
WEBER’S CLASS NUMBER PROBLEM AND p–RATIONALITY

IN THE CYCLOTOMIC Ẑ–EXTENSION OF Q

GEORGES GRAS

Abstract. Let K := Q(ℓn) be the nth layer of the cyclotomic Zℓ-extension. It is con-
jectured that K is principal (Weber’s conjecture for ℓ = 2). Many studies (Ichimura–
Miller–Morisawa–Nakajima–Okazaki) go in this direction. Nevertheless, we examine if a
counterexample may be possible. For this, computations show that the p-torsion group TK

of the Galois group of the maximal abelian p-ramified pro-p-extension of K is not always
trivial; whence the relevance of the conjecture since #TK = #CK · #RK (up to a canonical
2-power if p = 2), where CK is the p-class group, and RK the normalized p-adic regulator.
We give a new method (Theorem 4.6 testing #TK 6= 1), allowing larger values of ℓn than

those of the literature. Finally, we search in the cyclotomic Ẑ–extension, cases of non-trivial
class groups using genus theory related to a deep property of RK (Theorem 6.3); we only
find again the three known cases (Fukuda–Komatsu–Horie).
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1. Introduction

Let ℓ ≥ 2 be a prime number and let Q(ℓn), n ≥ 0, be the nth layer in the cyclotomic
Zℓ-extension Q(ℓ∞) of Q (with [Q(ℓn) : Q] = ℓn). We draw attention on the fact that we
use ℓ (instead of p in the literature) since we need to apply the p-ramification theory to the
fields Q(ℓn), p 6= ℓ, which is more usual.

The purpose of our study is to see in what circumstances the p-class group of Q(ℓn) is
likely to be non-trivial for some prime p. Of course, the direct computation (and some deep
analytic studies) of the class number have been done by many authors without complete
success because of limitation of the order of magnitude of the degree ℓn and p; for instance,
the results given in [43, 44, Tables 1, 2] only concern ℓn = 27, 34, 52, 11, 13, 17, 19, 23, 29,
31 (27, 34, 29, 31 under GRH). Using PARI/GP [53], any “serious” computation needs the
instruction bnfinit(P) (giving all the basic invariants of the field K defined via the polynomial
P, whence the whole class group, a system of units, etc.), few values of ℓ, n, may be carried
out. Some approaches, by means of geometry of numbers, prove that some of these fields
are euclidian (see, e.g., [5] about Q(22), Q(23)); but this more difficult and broad aspects,
needs other techniques and we are in a class field theory context. For these reasons, we will
use the following trick:

Let TK be the torsion group of the Galois group G
pr
K := Gal(Hpr

K /K), where Hpr
K is the

maximal abelian p-ramified (i.e., unramified outside p and ∞) pro-p-extension of K; for
K = Q(ℓn), we have the identity:

#TK = #CK · #RK · #WK ,

where CK is the p-class group of K, RK its normalized p-adic regulator, WK = 1 for p > 2
and WK ≃ F

#S−1
2 for p = 2, where S := {p, p | 2 in K} (Lemma 2.1). Since Leopoldt’s

conjecture holds in abelian fields, we have, for any prime p, G
pr
K = ΓK ⊕ TK with ΓK ≃ Zp.

So, as soon as TK = 1, we are certain that CK = 1; otherwise, we may suspect a possible
counterexample. We shall compute, in § 2.3, the structure of some TK by means of an
indisputable reference program 2.3 (using bnfinit(P)) to show that this p-torsion group is
non-trivial in some cases of small degrees ℓn. The good new is that there exists a test about
TK which does not need bnfinit(P) and allows much larger fields K and primes p; it will be
explained Section 3 and yields Theorem 4.6.

Finally, we consider the subfields of the composite Q̂ of the Zℓ-extension of Q and give
programs to search non-trivial p-class groups using instead genus theory in p-extensions

F/K, K ⊂ F ⊂ Q̂, in connection with a deep link with the p-adic regulator RK of the base
field (Theorem 6.3), as initiated by Taya [55]. Despite of the huge intervals tested, we only
find again three known cases (Fukuda–Komatsu–Horie); then we propose some conjectures.

Now, recall some classical properties of these invariants.

1.1. Class groups and torsion groups of abelian p-ramification, in Q(ℓ∞). The in-
variants CQ(ℓn) and TQ(ℓn), for all p 6= ℓ, are the fundamental invariants of Q(ℓn) and one
may ask if the arithmetic of Q(ℓn) is as smooth as it is conjectured (for the class group) by
many authors after many verifications and partial proofs [4, 10, 11, 12, 13, 32, 33, 34, 35,
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36, 37, 43, 44, 45, 46, 47, 48, 49]. The triviality of CQ(ℓn) has no counterexamples as ℓ, n, p
vary, but that of TQ(ℓn) is, on the contrary, not true as we shall see numerically.

Denote by CK the whole class group (in the restricted or ordinary sense, which will be
precised with the mentions res or ord).

Chevalley’s formula [6, p. 406] (1933) for class groups Cres
K , Cres

k , in any cyclic extension K/k

of Galois group G, is given, in whole generality, by #(Cres
K )G =

#Cres
k ·

∏
l el

[K : k] · (Epos
k : Epos

k ∩ NK/k(K×))
,

where el is the ramification index in K/k of the prime ideal l of k and Epos
k is the group of

totally positive units of k. When K/k is totally ramified at some prime ideal l0, the formula
becomes the product of two integers:

#(Cres
K )G = #Cres

k ·
∏

l 6=l0
el

(Epos
k : Epos

k ∩ NK/k(K×))
.

Applied to Q(ℓn)/Q the formula gives (Cres
Q(ℓn))

G = 1 since ℓ is the unique (totally) ramified

prime and since Epos
Q = 1. So, for p = ℓ, C res

Q(ℓn) = 1, a classical result often attributed to

Iwasawa instead of Chevalley (or more precisely Herbrand–Chevalley, the Herbrand quotient
of the group of units of K being the key for the proof). In the sequel, we implicitly assume
p 6= ℓ.

The analogous “fixed points formula” for the ℓ-torsion group TQ(ℓn), in Q(ℓn)/Q gives also
TQ(ℓn) = 1 for all n ([15, Theorem IV.3.3], [18, Proposition 6], [27, Appendix A.4.2]); which
justifies once again the assumption p 6= ℓ and that the notation T always refers to a p-torsion
group.

1.2. The p-torsion groups TK in number theory. These invariants were less (numer-
ically) computed than class groups, which is unfortunate because they are of basic signif-
icance in Galois cohomology since for all number field K (under Leopoldt’s conjecture),
TK is the dual of H2(GK ,Zp) [52], where GK is the Galois group of the maximal p-ramified
pro-p-extension of K (ordinary sense); the freeness of GK is equivalent to TK = 1. Then,
after the pioneering works of Haberland–Koch–Neumann–Schmidt and others, we have the
local-global principle defining first and second Shafarevich–Tate groups in the framework of
S-ramification when S is the set of p-places (and real ones if p = 2) [42, Theorem 3.74]:

IIIiK := Ker
[
Hi(GK ,Fp) −→

⊕
v∈S

Hi(GKv ,Fp)
]
, i = 1, 2,

where III1K ≃ CK/cℓK(S) (the S-class group), and where III2K depends on the group VK :=
{α ∈ K×, (α) = ap, α ∈ K×p

v , ∀v ∈ S}, via the exact sequence:

0 −→ VK/K
×p −→ H2(GK ,Fp) −→

⊕
v∈S

H2(GKv ,Fp) −→ Z/pZ (resp. 0)→ 0,

if µp ⊂ K (resp. µp 6⊂ K). Finally, the link with the invariant TK is given by the rank

formula, rkp(TK) = rkp(VK/K
×p) +

∑
v∈S

δv − δK , where δv = 1 or 0 according as Kv contains

µp or not, δK = 1 or 0 according as K contains µp or not [15, Corollary III.4.2.3]. For
generalizations, with ramification and decomposition giving Shafarevich formula, see [15,
II.5.4.1] as well as [38], and for the reflection theorem on generalized class groups, see [19],
[15, II.5.4.5 and Theorem III.4.2]. Thus, rkp(III

2
K) depends essentially on rkp(TK).

If one replaces the notion of p-ramification (in pro-p-extensions) by that of S-ramification
(in pro-extensions), for any set of places S, the corresponding Shafarevich–Tate groups have
some relations with the corresponding torsion groups TK,S, but with many open questions
when no assumption is done on S (see [31] for an up to date story about them and for
numerical examples).
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When TK = 1 under Leopoldt’s conjecture (freeness of GK), one speaks of p-rational field K;
in this case, the Shafarevich–Tate groups are trivial or obvious, which has deep consequences
as shown for instance in [2] in relation with our conjectures in [20] on the p-adic properties
of the units. For more information on the story of abelian p-ramification and p-rationality,
see [27, Appendix A] and its bibliography about the pioneering contributions: K-theory
approach [18], p-infinitesimal approach [38], cohomological/pro-p-group approach [50, 51].
All basic material about p-rationality is overviewed in [15, III.2, IV.3, IV.4.8].

In another point of view, the orders and annihilations of the TQ(ℓn) are given by p-adic
L-functions, the two theories (arithmetic and analytic) being equivalent (this will give the
testing of TQ(ℓn) 6= 1 from Theorem 4.6).

All these principles on Shafarevich–Tate groups exist for the theory of elliptic curves and
this is at the origin of a question of Coates [8, Section 3] on the possible triviality of the

CQ(ℓn) and more generally on the behavior of the class groups in the composite Q̂ of the
Zℓ-extensions of Q.1

1.3. The logarithmic class group and Greenberg’s conjecture. We may also consider

another p-adic invariant, the Jaulent’s logarithmic class group C̃K [39] which governs Green-
berg’s conjecture [29] for totally real number fields K (i.e., λ = µ = 0 for the cyclotomic

Zp-extension of K), the result being that Greenberg’s conjecture holds if and only C̃K capit-
ulates in K(p∞) [40]. Of course Greenberg’s conjecture holds for p = ℓ in Q(ℓ∞) for trivial
reasons, but we have few information for the cyclotomic Zp-extensions of K = Q(ℓn) for
p 6= ℓ. As we shall see, in all attempts concerning subfields of Q(ℓ∞), Jaulent’s logarithmic
class group for p 6= ℓ was trivial .

2. Abelian p-ramification theory for totally real fields

Recall the context of abelian p-ramification theory when K is any totally real number field
(under Leopoldt’s conjecture for p in K).

2.1. Main definitions and notations – The p-invariants of K.

(a) Let E1
K be the group of p-principal global units ε ≡ 1 (mod

∏
p|p p) of K. Let

U1
K := ⊕p|pU

1
Kp

be the Zp-module of p-principal local units, where U1
Kp

is the group of
p-principal units of the p-completion Kp of K. Denote by µκ the group of pth roots
of unity of any field κ and put WK := torZp(U

1
K)/µK =

[
⊕p|p µKp

]/
µK .

(b) Let ι : {x ∈ K× ⊗ Zp, x prime to p} → U1
K be the diagonal embedding. Let E1

K be
the closure of ιE1

K in U1
K and let Hnr

K be the p-Hilbert class field of K; then we have

Gal(Hpr
K /H

nr
K ) ≃ U1

K/E
1
K . The Leopoldt conjecture leads to the (not so trivial) exact

sequence:

1 −→ WK −→ torZp

(
U1
K

/
E1
K

) log−−−→ torZp

(
log

(
U1
K

)/
log(E1

K)
)
→ 0.

(c) Let CK be the p-class group of K, isomorphic to Gal(Hnr
K /K).

(d) Let RK := torZp(log(U
1
K)/log(E

1
K)) be the normalized p-adic regulator [23, § 5]; recall

that for p 6= 2, #RK = RK

pd−1 and #RK = 1
2s2−1

RK

2d−1 for p = 2, where RK is the classical

p-adic regulator, d = [K : Q] and s2 is the number of 2-places in K (see [7, Appendix]
giving the link of RK with the residue of the p-adic zeta function of K).

1 I warmly thank John Coates for sending me his conference paper (loc.cit.), not so easy to find for me,
but which contains very useful numerical and bibliographical information.
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(e) Let K(p∞) = KQ(p∞) be the cyclotomic Zp-extension of K and let Hbp
K (called

the Bertrandias–Payan field) fixed by the subgroup WK of TK ; the field Hbp
K is

the composite of all p-cyclic extensions of K embeddable in p-cyclic extensions of
arbitrary large degree.

2.2. The case of the fields K = Q(ℓn). In that case, some simplifications arise:

Lemma 2.1. One has WK = 1 for all K = Q(ℓn), except for the case p = 2 in which case,
WK ≃ F

#S−1
2 where S is the set of primes p | 2 in K.

Proof. For p 6= 2, the p-completions Kp (unramified of ℓ-power degree, ℓ 6= p) do not contain
µp since Qp(µp)/Qp, of degree p − 1 > 1, is totally ramified at p; thus WK = 1. For p = 2,

Kp does not contain µ4 but µ2 and torZp(U
1
K) ≃ F#S

2 , thus WK ≃ F
#S−1
2 . �

For p = 2, the case #S > 1 is very rare and occurs only when 2ℓ−1 ≡ 1 (mod ℓ2), e.g.,
ℓ = 2093, 3511, but these values of ℓ are out of range of practical computations. Thus WK is
in general trivial. Since for K = Q(ℓn), K(p∞) ∩Hnr

K = K, we have the following diagram:
TK

RKCK
Hbp
K WK

K(p∞)Hnr
KK(p∞) Hpr

K

Remarks 2.2. Assume to be in the non-exceptional cases where WK = 1.

(i) If CK = 1, TK = RK, the normalized p-adic regulator, which is not always trivial as
we shall see, even if we have conjectured in [20] that, for any number field K, TK = 1
for p≫ 0.

