑘𝑗
𝑛
𝑗=1  is the number of the even elements, at the rank j, of the compressed sequence (𝑐𝑛) that follow 

𝑢0. 

By introducing 𝑘𝑗 and after a new factorization, the expression of 𝑢𝑛 becomes: 

𝑢𝑛 = (
3

2
)

𝑛

∗
1

2
∑ 𝑘𝑗

𝑛
𝑗=1

[𝑢0 +
1

3
∑ ((

2

3
)

𝑖−1

∗ 2∑ 𝑘𝑗
𝑖−1
𝑗=1 )

𝑛

𝑖=1

 ] 

After a shift on the index 𝑖, the expression of 𝑢𝑛, depending on an initial value 𝑢0, of n and of the 

first n elements of the sequence (𝑘𝑛), we have that: 

𝑢𝑛 = (
3

2
)

𝑛

∗
1

2
∑ 𝑘𝑗

𝑛
𝑗=1

[𝑢0 +
1

3
∑ ((

2

3
)

𝑖

∗ 2∑ 𝑘𝑗
𝑖
𝑗=1 )

𝑛−1

𝑖=0

 ] 

And hence: 

∀𝒏 ≥ 𝟎,       𝒖𝒏 =  
𝟏

𝒂𝒏
(𝒖𝟎 +  

𝒙𝒏

𝟑
)  (1) 

With: 

𝒙𝒏 = ∑ ((
𝟐

𝟑
)

𝒊

∗ 𝟐∑ 𝒌𝒋
𝒊
𝒋=𝟏 )𝒏−𝟏

𝒊=𝟎  (2) 

𝒂𝒏 = (
𝟐

𝟑
)

𝒏

∗ 𝟐∑ 𝒌𝒋
𝒏
𝒋=𝟏   (3) 

∀𝑛 ≥ 1, 𝑥𝑛 and 𝑎𝑛 are strictly positive. Therefore (𝑘𝑛) is strictly increasing. 

Moreover: 

𝑎𝑛 =  𝑥𝑛+1 − 𝑥𝑛  and 𝒙𝒏 = ∑ 𝒂𝒊
𝒏−𝟏
𝒊=𝟎  

𝑎𝑛 is the general term of serie (𝑥𝑛). 
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We also can write that, for all natural number n: 

𝒂𝒏 = (
𝟐

𝟑
)

𝒏

∗ 𝟐𝑷(𝒏)  (4) 

And: 

𝒙𝒏 = ∑ (
𝟐

𝟑
)

𝒊

∗ 𝟐𝑷(𝒊)

𝒏−𝟏

𝒊=𝟎

 

With: ∀𝑖 ∈ [1, 𝑛], 𝑷(𝒊) = ∑ 𝒌𝒋
𝒊
𝒋=𝟏  

P(i) is the number of even elements, at rank i, of the compressed sequence (𝑐𝑛) that follow 𝑢0, the 

corresponding number of odd elements being of course i. 

Note also that: 𝑥0 = 0 and 𝑎0 =  𝑥1 = 1. 

3- Relation between the numbers of even steps, odd steps and 𝒖𝟎 

a. Expression of I+P as a function of I and 𝒂𝑰 

Considering Collatz sequence (𝑢𝑛) composed of the odd elements of the sequence (𝑠𝑛), that 

converges to 1, i.e. lim
𝑛→+∞

(𝑢𝑛) = 1. 

This sequence being digital, it exists a rank I for which 𝑢𝐼 = 1. 

Therefore, the formula (1) gives: 𝑢𝐼 =  
1

𝑎𝐼
(𝑢0 + 

𝑥𝐼

3
) = 1; then: 

𝒂𝑰 =  𝒖𝟎 +  
𝒙𝑰

𝟑
  (5) 

According to (4): 𝑎𝐼 = (
2

3
)

𝐼

∗ 2𝑃(𝐼) 

We can note P=P(I); I and P are respectively the odd and even steps of the sequence (𝑐𝑛) before 

reaching 1, I+P being then its total stopping time. 