(ii) One may think that interesting examples occur more easily when p totally splits in
Q(µℓn) (i.e., p ≡ 1 (mod ℓn)). This explains the result of [36] and [37] clamming
that #CQ(ℓn) is odd in Q(ℓ∞) for all ℓ < 500 and that of [35, 48, 49]. Indeed, for
p = 2 or any very small p, the residue degree ρn of p in Q(µℓn) fulfills the condition

pρn ≡ 1 (mod ℓn), giving ρn >
n log(ℓ)

log(p)
, unbounded as n→∞, which means that if the

order of the relative class group C ∗
Q(ℓn) = Ker(NQ(ℓn)/Q(ℓn−1)) is non-trivial for n large

enough, then it is divisible by pρn due to the Galois action on a non-trivial p-class
of C ∗

Q(ℓn), which becomes oversized; see § 2.4 for more details showing that C ∗
Q(ℓn) = 1

for n≫ 0 does exist for any prime p ≥ 2 from a non-trivial result of Washington [56]
and explicit deep analytic computations in [4, 9, 10, 13, 34, 35, 36, 37, 45, 46, 48, 49]
(e.g., [13, Corollary 1]). 2

2.3. General computation of the structure of TQ(ℓn). We shall first use the following
PARI/GP programs giving the structure of abelian group, of TQ(ℓn), for small values of n,
from the given polynomial P = polsubcyclo(eln+1, eln) for p > 2 (the case of degree 2n being
different for the polynomial), P defining the real field Q(ℓn) (these programs are simplified
forms of the general one written in [25, Programme I, § 3.2]). The parameter N must be
such that pN is larger than the exponent of TQ(ℓn); taking N = 2 for p > 2 (resp. N = 3 for
p = 2) gives the p-rank of the group.
PROGRAM I. STRUCTURE OF T FOR el=2, p>2

{el=2;N=12;for(n=1,3,print("el=",el," n=",n);P=x;for(j=1,n,P=P^2-2);

K=bnfinit(P,1);forprime(p=3,2*10^5,KpN=bnrinit(K,p^N);HpN=KpN.cyc;

L=List;e=matsize(HpN)[2];R=0;for(k=1,e-1,c=HpN[e-k+1];

w=valuation(c,p);if(w>0,R=R+1;listinsert(L,p^w,1)));

if(R>0,print("p=",p," rk(T)=",R," T=",L))))}

2See the numerous pioneering Horie’s papers proving results of the form: Let ℓ0 be a small prime; then
a prime p, totally inert in some Q(ℓn0), yields CQ(ℓn) = 1 for all n.
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el=2 n=1 p=13 rk(T)=1 T=[13] el=2 n=1 p=31 rk(T)=1 T=[31]

el=2 n=2 p=13 rk(T)=2 T=[169,13] el=2 n=2 p=31 rk(T)=1 T=[31]

el=2 n=2 p=29 rk(T)=1 T=[29] el=2 n=2 p=37 rk(T)=1 T=[37]

el=2 n=3 p=3 rk(T)=2 T=[3,3] el=2 n=3 p=31 rk(T)=1 T=[31]

el=2 n=3 p=13 rk(T)=2 T=[169,13] el=2 n=3 p=37 rk(T)=1 T=[37]

el=2 n=3 p=29 rk(T)=1 T=[29] el=2 n=3 p=521 rk(T)=1 T=[521]

FASTER PROGRAM, FOR el=2, p>2, ONLY COMPUTING #T

{el=2;n=3;P=x;for(k=1,n,P=P^2-2);K=bnfinit(P,1);

forprime(p=3,2*10^5,HpN=bnrclassno(K,p^2);w=valuation(HpN,p)-1;

if(w>0,print("el=",el," n=",n," p=",p," #T=", p^w)))}

PROGRAM II. STRUCTURE OF T FOR el>2, p!=el

{el=3;N=8;for(n=1,2,print("el=",el," n=",n);P=polsubcyclo(el^(n+1),el^n);

K=bnfinit(P,1);forprime(p=2,200,KpN=bnrinit(K,p^N);HpN=KpN.cyc;

L=List;e=matsize(HpN)[2];R=0;for(k=1,e-1,c=HpN[e-k+1];

w=valuation(c,p);if(w>0,R=R+1;listinsert(L,p^w,1)));

if(R>0,print("p=",p," rk(T)=",R," T=",L))))}

el=3 n=1 p=7 rk(T)=1 T=[7] el=3 n=1 p=73 rk(T)=1 T=[73]

el=3 n=2 p=7 rk(T)=1 T=[7] el=3 n=2 p=73 rk(T)=1 T=[73]

el=5 n=1 p=11 rk(T)=2 T=[11,11]

el=5 n=2 p=11 rk(T)=2 T=[11,11] el=5 n=2 p=101 rk(T)=1 T= [101]

FASTER PROGRAM, FOR el>2, p!=el, ONLY COMPUTING #T

{el=3;n=1;P=polsubcyclo(el^(n+1),el^n);K=bnfinit(P,1);

forprime(p=5,2*10^5,HpN=bnrclassno(K,p^2);w=valuation(HpN,p)-1;

if(w>0,print("el=",el," n=",n," p=",p," #T=", p^w)))}

These partial results show that the p-ramification aspects are more intricate since, for in-
stance, for the case ℓ = 2, the divisibility by p = 29 only appears for n = 2 and, for p = 13,
the 13-rank and the exponent increase from n = 1 to n = 2 (see the next § 2.4 for more
explanations). Unfortunately, it is not possible in practice to compute easily beyond ℓ = 17
for various p with the bnfinit instruction. So, as we have explained in the Introduction, we
shall give Section 3 another method to test TQ(ℓn) 6= 1 for larger ℓ and p.

2.4. Algebraic and analytic aspects. Let K = Q(ℓn) and k = Q(ℓn−1) with p 6= ℓ fixed.
Then the transfer maps Tk → TK , Rk → RK , Ck → CK , are injective and the arithmetic
norms TK → Tk, RK → Rk, CK → Ck, are surjective since p 6= ℓ; so #TK , #RK , #CK

increase as soon as appear relative submodules in K/k.

Let T ∗
K , R∗

K , C ∗
K , be the corresponding kernels of the arithmetic norm NK/k (or of the

algebraic norm νK/k :=
∑

σ∈Gal(K/k) σ); then we get the relation #T ∗
K = #R∗

K · #C ∗
K , since

#W ∗
K = 1, except in the case p = 2 when 2 splits beyond k, giving #W ∗

K = 2 (Lemma 2.1).

2.4.1. Galois action – Relative submodules. Let (MQ(ℓn))n≥0 be a family of finite Zp[Gn]-
modules, Gn = Gal(Q(ℓn)/Q), provided with natural transfer and norm maps having the
above properties (this will apply to T , C , R, W ), and let M ∗

Q(ℓn) be the kernel of the
algebraic norm νQ(ℓn)/Q(ℓn−1) so that:

MQ(ℓn) ≃MQ(ℓn−1)

⊕
M

∗
Q(ℓn).

Let K = Q(ℓn), n ≥ 1, and ki := Q(ℓi), 0 ≤ i ≤ n; since Gn is cyclic of order ℓn, the
rational characters χi of K are in one-to-one correspondence with the ki; we shall denote
by θi | χi the irreducible p-adic characters; each θi is above a character ψi of degree 1 and

order ℓi. We have the decomposition MK =
n⊕
i=1

M
χi

K =
n⊕
i=1

M
∗
ki
=

n⊕
i=1

[ ⊕
θi|χi

M
θi
ki

]
. Then M ∗

K
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(or any of its component M
θn
K ) is a module over Zp[µℓn ], hence isomorphic to a product of

Zp[µℓn]-modules of the form Zp[µℓn]/p
e
n, pn | p in Qp(µℓn), e ≥ 1, whose p-rank is a multiple

of the residue degree ρn of p in the extension Qp(µℓn)/Qp (i.e., ρn ≥ 1 minimal such that
pρn ≡ 1 (mod ℓn)) and whose order is pe ρn; thus ρn → ∞ as n → ∞, which is considered
as incredible for classical arithmetic invariants that we shall investigate below, and leads to
analytic proofs of the triviality of C ∗

K for some p if ℓn ≫ 0 (Remark 2.2).

2.4.2. The p-class groups in Q(ℓ∞). We still put K := Q(ℓn). Washington’s theorem [56]
gives a limitation of the increasing of CK , as n→∞; it claims (with our notations) that for
ℓ and p fixed, #CK is constant for all n large enough, whence C ∗

K = 1 for all n ≫ 0. This
only applies to the p-class groups, but in all the tower. Other analytical studies, as we have
mentioned, give some principalities (or p-principalities), for all n, under some limitations of
the parameters. In [4], a conjecture (from “speculative extensions of the Cohen–Lenstra–
Martinet heuristics”) implies C ∗

K 6= 1 for finitely many layers K (possibly none).

These theorems may be easily understandable from the previous observation on the p-ranks.
Thus it is natural (but non-trivial) that C ∗

K = 1 (hence CK constant) for all n≫ 0.

2.4.3. The torsion groups in Q(ℓ∞). Concerning the case of the torsion groups TK , we
observe that in general the solutions p, for #T ∗

K ≡ 0 (mod p), also fulfill p ≡ 1 (mod ℓn),
which is in some sense a strong form of Washington’s result because the reflection theorem
that we shall recall later in Section 5, in the layers L := K(µp), the p-rank of T ∗

K is bounded
by that of C ∗

L (in fact of the ω-component where ω is the Teichmüller character). Thus
Washington’s theorem may be true for the torsion groups in Q(ℓ∞).

2.4.4. The normalized regulators in Q(ℓ∞). One can wonder what happens for the regulators
RK and the relative components R∗

K , due to the specific nature of a regulator as a Frobenius
determinant and regarding the previous observations. So, recall some algebraic facts about
the R∗

K that we can explain from heuristics and probabilistic studies given in [20, § 4.2.2].
Indeed, for any real Galois extensionK/Q, of Galois groupG, the normalized p-adic regulator
RK may be defined via the conjugates of the p-adic logarithm of a suitable Minkowski unit η
and can be written, regarding G, as Frobenius determinant RG

p (η) =
∏
θ
Rθ
p(η), where θ runs

trough the irreducible p-adic characters, and Rθ
p(η) =

∏
ψ|θ

Rψ
p (η) with absolutely irreducible

characters ψ. Then, in a standard point of view, Prob
(
Rθ
K ≡ 0(mod p)

)
=

O(1)

p ρ δ2
(loc. cit.),

where ρ is still the residue degree of p in the field of values of ψ and δ ≥ 1 is a suitable
multiplicity of the absolutely irreducible θ-representation (in our case, ρ = ρn and δ = 1).

Contrary to the class group of K (for K fixed) which is finite, the primes p such that RK ≡ 0
(mod p) may be, a priori, infinite in number (we have conjectured that it is not the case,
but this is an out of reach conjecture). Nevertheless, some very large p with ρn = 1, may
divide #R

θn
K , which indicates other probabilities conjectured in [20, Théorème 1.1]. Thus,

this analysis also confirms that, for ℓ and p fixed, TK may be constant for all n large enough.

So, we have forced some programs to search only primes p ≡ 1 (mod ℓn) hoping more
examples of non-trivial TK .

2.4.5. The logarithmic class groups in Q(ℓ∞). We have computed (for ℓn ∈ {26, 33, 53, 7, 11,
13, 17, 19, 23, 29}) the order of C̃K for all p ∈ [2, 2 ·105] (from [3]), and we have no non-trivial
example; this means that the logarithmic class group behaves as the ordinary p-class group
in Q(ℓ∞), but not as TK , as we have seen. So it is possible to state the conjecture that,

for all p, the logarithmic class groups C̃K are all trivial. This is not too surprising since if

CK = 1 and if p is totally inert in K, then C̃K = 1 for obvious reasons (see [40, Schéma § 2.3]
or [28, Diagram 4.2]); and this is almost the case in our computations.
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We refer to [41, Théorème 4] giving the property of annihilation of C̃K by means of the
Stickelberger pseudo measure and its image by the Spiegel involution that we shall recall
and use for the annihilation of TK .

3. Definition of p-adic measures

We recall the main classical principles to apply them to the fields Q(ℓn), ℓ ≥ 2 prime, n ≥ 1,
with p ≥ 2 prime distinct from ℓ, then to composite of such fields Q(ℓn1

1 ) · · ·Q(ℓnt
t ), denoted

Q(N), where N = ℓn1

1 · · · ℓnt
t , and by taking p ∤ N .

3.1. General definition of the Stickelberger elements. Let f > 1 be any abelian
conductor and let Q(µf ) be the corresponding cyclotomic field. We define SQ(µf ) :=

−
f∑
a=1

(
a

f
− 1

2

)
·
(
Q(µf )

a

)−1

(where the integers a are prime to f and where Artin symbols

are taken over Q).

The properties of annihilation need to multiply SQ(µf ) by an element of the annihilator of

µQ(µf )
, which is generated by f (or 2 f) and the multipliers 1 − c ·

( Q(µf )

c

)−1
, for any odd c

prime to f . This shall give integral elements in the group algebra. If f is odd, one may take

c even for annihilation in Zp-algebras for p 6= 2 or when the term 1
2

∑f
a=1

(Q(µf )

a

)−1
can be

neglected.

Put q = p (resp. 4) if p 6= 2 (resp. p = 2). For K = Q(N), let L = K(µq); to simplify
the notations, put Km := KQ(pm), Lm := KmL = K(µqpm) for all m ≥ 0; so ∪mKm =
KQ(p∞) =: K∞ and ∪mLm = LQ(p∞) =: L∞.

Note, once for all, that the index m is relative to layers in cyclotomic Zp-extensions contrary
to N used for fields in the composite of the cyclotomic Zℓ-extensions, ℓ 6= p.

All this is summarized by the following diagram where Gm := Gal(Lm/Q) ≃ Z/NZ ×
Z/pmZ× Z/φ(q)Z, φ being the Euler function:

Gm

G

L∞=K∞LK∞

KmQ(pm) Lm=KmL

L=K(µq)K=Q(N)Q
N

pm

φ(q)=p−1 or 2

3.2. Multipliers of Stickelberger elements. The conductor of Lm is fLm = fN · qpm for
2 ∤ N and fN · pm+1 otherwise. Put fmN := fLm . Let c be an integer prime to fmN and, by

restriction of SQ(µfm
N

) to Lm, let S c
Lm

:=
(
1−c

(
Lm

c

)−1)
·SLm ; then S c

Lm
∈ Z[Gm]. Indeed,

we have:

S
c
Lm

=
−1
fm
N

∑
a

[
a
(
Lm

a

)−1

− ac
(
Lm

a

)−1(Lm

c

)−1]
+

1− c

2

∑
a

(
Lm

a

)−1

;

let a′c ∈ [1, fmN ] be the unique integer such that a′c · c ≡ a (mod fmN ) and put a′c · c =
a+ λma (c)f

m
N , λma (c) ∈ Z; using the bijection a 7→ a′c in the summation of the second term in
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[ ]
and

(
Lm

a′c

)(
Lm

c

)
=

(
Lm

a

)
, this yields:

S
c
Lm

=
−1
fm
N

[∑
a
a
(
Lm

a

)−1

−
∑
a
a′c · c

(
Lm

a′c

)−1(Lm

c

)−1]
+

1− c

2

∑
a

(
Lm

a

)−1

=
−1
fm
N

∑
a

[
a− a′c · c

](
Lm

a

)−1

+
1− c

2

∑
a

(
Lm

a

)−1

=
∑
a

[
λma (c) +

1− c

2

](
Lm

a

)−1

∈ Z[Gm].

Lemma 3.1. We have the relations λmfmN −a(c)+
1−c
2

= −
(
λma (c)+

1−c
2

)
for all a ∈ [1, fmN ] prime

to fmN . Then S ′c
Lm

:=
∑fmN /2

a=1

[
λma (c)+

1−c
2

](
Lm

a

)−1 ∈ Z[Gm] is such that S c
Lm

= S ′c
Lm
·(1−s∞).

Proof. By definition, the integer (fmN − a)′c is in [1, fmN ] and congruent modulo fmN to (fmN −
a) c−1 ≡ −ac−1 ≡ −a′c (mod fmN ); thus (fmN−a)′c = fmN−a′c and λmfmN −a(c) =

(fmN −a)′c c−(fmN −a)

fmN
=

(fmN −a′c) c−(fmN −a)

fmN
= c−1−λma (c), whence λmfmN −a(c)+

1−c
2

= −
(
λma (c)+

1−c
2

)
and the result. �

3.3. Spiegel involution. Let κm : Gm → (Z/qpmZ)× ≃ Gal(Q(µqpm)/Q) be the cyclotomic

character of level m, of kernel Gal(Lm/Q(µqpm)), defined by ζs = ζκm(s), for all s ∈ Gm

and all ζ ∈ µqpm. The Spiegel involution is the involution of (Z/qpmZ)[Gm] defined by

x :=
∑
s∈Gm

as · s 7−→ x∗ :=
∑
s∈Gm

as · κm(s) · s−1.

Thus, if s is the Artin symbol
(
Lm

a

)
, then

(
Lm

a

)∗ ≡ a ·
(
Lm

a

)−1
mod qpm.

We shall use the case m = 0 for which we have κm(s) ≡ ω(s) (mod q), where ω is the
usual Teichmüller character ω : G0 = Gal(L/Q)→ Z×

p . From Lemma 3.1, we have obtained
S c ∗
Lm

= S ′c ∗
Lm
· (1 + s∞) in (Z/qpmZ)[Gm].

4. Annihilation theorem of T ∗
K

Recall that, for K = Q(N), Km := KQ(pm) and Lm := KmL. For the most precise and
straightforward method, the principle, which was given in the 60’s and 70’s, is to consider
the annihilation, by means of the above Stickelberger element, of the kummer radical in
L×
m defining the maximal sub-extension of Hpr

Km
whose Galois group is of exponent pm, then

to use the Spiegel involution giving a p-adic measure annihilating, for m → ∞, the finite
Galois group TK (see [17, 22] for more history). The case p = 2 is particularly tricky; to
overcome this difficulty, we shall refer to [16, 30]. In fact, this process is equivalent to get
elementarily an explicit approximation of the p-adic L-functions “at s = 1”, avoiding the
ugly computation of Gauss sums and p-adic logarithms of cyclotomic units [56, Theorem
5.18]. We have the following result with a detailed proof in [22, Theorems 5.3, 5.5]:

Proposition 4.1. For p ≥ 2, let pe be the exponent of TK for K = Q(N). For all m ≥ e,
the (Z/qpmZ)[Gm]-module TK is annihilated by S ′c ∗

Lm
.

From the expression of S ′c
Lm

(Lemma 3.1), the Spiegel involution yields:

S
′c ∗
Lm
≡

fmN /2∑
a=1

[
λma (c) +

1− c

2

]
a−1

(
Lm

a

)
(mod qpm), (1)

defining a coherent family in lim←−
m≥e

(Z/qpmZ)[Gm] of annihilators of TK .

One obtains, by restriction of S ′c ∗
Lm

to K, a coherent family of annihilators of TK , whose

p-adic limit A c
K := lim

m→∞

fmN /2∑
a=1

[
λma (c) +

1− c

2

]
a−1

(
K

a

)
in Zp[Gal(K/Q)], is a canonical anni-

hilator of TK .
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Remark 4.2. Let α∗
Lm

:=
[∑fmN

a=1

(
Lm

a

)−1]∗ ≡ ∑fmN
a=1 a

−1
(
Lm

a

)
(mod qpm); then: α∗

Lm
:=

∑fmN /2
a=1 a−1

(
Lm

a

)
+ (fmN − a)−1

(
Lm

fmN −a

)
≡
∑fmN /2

a=1 a−1
(
Lm

a

)
(1− s∞)mod fmN ,

which annihilates TK by restriction for m large enough since K is real. We shall neglect in
A c
K the term 1−c

2
· α∗

Lm
and we still denote:

A
c
K = lim

m→∞

[ fmN /2∑
a=1

λma (c) a
−1
(
K

a

)]
.

Lemma 4.3. For K = Q(N), ψN of order N and conductor fN ,

ψN(A
c
K) = (1− ψN (c)) · 12Lp(1, ψN). (2)

Proof. This comes from the classical construction of p-adic L-functions (e.g., [14, page 292],
[17, Propositions II.2, II.3, Définition II.3, II.4, Remarques II.3, II.4], [56, Chapters 5, 7]).
For more details, see [22, § 7.1]. �

Proposition 4.4. Let K := Q(N) of Galois group G ≃ Z/NZ and conductor fN . Then,

for the p-adic character θN above ψN , of order N of K, the component T
θN
K is annihilated

by (1 − ψN(c)) · 12Lp(1, ψN). Moreover, from the principal theorem of Ribet–Mazur–Wiles–

Kolyvagin–Greither on abelian fields, 1
2
Lp(1, ψN) gives its order.

In the practice, taking c = 2 in the programs when p 6= 2, we obtain the annihilation by
(1−ψN(2)) · 12Lp(1, ψN), where ψN (2) is a root of unity of order dividing N ; thus (1−ψN(2))
is invertible modulo p, except when ψN (2) = 1 for N = 1093, 3511, . . . which are in fact
unfeasible numerically. If p = 2 an odd c prime to N must be chosen.

Lemma 4.5. [22, Corollary 7.3, (iii)]. We have A c
K ≡

f0N/2∑
a=1

λ0a(c) a
−1
(
K

a

)
modulo p, p ∤ N ,

where f 0
N = fN · q for 2 ∤ N and fN · p otherwise.

Thus, we have obtained, putting f 0
N =: fN , a computable characterization of non-triviality

of TK , for K = Q(N), p ≥ 2, p ∤ N , N fixed:

Theorem 4.6. Let L = K(µq), q = p or 4. The conductor of L is fN := fN q for 2 ∤ N
and fN p otherwise. Let c be an integer prime to fN . For all a ∈ [1, fN ], prime to fN , let a

′
c

be the unique integer in [1, fN ] such that a′c · c ≡ a (mod fN) and put a′c · c− a = λa(c) fN ,
λa(c) ∈ Z.

Let A c
K :=

fN/2∑
a=1

λa(c) a
−1
(
K

a

)
, ψN a character of K of order N and θN the p-adic character

above ψN . Then, if ψN(A
c
K) is not a p-adic unit, the θN -component of the Zp[G]-module TK

is non-trivial.

4.1. Numerical test T ∗
Q(ℓn) 6= 1 for ℓ > 2, p > 2. We have, from § 2.4, by induction,

TQ(ℓn) = T ∗
Q(ℓn)

⊕
TQ(ℓn−1). For a character ψn of order ℓ

n ofK, the condition ψn(A
c
Q(ℓn)) ≡ 0

(mod pn), for some pn | p, is equivalent to the non-triviality of T ∗
Q(ℓn), due to the p-adic

character θn above ψn. We compute ψn(A
c
Q(ℓn))(mod p) and test if the norm of this element

is divisible by p; this characterize the condition T ∗
Q(ℓn) 6= 1:

PROGRAM III. TEST #T*>1 WITH NORM COMPUTATIONS FOR el>2, p>2

{forprime(el=3,120,for(n=1,4,Q=polcyclo(el^n);

h=znprimroot(el^(n+1));H=lift(h);C=2;forprime(p=3,2500,if(p==el,next);

f=p*el^(n+1);cm=Mod(C,f)^-1;g=znprimroot(p);G=lift(g);gm=g^-1;

e=lift(Mod((1-H)*el^(-n-1),p));H=H+e*el^(n+1);h=Mod(H,f);

e=lift(Mod((1-G)*p^-1,el^(n+1)));G=G+e*p;g=Mod(G,f);

S=0;hh=1;gg=1;ggm=1;for(u=1,el^n*(el-1),hh=hh*h;

t=0;for(v=1,p-1,gg=gg*g;ggm=ggm*gm;a=lift(hh*gg);A=lift(a*cm);
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t=t+(A*C-a)/f*ggm);S=S+lift(t)*x^u);s=Mod(S,Q);vp=valuation(norm(s),p);

if(vp>0,print("el=",el," n=",n," p=",p)))))}

The program finds again the cases (ℓ = 3, p = 7), (ℓ = 3, p = 73), (ℓ = 5, p = 11) and
(ℓ = 5, n = 2, p = 101), of Table 2.3.

An interesting case is ℓ = 5 and n = 2, 3 giving TQ(52) ≃ Z/2251Z and T ∗
Q(53) ≃ Z/2251Z;

which implies that TQ(53) contains a subgroup isomorphic to Z/2251Z× Z/2251Z.

We have computed the structure of TQ(ℓn) for ℓ = 3, n = 3, p = 109, which is much longer and
needs a huge computer memory; we get as expected el = 3 n = 3 p = 109 rk(T) = 1 T = [109].
Whence, we can propose the following program, only considering primes p ≡ 1(mod ℓn), so
that p splits completely in Q(µℓn) which allows to characterize, once for all, a prime pn | p by
means of a congruence z ≡ r (mod pn), where z denotes, in the program, a generator of µℓn
and r a rational integer, then avoiding the computation of N = norm(s) in some programs,
which takes too much time.

We then find supplementary examples, taking n = 1 for ℓ > 11.

PROGRAM IV. TEST #T*>1 MODULO (zeta-r) WHEN p=1 (mod el^n) FOR el>2, p>2

{forprime(el=3,250,for(n=1,6,Q=polcyclo(el^n);h=znprimroot(el^(n+1));

H=lift(h);C=2;forprime(p=3,5000,if(Mod(p,el^n)!=1,next);Qp=Mod(1,p)*Q;

m=(p-1)/el^n;r=znprimroot(p)^m;f=p*el^(n+1);cm=Mod(C,f)^-1;

g=znprimroot(p);G=lift(g);gm=g^-1;

e=lift(Mod((1-H)*el^(-n-1),p));H=H+e*el^(n+1);h=Mod(H,f);

e=lift(Mod((1-G)*p^-1,el^(n+1)));G=G+e*p;g=Mod(G,f);

S=0;hh=1;gg=1;ggm=1;for(u=1,el^n*(el-1)/2,hh=hh*h;

t=0;for(v=1,p-1,gg=gg*g;ggm=ggm*gm;a=lift(hh*gg);A=lift(a*cm);

t=t+(A*C-a)/f*ggm);S=S+lift(t)*x^u);s=lift(Mod(S,Qp));

R=1;for(k=1,el^n,R=R*r;if(Mod(k,el)==0,next);t=Mod(s,x-R);

if(t==0,print("el=",el," n=",n," p=",p))))))}

VARIANT FOR ANY NUMBER d OF p-PLACES USING THE FACTORIZATION OF Q mod p

d (a power of el) may be optionally specified (e.g. d=1,el,...):

{el=3;for(n=1,10,Q=polcyclo(el^n);h=znprimroot(el^(n+1));H=lift(h);C=2;

forprime(p=5,2*10^4,f=p*el^(n+1);cm=Mod(C,f)^-1;Qp=Mod(1,p)*Q;

F=factor(Q+O(p));R=lift(component(F,1));d=matsize(F)[1];

g=znprimroot(p);G=lift(g);gm=g^-1;

e=lift(Mod((1-H)*el^(-n-2),p));H=H+e*el^(n+2);h=Mod(H,f);

e=lift(Mod((1-G)*p^-1,el^(n+2)));G=G+e*p;g=Mod(G,f);

S=0;hh=1;gg=1;ggm=1;for(u=1,el^n*(el-1)/2,hh=hh*h;

t=0;for(v=1,p-1,gg=gg*g;ggm=ggm*gm;a=lift(hh*gg);A=lift(a*cm);

t=t+(A*C-a)/f*ggm);S=S+lift(t)*x^u);s=lift(Mod(S,Qp));

for(k=1,d,t=Mod(s,R[k]);if(t==0,print("el=",el," n=",n," p=",p)))))}

The following table is the addition of that obtained with Programs III and IV (ℓ > 2):

el=3 n=1 p=7 el=5 n=2 p=6701 el=67 n=1 p=269

el=3 n=1 p=73 el=5 n=3 p=2251 el=83 n=1 p=499

el=3 n=3 p=109 el=5 n=3 p=27751 el=101 n=1 p=607

el=3 n=3 p=17713 el=5 n=4 p=11251 el=107 n=1 p=857

el=3 n=4 p=487 el=17 n=1 p=239 el=109 n=1 p=50359

el=3 n=4 p=1621 el=23 n=1 p=47 el=131 n=1 p=2621

el=3 n=7 p=17497 el=29 n=1 p=59 el=131 n=1 p=8123

el=5 n=1 p=11 el=37 n=1 p=4441 el=131 n=1 p=34061

el=5 n=2 p=101 el=43 n=1 p=173 el=137 n=1 p=1097

el=5 n=2 p=1151 el=47 n=1 p=283 el=151 n=1 p=907

el=5 n=2 p=2251 el=61 n=1 p=1709 el=191 n=1 p=383

4.2. Numerical test T ∗
Q(ℓn) 6= 1 for ℓ > 2, p = 2. In the case p = 2, taking c = 3, we

have the exceptional prime ℓ = 11 for which 3 splits in Q(11), whence 1− ψ1(c) = 0 giving
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a wrong solution with the following program. Moreover, θ cannot be of degree 1 in practice
since 2 is inert in Q(ℓ) except for the two known cases of non-trivial Fermat quotients of 2
modulo ℓ; so we are obliged to test with the computation of a norm in Q(µℓ).

PROGRAM V. TEST #T>1 WITH NORM COMPUTATIONS FOR p=2, el>2

{p=2;q=4;n=1;C=3;forprime(el=5,10^4,Q=polcyclo(el^n);

h=znprimroot(el^(n+1));H=lift(h);f=q*el^(n+1);cm=Mod(C,f)^-1;

g=Mod(-1,q);G=lift(g);gm=g^-1;

e=lift(Mod((1-H)*el^(-n-1),q));H=H+e*el^(n+1);h=Mod(H,f);

e=lift(Mod((1-G)*q^-1,el^(n+1)));G=G+e*q;g=Mod(G,f);

S=0;hh=1;gg=1;ggm=1;for(u=1,el^n*(el-1)/2,hh=hh*h;

t=0;for(v=1,2,gg=gg*g;ggm=ggm*gm;a=lift(hh*gg);A=lift(a*cm);

t=t+(A*C-a)/f*ggm);S=S+lift(t)*x^u);s=Mod(S,Q);

vp=valuation(norm(s),p);if(vp>0,print("el=",el," n=",n," p=",p)))}

As expected, the program gives ℓ = 11 n = 1 p = 2, ℓ = 1093 n = 1 p = 2, ℓ = 3511 n =
1 p = 2. For ℓ = 1093, see complementary calculations in Remarks 5.2 (i).