By applying the base two logarithms of the two terms of the previous equation, we have that: 

𝐼 + 𝑃 = log2(3𝐼 ∗ 𝑎𝐼) = log2 [3𝐼 ∗ (𝑢0 +  
𝑥𝐼

3
)] = 𝐼 ∗ log2(3) + log2 (𝑢0 +  

𝑥𝐼

3
) 

I+P is an integer that is the sum of the two last terms of this equality, each of them being non integer 

real numbers. Consequently, by using 𝐸(𝑥) as the integer part of the real number x: 

𝑬(𝑰 + 𝑷) = 𝐈 + 𝐏 = 𝑬(𝑰 ∗ 𝐥𝐨𝐠𝟐(𝟑)) +  𝑬 (𝐥𝐨𝐠𝟐 (𝒖𝟎 +  
𝒙𝑰

𝟑
)) + 𝟏   (6) 
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b. Expression of 𝑬(𝐥𝐨𝐠𝟐(𝒂𝑰)) as a function of 𝒏𝟎 = 𝑬(𝐥𝐨𝐠𝟐(𝒖𝟎)) 

We have: 𝑢0 =  2𝑛0 + 𝑟0, 𝑟0 being a natural number ; 𝑛0 is the exponent of the biggest power of 2 

that is strictly less than the odd natural number 𝑢0. 

We can apply the two following inequalities: 

- 2𝑛0 ≤ 𝑢0 < 2𝑛0+1 ⇒ 𝑛0 ≤ log2(𝑢0) < 𝑛0 + 1 ⇒ 𝒏𝟎 = 𝑬(𝐥𝐨𝐠𝟐(𝒖𝟎))  by definition of the integer 

part function of a real number ; 

- 0 ≤ 𝑟0 < 2𝑛0. 

Notice that, 𝑢0 being odd, the two above inequalities are strict. 

According to (5), 𝑎𝐼 > 𝑢0 because 𝑥𝐼 > 0 ; therefore: log2(𝑢0) < log2(𝑎𝐼) ; then 𝒏𝟎 ≤ 𝑬(𝐥𝐨𝐠𝟐(𝐚𝐈)), the 

logarithm and integer part functions being increasing. 

Moreover, it is obvious that, according to (4): 

∀𝑛 ≥ 0, 𝑎𝐼+𝑛 = (
2

3
)

𝐼+𝑛

∗ 2𝑃(𝐼+𝑛) = (
2

3
)

𝐼+𝑛

∗ 2𝑃+𝑛=(
𝟒

𝟑
)

𝒏

∗ 𝑎𝐼 

Because 𝑃(𝐼 + 𝑛) = 𝑃(𝐼) + 𝑃(𝑛) = 𝑃 + 𝑛, P(n) being incremented by 1 from 𝑎𝐼+𝑛 to 𝑎𝐼+𝑛+1. 

Then: ∀𝒏 ≥ 𝟎, 𝐥𝐨𝐠𝟐(𝒂𝑰+𝒏) = 𝒏 ∗ 𝐥𝐨𝐠𝟐 (
𝟒

𝟑
)+𝐥𝐨𝐠𝟐(𝒂𝑰)  (7) 

(𝑎𝐼+𝑛) is an increasing sequence, with the integer part of the base two logarithm of its first term 𝑎𝐼 

being greater or equal to 𝑛0. 

We have that: log2 (
4

3
) ≈ 0,415. 

Consequently, a maximum of 3 consecutive terms of the increasing sequence (𝐸(log2(𝑎𝐼+𝑛))) may 

be equal. 

If we consider the first natural number 𝑛1 for which: 

𝐸(log2(aI+𝑛1
)) = 𝑛0 + 1 

According to (7): log2(𝑎𝐼+𝑛1
) = 𝑛1 ∗ log2 (

4

3
)+log2(𝑎𝐼) = 𝑁1+log2(𝑎𝐼) 

By noting: 𝑁1 = 𝑛1 ∗ log2 (
4

3
) . 

By deduction, we get: 

{
𝐸(log2(𝑎𝐼+𝑛1

)) = 𝐸(𝑁1) + E(log2(𝑎𝐼))
𝒐𝒓

𝐸(log2(𝑎𝐼+𝑛1
)) = 𝐸(𝑁1) + E(log2(𝑎𝐼)) + 1
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And then: 

{
𝑛0 + 1 = 𝐸(𝑁1) + E(log2(𝑎𝐼))

𝒐𝒓
𝑛0 + 1 = 𝐸(𝑁1) + E(log2(𝑎𝐼)) + 1

 

By taking account the inequality 𝑛0 ≤ 𝐸(log2(aI)), we obtain the two possible following inequalities: 