4.3. Numerical test T ∗
Q(2n) 6= 1 for ℓ = 2, p > 2. We have only to modify the conductor

fn = p 2n+2 of L = K(µp) where K = Q(ℓn), then note that we must choose another multi-
plier for the Stickelberger element and the generator h = Mod(5, el(n+2)) (for p = 3 one must
take C = 5 giving the solution el = 2 n = 3 p = 3); to obtain a half-system for a ∈ [1, fn]
we can neglect the subgroup generated by complex conjugation −1 in Gal(Q(µ2n+2 p)/Q):

PROGRAM VI. TEST #T>1 WITH NORM COMPUTATIONS FOR el=2, p>3

{el=2;for(n=1,8,Q=polcyclo(el^n);h=Mod(5,el^(n+2));H=lift(h);C=3;

forprime(p=5,2*10^4,f=p*el^(n+2);cm=Mod(C,f)^-1;

g=znprimroot(p);G=lift(g);gm=g^-1;

e=lift(Mod((1-H)*el^(-n-2),p));H=H+e*el^(n+2);h=Mod(H,f);

e=lift(Mod((1-G)*p^-1,el^(n+2)));G=G+e*p;g=Mod(G,f);

S=0;hh=1;gg=1;ggm=1;for(u=1,el^n,hh=hh*h;

t=0;for(v=1,p-1,gg=gg*g;ggm=ggm*gm;a=lift(hh*gg);A=lift(a*cm);

t=t+(A*C-a)/f*ggm);S=S+lift(t)*x^u);s=Mod(S,Q);

vp=valuation(norm(s),p);if(vp>0,print("el=",el," n=",n," p=",p))))}

Since we use characters ψn of order 2n, the program finds the relative p-group at each new
layer. For instance the results el = 2 n = 1 p = 13, el = 2 n = 2 p = 13 correspond to the
following cases of Table 2.3:

el=2 n=1 p=13 rk(T)=1 T=[13] el=2 n=2 p=13 rk(T)=2 T=[169,13]

As for ℓ > 2, we have a faster program using only primes p ≡ 1(mod 2n), which gives new
solutions (e.g., ℓn = 210, p = 114689). The table below is the addition of that obtained with
Programs VI and VII (ℓ = 2):

PROGRAM VII. TEST #T*>1 MODULO (zeta-r) WHEN p=1 (mod el^n) FOR el=2, p>3

{el=2;for(n=1,12,Q=polcyclo(el^n);h=Mod(5,el^(n+2));H=lift(h);C=3;

forprime(p=5,2*10^5,if(Mod(p,el^n)!=1,next);f=p*el^(n+2);cm=Mod(C,f)^-1;

Qp=Mod(1,p)*Q;m=(p-1)/el^n;r=znprimroot(p)^m;

g=znprimroot(p);G=lift(g);gm=g^-1;

e=lift(Mod((1-H)*el^(-n-2),p));H=H+e*el^(n+2);h=Mod(H,f);

e=lift(Mod((1-G)*p^-1,el^(n+2)));G=G+e*p;g=Mod(G,f);

S=0;hh=1;gg=1;ggm=1;for(u=1,el^n,hh=hh*h;

T=0;for(v=1,p-1,gg=gg*g;ggm=ggm*gm;a=lift(hh*gg);A=lift(a*cm);

T=T+(A*C-a)/f*ggm);S=S+lift(T)*x^u);s=lift(Mod(S,Qp));

R=1;for(k=1,el^n,R=R*r;if(Mod(k,el)==0,next);t=Mod(s,x-R);

if(t==0,print("el=",el," n=",n," p=",p)))))}

el=2 n=1 p=13 el=2 n=3 p=3 el=2 n=7 p=257

el=2 n=1 p=31 el=2 n=3 p=521 el=2 n=7 p=641

el=2 n=2 p=13 el=2 n=5 p=3617 el=2 n=8 p=18433

el=2 n=2 p=29 el=2 n=5 p=4513 el=2 n=10 p=114689
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el=2 n=2 p=37 el=2 n=6 p=193

VARIANT FOR ANY NUMBER d OF p-PLACES USING THE FACTORIZATION OF Q (mod p)

d (a power of 2) may be optionally specified (e.g. d=1, d=2):

{el=2;for(n=1,12,Q=polcyclo(el^n);h=Mod(5,el^(n+2));H=lift(h);C=3;

forprime(p=5,2*10^4,f=p*el^(n+2);cm=Mod(C,f)^-1;Qp=Mod(1,p)*Q;

F=factor(Q+O(p));R=lift(component(F,1));d=matsize(F)[1];

g=znprimroot(p);G=lift(g);gm=g^-1;

e=lift(Mod((1-H)*el^(-n-2),p));H=H+e*el^(n+2);h=Mod(H,f);

e=lift(Mod((1-G)*p^-1,el^(n+2)));G=G+e*p;g=Mod(G,f);

S=0;hh=1;gg=1;ggm=1;for(u=1,el^n,hh=hh*h;

T=0;for(v=1,p-1,gg=gg*g;ggm=ggm*gm;a=lift(hh*gg);A=lift(a*cm);

T=T+(A*C-a)/f*ggm);S=S+lift(T)*x^u);s=lift(Mod(S,Qp));

for(k=1,d,t=Mod(s,R[k]);if(t==0,print("el=",el," n=",n," p=",p)))))}

Same results as above. No examples with d>1.

4.4. Test on the normalized p-adic regulator. A sufficient condition to get the divis-
ibility of #CK by p, when we have obtained TK 6= 1, is to establish that the normalized
p-adic regulator RK is a p-adic unit; if it is not the case, this only gives that very probably
#CK = 1.

Since with PARI/GP the computation of units implies that of the class number (because of
K = bnfinit(P)), there is no interest to test the p-divisibility of the regulator instead of looking
at K.no (the class number), except to verify that the computation of TK (with Programs I,
II of § 2.3 computing suitable ray-class groups) is exact.

The following programs compute (for ℓ > 2, n = 1, then ℓ = 2, n ≥ 1 and p given) the
p-rank of the matrix M obtained by approximation (modulo p) of the p-adic expressions
1
p
logp(εi), written on the Q-base {1, x, . . . , xℓn−1} of K, for a system of fundamental units εi

given by PARI/GP; then RK is a p-adic unit if and only if rank(M) = ℓn − 1 (in each case,
one verifies that K.no = 1 (trivial class group CK)):

PROGRAM VIII. TEST ON THE REGULATOR R FOR el>2, n=1

{el=17;p=239;dr=el;if(Mod(p^(el-1),el^2)==1,dr=1);P=polsubcyclo(el^2,el);

Pp=P*Mod(1,p^2);K=bnfinit(P,1);E=K.fu;L=List;for(k=1,el-1,e=E[k];

nu=norm(e);e0=Mod(lift(e),Pp);e=e0;for(u=1,dr-1,e=e0*e^p);le=lift(e-nu);

LogE=0;for(i=0,el-1,c=lift(polcoeff(le,i))/p;LogE=LogE+c*x^i);

listinsert(L,LogE,1));M=matrix(el-1,el,i,j,Mod(polcoeff(L[i],j),p));

R=matrank(M);print("el=",el," p=",p," rk(M)=",R);

if(R<el-1,print("R_K non-trivial"))}

el=3 p=7 rk(M)=1 R_K non-trivial el=17 p=239 rk(M)=15 R_K non-trivial

el=3 p=73 rk(M)=1 R_K non-trivial el=23 p=47 rk(M)=21 R_K non-trivial

el=5 p=11 rk(M)=2 R_K non-trivial el=29 p=59 rk(M)=27 R_K non-trivial

PROGRAM IX. TEST ON THE REGULATOR R FOR el=2, n>=1

{el=2;n=3;p=521;dr=el^n;P=x;for(j=1,n,P=P^2-2);

Pp=P*Mod(1,p^2);K=bnfinit(P,1);E=K.fu;L=List;for(k=1,2^n-1,e0=E[k];

e=Mod(lift(e0),Pp);for(u=1,dr,e=e^p);le=lift(e*e0^-1-1);LogE=0;

for(i=0,el^n-1,c=lift(polcoeff(le,i))/p;LogE=LogE+c*x^i);

listinsert(L,LogE,1));M=matrix(el^n-1,el^n,i,j,Mod(polcoeff(L[i],j),p));

R=matrank(M);print("el^n=",el^n," p=",p," rk(M)=",R);

if(R<el^n-1,print("R_K non-trivial"))}

el^n=2 p=13 rk(M)=0 R_K non-trivial el^n=4 p=29 rk(M)=2 R_K non-trivial

el^n=2 p=31 rk(M)=0 R_K non-trivial el^n=4 p=37 rk(M)=2 R_K non-trivial

el^n=4 p=13 rk(M)=1 R_K non-trivial el^n=8 p=521rk(M)=6 R_K non-trivial
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4.5. Conjecture about the p-torsion groups TQ(ℓn). The annihilation Theorem 4.6 al-
lows us to test the non-triviality of TK , for K := Q(ℓn), when direct computation of the
structure of this group is out of reach, giving possible non-trivial class groups, because of
the identity:

#TK = #CK · #RK · #WK

(see Lemma 2.1, Remark 2.2 (i), about WK , in general trivial). More precisely, all compu-
tations or experiments depend on the relative components T ∗

K whose orders are given by
1
2
Lp(1, ψn), for ψn of order ℓn of K.

Indeed, we do not see why #CK should be always trivial for an“algebraic reason”, even
if it is known that RK may be, a priori, non-trivial whatever the order of magnitude of
p. Moreover, an observation made in other contexts shows that, when #C ∗

K · #R∗
K is non-

trivial, the probability of #R∗
K 6= 1 is, roughly, p times that of #C ∗

K 6= 1. Moreover, the
Cohen–Lenstra–Martinet heuristics (see [4, 43, 44] for large developments of this aspect)
give low probabilities for non-trivial p-class groups, even in the case of residue degree 1 of p
in Q(µℓn)/Q.

As for the question of p-rationality of number fields, when K is fixed, the number of p
such that #T ∗

K ≡ 0 (mod p) may be finite as we have conjectured; whence the rarity of
these cases. Nevertheless, we propose the following conjecture claiming the infiniteness of
non-trivial relative groups T ∗

K when all parameters vary.

Conjecture 4.7. There exist infinitely many triples (ℓ, n, p) with ℓ, p primes, ℓ 6= p, n ≥ 1,
such that 1

2
Lp(1, ψn) ≡ 0 (mod pn), for some pn | p in Q(µℓn), where ψn is a character of

K of order ℓn (whence T ∗
Q(ℓn) 6= 1).

We have seen that the solutions p to T ∗
K 6= 1 are mostly of the form p = 1 + λ ℓn giving,

possibly, a class group of K roughly of order O(ℓn), which is very reasonable since the
discriminant of K is such that

√
DK = ℓN , where N = O(n ℓn), whence

√
DK = (ℓn)O(ℓn),

whereas the class number fulfills the following general property #CK ≤ cℓn,ǫ · (
√
DK)

1+ǫ [1]
and (conjecturally) the ǫ-conjecture #CK ≤ c′ℓn,ǫ · (

√
DK)

ǫ.

Finally, if we assume that the p-class group CK and the regulator RK are random and
independent, the Weber class number conjecture is possibly false for some ℓ0, n0, p0, the
prime ℓ = 2 being not specific.

5. Reflection theorem for p-class groups and p-torsion groups

Reflection theorem compares directly the p-class group CK of K = Q(N) with a suitable
component of the p-torsion group TL of L := K(µp); these equalities of p-ranks show that,
roughly speaking, all these invariants have analogous p-adic properties. But, as p increases,
the computations take place in a too large field to get significant examples (if any).

Put rkp(A) := dimFp(A/A
p) for any abelian group A of finite type.

5.1. Case p = 2. Consider, once for all, the case p = 2 with 2 ∤ N . The reflection theorem
works in K, with the trivial character; applied with the set S of prime ideals of K above 2,

it is given by [15, Proposition III.4.2.2, § II.5.4.9.2], where m∗ = (4) and where C
(4)
K denotes

a ray class group modulo (4):

Theorem 5.1. We have, in K = Q(N), for any odd N > 1 and p = 2:

rk2(T
ord
K ) = rk2

[
C

res
K /cℓresK (S)

]
+ #S − 1, (3)

rk2(T
ord
K ) = rk2

[
C

ord
K /cℓordK (S)

]
+ #S − 1, (4)

rk2(C
(4) ord
K ) = rk2(C

res
K ), (5)

rk2(C
(4) res
K ) = rk2(C

ord
K ) + ℓn. (6)
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Thus, T ord
K = 1 (i.e., C ord

K = Rord
K = W ord

K = 1) if and only if 2 is inert in K/Q and

C ord
K = 1 (or 2 is inert and C res

K = 1, or 2 is inert and C
(4)ord
K = 1).

Proof. If T ord
K = 1, then #S = 1 and 2 is inert in K/Q; since in that case WK = 1 and since

Hord
K ∩K(2∞) = K, we get C ord

K = Rord
K = 1 (in other words, the ordinary 2-class group of

K is odd and the normalized regulator is trivial, which can be written E1
K = U1∗

K := {u ∈
U1
K , NK/Q(u) = ±1}). The reciprocal is obvious. Whence the other claims. �

Remarks 5.2. Let K = Q(N), for any odd N > 1.

(i) If p = 2 is inert in K, rk2(T
ord
K ) = rk2(C

res
K ) = rk2(C

ord
K ) ((3), (4)).

This does not apply for N = ℓ = 1093, 3511 and (unknown) primes ℓ such that the
Fermat quotient of 2 modulo ℓ is non-trivial. For ℓ = 1093 and from rk2(T

ord
K ) =

rk2(C
res
K /cℓresK (S))+ 1092 = rk2(C

ord
K /cℓordK (S))+ 1092, we have verified that the norm

of (1−ψ1(3)) · 12Lp(1, ψ1) is exactly 21092; this means that 2 annihilates T ord
K , whence

that C S res
K = C S ord

K = 1 and that T ord
K ≃ (Z/2Z)1092. This only proves that CK is

generated by the classes of the 1093 prime ideals above 2 in K.

(ii) We have used, in reflection theorems, the relation T res
K ≃ T ord

K

⊕
Fℓ

n

2 [15, Theorem
III.4.1.5], valid under Leopoldt’s conjecture for p = 2.

5.2. Case p 6= 2. The application of the reflection theorem needs to consider L = KQ(µp)
for K = Q(N), p ∤ N , with the group Gal(L/K).

Let ωp =: ω be the Teichmüller character defined by ζs = ζω(s) for all ζ ∈ µp and all
s ∈ Gal(L/K); then any Qp-irreducible character χ of Gal(L/K) is of degree 1 of the form
ωk, 1 ≤ k ≤ p − 1. We denote by rkχ(A) the Fp-dimension of the χ-component of A/Ap;
whence rk1(A) = rkp(A).

Let SK and SL be the sets of p-places in K and L, respectively. Since p is totally ramified
in L/K one has #SL = #SK . In Q(ℓ∞), for each ℓ | N , this number is given by ℓgp, where
pℓ−1 = 1+ λ ℓgp+1, ℓ ∤ λ, in the case ℓ 6= 2, then ±p = 1+ λ 2gp+2, λ odd for ℓ = 2 (see § 2.4),
whence #SK if n < gp.

Let cℓK(SK) ⊆ CK and cℓL(SL) ⊆ CL generated by the classes of the prime ideals dividing p
in K and L, respectively; we have cℓL(SL) ≃ cℓK(SK).

Theorem 5.3. Let p > 2 be a prime not dividing N . Consider the layer K := Q(N) and
put L := K(µp). We have the following equalities:

rkp(TK) = rkω(CL) (7)

rkp
[
CK/cℓK(SK)

]
= rkω(TL) + 1− #SK (8)

rkp(CK) = rkω(C
P∗

L ) + 1−N (9)

rkp
[
NL/K(C

P∗

L )
]

= rkω(CL) + 1 (10)

where P∗ = (p) · (1− ζp) in L, and C
P∗

L is the ray class group of modulus P∗.

Proof. It suffices to consider the general formula of [15, § II.5.4.2 and Theorem II.5.4.5] in
L/K, with the character χ = ω, hence χ∗ = 1 giving p-ranks. The formulas are obtained,
varying the parameters of ramification or splitting and exchanging the characters χ and
χ∗. �

The computation of the ω-component T ω
L of TL is not easy from the direct computation

of TL, except for p = 3 since, in this case TL ≃ TK ⊕ T ω
L ; thus this reduces to the

computation of the 3-ranks of TL and TK . The following program illustrates the formula
(8) of the theorem for N = ℓ and computes:

rkω(TL) + 1− #SK,3 = rk3(TL)− rk3(TK)− #SK,3;
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note that 3 splits in Q(ℓ) if and only if 3ℓ−1 ≡ 1 (mod ℓ2) (the only known primes are
ℓ = 11 and ℓ = 1006003); whence a particular line for ℓ = 11 and in general 3 is inert and
cℓK(SK,3) = 1 which yields rk3(CK) = rkω(TL). We have no counterexamples (Delta = 0 for
ℓ = 11 means rkω(TL) = 0):

PROGRAM X. OMEGA COMPONENT OF T_L FOR p=3

{p=3;forprime(el=2,100,P=polsubcyclo(el^2,el);N=2;if(el==2,P=x^2-2;N=3);

Q=polcompositum(P,x^2+x+1)[1];L=bnfinit(Q,1);LN=bnrinit(L,p^N);

HpNL=LN.cyc;LL=List;e=matsize(HpNL)[2];R=0;for(k=1,e-(el+1),c=HpNL[e-k+1];

w=valuation(c,p);if(w>0,R=R+1;listinsert(LL,p^w,1)));RL=R+el+1;

print("el=",el," LL=",LL);if(R>0,K=bnfinit(P,1);KpN=bnrinit(K,p^N);

HpN=KpN.cyc;LK=List;e=matsize(HpN)[2];R=0;for(k=1,e-1,c=HpN[e-k+1];

w=valuation(c,p);if(w>0,R=R+1;listinsert(LK,p^w,1)));RK=R+1;

S=1;if(Mod(p^(el-1)-1,el^2)==0,S=el);Delta=1-S+RL-RK-el;

print("el=",el," Delta=",Delta," LK=",LK," LL=",LL)))}

el=2 LL=[] el=3 LL=[] el=5 LL=[] el=7 LL=[]

el=11 LL=[3,3,3,3,3,3,3,3,3,3] Delta=0 LK=[]

el=13 LL=[] el=17 LL=[]

Unfortunately, for p > 3, the computations in L = K(µp) of any TL, for an imaginary
field needs the determination (with PARI/GP) of bnfinit(Q) for a field of degree ℓn (p − 1)
(conductor ℓn+1 p for ℓ 6= 2, 2n+2 p for ℓ = 2). Which gives a serious limitation of the
parameters ℓ, n, p.

5.3. Illustration of formula (10) of Theorem 5.3. We can compute, for N = ℓn and

p 6= 2, the structure of the group C
P∗

L =
p−1⊕
i=1

C
P∗, ωi

L . The parameter #zp gives the number

ℓn (p− 1)/2 + 1 of Zp-extensions of L, but the cyclotomic extension of Q does not intervene
because its conductor is p2 larger that P∗; thus, #zp− 1− rk(Hp), where Hp is the ray class
group, measures the p-rank of the torsion part (e.g., ℓ = 2, p = 11, 13, 19).

But the character of this torsion part is unknown; for each odd ω2i+1, i = 0, . . . , p−1
2
− 1,

the p-rank of the ω2i+1-part of the composite of the Zp-extensions is ℓ
n, whence the formula

(9) for ω. This suggests that these ω2i+1-ranks may be nontrivial since these odd characters
play, a priori, the same role (except that ω is “not any character” in many circumstances).

PROGRAM XI. ILLUSTRATION OF FORMULA (8) FOR el=2

{el=2;for(n=1,3,print("el=",el," n=",n);P=x;for(j=1,n,P=P^2-2);

forprime(p=3,23,Q=polcompositum(P,polcyclo(p))[1];L=bnfinit(Q,1);

r=el^n*(p-1)/2+1;A=idealfactor(L,p);d=matsize(A)[1];a=1;

for(k=1,d,a=idealmul(L,a,component(A,1)[k]));ap=idealpow(L,a,p);

Lp=bnrinit(L,ap);Hp=Lp.cyc;LT=List;e=matsize(Hp)[2];

R=0;for(k=1,e,c=Hp[e-k+1];w=valuation(c,p);if(w>0,R=R+1;

listinsert(LT,p^w,1)));print("p=",p," rk(Hp)=",R," #zp=",r," Hp=",LT)))}

el=2 n=1

p=3 rk(Hp)=2 #zp=3 Hp=[3,3]

p=5 rk(Hp)=4 #zp=5 Hp=[5,5,5,5]

p=7 rk(Hp)=6 #zp=7 Hp=[7,7,7,7,7,7]

p=11 rk(Hp)=11 #zp=11 Hp=[121,11,11,11,11,11,11,11,11,11,11]

p=13 rk(Hp)=13 #zp=13 Hp=[169,13,13,13,13,13,13,13,13,13,13,13,13]

p=17 rk(Hp)=16 #zp=17 Hp=[17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17]

p=19 rk(Hp)=19 #zp=19 Hp=[361,19,19,19,19,19,19,19,19,19,19,19,19,19,19,

19,19,19,19]

p=23 rk(Hp)=22 #zp=23 Hp=[23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,

23,23,23,23,23,23,23]

el=2 n=2

p=3 rk(Hp)=4 #zp=5 Hp=[3,3,3,3]

p=5 rk(Hp)=9 #zp=9 Hp=[25,5,5,5,5,5,5,5,5]
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p=7 rk(Hp)=12 #zp=13 Hp=[7,7,7,7,7,7,7,7,7,7,7,7]

p=11 rk(Hp)=21 #zp=21 Hp=[121,11,11,11,11,11,11,11,11,11,11,11,11,11,11,

11,11,11,11,11,11]

p=13 rk(Hp)=26 #zp=25 Hp=[169,169,13,13,13,13,13,13,13,13,13,13,13,13,13,

13,13,13,13,13,13,13,13,13,13,13]

PROGRAM XII. ILLUSTRATION OF FORMULA (8) FOR el>2

{el=3;for(n=1,2,print("el=",el," n=",n);P=polsubcyclo(el^(n+1),el^n);

forprime(p=5,19,Q=polcompositum(P,polcyclo(p))[1];L=bnfinit(Q,1);

r=el^n*(p-1)/2+1;A=idealfactor(L,p);d=matsize(A)[1];a=1;

for(k=1,d,a=idealmul(L,a,component(A,1)[k]));ap=idealpow(L,a,p);

Lp=bnrinit(L,ap);Hp=Lp.cyc;LT=List;e=matsize(Hp)[2];

R=0;for(k=1,e,c=Hp[e-k+1];w=valuation(c,p);if(w>0,R=R+1;

listinsert(LT,p^w,1)));print("p=",p," rk(Hp)=",R," #zp=",r," Hp=",LT)))}

el=3 n=1

p=5 rk(Hp)=6 #zp=7 Hp=[5,5,5,5,5,5]

p=7 rk(Hp)=10 #zp=10 Hp=[49,7,7,7,7,7,7,7,7,7]

p=11 rk(Hp)=15 #zp=16 Hp=[11,11,11,11,11,11,11,11,11,11,11,11,11,11,11]

p=13 rk(Hp)=18 #zp=19 Hp=[13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,

13,13,13]

p=17 rk(Hp)=24 #zp=25 Hp=[17,17,17,17,17,17,17,17,17,17,17,17,

17,17,17,17,17,17,17,17,17,17,17,17]

p=19 rk(Hp)=27 #zp=28 Hp=[19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,

19,19,19,19,19,19,19,19,19,19,19,19]

el=3 n=2

p=5 rk(Hp)=18 #zp=19 Hp=[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]

p=7 rk(Hp)=28 #zp=28 Hp=[49,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,

7,7,7,7,7,7]

el=3 n=1

p=5 rk(Hp)=6 #zp=7 Hp=[5,5,5,5,5,5]

p=7 rk(Hp)=10 #zp=10 Hp=[49,7,7,7,7,7,7,7,7,7]

p=11 rk(Hp)=15 #zp=16 Hp=[11,11,11,11,11,11,11,11,11,11,11,11,11,11,11]

p=13 rk(Hp)=18 #zp=19 Hp=[13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,

13,13,13]

5.4. Probabilistic analysis from the reflection theorem. Consider the following reflec-
tion theorem [15, II.5.4.9.2, formula (4)]:

Proposition 5.4. For K = Q(N), N ≥ 2, L = K(µp), p > 2, p ∤ N , then rkp(CK) =
rkp(Y

ω
L,prim), where:

Y ω
L,prim ⊆ Y ω

L :=
(
{α ∈ L×, (α) = Ap}·L×p/L×p

)ω

is the ω-component of the subset of p-primary elements α (i.e., such that L( p
√
α)/L is un-

ramified and decomposed over K into a cyclic subfield of Hnr
K ). Thus rkp(CK) = rkp(C

ω
L ) or

rkp(C
ω
L )− 1.

Proof. We have, from the general formula (loc. cit.):

rkp(CK) = rkp(C
ω
L ) + 1− rkp(Y

ω
L ) + rkp(Y

ω
L,prim).

Put Y ω
L = {α1, . . . , αr} ∪ {ζp} modulo L×p, the αi being non-units and independent modulo

L×p, and where r is the p-rank of C ω
L . Since ζp is not p-primary, one gets rkp(CK) =

rkp(Y
ω
L,prim) = rkp(〈α1, . . . , αr〉prim). Due to the p-adic action of ω on the αi, it is immediate

to deduce the last claim. �

The condition rkp(CK) ≥ 1 is then equivalent to the existence of a p-primary α ∈ Y ω
L

such that (α) = Ap, with a non-principal A. Program IV gives cases where necessarily
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rkp(CL) = r ≥ 1 (probably r = 1, otherwise we should have rkp(CK) = r or r − 1 6= 0); one
computes easily that the probability to have α p-primary is (in a standard point of view) 1

p
.

The computation of the class group of L is out of reach and we have only been able to
compute CL for N = 3 with p = 7 giving CL ≃ Z/7Z; we do not know α so that we cannot
verify that it is not 7-primary (which is indeed the case since we know, from § 4.4, that the
regulator of K is not a 7-adic unit).

6. The p-torsion groups in Q̂

Since there exist many fields k = Q(ℓn) with non-trivial p-torsion groups Tk, these groups
remain subgroups of TK for any composite field K = Q(N), N = ℓn1

1 · · · ℓnt
t ≥ 2, and give

larger groups. This field has by nature a cyclic Galois group and lives in the cyclotomic

Ẑ-extension Q̂ of Q, composite of all the Zℓ-extension Q(ℓ∞). So we have essentially to
compute T ∗

K (the relative submodule).

6.1. General program. The following completely general program uses the method of
p-adic measure associated to the computation of Stickelberger’s element for a composite
conductor; we limit to 4 the number of prime divisors of N , which is largely sufficient in
practice. All primes p are tested, which will give some cases of annihilators of degree > 1
(hence primes p of residue degree > 1 in Q(µN )). If necessary, the user may specifies that,
for example, p ≡ 1 (mod N).

The calculation of c, defining the multiplier 1 − c ·
( Q(µf )

c

)−1
, gives some difficulty for even

N since for odd N , c = 2 is always suitable (except in the rare known cases where 2 totally
splits in Q(N), giving integers N out of reach). But c must be chosen for each p so that
ψ(c) 6= 1, where ψ is the character of order N of K, which increases dramatically the
computing time since the Artin symbol of c is not immediate; so, in the program, we only
assume c prime to the conductor f . Doing this, the case ψ(c) = 1 may occur, giving in
relation (2), ψ(A c

K) = (1−ψ(c)) · 1
2
Lp(1, ψ) = 0 while Lp(1, ψ) 6= 0; but ψ(c) is a Nth root of

unity and by assumption, p ∤ N , so 1−ψ(c) non-invertible modulo p is equivalent to ψ(c) = 1
equivalent to a trivial Artin symbol. Thus, in that case, the program gives necessarily the
annihilator Q = polcyclo(N) and possibly a false result; a unique case occurs for N = 10 and
the line ∗∗ of the table must be dropped since a direct verification does not give any solution
p in the selected interval.

It is easy to prove that, in the even case, since p 6= 2, one can neglect the complex conjugation
(more precisely the component Gal(Q(µf)/Q(µf )

+)) in the summation over a ∈ [1, f ] giving
the Stickelberger element and its image by the Spiegel involution (this comes essentially from
the fact that ψ is even).

Then we shall perform some verifications by using the basic PROGRAMS I, II, § 2.3, when
computation via K = bnfinit(P) is possible, which holds only for small conductors contrary to
the present method with p-adic measures allowing computations up to N = 200 and beyond,
with large primes p without any more memory; but the standard method gives the structure
of TK contrary to the present one, only giving the annihilator of TK modulo p.
PROGRAM XIII.