{
𝑛0 + 1 ≥ 𝐸(𝑁1) + 𝑛0

𝒐𝒓
𝑛0 + 1 ≥ 𝐸(𝑁1) + 𝑛0 + 1

 

Then: 

{

𝐸(𝑁1) ≤ 1
𝒐𝒓

𝐸(𝑁1) ≤ 0 ⇒ 𝐸(𝑁1) = 0

 

The integer part of a positive real number being positive or equal to 0, but not negative, we have: 

𝐸(𝑁1) = 0 or 𝐸(𝑁1) = 1. Therefore, the possible values of 𝑛1 are : 0, 1, 2, 3 or 4 (see table below). 

n1 N1=n1*log2(4/3) E(N1) 

0 0,00 0 

1 0,42 0 

2 0,83 0 

3 1,25 1 

4 1,66 1 

5 2,08 2 

 

Investigate the different cases: 

 

Case 1: if 𝑛1 = 0, then 𝑬(𝐥𝐨𝐠𝟐(𝐚𝑰)) = 𝒏𝟎 + 𝟏 by hypothesis. 

Case 2: if 𝑛1 = 1 , then 𝑬(𝐥𝐨𝐠𝟐(𝐚𝑰)) = 𝒏𝟎,  because 𝑛0 ≤ 𝐸(log2(aI))  and a𝐼+1  is the first term of 

sequence (𝑎𝐼+𝑛) for which 𝐸(log2(aI+1)) = 𝑛0 + 1. 

Case 3: if  𝑛1 = 2 , then 𝐸(log2(a𝐼+2)) = 𝑛0 + 1 ;  then 𝑬(𝐥𝐨𝐠𝟐(𝐚𝑰)) = 𝑬(𝐥𝐨𝐠𝟐(𝐚𝑰+𝟏)) =

𝒏𝟎 , because 𝑛0 ≤ 𝐸(log2(aI)) and a𝐼+2 is the first term of sequence (𝑎𝐼+𝑛) for which  𝐸(log2(aI+2)) =

𝑛0 + 1. 

Case 4: if  𝑛1 = 3, then 𝐸(log2(a𝐼+3)) = 𝑛0 + 1; therefore, like for case 3, 𝐸(𝐥𝐨𝐠𝟐(𝐚𝑰)) =

𝑬(𝐥𝐨𝐠𝟐(𝐚𝑰+𝟏)) = 𝑬(𝐥𝐨𝐠𝟐(𝐚𝑰+𝟐)) = 𝒏𝟎. 

Case 5: if 𝑛1 = 4, then 𝐸(log2(a𝐼+4)) = 𝑛0 + 1 ; this case is impossible because that would imply 

that 𝐸(log2(a𝐼)) = 𝐸(log2(a𝐼+1)) = 𝐸(log2(a𝐼+2)) = 𝐸(log2(a𝐼+3)) = 𝑛0, and then that 4 consecutive 

terms of the sequence (𝐸(log2(𝑎𝐼+𝑛))) would be equal, the maximum being 3 like precised above (a 

maximum of 3 consecutive terms of the increasing sequence (𝐸(log2(𝑎𝐼+𝑛))) can be equal). 
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Therefore: 

{
𝑬(𝐥𝐨𝐠𝟐(𝐚𝑰)) = 𝒏𝟎

𝒐𝒓
𝑬(𝐥𝐨𝐠𝟐(𝐚𝑰)) = 𝒏𝟎 + 𝟏

 

4- Conclusion 

The relations (5) and (6) imply that: 

 

{
𝑰 + 𝑷 =  𝑬(𝑰 ∗ 𝐥𝐨𝐠𝟐(𝟑)) + 𝑬(𝐥𝐨𝐠𝟐(𝒖𝟎)) + 𝟏

𝒐𝒓
𝑰 + 𝑷 =  𝑬(𝑰 ∗ 𝐥𝐨𝐠𝟐(𝟑)) + 𝑬(𝐥𝐨𝐠𝟐(𝒖𝟎)) + 𝟐

 

 

Which is equivalent to: 

 
𝑰 + 𝑷 =  𝑬(𝐥𝐨𝐠𝟐(𝟑𝑰 ∗ 𝒖𝟎)) + 𝟏 

 

I+P is then the « ceiling » function of the real number log2(3𝐼 ∗ 𝑢0). 

This last formula it the same that in Ruggiero[2] related to sequence (𝑠𝑛), if we add I at each of the 

two terms of the equation above. 
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