{BN=200;for(N=2,BN,Bp=floor(2*10^5/N);dim=omega(N);

Q=polcyclo(N);Lq=List;LQ=List;Lh=List;LH=List;LN=List;

\\ EVEN CASE

if(Mod(N,2)==0,Nf=factor(N);D=component(Nf,1);Exp=component(Nf,2);

q1=D[1]^Exp[1];listput(Lq,q1,1);Q1=4*q1;listput(LQ,Q1,1);

N1=N/q1;listput(LN,N1,1);NN=Q1;

for(i=2,dim,qi=D[i]^Exp[i];listput(Lq,qi,i);Qi=qi*D[i];listput(LQ,Qi,i);

Ni=N/qi;listput(LN,Ni,i);NN=NN*Qi);
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h1=Mod(5,LQ[1]);listput(Lh,h1,1);H1=lift(h1);listput(LH,H1,1);

for(i=2,dim,hi=znprimroot(LQ[i]);listput(Lh,hi,i));

for(i=2,dim,H=lift(Lh[i]);listput(LH,H,i));

forprime(p=3,Bp,if(Mod(N,p)==0,next);f=p*NN;

Cc=2;while(gcd(Cc,f)!=1,Cc=Cc+1);C=Cc;cm=Mod(C,f)^-1;

Qp=Q*Mod(1,p);F=factor(Q+O(p));R=lift(component(F,1));d=matsize(F)[1];

Rp=List;for(j=1,d,r=R[j]*Mod(1,p);listput(Rp,r,j));

g=znprimroot(p);G=lift(g);gm=g^-1;

M=f/p;E=lift(Mod((1-G)*p^-1,M));G=G+E*p;g=Mod(G,f);

M=f/LQ[1];E=lift(Mod((1-LH[1])*LQ[1]^-1,M));

H=LH[1]+E*LQ[1];h=Mod(H,f);listput(Lh,h,1);

for(j=2,dim,

M=f/LQ[j];E=lift(Mod((1-LH[j])*LQ[j]^-1,M));

H=LH[j]+E*LQ[j];h=Mod(H,f);listput(Lh,h,j));

if(dim>=1,E1=eulerphi(LQ[1]));if(dim>=2,E2=eulerphi(LQ[2]));

if(dim>=3,E3=eulerphi(LQ[3]));if(dim>=4,E4=eulerphi(LQ[4]));

hh1=1;hh2=1;hh3=1;hh4=1;gg=1;ggm=1;

if(dim==1,S=0;

for(u1=1,E1,hh1=hh1*Lh[1];t=0;

for(v=1,p-1,gg=gg*g;ggm=ggm*gm;a=lift(hh1*gg);A=lift(a*cm);

t=t+(A*C-a)/f*ggm);e=lift(Mod(u1*LN[1],N));

S=S+lift(t)*x^e);S=S*Mod(1,p);S=lift(Mod(S,Qp));

for(k=1,d,Rk=Rp[k];if(Mod(S,Rk)==0,

print("N=",N," p=",p," annihilator = ",Rk))));

if(dim==2,S=0;

for(u1=1,E1,hh1=hh1*Lh[1];for(u2=1,E2,hh2=hh2*Lh[2];

t=0;for(v=1,p-1,gg=gg*g;ggm=ggm*gm;

a=lift(hh1*hh2*gg);A=lift(a*cm);

t=t+(A*C-a)/f*ggm);e=lift(Mod(u1*LN[1]+u2*LN[2],N));

S=S+lift(t)*x^e));S=S*Mod(1,p);S=lift(Mod(S,Qp));

for(k=1,d,Rk=Rp[k];if(Mod(S,Rk)==0,

print("N=",N," p=",p," annihilator = ",Rk))));

if(dim==3,S=0;

for(u1=1,E1,hh1=hh1*Lh[1];for(u2=1,E2,hh2=hh2*Lh[2];

for(u3=1,E3,hh3=hh3*Lh[3];t=0;

for(v=1,p-1,gg=gg*g;ggm=ggm*gm;a=lift(hh1*hh2*hh3*gg);A=lift(a*cm);

t=t+(A*C-a)/f*ggm);e=lift(Mod(u1*LN[1]+u2*LN[2]+u3*LN[3],N));

S=S+lift(t)*x^e)));S=S*Mod(1,p);S=lift(Mod(S,Qp));

for(k=1,d,Rk=Rp[k];if(Mod(S,Rk)==0,

print("N=",N," p=",p," annihilator = ",Rk))));

if(dim==4,S=0;

for(u1=1,E1,hh1=hh1*Lh[1];for(u2=1,E2,hh2=hh2*Lh[2];

for(u3=1,E3,hh3=hh3*Lh[3];for(u4=1,E4,hh4=hh4*Lh[4];t=0;

for(v=1,p-1,gg=gg*g;ggm=ggm*gm;a=lift(hh1*hh2*hh3*hh4*gg);A=lift(a*cm);

t=t+(A*C-a)/f*ggm);e=lift(Mod(u1*LN[1]+u2*LN[2]+u3*LN[3]+u4*LN[4],N));

S=S+lift(t)*x^e))));S=S*Mod(1,p);S=lift(Mod(S,Qp));

for(k=1,d,Rk=Rp[k];if(Mod(S,Rk)==0,

print("N=",N," p=",p," annihilator = ",Rk))))));

\\ ODD CASE

if(Mod(N,2)!=0,Nf=factor(N);D=component(Nf,1);Exp=component(Nf,2);

NN=1;C=2;

for(i=1,dim,qi=D[i]^Exp[i];listput(Lq,qi,i);Qi=qi*D[i];listput(LQ,Qi,i);

NN=NN*Qi;Ni=N/qi;listput(LN,Ni,i));

for(i=1,dim,hi=znprimroot(LQ[i]);listput(Lh,hi,i));

for(i=1,dim,H=lift(Lh[i]);listput(LH,H,i));

forprime(p=3,Bp,if(Mod(N,p)==0,next);f=p*NN;cm=Mod(C,f)^-1;

Qp=Q*Mod(1,p);F=factor(Q+O(p));R=lift(component(F,1));d=matsize(F)[1];

Rp=List;for(j=1,d,r=R[j]*Mod(1,p);listput(Rp,r,j));
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g=znprimroot(p);G=lift(g);gm=g^-1;

M=f/p;E=lift(Mod((1-G)*p^-1,M));G=G+E*p;g=Mod(G,f);

for(j=1,dim,

M=f/LQ[j];E=lift(Mod((1-LH[j])*LQ[j]^-1,M));

H=LH[j]+E*LQ[j];h=Mod(H,f);listput(Lh,h,j));

if(dim>=1,E1=eulerphi(LQ[1]));if(dim>=2,E2=eulerphi(LQ[2]));

if(dim>=3,E3=eulerphi(LQ[3]));if(dim>=4,E4=eulerphi(LQ[4]));

hh1=1;hh2=1;hh3=1;hh4=1;gg=1;ggm=1;

if(dim==1,S=0;

for(u1=1,E1,hh1=hh1*Lh[1];t=0;

for(v=1,p-1,gg=gg*g;ggm=ggm*gm;a=lift(hh1*gg);A=lift(a*cm);

t=t+(A*C-a)/f*ggm);e=lift(Mod(u1*LN[1],N));

S=S+lift(t)*x^e);S=S*Mod(1,p);S=lift(Mod(S,Qp));

for(k=1,d,Rk=Rp[k];if(Mod(S,Rk)==0,

print("N=",N," p=",p," annihilator = ",Rk))));

if(dim==2,S=0;

for(u1=1,E1,hh1=hh1*Lh[1];for(u2=1,E2,hh2=hh2*Lh[2];t=0;

for(v=1,p-1,gg=gg*g;ggm=ggm*gm;a=lift(hh1*hh2*gg);A=lift(a*cm);

t=t+(A*C-a)/f*ggm);e=lift(Mod(u1*LN[1]+u2*LN[2],N));

S=S+lift(t)*x^e));S=S*Mod(1,p);S=lift(Mod(S,Qp));

for(k=1,d,Rk=Rp[k];if(Mod(S,Rk)==0,

print("N=",N," p=",p," annihilator = ",Rk))));

if(dim==3,S=0;

for(u1=1,E1,hh1=hh1*Lh[1];for(u2=1,E2,hh2=hh2*Lh[2];

for(u3=1,E3,hh3=hh3*Lh[3];t=0;

for(v=1,p-1,gg=gg*g;ggm=ggm*gm;a=lift(hh1*hh2*hh3*gg);A=lift(a*cm);

t=t+(A*C-a)/f*ggm);e=lift(Mod(u1*LN[1]+u2*LN[2]+u3*LN[3],N));

S=S+lift(t)*x^e)));S=S*Mod(1,p);S=lift(Mod(S,Qp));

for(k=1,d,Rk=Rp[k];if(Mod(S,Rk)==0,

print("N=",N," p=",p," annihilator = ",Rk))));

if(dim==4,S=0;

for(u1=1,E1,hh1=hh1*Lh[1];for(u2=1,E2,hh2=hh2*Lh[2];

for(u3=1,E3,hh3=hh3*Lh[3];for(u4=1,E4,hh4=hh4*Lh[4];t=0;

for(v=1,p-1,gg=gg*g;ggm=ggm*gm;a=lift(hh1*hh2*hh3*hh4*gg);A=lift(a*cm);

t=t+(A*C-a)/f*ggm);e=lift(Mod(u1*LN[1]+u2*LN[2]+u3*LN[3]+u4*LN[4],N));

S=S+lift(t)*x^e))));S=S*Mod(1,p);S=lift(Mod(S,Qp));

for(k=1,d,Rk=Rp[k];if(Mod(S,Rk)==0,

print("N=",N," p=",p," annihilator = ",Rk)))))))}

N=2 p=13 annihilator = Mod(1,13)*x+Mod(1,13)

N=2 p=31 annihilator = Mod(1,31)*x+Mod(1,31)

N=3 p=7 annihilator = Mod(1,7)*x+Mod(5,7)

N=3 p=73 annihilator = Mod(1,73)*x+Mod(9,73)

N=4 p=13 annihilator = Mod(1,13)*x+Mod(5,13)

N=4 p=29 annihilator = Mod(1,29)*x+Mod(12,29)

N=4 p=37 annihilator = Mod(1,37)*x+Mod(31,37)

N=5 p=11 annihilator = Mod(1,11)*x+Mod(7,11)

N=5 p=11 annihilator = Mod(1,11)*x+Mod(8,11)

N=6 p=7 annihilator = Mod(1,7)*x+Mod(2,7)

N=6 p=13 annihilator = Mod(1,13)*x+Mod(9,13)

N=6 p=43 annihilator = Mod(1,43)*x+Mod(36,43)

N=8 p=3 annihilator = Mod(1,3)*x^2+Mod(1,3)*x+Mod(2,3)

N=8 p=521 annihilator = Mod(1,521)*x+Mod(206,521)

** N=10 p=3 annihilator = Mod(1,3)*x^4+Mod(2,3)*x^3

+Mod(1,3)*x^2+Mod(2,3)*x+Mod(1,3)

N=12 p=13 annihilator = Mod(1,13)*x+Mod(7,13)

N=14 p=113 annihilator = Mod(1,113)*x+Mod(106,113)

N=15 p=31 annihilator = Mod(1,31)*x+Mod(11,31)

N=15 p=31 annihilator = Mod(1,31)*x+Mod(22,31)
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N=15 p=241 annihilator = Mod(1,241)*x+Mod(81,241)

N=15 p=1291 annihilator = Mod(1,1291)*x+Mod(958,1291)

N=17 p=239 annihilator = Mod(1,239)*x+Mod(172,239)

N=18 p=37 annihilator = Mod(1,37)*x+Mod(33,37)

N=22 p=397 annihilator = Mod(1,397)*x+Mod(16,397)

N=22 p=2729 annihilator = Mod(1,2729)*x+Mod(1268,2729)

N=23 p=47 annihilator = Mod(1,47)*x+Mod(19,47)

N=25 p=101 annihilator = Mod(1,101)*x+Mod(21,101)

N=25 p=1151 annihilator = Mod(1,1151)*x+Mod(744,1151)

N=25 p=2251 annihilator = Mod(1,2251)*x+Mod(1033,2251)

N=27 p=109 annihilator = Mod(1,109)*x+Mod(20,109)

N=28 p=701 annihilator = Mod(1,701)*x+Mod(338,701)

N=29 p=59 annihilator = Mod(1,59)*x+Mod(56,59)

N=30 p=1831 annihilator = Mod(1,1831)*x+Mod(261,1831)

N=33 p=397 annihilator = Mod(1,397)*x+Mod(136,397)

N=38 p=2357 annihilator = Mod(1,2357)*x+Mod(659,2357)

N=39 p=157 annihilator = Mod(1,157)*x+Mod(44,157)

N=40 p=41 annihilator = Mod(1,41)*x+Mod(22,41)

N=40 p=41 annihilator = Mod(1,41)*x+Mod(30,41)

N=40 p=41 annihilator = Mod(1,41)*x+Mod(35,41)

N=43 p=173 annihilator = Mod(1,173)*x+Mod(41,173)

N=45 p=541 annihilator = Mod(1,541)*x+Mod(336,541)

N=47 p=283 annihilator = Mod(1,283)*x+Mod(27,283)

N=48 p=193 annihilator = Mod(1,193)*x+Mod(28,193)

N=50 p=101 annihilator = Mod(1,101)*x+Mod(88,101)

N=50 p=251 annihilator = Mod(1,251)*x+Mod(123,251)

N=50 p=1201 annihilator = Mod(1,1201)*x+Mod(493,1201)

N=52 p=53 annihilator = Mod(1,53)*x+Mod(12,53)

N=52 p=53 annihilator = Mod(1,53)*x+Mod(21,53)

N=52 p=53 annihilator = Mod(1,53)*x+Mod(27,53)

N=52 p=157 annihilator = Mod(1,157)*x+Mod(128,157)

N=54 p=163 annihilator = Mod(1,163)*x+Mod(21,163)

N=56 p=13 annihilator = Mod(1,13)*x^2+Mod(5,13)*x+Mod(5,13)

N=60 p=61 annihilator = Mod(1,61)*x+Mod(43,61)

N=63 p=379 annihilator = Mod(1,379)*x+Mod(302,379)

N=64 p=193 annihilator = Mod(1,193)*x+Mod(160,193)

N=66 p=1321 annihilator = Mod(1,1321)*x+Mod(617,1321)

N=67 p=269 annihilator = Mod(1,269)*x+Mod(176,269)

N=67 p=269 annihilator = Mod(1,269)*x+Mod(208,269)

N=69 p=829 annihilator = Mod(1,829)*x+Mod(532,829)

N=70 p=71 annihilator = Mod(1,71)*x+Mod(40,71)

N=70 p=211 annihilator = Mod(1,211)*x+Mod(76,211)

N=72 p=73 annihilator = Mod(1,73)*x+Mod(28,73)

N=80 p=241 annihilator = Mod(1,241)*x+Mod(124,241)

N=81 p=487 annihilator = Mod(1,487)*x+Mod(287,487)

N=83 p=499 annihilator = Mod(1,499)*x+Mod(312,499)

N=84 p=757 annihilator = Mod(1,757)*x+Mod(685,757)

N=86 p=431 annihilator = Mod(1,431)*x+Mod(145,431)

N=87 p=349 annihilator = Mod(1,349)*x+Mod(157,349)

N=87 p=523 annihilator = Mod(1,523)*x+Mod(62,523)

N=88 p=353 annihilator = Mod(1,353)*x+Mod(17,353)

N=93 p=373 annihilator = Mod(1,373)*x+Mod(307,373)

N=95 p=191 annihilator = Mod(1,191)*x+Mod(132,191)

N=95 p=191 annihilator = Mod(1,191)*x+Mod(137,191)

N=99 p=991 annihilator = Mod(1,991)*x+Mod(91,991)

N=99 p=991 annihilator = Mod(1,991)*x+Mod(818,991)

N=100 p=199 annihilator = Mod(1,199)*x^2+Mod(173,199)*x+Mod(1,199)

N=101 p=607 annihilator = Mod(1,607)*x+Mod(277,607)

N=101 p=607 annihilator = Mod(1,607)*x+Mod(514,607)
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N=102 p=103 annihilator = Mod(1,103)*x+Mod(83,103)

N=102 p=103 annihilator = Mod(1,103)*x+Mod(97,103)

N=104 p=937 annihilator = Mod(1,937)*x+Mod(609,937)

N=106 p=107 annihilator = Mod(1,107)*x+Mod(39,107)

N=106 p=107 annihilator = Mod(1,107)*x+Mod(61,107)

N=107 p=857 annihilator = Mod(1,857)*x+Mod(263,857)

N=108 p=109 annihilator = Mod(1,109)*x+Mod(24,109)

N=111 p=223 annihilator = Mod(1,223)*x+Mod(176,223)

N=115 p=461 annihilator = Mod(1,461)*x+Mod(87,461)

N=115 p=461 annihilator = Mod(1,461)*x+Mod(103,461)

N=118 p=709 annihilator = Mod(1,709)*x+Mod(27,709)

N=124 p=5 annihilator = Mod(1,5)*x^3+Mod(2,5)*x^2+

Mod(2,5)*x+Mod(3,5)

N=124 p=373 annihilator = Mod(1,373)*x+Mod(139,373)

N=124 p=373 annihilator = Mod(1,373)*x+Mod(340,373)

N=126 p=379 annihilator = Mod(1,379)*x+Mod(165,379)

N=128 p=257 annihilator = Mod(1,257)*x+Mod(113,257)

N=128 p=641 annihilator = Mod(1,641)*x+Mod(287,641)

N=129 p=257 annihilator = Mod(1,257)*x^2+Mod(81,257)*x+Mod(1,257)

N=136 p=137 annihilator = Mod(1,137)*x+Mod(35,137)

N=138 p=139 annihilator = Mod(1,139)*x+Mod(31,139)

N=140 p=29 annihilator = Mod(1,29)*x^2+Mod(3,29)*x+Mod(5,29)

N=144 p=433 annihilator = Mod(1,433)*x+Mod(292,433)

N=153 p=307 annihilator = Mod(1,307)*x+Mod(178,307)

N=155 p=311 annihilator = Mod(1,311)*x+Mod(203,311)

N=156 p=157 annihilator = Mod(1,157)*x+Mod(80,157)

N=172 p=173 annihilator = Mod(1,173)*x+Mod(143,173)

N=174 p=349 annihilator = Mod(1,349)*x+Mod(16,349)

N=178 p=179 annihilator = Mod(1,179)*x+Mod(129,179)

N=190 p=761 annihilator = Mod(1,761)*x+Mod(94,761)

N=191 p=383 annihilator = Mod(1,383)*x+Mod(315,383)

N=191 p=383 annihilator = Mod(1,383)*x+Mod(360,383)

N=192 p=193 annihilator = Mod(1,193)*x+Mod(115,193)

N=210 p=211 annihilator = Mod(1,211)*x+Mod(59,211)

N=210 p=211 annihilator = Mod(1,211)*x+Mod(154,211)

The case of

N=8 p=3 annihilator = Mod(1,3)*x^2+Mod(1,3)*x+Mod(2,3)

is the first annihilator of degree > 1; since (from the table) TK is annihilated by the relative
norm x4 + 1 ≡ (x2 + x+ 2)(x2 +2x+2)(mod 3) and since 3 is totally inert, the result gives
at least a 3-rank 2. This is validated by the (highly reliable) standard program as:

N=8 p=3 rk(T)=2 T=List([3,3])

We give below some verifications still using the standard program giving the structure of TK ;
only small N can be tested because of the instructions K = bnfinit(P);KpN = bnrinit(K, pN).

PROGRAM XIV. COMPUTATION OF T IN COMPOSITE FIELDS K - SOME VERIFICATIONS

{P1=polsubcyclo(3^2,3);P2=polsubcyclo(5^2,5);P=polcompositum(P1,P2)[1];

K=bnfinit(P,1);print("h=",K.no);N=8;forprime(p=2,1000,KpN=bnrinit(K,p^N);

HpN=KpN.cyc;L=List;e=matsize(HpN)[2];R=0;for(k=1,e-1,c=HpN[e-k+1];

w=valuation(c,p);if(w>0,R=R+1;listinsert(L,p^w,1)));

if(R>0,print("p=",p," rk(T)=",R," T=",L)))}

{P1=x^2-2;P2=polsubcyclo(7^2,7);P=polcompositum(P1,P2)[1];K=bnfinit(P,1);

print("h=",K.no);N=8;forprime(p=2,1000,KpN=bnrinit(K,p^N);HpN=KpN.cyc;

L=List;e=matsize(HpN)[2];R=0;for(k=1,e-1,c=HpN[e-k+1];

w=valuation(c,p);if(w>0,R=R+1;listinsert(L,p^w,1)));

if(R>0,print("p=",p," T=",L)))}

(a) Field K=Q(14) Cl=1

p=13 T=[13] p=31 T=[31] p=113 T=[113]
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(b) Field K=Q(6) Cl=1

p=7 T=[7,7] p=43 T=[43] p=31 T=[31]

p=13 T=[13,13] p=73 T=[73]

(c) Field K=Q(30) Cl=1

p=7 T=[7,7] p=13 T=[13,13] p=43 T=[43]

p=11 T=[11,11] p=31 T=[31,31,31] p=73 T=[73]

(d) Field K=Q(42) Cl=1

p=7 T=[49,49,7,7] p=13 T=[13,13]

(e) Field K=Q(21) Cl=1

p=7 T=[49,7]

(f) Field K=Q(12) Cl=1

p=3 T=[9,9] p=29 T=[29] p=43 T=[43]

p=7 T=[7,7] p=31 T=[31] p=73 T=[73]

p=13 T=[169,169,13,13] p=37 T=[37]

(g) Field K=Q(15) Cl=1

p=7 T=[7] p=31 T=[31,31]

p=11 T=[11,11] p=73 T=[73]

Remark 6.1. The composite K of k = Q(6) with Q(7) for p = 7 has some interest since

TK ≃ (Z/7Z)2 (from example (d) above); so we know that T
Gal(K/k)
K ≃ Tk, but with

TK ≃ (Z/7Z)2× (Z/72Z)2, showing that for p-ramification aspects, genus theory gives often
increasing p-torsion groups contrary to p-class groups as we shall see in the next Section.
Since NK/k(TK) = Tk, we have T ∗

K ≃ (Z/72Z)2. The groups Tk and TK , annihilated by
NK/Q(14), are modules over Z[µ3] in which p = 7 is inert; whence the residue degree 2 and
the structures obtained (note that the case N = 42 does not appear in the table of Program
XIII because of the condition p ∤ N).

6.2. Use of Genus theory. We consider, in the cyclotomic Ẑ-extension Q̂ of Q, composite
of all the Zℓ-extension Q(ℓ∞), any subfield of degree finite or infinite, and fix a prime p (see
[47] for analytic results of non-divisibility in this context). Such a field (finite or infinite)
can be written K =: Q(L N ), L = {ℓ1, . . . , ℓt, . . .}, N = {n1, . . . , nt, . . .}, with an obvious
meaning; when L , N are finite, K =: Q(N), N =

∏m
i=1 ℓ

ni
i .

The pro-cyclic extension Q̂ is the direct composite over Q of Q(p∞) and the composite Q̂∗

of all the Q(ℓ∞), for ℓ 6= p.

Two cases then arise: that of the p-class groups of K = Q(N) when p ∤ N and the case

written as composite F = KQ(pm), K ⊂ Q̂∗, m ≥ 1.

In the first case, we are in a generalization of Weber’s problem. In the second one the
problem is in some sense related to genus theory, whence to Greenberg’s conjecture [29], for
which one very strongly admits that #CKQ(pm) is constant for all m≫ 0 (i.e., the invariants
λ, µ of K for the prime p are zero); see for instance [9, 28, 40] for some developments. But
we have:

Theorem 6.2. Let K = Q(N) ⊂ Q̂∗ for some prime p and let m ≥ 0. Then, under
Leopoldt’s conjecture, TKQ(pm) = 1, if and only if TK = 1.

Proof. Since KQ(pm)/K is p-ramified, the claim comes from the fixed points formula giving

here T
Gal(KQ(pm)/K)
KQ(pm) ≃ TK ([15, Theorem IV.3.3], [18, Proposition 6], [27, Appendix A.4.2]).

�

6.3. The p-class group of Q(N)Q(pm) – Use of genus theory. The analog of Weber’s

problem in Q̂ may be doubtful because of Chevalley’s formula in an extension F/K with
K := Q(N) fixed (with N 6= 1) and F := KQ(pm) (m ≥ m0 + 1 if K ∩ Q(p∞) = Q(pm0)),
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in which p is totally ramified:

#(Cres
F )Gal(F/K) = #Cres

K ·
p(m−m0) (sp−1)

(Epos
K : Epos

K ∩ NF/K(F×))
,

where sp is the number of prime ideals p | p in K. So C res
F = 1 as soon as C res

K = 1 and p does
not split in K/Q. If sp > 1, the right factor of the formula may be a power of p depending
of local properties of the units of K.

6.3.1. Fundamental relation with RK. Consider the general diagram [28, Diagram 3] in which
Hgen
K (with GK := Gal(Hgen

K /KQ(p∞))) is the union of the genus fields HKQ(pµ)/K (maximal
abelian p-extensions of K, unramified over KQ(pµ); it follows that Hgen

K is the maximal
unramified extension of KQ(p∞) in Hpr

K [28, Proposition 3.6]):

TK

torZp
(U1

K/E1
K)

RK

Rnr
K Rram

K

CK
Hgen
K Hbp

K WK
KQ(p∞)HKKQ(p∞) Hpr

K

GK

We have the following result about
p(m−m0) (sp−1)

(Epos
K : Epos

K ∩NF/K(F×))
, in relation with Greenberg’s

conjecture ([21, Theorem 4.7], [26, Section 3], [28, Proposition 3.3] for more information
after the pioneering Taya’s work [55, Theorem 1.1]).

Theorem 6.3. Let K = Q(N) ⊂ Q̂∗ (i.e., p ∤ N) and let F := KQ(pm). Then the factor
pm (sp−1)

(Epos
K : Epos

K ∩ NF/K(F×))
divides #Rnr

K . If p totally splits in K, then for all m large enough

there is equality ([28, Theorem 1]).

Corollary 6.4. If p ∤ N totally splits in K = Q(N), there exists m ≥ 0 such that the p-class
group of the composite KQ(pm) is non-trivial, if and only if Rnr

K 6= 1.

Remarks 6.5. (i) When p totally splits in K, the subgroup Rram
K is generated by the

inertia groups U1
Kp
/E1

K ∩ U1
Kp
, p | p.

The test Rnr
K 6= 1 is equivalent to the computation of the rank of a Fp-matrix with

PROGRAMS XV-XVIII.

(ii) Under the assumption C res
K = 1, C res

F 6= 1 is equivalent to
pm (sp−1)

(Epos
K : Epos

K ∩ NF/K(F×))
6= 1;

in the simplest case where p totally splits in K and m = 1, then Epos
K ∩NF/K(F

×) ⊆
Up
K.

(iii) We observe that most of the case TK 6= 1 are such that p ≡ 1(mod ℓn), which
may give smallest p-ranks, but such that p 6≡ 1 (mod ℓn+1) (or mod2n+2), which
implies the non-total splitting of p in K, whence a less probability of non-trivial CF ,
F ⊂ KQ(pm). The exceptional case were (ℓn, p) = (28, 18433), (210, 114689), (3, 73),
(34, 487), (52, 2251).

6.3.2. Search for counterexamples of principality in Q̂. Any composite F of K = Q(ℓ) with
Q(p) gives huge conductors limiting computations of whole class groups CF . We have done
the following ones (in the restricted sense):
PROGRAM XV. COMPUTATION OF CF IN COMPOSITE FIELDS F

{PK=x^2-2;P=polsubcyclo(7^2,7);Q=polcompositum(PK,P)[1];

F=bnfinit(Q,1);print("CF=",F.no," CF’=",bnfnarrow(F))}

F=Q(2)Q(7) CF=1 CF’=[1,[],[]] F=Q(2)Q(3)Q(7) CF=1 CF’=[1,[],[]]
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F=Q(2)Q(3)Q(5) CF=1 CF’=[1,[],[]]

{PK=polsubcyclo(11^2,11);P=polsubcyclo(3^2,3);Q=polcompositum(PK,P)[1];

F=bnfinit(Q,1);print(F.no)}

F=Q(11)Q(3) CF=1 F=Q(5)Q(7) CF=1

In all cases, #CF = 1, giving the following observations:

(i) K = Q(2), F = KQ(7), p = 7, is the minimal case with splitting since 7 splits in
K/Q, but 7

(EK :EK∩NF/K(F×))
= 1. Same results replacing p = 7 by p = 17 (with more

computing time). In that cases, TK = TF = 1.

(ii) K = Q(2), F = KQ(3)Q(5), all the decomposition groups are equal to Gal(F/Q)
and the p-torsion groups of F are trivial for p = 2, 3, 5.

(iii) K = Q(2), F = KQ(3)Q(7), 7 totally splits in Q(2)Q(3), #TQ(3) = 7.

(iv) K = Q(11), F = Q(11)Q(3), p = 3 splits, 310

(EK :EK∩NF/K(F×))
= 1. Note that as Z[µ11]-

module, EK/EK ∩ NF/K(F
×) is, a priori, isomorphic to (F35)

h, 0 ≤ h ≤ 2 since the
residue degree of 3 in Q[µ11] is 5.

(v) K = Q(5), F = Q(5)Q(7), p = 7 splits, 74

(EK :EK∩NF/K(F×))
= 1; a priori, EK/EK ∩

NF/K(F
×) ≃ (F74)

h, 0 ≤ h ≤ 1.

A this step we did not find counterexamples because of F = bnfinit(Q) limiting degrees and
conductors. So we must restrict ourselves to computation of p-class groups in p-extensions
F/K via Chevalley’s formula. In fact the literature does contain few counterexamples (see
Coates [8, Section 3], relating results from Fukuda–Komatsu, Horie [32, 33]). We shall
examine these cases and try to find others or to become aware of the rarity of them, by
computing Hasse’s normic symbols, in F/K, of the units of K, using a trick due to the
“product formula” of class field theory.

6.3.3. Search for counterexamples of p-principality in p-extensions. Let K = Q(ℓ), ℓ ≥ 2,
and let p 6= ℓ totally split in K/Q; let F := KQ(p). The computation of the index (EK :
EK ∩ NF/K) is easy and only needs to compute K = bnfinit(P), instead of F = bnfinit(Q), to
get the units of K. The Remark 6.5 gives a mean to compute this index, but the test of local
pth power may be replaced by that of local normic Hasse’s symbols. Then, following the
practical method described in [15, II.4.4.3], the normic symbol (ε, F/K)p for a unit ε ∈ EK
and a ramified p-place p, requires to find α such that (the conductor being p2):

α ≡ ε (mod p2),

α ≡ 1 (mod (p2p−2).

Then (α) is an ideal, prime to p, whose Artin symbol in Gal(F/K) characterizes the normic
symbol; the image of this symbol in Gal(Q(p)/Q) is given by the Artin symbol of NF/Q(p)(α),
seen in (Z/p2Z)×. Finally, taking into account the “product formula”, the Fp-rank of the
matrix of this symbols gives ((EK : EK ∩NF/K(F

×)) = pℓ−1 if and only if this rank is ℓ− 1).

Various programs are given; the variables M1,M2 denote the modulus p2 and (p2)p−2, the
variable m = M1+M2 allows the above congruence satisfied by α (in Z). The last programs
assume that CQ(ℓ) = 1, which allows computing with cyclotomic units (as given in [56,
Lemma 8.1 (a)]) without the function bnfinit(P), unfeasible for ℓ > 17; thus we can compute
the Fp-rank (in rkM) of the matrix M for larger primes p.
PROGRAM XVI. RANK OF THE MATRIX OF NORMIC SYMBOLS FOR el=2, n=1

{el=2;P=x^2-2;K=bnfinit(P,1);E=K.fu[1];forprime(p=1,2*10^9,

if(kronecker(p,2)!=1,next);g=znprimroot(p^2);F=bnfisintnorm(K,p);

m1=Mod(F[1],P);m2=Mod(F[2],P);M1=m1^2;M2=m2^2;m=M1+M2;Z=E+(1-E)*M1/m;

N=Mod(norm(Z),p^2);Ln=znlog(N,g);if(Mod(Ln,p)==0,print("p=",p,"rkM=0")))}

or
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{el=2;P=x^2-2;K=bnfinit(P,1);E=K.fu[1];forprime(p=3,10^9,

if(kronecker(p,2)!=1,next);F=bnfisintnorm(K,p);

m1=Mod(F[1],P);m2=Mod(F[2],P);M1=m1^2;M2=m2^2;m=M1+M2;Z=E+(1-E)*M1/m;

N=Mod(norm(Z),p^2);Ln=Mod(N,p^2)^(p-1);if(Ln==1,print("p=",p,"rkM=0")))}

el=2 p=31 rkM=0 el=2 p=1546463 rkM=0

PROGRAM XVII. RANK OF THE MATRIX OF NORMIC SYMBOLS FOR el>2, n=1

{el=3;P=polsubcyclo(el^2,el);K=bnfinit(P,1);e=K.fu;

forprime(p=1,2*10^5,if(Mod(p^(el-1),el^2)!=1,next);g=znprimroot(p^2);

A=bnfisintnorm(K,p);W=List;for(k=1,el-1,E=Mod(e[k],P);V=List;

for(j=1,el-1,m1=Mod(A[j],P);m2=p/m1;M1=m1^2;M2=m2^2;m=M1+M2;

Z=E+(1-E)*M1/m;N=Mod(norm(Z),p^2);F=Mod(znlog(N,g),p);listput(V,F));

listput(W,V));M=matrix(el-1,el-1,u,v,W[u][v]);r=matrank(M);

if(r<el-1,print("el=",el," p=",p," rkM=",r)))}

el=3 p=73 rkM=1

For these known counterexamples, #TK = p, which indicates that #RK = p since CK = 1
(see Section 4.4). The case ℓ = 3, n = 1, p = 73 may be elucidate in more details; indeed,
with the defining polynomial P = x3 − 3 x + 1, the units are (ε1 = x2 + x − 1, ε2 = x − 1)
and fulfill the relation:

(ε331 · ε52)72 ≡ 1 + 732 · (2 x2 + 59 x+ 69) (mod 733)

with 2 x2 + 59 x+ 69 ∈ p | 73. Thus the inertia groups torZ73
(Upi/EK ∩ Upi), i = 1, 2, 3, are

trivial, giving Rram
K = 1, Rnr

K = TK , as expected.

In the case ℓ = 5, n = 2, p = 2251 totally splits in K/Q; some partial computations in
EK/E

2251
K (of order 225124) indicate, as expected from the previous matrix rank computation,

that the (εi)
2250 = 1 + 2251 · αi, with non-independent αi modulo 2251, which implies that

the inertia groups torZ2251
(Upi/EK ∩ Upi), for 1 ≤ i ≤ 24, generate TK = RK of order p.

This shows that a direct p-adic computation on the units is hopeless contrary to the use of
local norm symbols.

PROGRAM XVIII. RANK OF THE MATRIX OF NORMIC SYMBOLS FOR LARGE el>2

(computations with cyclotomic units)

{el=17;hh=znprimroot(el^2);h=hh^el;H=hh^(el-1);z=exp(2*I*Pi/el^2);P=1;

for(k=1,el,c=H^k;u=1;

for(j=1,(el-1)/2,u=u*(z^(lift(c*h^j))+z^-(lift(c*h^j))));

P=P*(x-u));P=round(P);e=nfgaloisconj(P);

forprime(p=1,2*10^5,if(Mod(p^(el-1),el^2)!=1,next);g=znprimroot(p^2);

for(aa=1,p-1,T=norm(Mod(x-aa,P));v=valuation(T,p);if(v==1,a=aa;break));

A=List;for(k=1,el,listput(A,e[k]-a,k));W=List;for(j=1,el,E=Mod(e[j],P);

V=List;for(k=1,el,m1=Mod(A[k],P);m2=Mod(1,P);

for(i=1,k-1,m2=m2*Mod(A[i],P));for(i=k+1,el,m2=m2*Mod(A[i],P));

M1=m1^2;M2=m2^2;m=M1+M2;Z=E+(1-E)*M1/m;

N=Mod(norm(Z),p^2);Ln=Mod(znlog(N,g),p);listput(V,Ln));

listput(W,V));M=matrix(el,el,u,v,W[u][v]);r=matrank(M);

if(r<el-1,print("el=",el," p=",p," rank(M)=",r));

print("control: ","p=",p," valuation=",v," root=",a," rank(M)=",r))}

PROGRAM XIX. RANK OF THE MATRIX OF NORMIC SYMBOLS FOR POWERS OF el=2

(computations with cyclotomic units)

\p {128}

{el=2;n=4;H=Mod(5,el^(n+2));z=exp(2*I*Pi/(el^(n+2)));P=1;

for(j=1,el^n,c=lift(H^j);u=z^(-2*c)*(1-z^(5*c))/(1-z^c);P=P*(x-u));

P=round(P);e=nfgaloisconj(P);forprime(p=3,2*10^5,

w=n+3-valuation(p+1,2)-valuation(p-1,2);if(w>0,next);g=znprimroot(p^2);

for(aa=1,p-1,T=norm(Mod(x-aa,P));v=valuation(T,p);if(v==1,a=aa;break));
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A=List;for(k=1,el^n,listput(A,e[k]-a,k));W=List;

for(j=1,el^n,E=Mod(e[j],P);V=List;for(k=1,el^n,m1=Mod(A[k],P);m2=Mod(1,P);

for(i=1,k-1,m2=m2*Mod(A[i],P));for(i=k+1,el^n,m2=m2*Mod(A[i],P));

M1=m1^2;M2=m2^2;m=M1+M2;Z=E+(1-E)*M1/m;

N=Mod(norm(Z),p^2);Ln=Mod(znlog(N,g),p);listput(V,Ln));

listput(W,V) );M=matrix(el^n,el^n,u,v,W[u][v] );r=matrank(M);

if(r<el^n-1,print("el^n=",el^n," p=",p," rank(M)=",r));

print("control: ","p=",p," valuation=",v," root=",a," rank(M)=",r))}

el^n=8 p=31 rank(M)=6

Remark 6.6. We have performed such computations as follows with Programs XV–XVIII
(several days of calculations):

(i) ℓn = 2, 3, 4, 5, 7, 8, 11 in very large intervals of primes p,

(ii) ℓn = 13, 17, 19, 23, 29, up to p ≤ 2 · 105 or 3 · 104,
(iii) ℓn = 24, up to 1.2 · 106, ℓn = 25, up to p = 35969,

(iv) ℓn = 41 up to p = 7211, and some others in smaller intervals,

without finding new solutions. This enforces [8, Conjecture D] in Q̂ and our philosophy about
the p-rationality in general.

More precisely, if one considers heuristics in the Borell–Cantelli style, using standard prob-
abilities 1

p
, we have, possibly, infinitely many examples, but this does not seem realistic; in

[20, Conjecture 8.4.], we have given extensive calculations and justifications of an opposite
situation giving, as for the well-known Fermat quotients of small integers 2, 3,... some other
probabilities, for any regulator of algebraic numbers, suggesting solutions finite in number
with the particularity of giving very few solutions, including sometimes a huge one !

6.3.4. On the conjectural triviality of the logarithmic class groups in Q̂. The following re-
sult (from Jaulent [39, Theorem 4.5, Remarques]) is perhaps a key to understand some

phenomena in the composite Q̂ of all the cyclotomic Zℓ-extensions, regarding Greenberg’s
conjecture:

Theorem 6.7. Let K = Q(N) ⊂ Q̂∗, for some prime p ∤ N and m ≥ 0. Under the Leopoldt

and Gross–Kuz’min conjectures for p, C̃KQ(pm) = 1 if and only if C̃K = 1.

Proof. Since the extension is unramified, in the logarithmic sense, the fixed points formula

becomes in our context (C̃KQ(pm))
Gal(KQ(pm)/K) ≃ C̃K . �

This gives many cases of triviality; moreover, we know that C̃K = 1 implies that Greenberg’s
conjecture holds true in KQ(p∞) for the p-class groups (λ = µ = 0). For the base fields

K = Q(2) and K = Q(3), the logarithmic class groups C̃K are trivial for p = 31 and 73,
respectively:

PROGRAMS XX. COMPUTATION OF LOGARITHMIC CLASS GROUPS

{el=2;p=31;P=x^2-2;K=bnfinit(P,1);cl=K.no;clog=bnflog(K,p);

print("el=",el," p=",p," cl=",cl," clog=",clog)}

el=2 p=31 cl=1 clog=[[],[],[]]

{el=3;p=73;P=polsubcyclo(3^2,3);K=bnfinit(P,1);cl=K.no;clog=bnflog(K,p);

print("el=",el," p=",p," cl=",cl," clog=",clog)}

el=3 p=73 cl=1 clog=[[],[],[]]

So, even if in our computations, for F = KQ(31) = Q(2)Q(31) (p = 31) and for F =
K Q(73) = Q(3)Q(73) (p = 73), the ordinary class groups CF are non-trivial, it follows that

the logarithmic class groups C̃F are trivial for all the tested primes p, including 31, 73.
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6.3.5. Decomposition groups in Q̂/Q. Let p be a fixed prime number. It is clear that p is

totally ramified in Q̂/Q̂∗; thus the Frobenius of p in Q̂∗/Q fixes a field Dp such that p totally
splits in Dp/Q. An out of reach question is the finiteness (or not) of this extension Dp which
is necessarily of the form Q(N). Since the number ℓgp of prime ideals above p in a single
Zℓ-extension Q(ℓ∞) is finite and given by pℓ−1 =: 1 + λ ℓ1+gp for ℓ 6= 2, p =: ±1 + λ 22+gp for
ℓ = 2, λ 6≡ 0 (mod ℓ), the integers n ∈ N are finite numbers but not necessarily the set L .

For example, if p = 2, the only known primes ℓ such that 2 splits in part in Q(ℓ∞) are

1093 and 3511; so if there is no other case, the decomposition field of 2 in Q̂/Q should be
D2 = Q(1093)Q(3511).

6.4. Conclusion and questions. Genus theory has succeeded to give few non-trivial class

groups of composite subfields of Q̂, but there are not enough computations to give more
precise heuristics since it is not possible to use PARI/GP with higher degrees. This invites

to ask for some questions about the arithmetic properties of Q̂:

(i) Is the decomposition group of p in Q̂/Q of finite index in Gal(Q̂/Q) ? As recalled
above, this is the conjecture given in [20, Conjecture 8.4]. Of course, this seems linked
to the order of magnitude of p since, taking a prime of the form p = 1+ λ qa11 · · · qass ,
with primes qi, ai ≥ 2, this gives unbounded indices since p splits in Q(qa1−1

1 · · · qas−1
s ).

(ii) LetK = Q(N), N ≥ 2, and for any p unramified inK, let sp be the number of p-places

of K. Let F = K Q(pm) for m large enough such that
pm (sp−1)

(Epos
K : Epos

K ∩ NF/K(F×))
=

#R
nr
K (Theorem 6.3); is the set of primes p, such that Rnr

K 6= 1, finite in number ?

If so, this gives new feature about the units in Q̂ and is also related to Greenberg’s

conjecture for the subfields of Q̂.

(iii) In the context of (ii), we have obtained that in the three following cases, where
TK 6= 1 and CK = 1 (see Programs III and VII, §§ 4.1 and 4.3):

ℓ = 3, n = 4, p = 487 ≡ 1 (mod 35), (11)

ℓ = 2, n = 8, p = 18433 ≡ 1 (mod 211), (12)

ℓ = 2, n = 10, p = 114689 ≡ 1 (mod 214), (13)

the prime p totally splits in K = Q(ℓn) and the p-class group of F = KQ(p) is

divisible by
pℓ

n
−1

(EK : EK ∩ NF/K(F×))
, only depending of the p-adic properties of EK ,

whence of the group of cyclotomic units, but our PARI/GP programs do not succeed
in proving if p divides or not #CF .

In case (11) we have obtained C̃K = 1. What is the order of the logarithmic class

group C̃K for cases (12), (13), of too large degrees ?

(iv) Let K = Q(N) and consider KQ(pm), m ≥ 0; what are the Iwasawa invariants of
lim←−
m

TKQ(pm) ?

(v) In [54] Silverman proves, after some other contributions (Cusick, Pohst, Remak), a
general inequality between RK (classical real regulator) and DK (discriminant) of the
form (stated, to simplify, for K = Q(ℓn)):

RK > cK(log(γK |DK |))ℓ
n−1(ℓ−1).

A p-adic equivalent would give a solution of many questions in number theory, as
a proof of Leopoldt’s conjecture ! However, we have proposed, in [24, Conjecture 8.2]
a “folk conjecture” about the p-adic object #TK , which applies to RK , equal to TK

for all p large enough, and justified by extensive computations:
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Conjecture 6.8. Let K be the set of totally real number fields K; for K ∈ K , let DK be

its discriminant and let RK := torZp(log(U
1
K)/log(E

1
K)) be its normalized p-adic regulator

(see § 2.1). There exists a constant Cp > 0 such that:

log∞(#RK) ≤ log∞(#TK) ≤ Cp · log∞(
√
|DK |), for all K ∈ K ,

where log∞ is the complex logarithm. Possibly, Cp is independent of p.
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http://www.numdam.org/item?id=SDPP 1978-1979 20 2 A1 0

[18] G. Gras, Remarks on K2 of number fields, J. Number Theory 23(3) (1986), 322–335.
https://doi.org/10.1016/0022-314X(86)90077-6
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http://www.unilim.fr/pages perso/chazad.movahhedi/These 1988.pdf

[51] A. Movahhedi, T. Nguyen Quang Do, Sur l’arithmétique des corps de nombres p-rationnels,
Séminaire de Théorie des Nombres, Paris 1987–88, Progress in Math. 81 (1990), 155–200.
https://doi.org/10.1007/978-1-4612-3460-9 9

[52] T. Nguyen Quang Do, Sur la Zp-torsion de certains modules galoisiens, Ann. Inst. Fourier (Grenoble)
36(2) (1986), 27–46. https://doi.org/10.5802/aif.1045

[53] The PARI Group, PARI/GP, version 2.9.0, Université de Bordeaux (2016).
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